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Resumen

Un problema de dipersión clásico puede caracterizarse por el tiempo de recor-

rido. Para una part́ıcula incidente en un potencial, este tiempo se define como el

que tarda la part́ıcula en cruzar el potencial. La definición del tiempo de recorrido

clásico se basa en la existencia de una trayectoria dentro del potencial. Hay varias

formas de medir experimentalmente este tiempo. Por ejemplo, podemos medir la

distancia, o demora espacial, entre el centro de masas (CM) de la part́ıcula trans-

mitida con el de una part́ıcula libre, y asociar esta demora espacial con el tiempo

de recorrido.

Alternativamente, se puede usar un reloj para medir la duración. F́ısicamente,

consideramos como un reloj un puntero acoplado a la part́ıcula, en el que algún

parámetro del puntero cambia mientras la part́ıcula se encuentra dentro del po-

tencial. Por ejemplo, un esṕın que rota en la presencia de un campo magnético, de

forma que, midiendo la rotación del esṕın podemos calcular la duración del recor-

rido. Este es el método de Larmor. En una transición clásicamente permitida,

ambas definiciones del tiempo de recorrido coinciden.

En el caso del efecto túnel no está claro cómo definir tal trayectoria, y por tanto

cómo definir el tiempo de recorrido. Cuando extendemos estas mediciones a un

caso cuántico los resultados obtenidos difieren. El debate alrededor del tiempo

de túnel continúa hoy en d́ıa, alentado por avances recientes en técnicas de atto-

segundo, que permiten medirlo experimentalmente.

Cualquier medición en mecánica cuántica está normalmente relacionada con un

operador autoadjunto. El problema es que, como Pauli señaló en 1933, no hay un

xi
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operador autoadjunto para el tiempo. Por el contrario, el tiempo en mecánica

cuántica es un parámetro. En los dos experimentos mencionados, la duración no

se mide directamente. Lo que se mide realmente es la demora espacial en el primer

caso, o la rotación del esṕın en el segundo. Los tiempos de recorrido son diferentes

y solo coinciden en el ĺımite clásico.

Ha habido numerosos intentos de definir un tiempo de recorrido en mecánica

cuántica. Una de las primeras propuestas se debe a Eisenbud, Wigner y Smith,

que estudiaron la evolución de un paquete de ondas (PO) transmitido. En el

caso de dispersión unidimensional, como la que consideraremos en esta Tesis, este

enfoque consiste en medir la distancia entre los CMs del PO transmitido y un

PO libre. Cuando se produce una dispersión de un PO ancho, éste adquiere

una fase (Φ), relacionada con la demora espacial del PO a través de su derivada

respecto de la enerǵıa (∂EΦ). Este es el tiempo de fase, también llamado tiempo

de Eisenbud-Wigner-Smith (EWS), y se aplica a procesos de dispersión que hayan

sido completados.

En los años 30 se observó por primera vez que, en el caso del efecto túnel,

no hay una demora apreciable en la transmisión del paquete a través de la bar-

rera. Si se aplica el método de EWS al efecto túnel, parece que la transmisión

es instantánea. Para una dispersión unidimensional en una barrera de anchura d

y potencial máximo V0 > E, donde E es la enerǵıa de la part́ıcula incidente, el

CM del PO transmitido está por delante del CM del libre, aproximadamente, una

distancia d. Aparentemente, la velocidad del PO en el potencial es superluminal,

ya que parece exceder la velocidad de la luz. Esto estaŕıa en contradicción con la

relatividad especial de Einstein.

Esta transmisión superluminal no es el resultado de usar una ecuación no rela-

tivista, como la ecuación de Schrödinger, ya que persiste si consideramos part́ıculas

relativistas. Además, este resultado ha sido obtenido experimentalmente. La ex-

plicación reside entonces en otro lugar.

Un aspecto fundamental de la teoŕıa cuántica estándar es que no hay trayecto-

rias bien definidas asociadas con el efecto túnel, como śı las hay en una dispersión
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clásicamente permitida. En el caso del efecto túnel, la demora espacial de la

part́ıcula transmitida es el resultado de que la interferencia entre trayectorias al-

ternativas se mantiene intacta. De esta manera, el Principio de Incertidumbre nos

prohibe saber qué camino ha tomado la part́ıcula, de forma que la demora espacial

no puede asociarse a un “tiempo en la barrera”. En general, se considera que el PO

se remodela en la barrera, aunque la naturaleza exacta de esta remodelación está

todav́ıa bajo debate. Nuestra intención en esta Tesis es estudiar cómo interfieren

las amplitudes de trayectorias alternativas, y cómo por ello surge, en el caso del

efecto túnel, una demora superluminal.

Esta Tesis está dividida en dos partes principales. La primera considera dis-

persión no relativista, mientras que la segunda analiza la dispersión relativista.

En la primera parte de esta Tesis nos centramos principalmente en el enfoque

de EWS, y analizamos el mecanismo de remodelación del PO a través del efecto

túnel. Veremos que el PO no es una copia avanzada del incidente, sino que es

el resultado de la interferencia de copias, cada una con su demora espacial. El

tiempo de recorrido clásico, asociado a una única trayectoria, puede obtenerse

para transmisiones clásicamente permitidas.

El problema del tiempo en una transición cuántica está ı́ntimamente relacionado

con las mediciones cuánticas. Las distintas definiciones del tiempo del efecto túnel,

o de la duración de una transición cuántica, son realmente descripciones de cómo

efectuar la medición. Es la diferencia entre experimentos la que conduce a distintas

medidas.

En esta Tesis veremos cómo la teoŕıa de medidas cuánticas nos ayuda a in-

terpretar los resultados obtenidos para el tiempo del efecto túnel. Los tiempos

que estudiaremos en esta Tesis pueden expresarse como una convolución entre

amplitudes complejas y una función “aparato” acoplada a la part́ıcula. Esta con-

volución toma diferentes formas para los métodos de EWS o del reloj de Larmor,

los dos métodos que consideraremos en la primera parte de la Tesis. En general,
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en mecánica cuántica una medición afecta la interferencia. En los diferentes esce-

narios que estudiaremos en esta Tesis veremos que la precisión con la que midamos

un tiempo o una demora espacial cambia el resultado de la medida.

El efecto túnel cuántico es un ejemplo de un problema de dispersión para el

cual un enfoque puramente cuántico es necesario, ya que una extensión directa

del análisis clásico lleva a resultados contradictorios. Además de éste, hay otras

situaciones de dispersión para los que el análisis clásico falla, como es la dispersión

a bajas enerǵıas en barreras bajas o pozos poco profundos. Aplicaremos este

análisis cuántico a un potencial de Eckart para estudiar el tiempo superluminal

y el efecto que las singularidades, o polos, de la amplitud de transmisión tienen

sobre las demoras espaciales de los POs transmitidos. Estos polos están asociados

con estados ligados o resonantes, y determinan las interferencias entre las demoras

alternativos que el PO transmitido puede adquirir en el potencial.

A pesar de que la mayoŕıa de la Tesis se centra en las demoras de EWS, también

estudiaremos la diferencia entre éstos y el tiempo de túnel obtenido con un reloj

de Larmor. Este último usa la rotación del esṕın de la part́ıcula en presencia de

un campo magnético para medir el tiempo que la part́ıcula pasa en una región del

espacio. Consideraremos el caso de un potencial de rango cero. Éste es un caso

ultra cuántico, para el cual la diferencia entre ambas medidas es máxima.

En el caso de dispersión relativista, el efecto superluminal no solo no desaparece,

sino que encontramos más resultados anómalos. En la segunda parte de la Tesis

consideraremos un tratamiento relativista y de single-particle de la dispersión.

Con este enfoque, estudiaremos la dispersión de bosones y fermiones a través

de barreras supercŕıticas, esto es, barreras suficientemente altas como para unir

la brecha entre los continuos negativo y positivo de enerǵıa. Los POs pueden

propagarse libremente por estas barreras, para las que no hay supresión de la

transmisión. Esto es conocido como la paradoja de Klein.

Nuestro interés en este tipo de barreras reside de nuevo en los tiempos de

recorrido aparentemente paradójicos que pueden obtenerse siguiendo el CM de los

POs. Para ello consideramos la transmisión de un PO bosónico de enerǵıa E,
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que satisface la ecuación de Klein-Gordon, a través de una barrera supercŕıtica

de anchura d y altura máxima V0 = E/2. En esta situación, podemos encontrar

soluciones en las que la parte transmitida del PO está avanzado 2d respecto a un

PO libre, dos veces la anchura de la barrera. Si utilizasemos este resultado para

calcular una duración en la barrera, de la misma manera que podemos hacer en la

dispersión clásica, el resultado es un tiempo de recorrido negativo. Esta conclusión

parece contradecir la causalidad de Einstein, a pesar de que, como mostraremos,

la obtención de este resultado no requiere de velocidades superluminales.

También estudiaremos cómo la dispersión supercŕıtica difiere para bosones de

Klein-Gordon y fermiones de Dirac, y discutiremos la convergencia y causalidad

de cada una de sus respectivas soluciones. Como veremos, los bosones y fermiones

se comportan de forma diferente en el régimen supercŕıtico. Analizaremos estas

diferencias y las relacionaremos con la paradoja de Klein.

Esta Tesis está organizada como sigue. La Parte I está formada por tres

caṕıtulos. En el Caṕıtulo 1 estudiaremos la transmisión de PO Gaussianos no

relativistas en términos de la interferencia entre sus copias desplazadas. Consider-

aremos los casos de las transmisiones clásicamente permitidas y del efecto túnel.

Es en este último caso en el que aparecen las demoras superluminales, cuyo origen

discutiremos. En el Caṕıtulo 2, aplicaremos el método presentado en el anterior

caṕıtulo a un potencial de Eckart. También calcularemos la distribución de las

demoras en términos de los polos de la amplitud de transmisión, tanto para bar-

reras como para pozos de Eckart. En el Caṕıtulo 3 compararemos los resultados

de EWS y del reloj de Larmor en el caso de un potencial de rango cero. Ambos

enfoques pueden ser entendidos como mediciones cuánticas, aunque de parámetros

distintos.

La Parte II de esta Tesis analiza la dispersión relativista, y está formada por

un único caṕıtulo. En el Caṕıtulo 4 usaremos una serie de múltiples reflexiones

para estudiar la transmisión y reflexión de POs bosónicos y fermiónicos a través de

barreras supercŕıticas. Las soluciones son diferentes para cada tipo de part́ıcula.
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Analizaremos cada solución en relación a la creación y aniquilación de pares, y a

la paradoja de Klein.

Finalmente, presentaremos las Conclusiones de la Tesis, también divididas en

dos partes: relativista y no relativista.



Introduction

A classical scattering problem can be characterised by a traversal time. For

a particle incident on a potential region, this is the time taken for the particle

to pass through the potential. The definition of a classical traversal time relies

on the existence of a trajectory inside the potential. There are several ways to

experimentally measure the traversal time. We can measure the spatial delay the

particle acquires after the transmission, compare its centre of mass (COM) with

that of a freely propagating one, and relate this delay to the traversal time.

Alternatively, one can think of using a clock to measure this duration. We can

consider the clock as a pointer coupled to the particle, where some parameter of

the pointer changes when the particle is inside the potential. For example, a spin

that rotates in the presence of a magnetic field, so, measuring the spin precession,

it would give us the duration of the passage. This is the Larmor clock approach.

In a classically allowed scenario, both definitions of the traversal time coincide.

In the case of tunnelling, it is not clear how to define such a trajectory and

how to define the traversal time. Extending these measurements to a quantum

case leads to different results. The debate around the tunneling time continues

today, encouraged by recent advances in atto-second techniques, that allow it to

be measured experimentally [1–3].

In quantum mechanics any measurement is usually related to a self-adjoint

operator. The problem is that, as Pauli pointed out in 1933 [4], there is no self-

adjoint operator for time. Instead, time is a parameter in quantum mechanics. In

the two experiments mentioned above, the duration is not measured directly. What

1
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is actually measured is the spatial delay or the spin precession. Each experiment

leads to different results for the traversal time, which only coincide in the classical

limit. As stated in [5], a unique, classical question vercorresponds to different

quantum versions.

Numerous attempts have been made to define a traversal time in quantum

mechanics (for a general review, see [6] and for a more recent one, see [7]). An

early attempt was made by Eisenbud [8] and Wigner [9], and later generalised by

Smith [10], who studied the evolution of the transmitted wave packet (WP). In

the one-dimensional scattering scenarios considered in this Thesis, this approach

corresponds to measuring the spatial delay between the COMs of the tunnelled

WP and a freely propagating one. When a broad WP is scattered by a potential,

it acquires a phase shift (Φ), related to the delay of the transmitted WP by its

energy derivative (∂EΦ). This is the phase time, also called Eisenbud-Wigner-

Smith (EWS) time, and applies to completed scattering processes.

It was observed already in the 1930’s that there is no appreciable delay in

the transmission of the packet through the barrier [11]. If one applies the EWS

method to tunnelling, it appears that the tunnelling is instantaneous. For a one-

dimensional scattering on a barrier of width d and height V0 > E, where E is

the energy of the incident particle, the tunnelled WP is advanced by, roughly,

a distance d relative to a freely propagating one. The velocity of the WP in the

potential is apparently superluminal, as it seems to exceed the speed of light. This

suggests a contradiction with Einstein’s special relativity.

This superluminal transmission is not just an artefact of using a non-relativistic

equation, such as the Schrödinger equation, but the effect persists using a fully

relativistic treatment [12–14]. The spatial delay that leads to this result can be

obtained experimentally [2, 3, 15]. The explanation to this seemingly paradoxical

result lies elsewhere.

A key aspect of the standard quantum theory is that there are no well-defined

trajectories associated with tunnelling, as there are in a classically allowed scat-

tering process. There have been attempts to include trajectories into the quantum
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theory, most notably in the case of the de Broglie-Bohm theory, which has been

applied to the case of tunnelling times [16]. Alternatively, one can also use Feyn-

man’s path formulation [17], where trajectories of alternative paths interfere to

produce the transition amplitude [18, 19].

In order to avoid perturbing the transition, it has been proposed to use weak

measurements to reconstruct the trajectory of a quantum particle, and calculate

its traversal time [15, 20, 21], although the true meaning of these weak measure-

ments is debated [22, 23]. The “weakness” of the measurement does not destroy

the interference, as a usual (strong) measurement does. However, as stated by

Bohm [24], any measurement in which the interference is not destroyed leads to

inconsistent results.

In the case of tunnelling, the spatial delay experienced by the tunnelled parti-

cle is a result of the interference between alternatives which remain intact. The

Uncertainty Principle forbids us from knowing which path the particle has taken

[25], so the delay cannot be related to a “time spent in the barrier”. It is generally

accepted that the tunnelled particle is reshaped in the barrier [26–28], although

the exact nature of this reshaping mechanism is under debate. Our aim in this

Thesis is to study how the amplitudes of the alternative trajectories interfere, and,

in the case of tunnelling, lead to the apparent superluminal transmission.

This Thesis is divided into two main parts. The first one considers non-

relativistic scattering, while the second one focuses on relativistic scattering.

In the first part of the Thesis, we concentrate mainly on EWS delays, and

analyse the reshaping mechanism of tunnelled WPs, that explains the apparent

superluminal phase time. The tunnelled WP is not an advanced copy of the

incident one, but the result of the interference of its delayed copies. We study the

interference between the alternative spatial delays that the non-relativistic WP

can acquire as it passes through the potential region. The classical traversal time,

associated with a single trajectory, can be obtained as a semiclassical limit, only

in the classically allowed case.
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The problem of timing a quantum transition is closely related to the problem of

quantum measurements. The different existing definitions of the tunnelling time,

or of the duration of a quantum transition, are actually descriptions of how to

perform the measurement. It is the difference between experiments that leads

to different measured quantities. As stated in [6], the fact that the particle is

transmitted, not reflected, amounts to a measurement.

We will see how quantum measurement theory helps us to interpret the results

obtained for the tunnelling time. The measured times studied in this Thesis are

naturally expressed as a convolution between complex amplitudes and an “appa-

ratus” function coupled to the particle. This convolution takes different forms for

the EWS or Larmor clock approaches, considered in the first part of the Thesis.

It is a general feature of quantum mechanics that a measurement affects the inter-

ference. How accurately we measure a time or delay changes the outcome of the

measurement [29].

Quantum tunnelling is an example of a scattering problem where a pure quan-

tum approach is needed, because a straightforward extension of the classical anal-

ysis to a quantum situation gives contradictory results. There are other scattering

situations where the classical analysis fails, such as low energy scattering on low

barriers or shallow wells. We apply this quantum analysis to scattering by a

smooth Eckart potential. We study the apparent superluminal tunnelling time

discussed above and the effect that the poles of the transmission amplitude have

on the spatial delays of the transmitted WPs. These poles are associated with

bound or resonant states, and are related to the interference between alternative

delays that the transmitted WP can acquire in the potential [30].

Although most of the Thesis is devoted to the EWS delays, we also analyse the

difference between these and the tunnelling time obtained using a Larmor clock,

already mentioned above. The latter uses the precession of the spin of the particle

in the presence of a magnetic field to measure the time spent in a region of space

[31]. We consider an ultra-quantum case of a zero-range potential, for which they

are most different, and study how this difference appears.
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In the case of a relativistic scattering, not only does the apparent superluminal

effect not disappear, but one encounters more anomalous results. In the second

part of the Thesis we consider the single-particle relativistic treatment of scat-

tering, by studying the scattering of bosons and fermions through supercritical

barriers, i. e. barriers high enough to bridge the gap between the negative and

positive energy continua. WPs can propagate freely through the barrier region

and there is no suppression of transmission, unlike in non-relativistic tunnelling.

This is known as the Klein paradox [32, 33].

Our interest in these barriers lies again in the apparently paradoxical traversal

times obtained by following the COMs of the WPs. Consider the transmission of

a bosonic WP of energy E, which satisfies the Klein-Gordon equation, through

a supercritical barrier of width d and height V0 = E/2. In this scenario, we can

find solutions where the transmitted part of the WP is advanced by 2d, twice the

width of the barrier. A time derived from this spatial delay in the same manner as

in classical scattering leads to negative traversal times. This conclusion seems to

contradict Einstein’s causality, although, as we will show, the mechanism behind

its appearance does not require superluminal velocities.

We also study how the supercritical scattering differs for Klein-Gordon bosons

and Dirac fermions, and discuss the convergence and causality of their respective

solutions. As we will see, bosons and fermions behave differently in the supercrit-

ical regime. We analyse these differences, and relate each solution to the Klein

paradox.

This Thesis is organised as follows. Part I consists of three chapters. Chapter

1 studies the transmission of non-relativistic Gaussian WPs in terms of interference

of their delayed copies. This reshaping mechanism is studied in the classically

allowed transmission and in the case of tunnelling. In the latter case, if the COM

delay is used to deduce the time in the barrier, the apparent superluminal delays

appear. In Chapter 2, the method presented in the previous chapter is applied

to a smooth Eckart potential. The delay distribution is calculated in terms of the

poles of the transmission amplitude. The effect of these poles on the transmitted
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WP is studied for different Eckart barriers and wells. In Chapter 3 the EWS and

the Larmor clock results are compared in the case of a zero-range potential. Both

can be understood as quantum measurements, although of different quantities.

The difference is discussed in detail.

Part II of the Thesis studies relativistic scattering, and consists of a single

chapter. Chapter 4 considers transmission and reflection through supercritical

barriers using a multiple-reflection series. The different scattering solutions for

Klein-Gordon bosons and Dirac fermions are discussed and compared. Each so-

lution is analysed in relation to pair creation and annihilation, and to the Klein

paradox.

Finally, we present our Thesis Conclusions, also divided into two parts: rela-

tivistic and non-relativistic.



Part I

Non-relativistic scattering

7





Chapter 1

Superluminal scattering time

We study the transmission of non-relativistic Gaussian wave packets through

a one-dimensional potential, barrier or well. It is well known that particles that

tunnel through a potential seem to “take no time”. We study the transmission as

a result of the interference of delayed freely propagating wave packets, each with

a different spatial delay, related to the potential. In the classical case, the particle

experiences a speed-up or slow-down effect, where the interference is destroyed.

This is not what happens in the quantum case, since the Uncertainty Principle

does not allow us to relate the delay of the transmitted particle to a time spent

in the potential region. The meaning of the apparent “superluminal” delay in

tunnelling is discussed.

9
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1.1 Introduction

A classical particle travelling through a one-dimensional short-range potential

V (x) speeds up over a well, V (x) < 0, and slows down over a barrier, V (x) > 0.

This can be experimentally checked by measuring directly the difference between

the position of the transmitted particle and a freely propagating counterpart, i.

e. the spatial delay x′, which can be positive or negative. Alternatively, one

can compare the times at which the transmitted and the freely moving particles

arrive at a fixed detector far enough from the potential, and obtain a time delay

τ . For a classical particle, there is a direct relation between the results of the two

approaches, since we have that τ = −x′/v0, where v0 is the speed of the freely

propagating particle.

This relation relies on the existence of a well-defined trajectory of the particle

through the potential. This classical, single trajectory no longer exists in a pure

quantum scattering problem. In the case of tunnelling, where the incident particle

has an energy lower than the barrier’s height, attempts to calculate the time it

takes for the particle to cross the potential lead to anomalous results.

In the early 1930’s it was observed that there is no appreciable delay in the

transmission of the packet through the barrier [11]. The particle seems to cross the

barrier region instantaneously. If we were to infer a velocity from this tunnelling

time, as in the classical case, we would get an infinite velocity. This result directly

contradicts Einstein’s special relativity, since the velocity would be higher than

the speed of light, hence the name “superluminal”. The debate about the meaning

of this apparent “superluminal” tunnelling time continues to date, encouraged by

the recent progress in atto-second experimental techniques [1–3, 15].

The difficulty in trying to measure a quantum time is that quantum mechanics

measure operators, and there is no self-adjoint operator for time [5]. Instead, time

is a parameter of the systems, not an observable.

In this chapter and throughout the first part of the Thesis, we focus on non-

relativistic particles, that satisfy the Schrödinger equation. These have no explicit
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speed limit, so it could be argued that the superluminal delay does not violate

Einstein’s special relativity, because it is not considered. One can hope that this

superluminal delay would disappear if one treats the particles in the relativistic

approach. This is not the case, as anomalous values for the tunnelling delay persist

in the transmission of relativistic particles [12–14].

The mechanism for the appearance of the delay in quantum tunnelling is very

different from that for the speed-up or slow-down of the classical transmission.

Considering the incident wave packet (WP) as a travelling smooth envelope, the

transmission relies on the interference of delayed free envelopes. In the classical

case, a single delayed envelope is selected, corresponding to the transmitted WP.

This is not the case in quantum transmission [30, 34], as the particle undergoes a

reshaping process in the barrier [35], in where all the envelopes contribute to the

transmission. Therefore, no single delay is selected. The information about any

selected single delay is hidden by the Uncertainty Principle [24, 25].

This chapter is organised as follows. Section 1.2 presents the Gaussian WP we

will use throughout the chapter, and defines the delay as the difference between

the centres of mass (COMs) of the transmitted and free particles. Section 1.3

discusses the semiclassical approximation, used in the following sections, and shows

the mechanism behind the classical delay. Section 1.4 applies this semiclassical

approximation to the tunnelling case, where the apparent superluminal nature of

the tunnelling delay already appears. The transmitted WP, which is the result

of interfering delayed envelopes, is studied in Section 1.5, where the amplitude

distribution of the delays is presented. This distribution is studied further in

Sections 1.6, where the delay appears as stationary points in the delay distribution,

and 1.7, where the alternating nature of this distribution comes into play. Section

1.8 introduces the pole representation, which is further developed in Section 1.9,

that gives analytical expressions for the transmitted WPs. Finally, Section 1.10

discusses the main results of the chapter, and gives the conclusions.

The main results in this chapter are general, for any shape of the potential. To
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showcase some of these results, a square potential is used in some numerical calcu-

lations. Although helpful for illustrating the main ideas, the square potential has

some analytical difficulties that need to be studied further with the pole represen-

tation method presented here. The following chapters are devoted to two examples

of potentials, the Eckart and a zero-range potential, which are better suited for

this treatment. For these potentials, the pole representation method will show to

be more helpful in order to understand the appearance of the anomalous delays,

and the nature of quantum scattering.

Throughout this chapter we will focus on transmission, although a similar study

can be applied to reflection, which will also be studied in Chapter 3.

1.2 Centre of mass delay

We consider a one-dimensional scattering problem. The WP is incident from

the left on a short-range potential V (x), such that V (x)→ 0 for x→ ±∞ and has

a maximum value V0. The initial WP starts at a point to the left of the barrier,

far enough to be unaffected by the potential, with energy E(p) = p2/2µ, where µ

is the particle’s mass (ℏ = 1),

Ψ0(x, t) =

∫
A(p− p0) exp

[
ipx− iE(p)t

]
dp. (1.1)

A(p−p0) is the momentum distribution around the mean momentum p0. Through-

out this Thesis we will consider Gaussian WPs, with a momentum distribution

given by

A(p− p0) = 2−1/4π−3/4∆p−1/2 exp
[
−(p− p0)2/∆p2 − i(p− p0)x0

]
, (1.2)

where ∆p is the momentum width of the WP, with the spatial width given by ∆x =

2/∆p, and x0 > 0 is the initial point to the left of the barrier. Inserting Eq.(1.2)

into Eq.(1.1), evaluating the Gaussian integral and using that
∫
e−ax2+bx+cdx =
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√
π/aeb

2/4a+c, we have

Ψ0(x, t) = exp
[
ip0x− iE(p0)t

]
G0(x, t), (1.3)

G0(x, t) =

(
2∆x2

π∆x4t

)1/4

exp

[
−(x− p0

µ
t− x0)2/∆x2t

]
,

where ∆xt = ∆x
√

1 + 2it/µ∆x2 is the complex width that takes into account the

spreading of the WP over time. G0(x, t) is the smooth envelope that travels at a

velocity proportional to the mean momentum, v0 ≡ p0/µ.

As time evolves, the WP reaches the barrier and is transmitted and reflected.

The transmitted WP is

ΨT (x, t) =

∫
T (p, V )A(p− p0) exp

[
ipx− iE(p)t

]
dp, (1.4)

where T (p, V ) is the transmission amplitude for the potential V (x). A diagram

of scattering, showing classical transmission and quantum tunnelling, is shown in

Fig.1.1.

At a time t, long enough for the scattering to have taken place, we compare the

position of the COM of a freely propagating particle, in the absence of potential,

with the COM of the transmitted WP. We obtain a delay

δxCOM(t) = xTCOM(t)− x0COM(t), (1.5)

where the centres of mass are at the positions

xT,0COM(t) =

∫
x|ΨT,0(x, t)|2dx∫
|ΨT,0(x, t)|2dx . (1.6)

In Eq.(1.5) a positive delay means that the particle is advanced relative to free

propagation, while a negative value means it is delayed.

This chapters shows some illustrative results using a square potential of width d,

Appendix A. For the figures, dimensionless variables are used, taking the barrier’s
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Figure 1.1: An incident WP, ψ0(x, t = 0) (blue solid line) transmitted across
a square potential with height V0 and width d. The transmitted WP, ψT (x, t),
is shown for the case of E > V0 (yellow solid line) and the case of tunnelling,
E < V0 (red solid line). The freely propagating WP at time t is also shown
(blue dashed line). The COMs of all the WPs, Eq.(1.6), are marked by dashed

vertical lines.

width as the reference. These variables, with ℏ = 1, are

X = x/d, P = pd, T = t/d, W = V0d, M = µd. (1.7)

1.3 The classical limit and spatial delays

For a classically allowed transmission we have that E(p) > V (x), and the local

momentum of the WP inside the potential is q(x, p) =
√
p2 − 2µV (x). We consider

here the case of a momentum distribution A(p − p0) such that all non-negligible

momenta involved in the scattering process are positive, and in the same way

q(x, p) is positive for all these momenta.

In the case of a smooth potential, the semiclassical condition requires that the

potential varies slowly compared to a local de Broglie wavelength, h/p. Assum-

ing this condition is met, and neglecting over-barrier reflection, we can write the
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transmission amplitude as a phase integral [36]

T (p, V ) ≈ exp

{
i

∫ ∞

−∞

[
q(x, p)− p

]
dp

}
≡ exp

[
iΦ(p, V )

]
. (1.8)

We can expand the phase of the transmission amplitude in Taylor series around

the mean momentum p0, using that ∂p
[
q(x, p)− p

]
|p=p0 = p0/q(x, p0)− 1,

Φ(p, V ) =Φ(p0, V )−
∫ ∞

−∞

[
1− p0

q(x, p0)

]
(p− p0)dx (1.9)

+

∫ ∞

−∞
dx

∞∑

n=2

∂npΦ(p0, V )(p− p0)n/n!.

For the Gaussian WPs considered, the main momentum contributions lie in a

range inversely proportional to the width of the WP in coordinate space, ∆p =

2/∆x. Therefore, we have that (p− p0)n ∼ 2n/∆xn. In order for the higher order

terms in Eq.(1.9) to be negligible, the spatial distribution of the WP, ∆x, has to be

broad enough compared to the width of the potential so that
∑∞

n=2 ∂
n
pΦ(p0, V )(p−

p0)
n/n! ≪ 1. For the square potential used in the figures in this chapter, this

condition is satisfied everywhere except at its edges. We will return to this point

in the following chapters in order to check whether the semiclassical condition is

satisfied by the potentials taken considered there. For now, we assume we can do

so and leave the series up to the first order for the rest of the current chapter.

The first term of Eq.(1.9) only affects the transmitted WP, Eq.(1.4), as an

overall phase. Renaming the term in brackets in the second term of Eq.(1.9) as x̃′

and inserting Eq.(1.9) into Eq.(1.4) we have

ΨT (x, t) ≈
∫
A(p− p0) exp

[
iΦ(p0, V )− ix̃′(p− p0)

]
exp

[
ipx− iE(p)t

]
dp =

(1.10)

= exp
[
iΦ(p0, V ) + ix̃′p0

] ∫
A(p− p0) exp

[
ip(x− x̃′)− iE(p)t

]
dp =

= exp
[
iΦ(p0, V ) + ix̃′p0

]
Ψ0(x− x̃′, t).
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Apart from an overall phase, which does not affect the position of the centre of

mass, the transmitted WP is just a free WP, shifted in space by x̃′. We can see

the classical origin of this shift or delay, x̃′, more easily by rewriting it in terms

of the velocity of the particle outside and inside the potential. Outside, the initial

velocity of the particle is v0 ≡ p0/µ and, equivalently, inside the potential the

particle has a velocity v(x, p0) ≡ q(x, p0)/µ. We have that the delay is

x̃′ = v0

∫ ∞

−∞

[
1

v0
− 1

v(x, p0)

]
dx. (1.11)

It is clear that the positive or negative delays of the transmitted particle crossing

a potential, barrier or well, is a result of it speeding up or slowing down. When

the particle goes over a barrier, V (x) > 0, the momentum inside the potential

q(x, p) decreases, and with it the velocity v(x, p0) < v0. Looking at Eq.(1.11),

this implies that x̃′ < 0, and the transmitted particle appears behind the freely

propagating one. Equivalently, in the case of a well, V (x) < 0, the particle speeds

up, v(x, p0) > v0, so that the spatial delay becomes positive, x̃′ > 0 and the

transmitted WP appears ahead of a freely propagating one.

As an illustrative result, the case of WPs crossing over a square potential barrier

or well, Appendix A, is shown in Fig.1.2. The WPs are calculated by numerical

integration of Eqs.(1.1) and (1.4), using dimensionless variables, Eq.(1.7). For

the square barrier, Fig.1.2 a), the difference between the numerical COMs of the

WPs gives δXCOM = −0.3001, while applying Eq.(1.11) gives X̃ ′ = −0.3338. For
the square well, b), the numerical delay is δXCOM = 0.1899, while the analytical

semiclassical approximation gives X̃ ′ = 0.1997. The results are not in perfect

agreement with Eq.(1.11) because, as mentioned above, the square potential does

not satisfy the semiclassical condition at its sharp edges, where its value has a

discontinuity. The potential used in the following chapter, the Eckart potential,

does satisfy the semiclassical condition everywhere.

In a classical passage of a WP over a barrier, the trajectory of the COM of the

WP is continuous and could be tracked everywhere, from the initial point, through

the potential region to the final time. This is the case for a scattering as the one
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Figure 1.2: Freely propagating particle (blue dashed line) and transmitted
particle (red line) for an incident Gaussian WP with ∆X = 0.15, P = 200,
X0 = −4, M = 1 and T = 0.04, going over a) a square barrier potential with
W = 104 and b) a square well potential with W = −104. The semiclassical

delays X ′ are obtained from Eq.(1.11).

from Fig.1.2. We could measure the position of the particle at any given time t,

and, for a large enough number of measurements at different times, have a definite

and continuous trajectory of the COMs of both the freely propagating WP and of

the transmitted one everywhere in space. This includes defining a trajectory of the

COM of the transmitted particle inside the potential. There is a direct relation

between the single delay after transmission and the trajectory of the particle as it

passes over the potential.

One can equivalently define the time the particle spends inside the potential,

and a velocity inside this region. The difference between the time taken by the

transmitted and the free particle to cross the potential is related to the spatial

delay x′. The condition for this relation is the existence of a continuous trajectory

inside the potential. This condition is only met in the classical case. As we will

see, in the pure quantum case of tunnelling there is no equivalence between the

spatial delays after transmission and a real time spent in the potential.
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1.4 “Instantaneous” semiclassical tunnelling and

complex spatial delays

Now we consider the case of a barrier, V (x) > 0, and an incident WP with all

energies E(p) < V0, i. e. where the maximum momentum taken into account in

the momentum distribution A(p − p0) corresponds to an energy lying below the

maximum value of the potential. This defines the classical turning points x< and

x>, such that q(x<,>, p0) = 0, and the classically forbidden region, x< < x < x>.

Inside this region, a classical WP cannot propagate, since its mean energy is below

the potential, and will be completely reflected. This is not true in the quantum

case, where a part of it still tunnels through this region and is partially transmitted,

even though the WP is mostly reflected. The transmission is suppressed, but not

forbidden in the quantum case.

Following the semiclassical analysis of Eqs.(1.8) and (1.11), we have now inside

this classically forbidden region a pure imaginary local momentum, q(x< < x <

x>, p) = i|q(x, p)| = i
√

2µV (x)− p2. The expansion in Eq.(1.9) is now complex,

and we have that |T (p0, V )|2 ≈ exp
[
−2
∫ x>

x<

√
2µV (x)− p20dx

]
≪ 1, which means

that most of the particles are actually reflected, and only a small fraction of them,

proportional to |T (p0, V )|2, tunnel through the barrier.

As before, the transmitted WP is shifted by the delay given in Eq.(1.11), which

is now a complex spatial shift, x̃′ = x̃′1 + ix̃′2. Its real and imaginary parts are

x̃′1 ≡ v0

∫ ∞

−∞

{
1

v0
− Re

[
1

v(x, p0)

]}
dx, (1.12)

x̃′2 ≡ −v0
∫ ∞

−∞
Im

[
dx

v(x, p0)

]
= −v0

∫ x>

x<

dx

|v(x, p0)|
.

Inserting these in Eq.(1.4), rearranging and taking into account the Gaussian

envelope in Eq.(1.2), we have that

exp
[
x̃′2(p− p0)− (p− p0)/∆p2

]
= exp

[
p− (p0 + δp0)

2

∆p2
+

∆p2x̃′22
4

]
, (1.13)
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where δp0 = ∆p2x̃′2/2. Finally, the transmitted WP is

ΨT (x, t) ≈ exp

[
iΦ(p0, V ) + ip0x̃

′
1 +

∆p2x̃′22
4

]
Ψ0(x− x̃′1, t, p0 + δp0). (1.14)

We can see now the effect that each part of the complex delay in Eq.(1.12) has

on the transmitted WP. The real part, x̃′1, acts as a spatial delay, in the same

way as in the classical case. The imaginary part, x̃′2, apart from an overall phase,

increases the particle’s mean momentum by δp0. This is known as the momentum

filtering effect (see, for example, [30, 35]), and it is due to the fact that higher

momenta tend to tunnel through the barrier more easily. For low momenta the

transmission amplitude increases rapidly as the momentum itself increases, and we

have that T (p0 + δp0, V ) ≫ T (p0, V ), shifting the transmitted mean momentum.

The wider the WP is in momentum space, the more pronounced this effect is, as it

“includes” values further away from its initial mean momentum p0. This last point

can also be seen in the dependence of δp0 on the width of the WP in momentum

space, ∆p.

Thus, the delay between the transmitted and the free particles, Eq.(1.5), is

δxCOM(t) = x̃′1 + δv0t, (1.15)

where δv0 = δp0/µ = (p− p0)/µ is the shift in the transmitted velocity due to the

momentum filtering. Note that the time t in Eq.(1.15) is the total time, from the

initial point, when the WP is far from the barrier, and not the moment when the

transmitted WP emerges from the right edge of the barrier.

From Eq.(1.12) we see that the classically forbidden region does not contribute

to the spatial delay x̃′1. This is the origin of the apparent “instantaneous” tun-

nelling, as the particle seems to take no time to pass through the classically for-

bidden region. For a general smooth barrier, such as the Eckart barrier studied

in the following section, the WP slows down as the barrier grows before the left

turning point x<, and as it decreases after the right-turning point x>. In these
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cases, the delay is not exactly the width of the forbidden region, but a smaller

one.

As before, we numerically compute the free and transmitted WPs through a

square barrier, Appendix A, to see the delays appearing in a tunnelling scattering,

Fig.1.3. In the case of the square barrier, the positions of the two edges are

themselves the turning points and the whole region of the potential is the classically

forbidden region. Thus, the delay is the width of the barrier, x̃′1 = d. The

numerical delay from the figure is, in the dimensionless variables, given in Eq.(1.7),

δXCOM(t) = 1.0304, while the complete semiclassical approximation result for the

delay, from Eq.(1.15), is δXsc
COM(t) = 1.0300. The value for the real part of the

complex shift in Eq.(1.12) is X̃ ′
1 = 0.9800, which is close to the width of the

barrier, D = 1 in dimensionless variables. This is the spatial delay of the particle

without taking into account the momentum filtering effect. For larger times, the

second term in Eq.(1.15) dominates.
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Figure 1.3: Freely propagating particle (blue dashed line) and transmitted
particle (red line), enhanced for better viewing, for an incident Gaussian WP
with ∆X = 2, P = 100, X0 = −4 and M = 1, going over a square barrier

potential with W = 104 after a time T = 0.1.

Due to the low transmittance, the tunnelled WP is enhanced for better view-

ing in the figure. The total transmitted probability is reduced by, approximately,

|T (P0,W )|2 = 5.5356 × 10−87. Numerically, we find the total transmitted proba-

bility to be
∫
dX|ΨT (X,T )|2 = 9.2181 × 10−87, higher than the previous result,

due to the contribution of momenta larger than P0. Even though these values of
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the transmitted probability are too small to be considered in practice, we are in-

terested in the principle, which still holds. The effects studied are more noticeable

for the parameters taken throughout this Thesis, for which the transmitted WP

is orders of magnitude smaller than the incident one.

We could try, as we did for a particle over a barrier or well, to infere a time

spent in the barrier by the transmitted WP, and a velocity from it. A naive way of

evaluating the time spent is just by measuring the spatial delay between the COMs

of the two WPs. By comparing it with the width of the forbidden region, we can

evaluate the time spent there. For the apparently “instantaneous” tunnelling in

Eq.(1.12), the time spent is close to zero, and therefore the particle seems to have

an extremely high velocity while crossing this region.

This approach has several problems. Contrary to the classical case, it is not

clear how to define a trajectory inside the forbidden region of the potential. The

WP has no peak that could be traced, as it disappears at the left-turning point

and it is formed again after the right one. Inside the potential, it is an evanescence

wave, an exponentially decaying wave. In addition, the transmitted WP undergoes

a reshaping in the barrier [35]. It is not just a shifted copy of the incident one.

As we will see, this reshaping involves the interference between several delayed

envelopes. Although we can measure the COM of the particle after the tunnelling,

this gives no information about the existence of any well-defined trajectory inside

the potential.

Treating the COM of the tunnelled particle as a classical result is misleading,

as it is a quantum result, which does not contain the same information about the

past of the particle as a classical result does.

1.5 Transmitted WPs result from the interfer-

ence of delayed envelopes

Since we are interested in the spatial delays of the transmitted WP, we can

transform the integral in Eq.(1.4), which is evaluated over the momentum p, into
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an integral over the spatial coordinate x via a Fourier Transform (FT). Doing so,

we get a convolution, as [34]

ΨT (x, t) = exp
[
ip0x− iE(p0)t

] ∫
G0(x− x′, t)η(p0, x′)dx′, (1.16)

where G0(x − x′, t) is the freely propagating envelope in Eq.(1.3), delayed by x′,

and η(p0, x
′) is the distribution of these delays. The distribution is computed as

the FT of the transmission amplitude,

η(p0, x
′) =

exp (−ip0x′)
2π

∫
T (k) exp

(
ikx′

)
dk. (1.17)

Since the transmission amplitude satisfies T (−k∗, V ) = T ∗(k, V ), the inte-

gral in Eq.(1.17) can be calculated as 2 × Re
[∫∞

0
T (k) exp (ikx′) dx′

]
. Thus,

exp(ip0x
′)η(p0, x′) is a real function, although an alternating one between posi-

tive and negative values. This alternating nature, as we will see later, plays a

central role in the superluminal nature of the spatial delays. The distribution

itself, η(p0, x
′), is alternating and complex.

  

Figure 1.4: Smooth part of the delay distribution, computed as the numerical
integration of Eq.(1.19), for P0 = 2 and a square potential with a) U0 = 20,
corresponding to a barrier and b), U0 = −20, corresponding to a well. As
mentioned in the text, the depicted distribution, exp

[
iP0X

′] η̃(P0, X
′) is a real

function, and an alternating one.

For a freely propagating WP we would have η(p0, x
′) = δ(x′), since the particle

is unaffected by any potential, T (k, V ) = 1, and we recover the expression in

Eq.(1.3). In transmission through a potential, all WPs with energies far above
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the barrier, corresponding to high momenta, pass above the barrier unaffected,

and thus we have that T (k → ∞) → 1. There is perfect transmission for these

energies. Evaluating the FT of η(p0, x
′) we can separate the contribution of these

high momenta, which consists of a Dirac delta, and a smooth distribution,

η(p0, x
′) = δ(x′) + η̃(p0, x

′), (1.18)

where

η̃(p0, x
′) =

exp (−ip0x′)
2π

∫ [
T (k)− 1

]
exp

(
ikx′

)
dk, (1.19)

since the function T (k) − 1 tends to 0 for k → ∞. We can see examples of the

smooth part of the distribution of delays, Eq.(1.19), for both a square barrier and

a square potential in Fig.1.4.

We can now rewrite Eq.(1.16) as

ΨT (x, t) = exp
[
ip0x− iE(p0)t

]
[∫ ∞

−∞
G0(x− x′, t)η̃(p0, x′)dx′ +G0(x, t)

]
.

(1.20)
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Figure 1.5: Interfering envelopes, negatively delayed by x′ with respect to free
propagation (the delay at x′ = 0 corresponds to the freely propagating envelope)

resulting in an advanced transmitted WP.
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From Eq.(1.16) we see that the transmitted WP is actually formed by a recom-

bination of a continuum of different freely propagating envelopes G0(x, t), each

shifted by x′ in space, with a complex weight η(p0, x
′), as illustrated in Fig.1.5.

The interfering envelopes are weighted by η(p0, x
′), thus depending on the poten-

tial and the incident WP’s mean momentum.

The potential can be understood as an “interferometer”, in which there is a

continuum of “paths” that the particle takes to reach the final state. Along each

route the freely propagating envelopeG0(x, t) is enhanced or suppressed by a factor

|η(p0, x′)|, obtains an additional phase arg(η(p0, x
′)) and is delayed in space by x′.

All these envelopes recombine at the end to produce the transmitted, reshaped

WP. In the case of a potential barrier, since V (x) does not support bound states,

we have that

η(p0, x
′ > 0) = 0, (1.21)

which can be seen in Fig.1.4 a). For a well it is not true, in general, that η(p0, x
′ <

0) = 0. The delay distribution is non-zero everywhere, but the positive delays

dominate. Zooming into Fig.1.4b) for negative X ′, it can be seen that η̃(P0, X
′) is

indeed non-zero, although small compared to its value for positive X ′. Why this

is so will be studied in Section 1.8 and will be extended to the Eckart potential in

the following chapter.

From Eq.(1.21), in the case of a barrier, only the scenarios where the envelopes

are negatively delayed participate in the transmission. In the classical case of a

particle going over a barrier, one of these negative delays is selected, making the

transmitted WP to be behind a freely propagating one. In the case of tunnelling,

the interference of these routes does not “select” a single delay. Besides, the

recombined transmitted WP appears ahead of the freely propagating one, as if

the “selected” delay was positive. This positive delay is outside the range of the

available ones, at a point x′ where the amplitude distribution of the delays is
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zero.We also have that

T (p0, V ) =

∫
η(p0, x

′)dx′, (1.22)

so that η(p0, x
′) acts as the probability amplitude for a WP with momentum p0

to have a spatial shift x′. In the case of tunnelling, the delay of the transmitted

WP has a probability amplitude of zero.

Although both the classical and the quantum cases appear from the same ex-

pressions, they behave very differently. In the classical case, the recombination

selects a unique shift and substitutes the freely propagating envelope by one with

that selected shift. In the quantum case, all delays interfere in such a way that

the delay of the recombined WP falls outside the possible delays.

1.6 Delays as stationary regions in η(p0, x
′)

To see the mechanism behind the transmission as an interference of envelopes

we insert the semiclassical approximation of the transmission amplitude, given by

Eq.(1.8), into Eq.(1.3) and evaluate it with the steepest descent method. The

derivation of the results of this section is explained in more detail in Appendix B.

Here we focus on the main results. For η(p0, x
′) we obtain

η(p0, x
′) ∼ exp

[
−ip0x′ + iΦ(k̃(x′), V ) + ik̃(x′)x′

]
, (1.23)

where k̃(x′) is the critical point, which satisfies that

∂Φ(k, V )

∂k

∣∣∣∣
k=k̃(x′)

+ x′ = 0. (1.24)

We can use Eq.(1.23) and evaluate the integral for the transmittedWP, Eq.(1.16),
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applying again the steepest descent method. For the WP, we recover the expres-

sion given by Eq.(1.14), where now x̃′ is a critical point of η(p0, x
′) which satisfies

k̃(x̃′)− p0 = 0. (1.25)

Combining Eqs.(1.24) and (1.25) we obtain a saddle point at

k̃′ = p0, x̃′ = − ∂kΦ(k, V )
∣∣
k=p0

=

∫ ∞

−∞
dx

[
1− p0

q(x, p0)

]
. (1.26)

For the delay x̃′ we have recovered the expressions from the previous sections,

Eqs.(1.11) and (1.12), but now with a new interpretation as a stationary point of

η(p0, x
′).

The amplitude η(p0, x
′) has two important features. One is the finite dip near

x′ = 0, seen in Fig.1.4, whose contribution is to cancel the freely propagating

envelope G0(x, t) (for a similar “Zeno peak” see [37]). The other one is the sta-

tionary point we have just studied, shown in Fig.1.6 for the same parameters as

those in Figs.1.2 and 1.3. Note that, apart from the stationary point, the delay

distribution has some superimposed oscillations, due to the fact that the FT of

the transmission amplitude is a real function (see Appendix C).

The appearance, or “selection”, of a delay as a result of η(p0, x
′) is different in

the classical and quantum cases. In the classical case of the particle passing over

a well, or above a barrier, this stationary point x̃′ is real. It indicates the region

on the real x′ axis where the rapid oscillations of the amplitude distribution of

the delays, η(p0, x
′), are slowed down. Far from this point, the rapid oscillations

cancel all interfering envelopes in Eq.(1.16). This is a result of the period of the

oscillations appearing in the delay distribution being much shorter than the width

of the envelopes. As a result, all the envelopes are cancelled except G0(x− x̃′, t),
the one with a delay corresponding to the stationary point. This is what we see

in Fig.1.6 a) and b). The classical trajectory appears as a limit of the general

quantum case, where the contribution of a single path dominates [17].
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the width of the envelopes. As a result, all envelopes are cancelled except G0(x− x̃′, t), the
one with a delay corresponding to the stationary point. This is what we see in Fig.1.6 a)
and b). The classical trajectory appears as a limit of the general quantum case, in which the
contribution of a single path dominates [18].
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Figure 1.6: Real part of the delay distribution, Eq.(1.17) (blue solid line) and the average of

the delay distribution, Re
[
y−1

∫ X′+y

X′ η̃(P0, X
′′)dX ′′

]
, is shown (red solid line). The position of

the real delay from Eqs.(1.11) and (1.12) is marked for each case. The parameters correspond
to a) a passage over a barrier with W = 104 of a WP with mean momentum P0 = 200 and
M = 1, b) a passage over a well with W = −104 of a particle with mean momentum
P0 = 200 and M = 1, and c) tunnelling through a barrier with W = 104 of a WP with mean
momentum P0 = 100 and M = 1.

Going back to the “interferometer” picture, in a classically allowed transmission all en-
velopes from each route associated with a delay interfere in such a way that a single delayed
envelope is selected. The final transmitted WP is just a freely propagating one, delayed
by the selected x̃′, given by Eq.(1.11). This real delay can therefore be measured and be
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Figure 1.6: Real part of the delay distribution, Eq.(1.17) (blue solid line) and

the average of the delay distribution, Re
[
y−1

∫ X′+y
X′ η̃(P0, X

′′)dX ′′
]
, are shown

(red solid line). The position of the real delay from Eqs.(1.11) and (1.12) is
marked for each case. The parameters correspond to a) a passage over a barrier
withW = 104 of a WP with mean momentum P0 = 200 andM = 1, b) a passage
over a well with W = −104 of a particle with mean momentum P0 = 200 and
M = 1, and c) tunnelling through a barrier with W = 104 of a WP with mean

momentum P0 = 100 and M = 1.

Going back to the “interferometer” picture, in quantum tunnelling, the sta-

tionary point becomes complex, Eq.(1.12). There is no stationary point along the

real axis, and the amplitude distribution oscillates rapidly, since it corresponds

to the classically forbidden region. We can see in Fig.1.6 c) that now there are

only fast oscillations everywhere in x′ < 0. These rapid oscillations interfere de-

structively, as they did in the classical case far from the stationary point. This

makes the tunnelling WP exponentially small, although the amplitude η(p0, x
′)

itself is not small. In this case there is no single delay selected and all negatively

delayed envelopes G0(x − x′, t) interfere and contribute to the transmitted WP.

This interference occurs in such a way that, even though all interfering envelopes
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are negatively delayed, i. e. have a COM behind the one of the freely propagating

envelope, the result of their interference is an envelope with a COM ahead of the

free one.

This advanced WP is the result of a delicate cancellation of all delayed en-

velopes, in which only the front tails interfere constructively in a reshaping pro-

cess [35]. Thus, as we saw in Section 1.4, the resulting transmitted WP has an

amplitude much smaller than the incident one. It is worth noting that the only

difference between classically allowed and classically forbidden transmission is the

mean momentum. That is, their delay distributions, η(p0, x
′), differ only by a

phase.

We can use the stationary point to compute the momentum filtering. The

increase in the mean velocity, δv0 = (p− p0)/µ,can be expressed as

δv0 = δp0/µ =

∫
(p− p0)|T (p, V )|2|A(p− p0)|2dp
µ
∫
|T (p, V )|2|A(p− p0)|2dp

. (1.27)

Taking the limit for a wide spatial WP or, equivalently, ∆p→ 0, we can evaluate

Eq.(1.27) using Eq.(1.26) and expanding the transmission amplitude in Taylor

series around p0,

δv0 ≈ 2∂pln|T (p, V )|
∫
(p− p0)2|A(p− p0)|2dp
µ
∫
|A(p− p0)|2dp

= x̃′2∆p
2/2µ, (1.28)

and we recover the expression for the increase in the mean momentum that ap-

peared in Eq.(1.14).

1.7 Delays as first moment of η

In order to see how these interferences behave, we can write the delay δxCOM(t)

differently, as a function of the amplitude distribution of the delays, η(p0, x
′). To

do so, we assume that the envelope G0(x, t) in Eq.(1.16) is very broad and expand
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it as G0(x−x′, t) ≈ G0(x, t)−∂xG0(x, t)x
′. After some calculations (see Appendix

D), we have

δxCOM(t) = Re
[
x′
]
+ 2Im

[
x′
]
Im

[∫
xG∗

0(x, t)∂xG0(x, t)dx

]
, (1.29)

where x′ is the complex first moment of the distribution η(p0, x
′),

x′ =

∫
x′η(p0, x′)dx′∫
η(p0, x′)dx′

. (1.30)

From Eqs.(1.17) and (1.22) we have that
∫
x′η(p0, x′)dx′ =

∫
−∂k η(k, x′)

∣∣
k=p0

dx′ =

i∂kT (k, V )
∣∣
k=p0

, and therefore, for the first moment in Eq.(1.30) we have

x′ =
i∂kT (k, V )

T (k, V )

∣∣∣∣
k=p0

= i ∂kln
[
T (k, V )

]∣∣∣
k=p0

= − ∂kΦ(k, V )
∣∣
k=p0

, (1.31)

where Φ(k, V ) is the phase of the transmission amplitude in the semiclassical

approximation, Eq.(1.8). With this, we have recovered the complex delay of

Eq.(1.26), and we can identify Re[x′] = x̃1 and Im[x′] = x̃2. The second term

in Eq.(1.29) is the spatial distance advanced due to the momentum filtering (see

Appendix E), while the first term is the delay acquired in the barrier.

Equation (1.30) helps us to understand the reason for the appearance of the

anomalous delay in a classically forbidden transmission. It is an “average” ob-

tained with the delay distribution η(p0, x
′). There are two characteristics of the

delay distribution for a barrier, as the one shown in Fig.1.4a), that come into play

here. First, since η(p0, x
′) is zero for all positive x′, the real part of the integral in

the numerator,
∫
x′η(p0, x′)dx′, is negative. Second, it is an alternating distribu-

tion. The key is that the integral in the numerator,
∫
η(p0, x

′)dx′, has a negative

real part, because the delay distribution is an alternating function. It is in the

division between the negative numerator and the also negative denominator that
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the positive value for Re[x′] appears. This positive value x′ corresponds to a delay

distribution equal to 0, η(p0, x
′) = 0.

The mechanism behind this delay, which is outside the range of the available

ones, is better understood compared to a usual quantum measurement, where the

selected value of the delay is within on the range of the available ones. This involves

an average done with probabilities, which are positive and real. A measurement

of a value f has the form

f̃ ′ =

∫
f ′|A(f ′)|2df ′
∫
|A(f ′)|2df ′ , (1.32)

where A(f) is the probability amplitude associated with the eigenvalue f , and the

square of its absolute value, |A(f)|2, is the probability. In this case, the value of

the measured quantity f̃ ′ lies in the range of the available eigenvalues f ′, weighted

by their probabilities. There is no interference between the amplitudes of different

eigenvalues, since the square of their absolute value is being evaluated and not the

amplitudes themselves.

The first moment of η(p0, x
′) in Eq.(1.30) has a similar form to the quantum

measurement in Eq.(1.32). The main difference is that in the case of the first

moment of η(p0, x
′) the probability amplitudes are being evaluated, instead of the

probabilities. These probability amplitudes are, as mentioned before, alternating

functions. Thus,
∫
η(p0, x

′)dx′, in the denominator of Eq.(1.30), is not necessar-

ily positive, as is
∫
|A(f ′)|2df ′ in Eq.(1.32). For some given delay distribution,

∫
η(p0, x

′)dx′ can take negative values. This is what happens in the classically for-

bidden transmission. The real part of the numerator,
∫
x′η(p0, x′)dx′, is negative,

in the range of available delays, and is divided by a small negative quantity. This

makes the apparently “selected” delay to have a positive real part, outside the

range of available delays.

This delay has no upper limit, as
∫
η(p0, x

′)dx′ itself can take arbitrarily small

values. Increasing the width of the forbidden region in the barrier increases the

delay, but the probability amplitude of the transmitted particle decreases drasti-

cally.
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The mechanism for the selected x′ in Eq.(1.30) is similar to that of the “weak

measurements” [22, 30, 38]. These are highly inaccurate measurements which do

not destroy the interference of the probability amplitudes, in contrast to a strong

measurement which results in a measured value, as in Eq.(1.32). Due to the

Uncertainty Principle, this measurement cannot tell which of the eigenvalues the

system has taken. The result of this weak measurement is not a single eigenvalue,

but an interfering combination of all eigenvalues [23].

1.8 Pole representation

We have used a square potential in the numerical calculations of this chapter,

as an illustrative example of the characteristics of superluminal tunnelling. The

following chapters are devoted to examples of two different potentials, the Eckart

potential and a zero-range potential, better suited for an analytical treatment.

We now present the method of the pole representation, which gives an analytical

expression for the amplitude distribution of the delays in Eq.(1.17), that allows us

to study how the bound and resonant states of the potential affect the quantum

scattering.

In order to evaluate the integral in Eq.(1.17), we can close the contour of the

equation in the upper and lower half-planes of the complex k-plane, corresponding

to x′ > 0 and x′ < 0 respectively, as shown in Fig.1.7. η(p0, x
′) is obtained by

summing over all the contributions of the pole singularities of the transmission

amplitude. For a barrier, all poles appear in the lower half-plane, corresponding

to scattering resonances, since a potential barrier does not support bound states

[39]. Closing the integral contour in the upper half-plane, corresponding to x′ > 0,

the integral is zero, since there are no singularities there. This is the reason why

η(p0, x
′ > 0) = 0 for barriers. In the case of a one-dimensional well always at least

one bound state is supported [40], corresponding to poles in the upper half of the

complex k-plane, and η(p0, x
′) is non-zero for all available delays x′.

η(p0, x
′) can be then computed from the poles using the Cauchy integral for-

mula. We close anti-clockwise around the upper half-plane for bound states and
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Figure 1.7: Contour integration around the poles in the complex k-plane a)
for a resonant state, which is done clockwise, and b) for a bound state, which is

done anti-clockwise.

clockwise in the lower half-plane, Fig.1.7. In the latter case a factor of (−1) has
to be taken into account. This gives

η(p0, x
′) = δ(x′) + i exp(−ip0x′)×





∑

nB

Res(knB
) exp[iknB

x′], x′ > 0

∑

nR

−Res(knR
) exp[iknR

x′], x′ < 0,
(1.33)

where knB
and knR

are the poles corresponding to the bound and resonant states,

respectively, nR and nB their total number and Res(kB,R) the residue of the pole

kB,R. It is worth noting that the functions T (p, V ) and T (p, V )− 1 have the same

poles, so we can separate the smooth part of the delay distribution and solve the

integral for η̃(p0, x
′) with its corresponding residues, as in Eq.(1.33).

The result in Eq.(1.33) is a general and analytical expression, that gives an

exact result as long as we are able to calculate the value of all the poles and

their corresponding residues. In the case of barriers, there are no bound states.

Thus, only the sum corresponding to the resonant states, for x′ < 0, needs to be

considered.

The contribution of each pole is a decaying exponential from x′ = 0 to positive

x′, in the case of bound states, or to negative x′, in the case of resonant states.

The pole controls the decay, and each of these exponentials has a weight given by
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its residue. We can integrate Eq.(1.33) to recover the transmission amplitude,now

expressed as a function of the sum over the poles,

T (p, V ) = 1−
∑

nB

Res(knB
)

knB
− p −

∑

nR

Res(knR
)

kR − p
. (1.34)

We can also explicitly write the transmitted WP from Eq.(1.20) using Eq.(1.33),

ΨT (x, t) = exp
[
ip0x− iE(p)t

]
{G0(x, t) (1.35)

+ i
∑

nB

Res(knB
)

∫ ∞

0

G0(x− x′, t) exp[i(knB
− p0)x′]dx′

− i
∑

nR

Res(knR
)

∫ 0

−∞
G0(x− x′, t) exp[i(knR

− p0)x′]dx′}.

The effect of each kind of pole on the delay of the transmitted WP is now clear.

Bound states contribute to positively delayed envelopes, while resonant states

contribute to negatively delayed ones. In the case of a well, both kinds of poles are

present and, as we will see in the following chapter, positive delays dominate the

behaviour. This is due to the fact that their corresponding residues have a higher

value than those corresponding to the resonances. In the case of a barrier there

are no bound states present, and therefore only envelopes delayed with respect to

free propagation contribute to the transmitted WP.

This reshaping mechanism is consistent with the semiclassical case. We have

seen from Eq.(1.3) that wells advance the transmitted WP. This can be understood

as an effect of the bound states of the well. Equivalently, potential barriers delay

the transmitted WP, where this negative delay appears as a result of the resonant

states of the potential. In tunnelling, the advanced transmitted WP appears as a

recombination of negatively delayed envelopes.

1.9 Error functions

Eq.(1.35) can be further developed analytically, evaluating the Gaussian inte-

grals in terms of error functions [41]. From Eqs.(1.20) and (1.33) the transmitted
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envelope for the case of a barrier, not containing any resonant states, is

GT (x, t) = exp
[
ip0x− iE(p)t

]
(
2∆x2

π∆x4t

)(1/4){
exp[−(x− v0t− x0)2/∆x2t ] (1.36)

− i
∑

nR

Res(knR
)

∫ 0

−∞
exp[−(x− x′ − v0t− x0)2/∆x2t ] exp[i(knR

− p0)x′]dx′
}
.

The integral can be rearranged as

∫ 0

−∞
exp[−(1/∆x2t )x′2 + (iknR

+ 2(x− v0t− x0)/∆x2t )x′ (1.37)

− (x− v0t− x0)2/∆x2t ]dx′

≡exp[b2/4a+ c]
√
π(1− erf[b/2

√
a])

2
√
a

,

where a = (1/∆x2t ), b = (iknR
+ 2(x− v0t− x0)/∆x2t ), c = −(x− v0t− x0)2/∆x2t ]

and erf is the error function, erf(z) = 2/
√
π
∫ z

0
e−t2dt.

For a well, Eq.(1.36) also includes terms with an integral from 0 to ∞, which

can be evaluated in a similar manner,

∫ ∞

0

exp[−ax′2 + bx′ − c]dx′ = exp[b2/4a+ c]
√
π(1 + erf[b/2

√
a])

2
√
a

. (1.38)

The final expression, for both barriers and wells, is

GT (x, t) = exp[−ip0x]
(
2∆x2

π∆x4t

)(1/4)

× (1.39)

×



∑

n

Cn

exp
[
b2

4a
+ c
]√

π(1− sign(Im(kn))erf
[

b
2
√
a

]
)

2
√
a

+ exp

[
−(x− v0t− a)2

∆x2t

]
 ,

where Cn is the residue of the pole kn, whether it corresponds to a bound or a

resonant state. From this expression we can write, as before, the transmitted WP
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as

ΨT (x, t) = exp[ip0x− iE(p0)t]GT (x, t). (1.40)

1.10 Conclusions and discussion

1.10.1 Phase time and weak measurements

We have seen that a scattering process is related to the recombination of en-

velopes evolving through several different paths. Each of these scenarios has a

different spatial delay associated with it. Thus, the incident WP is “separated”

into differently delayed envelopes which interfere to form the transmitted particle.

In the classical case, the interference is destructive for most of the interfering en-

velopes, and only a single envelope, with a delay given by Eq.(1.11), is selected as

a result of the recombination. This does not happen in the tunnelling case, as the

interference between delays remains intact.

If we want to measure experimentally a duration of the WP in the barrier

we can take one of two approaches. We can measure the spatial delay δxCOM ,

Eq.(1.5), measuring the position of several transmitted WPs with and without the

potential, at a time t large enough so that the scattering has already taken place.

With enough of these measurements, we can obtain the delay x̃′ directly as the

difference of the COMs of the transmitted and free WPs. Alternatively, we can

place a fixed detector to the right of the barrier and obtain the detection time.

In a classically allowed transmission we have for this detection time

δτ classical(p0) = τT (p0)− τ 0(p0) = −x̃′/v0, (1.41)

where the spatial delay is that obtained in Eq.(1.11).

We can do the same to measure the tunnelling delay. We know, from Eq.(1.14),

that the transmitted WP has increased its mean velocity. In order to obtain a

delay related to the time spent in the barrier, and not due to the acceleration
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after transmission, we compare the transmitted particle with a freely propagating

one with a mean momentum p0 + δp0. The detection time is therefore

δτ tunnel(p0) = τT (p0)− τ 0(p0 + δp0) = −Re
[
x̃′
]
/v0. (1.42)

Although the analytical semiclassical delay is complex, Eq.(1.12), experimentally

its real part of can be measured as a spatial delay.

The interpretation of the classical duration of Eq.(1.41) is straightforward, as

the particle speeds up or slows down in the potential, resulting in a spatial shift.

This interpretation cannot be applied to the measured duration in Eq.(1.42). As we

have seen, this duration, like the measured spatial delay of a tunnelled particle, is

not related to a single trajectory inside the potential, a single transmitted envelope

that speeds up or slows down crossing the potential. Instead, it is an interference

of all the available delays, of all the weighted delayed envelopes. Even though we

can experimentally measure the instantaneous position [15] and, from it, following

Eq.(1.42), relate the particle’s position to a detection time, this can only be done

after the scattering has already taken place. We cannot deduce the time taken by

the particle to pass through the potential, as this information remains “hidden”

by the Uncertainty Principle [25], just as we cannot know which slit the particle

has passed through in the double-slit experiment.

We can rewrite Eq.(1.42) as

δτ tunnel = − 1

v0
∂kΦ(k, V )

∣∣
k=p0

= ∂EΦ(k, V ). (1.43)

This is a phase time, the Eisenbud-Wigner-Smith (EWS) time delay [8–10], which

is one of several attempts to define a tunnelling time [6, 7]. We will return to

the attempts to define a tunnelling time in Chapter 3, and compare the EWS

approach with a Larmor clock approach [31].

The Eisenbud-Wigner-Smith phase time in Eq.(1.43) involves a quantum weak

measurement of a time shift [30], and one has to be careful to treat it as a physical

duration in the barrier, as it leads to a contradiction. The anomalous superluminal
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value of the phase time for tunnelling only indicates that the interference between

the delays has not been destroyed, as it would in a usual, strong, measurement, but

says nothing about what happened inside the potential [22]. Any measurement in

which the interference is not destroyed leads to inconsistent results [24]. Therefore,

the result from Eq.(1.42) should not be interpreted as the actual time spent in the

barrier.

1.10.2 Superluminal delays and causality

The transmitted WP gives information about the spatial delay, but does not

say much about the nature of this delay. Alternatively, one can study the reshap-

ing mechanism behind the transmitted WP. This is formed by the sum of freely

propagating interfering envelopes, each with a given delay and complex weight. In

Section 1.5 we presented a distribution for the delays of the interfering envelopes,

and studied its relation with the apparent superluminal tunnelling delay studied

in the following Sections.

With this approach, we obtain that the anomalous value of the delay of the

classically forbidden transmission appears as the real part of the first moment of

this delay distribution, Eq.(1.29), which is an alternating one. The oscillatory

nature of this distribution may give values outside the range of available delays, as

happens for tunnelling through a barrier. In this case, all the interfering envelopes

are negatively delayed, but the reshaping mechanism makes the transmitted WP

to appear ahead of the free one. The apparent delay is not bounded, and thus can

take extremely large values.

At first glance, the superluminal nature of the delays seems to contradict Ein-

stein’s special relativity, since its velocity is not bounded. For wide enough barri-

ers, the velocity inside the potential region can take values larger than the speed

of light, or even an infinite value, as in the case of the apparent “instantaneous”

transmission in Section 1.4. This would be true if the transmitted WP was an

advanced copy of the incident one, shifted to the right a certain distance and with
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the same probability amplitude. But the actual transmitted WP undergoes a re-

shaping process in the barrier, it is formed as the constructive interference of the

front tails of the negatively delayed envelopes. This reshaping mechanism forbids

the transfer of information ahead of the freely propagating particle.

As an example of the causal transfer of “information”, one could cut the rear

tail of the incident WP and place a detector to the right of the barrier, to see when

the information about the cut arrives. From Eq.(1.16), we see that the front tails

would interfere constructively and produce a whole transmitted WP, with front

and rear tails [34]. The information about the cut will only arrives when the COM

of the first envelope, the freely propagating one, arrives at the detector, and thus

there is no causality violation.

Although we are considering here non-relativistic Schrödinger particles, which

do not take special relativity into account, the superluminal effect persists when

a proper relativistic transmission is considered (see for example [12]).

1.10.3 Bound and resonant states

Finally, we have obtained the delay distribution and the transmitted WP in

terms of the bound and resonant states of the potential, Eqs.(1.33) and (1.35)

respectively. As we have seen, the superluminal shift of the transmitted WP

appears as a result of a very delicate interference of the delay distribution. This

is formed by decaying exponentials, related to these bound and resonant states

through their residues. The bound states are related to advanced envelopes, while

resonant states are related to delayed envelopes.

In the following chapters we will consider two potentials that can be treated

analytically, the Eckart potential and a zero-range potential. We will study there,

in more detail, the mechanism behind the delay distribution, the role played by

the different kind of poles and the effect they have on the transmission and the

appearance of the anomalous spatial delays discussed in this chapter. We will see

this that method is specially useful in low-energy scattering through shallow wells

or low barriers, where few poles dominate the transmission.



Chapter 2

Eckart potential

The transmission of Gaussian wave packets through a one-dimensional smooth

Eckart potential is discussed in detail. The effect of the poles of the transmission

amplitude on the position of the transmitted particle is analysed. The advance

or delay experienced by the transmitted particle relative to a freely propagating

one is related to the support of bound, resonant or virtual states in the scattering

potential. The pole representation of the delay distribution and its limits are

studied for the cases of barriers and wells. This representation is found to be more

useful in the cases of low-energy scattering on low barriers and shallow wells.

39
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2.1 Introduction

In the previous chapter we have studied the apparent “superluminal” tunnelling

time, a quantum scattering effect. This situation is an example where the classical

analysis fails, and one has to rely on a pure quantum approach. Although the

anomalous delays that occur are one of the most interesting quantum features,

there are other situations where the classical analysis fails, such as, low-energy

scattering by a shallow well or a low potential. In these cases, only a few bound

or resonant states determine the scattering.

In Section 1.8 we introduced the pole representation. This helped us to describe

the delay distribution and the evolution of the WPs in terms of the singularities

of the transmission amplitude. This approach was applied to the tunnelling-time

problem, previously discussed in [34].

This method is not suitable for the square potential. Therefore, in this chapter

we present the Eckart potential [40], a one-dimensional smooth potential, which

can be further developed using the pole representation, and analysed in some

different scenarios, to see how the different poles affect the transmission of a WP.

The chapter is organised as follows. In Section 2.2 we briefly introduce the

Eckart potential. The tunnelling delays obtained in Sections 1.3 and 1.4 are de-

rived in Section 2.3 for the Eckart potential. We compare the results with those

seen in Section 1.6. In Section 2.4 we obtain the pole representation of the Eckart

potential, writing the WP in terms of bound and resonant states. We also intro-

duce the residues of the poles, which play an important role in the delay distri-

bution, and show the behaviour of these residues for high barriers or deep wells.

In Section 2.5 we focus on an Eckart well, and show how the bound states deter-

mine the transmission, with special attention to shallow wells. In Section 2.6 we

analyse the Eckart barrier, and show that not all the poles are needed to calculate

the transmitted WP. Low barriers are studied in detail. The conclusions for the

chapter appear in Section 2.7.
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2.2 Transmission through an Eckart potential

We consider an Eckart potential [40], a one-dimensional smooth potential,

V (x) =
V0

cosh2(αx)
, (2.1)

where V0 determines the strength of the potential, and α−1 is its width, Fig.2.1.

This potential is a barrier or a well depending on the sign of V0.

Figure 2.1: An incident WP, ψ0(x, t = 0), over an Eckart potential, barrier
or well, with height V0, and the transmitted WP, ψT (x, t). The width of the
barrier is controlled by the parameter α−1. The energies for classically allowed
and tunnelling transmissions are also shown, and in the latter case the turning

points, x< and x>, are marked.

The transmission amplitude of the Eckart potential is known to be [40],

T (p, V ) =
Γ(−ipα−1 − s)Γ(−ipα−1 + s+ 1)

Γ(−ipα−1)Γ(1− ipα−1)
, (2.2)

where Γ(z) is the Gamma function [41], s is given by

s =
1

2

(
−1 +

√
1− 8µV0

α2

)
, (2.3)

µ is the particle’s mass and we have used ℏ = 1. The parameter s is real for

V0 ≤ α2/8µ, which corresponds to wells and low barriers, and complex for high

barriers, V0 > α2/8µ. It is worth noting that this change from a real to a complex
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s does not occur between wells and barriers, since low barriers have a real s. The

transmission amplitude in Eq.(2.2) satisfies T (−p∗, V ) = T ∗(p, V ).

For the numerical results shown in this chapter dimensionless variables are used,

taking as a reference the barrier’s width α−1 and ℏ = 1,

X = xα, P = pα−1, T = tα, W = V0α
−1, M = mα−1. (2.4)

2.3 Delays

First, we extend the semiclassical results for the delays obtained in Sections

1.3 and 1.4 to the Eckart potential, using the Gaussian WP given by Eqs.(1.1)

and (1.4). The delay, positive or negative, of the transmitted WP relative to free

propagation is calculated as the spatial distance between their COMs, Eq.(1.5).

We consider very wide WPs, so that the results from Chapter 1 are valid here.

The semiclassical condition gives

1/min[q(x, p)]≪ 1/α, (2.5)

where q(x, p) =
√
p2 − 2µV (x) is the WP’s momentum inside the potential region.

For the semiclassical expansion in Eq.(1.9) to be valid up to first order, we need

that the sum
∑∞

n=2 ∂
n
pΦ(p0, V )(p−p0)n/n!≪ 1. The derivatives of the phase scale

as α−n. Thus, we need that (p − p0)n ≪ α−n for the sum to be negligible. Since

(p−p0) ∼ ∆p ∼ 1/∆x, this is satisfied for wide WPs in coordinate space, which is

equivalent to narrow WPs in momentum space. This condition and Eq.(2.5) will

be satisfied for the parameters taken here since we consider wide WPs.

Fig.2.2 shows two cases, a) a WP transmitted across a well and b) over a

barrier. The WP over a well is advanced relative to a freely propagating one,

because, since it goes faster over the potential, while in the case of the barrier this

delay is negative, since the positive potential slows the particle down.



Chapter 2. Eckart potential 43

These delays, in this semiclassical case, can be computed directly from the

difference between the velocity of free motion and the velocity of the WP inside

the potential, as in Eq.(1.11). For a particle going over the well (Fig.2.2 a)) we

obtain, in dimensionless units, X̃ ′ = 0.6931, which is consistent with the delay

δXCOM = 0.6931, by numerically integrating the WPs from Eqs.(1.1) and (1.4).

In the case of the particle going over the barrier (Fig.2.2 b), X̃ ′ = −0.6931, while
the numerical delay is δXCOM = −0.6932.

Figure 2.2: a) Transmitted WP over an Eckart well, (red solid line) for
W = −2 × 104, P0 = 200, ∆P = 0.67, X0 = −4 and T = 0.05. Also
shown, the freely propagating counterpart (blue dashed line). b) Same as a)
but for an Eckart barrier with W = 104. In this case, as expected, the parti-
cle is delayed. c) and d) show Re

[
η̃(P0, X

′)
]
(blue solid line) and its average,

Re
[
y−1

∫ X′+y
X′ η̃(P0, X

′′)dX ′′
]
(red solid line) for the cases a) and b), respec-

tively. The stationary region, which corresponds to the real delay, is marked.

The real part of η̃(p0, x
′), Eq.(1.17), is shown in Fig.2.2 c) for a well and in d)

for a barrier. These are computed numerically, integrating Eq.(1.17). Although we

should have η̃(P0, X
′ < 0) ∼ 0 for wells and η̃(P0, X

′ > 0) = 0 for barriers, this is

not exactly the case in the figures due to numerical inaccuracies. Nevertheless, the

part of the peak at X ′ ∼ 0 not shown in the figures has a value of η̃(p0, x
′) ∼ 800,

making the errors to be negligible in comparison.
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As we saw in Section 1.6, the delay of the semiclassical transmitted particles

appears as a stationary region in the real axis X̃ ′, Fig.2.2 c) and d). As with

the square potential, some fast oscillations appear superimposed on the stationary

region.

The case of tunnelling is shown in Fig.2.3. Since most of the incident particles

are reflected, the transmitted WP is enhanced in the figure for better viewing.

The WP is reduced by, approximately, |T (P0)|2 = 3.44 × 10−250. Numerically,

we find its total probability to be
∫
|ΨT (x, t)|2 = 7.57 × 10−250. Again, these

extremely small values for transmittance are impractical, but we are interested in

the principle here.

Fig.2.3a) shows the advanced transmitted WP. The positive delay is due to

the real spatial delay X̃ ′
1 and the momentum filtering, Eq.(1.12). In Fig.2.3b) the

real part of η̃(p0, x
′) is shown. There is no stationary region on the real axis X ′.

The delay distribution oscillates rapidly for X̃ ′ < 0. Nevertheless, if we evaluate

the real part of this complex delay, X̃ ′
1 from Eq.(1.12), corresponding to the real

spatial delay, we obtain X̃ ′
1 = 1.9455. Taking into account the momentum filtering

we obtain a total delay of X̃ ′
1+ δV0T = 3.1937, close to the numerically computed

delay, δXCOM(T ) = 3.1910.

The turning points for the parameters of Fig.2.3 are X<,> = ∓1.7. Thus, the

classically forbidden region is X> −X< = 3.4 > X̃ ′
1. As the potential is smooth,

the WP slows down before and after the turning points. Due to this effect, the

delay X̃ ′
1 is smaller than the width of the classically forbidden region.

2.4 Pole representation of the Eckart potential

The poles of the transmission amplitude are obtained directly from Eq.(2.2),

since the Gamma function Γ(z) has simple poles located at z = −n, n =

0, 1, 2, .... These poles fall into two categories,
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Figure 2.3: a) tunnelled WP (red solid line) (multiplied by z = 10249 for
better viewing) across an Eckart barrier, with W = 104, P0 = 50, ∆P = 0.4,
X0 = −10 and T = 5. Freely propagating WPs with mean momenta P0 (blue
dashed line) and P0 + δP0 (yellow dot dashed line) are shown. Figure b) shows

Re
[
η̃(P0, X

′)
]
(blue solid line) and its average, Re

[
y−1

∫ X′+y
X′ η̃(P0, X

′′)dX ′′
]

(red solid line). The value for the real delay X̃ ′
1 is also shown. This value falls

outside the range of available delays.

kIn = −iα(n− s)

kIIn = −iα(n+ s+ 1)




n = 0, 1, 2, ... (2.6)

The behaviour of the poles differs between barriers and wells. s is real for

wells and very low barriers, with V0 < α2/8µ, and complex for barriers with

V0 > α2/8µ. For any barrier, both kinds of poles will appear in the lower half-

plane, symmetrically located around the negative imaginary axis, Fig.2.4a). They

correspond to scattering resonances (R).

Although still a barrier, for α2/8µ < V0 < 0, corresponding to a real s, −1/2 <
s < 0, the poles have no imaginary part, Fig. 2.4b). As V0 → 0, the pole kI0 → 0,

corresponding to a virtual state. These are long-lived states, [39], and we will

discuss their effect on transmission further in the following section. The first

bound state will emerge for V0 = 0, corresponding to s = 0.

In the case of a well, all the poles lie on the imaginary axis, with a finite number

of the poles of the first kind, kIn, appearing on the positive half-axis, corresponding
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to bound states (B), Fig.2.4c). The number of bound states is controlled by s.

For M < s < M + 1, with M integer, there will be M + 1 bound states. The rest

of the poles of both kinds will again correspond to resonant states. For any depth

of the potential well at least one bound state is supported [40].

Figure 2.4: Poles of the transmission amplitude, of the first kind (blue circles)
and second kind (red crosses) for three different scenarios; a) in the case of a
barrier, b) for s = −1/2, in which the poles are purely imaginary but there are
not bound states yet, and c) in the case of a well with three bound states. ±β

is the real part of the complex poles of a barrier.

In general, the poles are of order 1.When s is an integer or half integer, the

poles of the well coalesce into the same value, making them double poles. This

situation will be treated in more detail in Section 2.5.3. For now, we focus on

the general case of the simple poles. Their residues can be computed using the

Cauchy differentiation formula for a simple pole of a Gamma function, using that

Γ(z + 1) = zΓ(z),

Res(Γ(z), z = −n) = lim
z→−n

(z + n)Γ(z) (2.7)

= lim
z→−n

(z + n)
Γ(z + n+ 1)

z(z + 1)× ...× (z + n)
=

(−1)nΓ(1)
n!

=
(−1)n
n!

.

In the Gamma functions of Eq.(2.2) we have −ip/α instead of p so, to compute

the total residue, we can make a change of variables, from which we get a factor
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α/− i. The residues for both kinds of poles are

Res(kIn) =
α

−i
(−1)n
n!

Γ(−ikIn/α + s+ 1)

Γ(−ikIn/α)Γ(−ikIn/α + 1)
, (2.8)

Res(kIIn ) =
α

−i
(−1)n
n!

Γ(−ikIIn /α− s)
Γ(−ikIIn /α)Γ(−ikIIn /α + 1)

.

a)	

b)	

Figure 2.5: Real (blue closed circles) and imaginary (red open circles) parts of
the residues of a) an Eckart well with W = −861, s = 41, supporting 42 bound

states and b) an Eckart barrier with W = 2485, s ≈ −0.5 + 70, 5i.

From here, we can calculate the amplitude distribution of the delays using

Eq.(1.33) and the transmitted WP with Eq.(1.35). In the following sections we

will study the effect of the poles on the scattering. To do so, we numerically

compute the residues from Eq.(2.8). Note that these numerical calculations are

done with Matlab, and due to the high values of the Gamma functions involved in

the residues for large n, some approximations need to be made. This is explained

in Appendix F.

The pole representation becomes impractical for these semiclassical cases. Fig.2.5

shows the residues for two examples, a deep well in a) and a high barrier in b).

These are classical or semiclassical cases. We will see, in Figs.2.6 and 2.9, that the
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value of some of these residues is much higher than the delay distribution itself.

This happens for some of the first values, as for higher n than those shown, the

value of the residues decrease. The value of these high residues is also seen to oscil-

late. These oscillations make the consecutive contributions of each pole to cancel

each other and reduce the value of the sum. The same effect can be seen in [34].

The amount of very accurate cancellation needed in order to recover the correct

distribution of delays becomes prohibitive for the approximations used. The pole

representation will prove to be much more useful for smaller |V0|. In these cases,

only a few poles are needed in order to describe the transmission.

2.5 Eckart well

For V0 < 0, the poles are purely imaginary and align along the imaginary axis,

moving in opposite directions as the well deepens. kIn moves upwards to positive

imaginary values, while kIIn moves downwards (see Fig.2.4c)). For wells there is

always at least one pole kIn with a positive value, corresponding to a bound state.

The number of bound states is determined by s, which is real. ForM < s < M+1,

M = 0, 1, 2, ..., there are M + 1 bound states.

Since s is real, the Γ functions in the residues, Eq.(2.8), are real and thus the

residues are pure imaginary.

2.5.1 Cancellation of residues for deep wells

For very deep wells, the residues become huge, many orders of magnitude larger

than η̃(p0, x
′), and show an oscillatory behaviour. These oscillations ensure that

when all the decaying exponentials are summed, most of their contribution to

η̃(p0, x
′) will cancel out (Fig.2.6). Note the different scale between each individual

contribution, which may reach 1014 near x′ = 0 in the case shown, and the final

η̃(p0, x
′), which is of order ∼ 102.
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From this figure we also notice that most of the contributions to η̃(p0, x
′) come

from the bound state poles, that will dominate the scattering. The delay dis-

tribution, taking into account these poles, is exactly 0 for X ′ < 0, since all the

contributions from the bound states are for positive delays (Fig.2.6c) and d)). If

we also consider the resonant states, we obtain a region of non-zero η̃(p0, x
′) for

X ′ < 0 (Fig.2.6d)). However, the resonant states contribute with a peak orders of

magnitude smaller that the part of the delay distribution that lies on positive X ′.

Figure 2.6: For W = −200, s = 19.5062 there are 20 bound states, figure
a). Figure b) shows Re[η̃(P0, X

′)] calculated with the first 4 bound states (blue
solid line), the first 8 bound states (red solid line) and all the 20 bound states
(yellow solid line). Figure c) shows the real part of η̃(p0, x

′) computed only
with the bound states (blue solid line) and with the complete poles (red dashed
line). Figure d) is a zoom of c). It shows the difference between only taking into
account only bound states to compute ˜η(P0, X ′) and considering also resonant

states.

2.5.2 Integer s

As the well deepens, the poles kIn move upwards along the imaginary negative

k-axis and kIIn downwards. From Eq.(2.6) we have that (−i/α)(kIIn −kIn) = 2s+1.
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Thus, if s is an integer or half integer both kind of poles will coalesce. We start

with the case of an integer s, s =M .

For this value of s, the potential is V0 = −α2M(M + 1)/2µ and the pole kIM

lies just at 0. It is about to become a bound state, but it is not one yet. This pole

does not contribute, because its residue is

Res(kIM) ∼ lim
−n+s→0

Γ(−n+ 2s+ 1)

Γ(−n+ s)Γ(−n+ s+ 1)
→ s!

∞× 1
= 0. (2.9)

The rest of the resonant states residues are zero, since both Γ functions in

their denominator become infinite. Therefore, for integer s η(p0, x
′ < 0) = 0. The

transmission is exactly determined only by the bound states. The delay amplitude

is now a finite sum over the bound states,

η(p0, x
′) = δ(x′) + i exp(−ip0x′)×





∑

nB

Res(knB
) exp[iknB

x′], x′ > 0

0, x′ < 0,

(2.10)

with kInB
= iα(M − n) and

Res(kInB
) = (−1)niα (2M − n)!

n!(M − n)!(M − n− 1)!
. (2.11)

In this case, we also have that |T (p, V )| = 1 (see Appendix G). This implies

that, when a new bound states enters the well, there is perfect transmission. The

transmitted WP is advanced and has the same amplitude as the incident one. A

case with integer s is shown in Fig.2.7.

2.5.3 Semi-integer s

In the case where s is a semi-integer, s = M + 1/2, M = 0, 1, 2, ..., we need

to consider the resonant states. There are 2M + 2 simple poles of kIn, M + 1 in

the positive half-plane of Im(k), corresponding to bound states, and M +1 in the

negative one, corresponding to resonant states. All poles in the negative half-plane
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Figure 2.7: For a well with W = −10, s = 4 and thus 5 bound states,
a) difference between transmitted and freely propagating WP, with the WPs
computed as a numerical integration over the momentum (blue solid line) and
from the 5 bound states, using Eq.(2.10) (red dashed line). b) shows the residues

for these bound states, which are pure imaginary values.

Im(k), for n > 2M + 2, are double poles, since kIn+2M+2 and kIIn have the same

value for all n > 2M + 2.

For the simple poles, Eq.(2.8) is still valid. For the double poles we use Cauchy’s

differentiation formula and obtain (see Appendix H)

Res2(k
I
n+2M+2) = Res2(k

II
n ) = (2.12)

=
−2α2

n!(n+ 2M + 2)!




k=n∑

k=1

1

k
+

k=n+2M+2∑

k=n+1

1

2k
− γ(1)


×

× 1

Γ(−n−M − 3/2)Γ(−n−M − 1/2)
,

where γ(1) ≈ 0.5772 is the Euler-Mascheroni constant [41]. Therefore, we finally

obtain

η(p0, x
′) = δ(x′) + iexp(−ip0x′)×





∑M
n=0Res(k

I
n)exp(ik

I
nx

′), x′ ≥ 0
[∑2M+1

n=M+1Res(k
I
n)exp(ik

I
nx

′) +

∑∞
n=2M+2Res2(k

I
n)exp(ik

I
nx

′)
]
, x′ < 0.
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The coalescence of the poles does not change the general mechanism of transmis-

sion. As in the general case, the residues corresponding to bound states dominate,

and make the main contribution to the final transmitted particle.

2.5.4 Shallow well

The pole expansion is more useful for shallow wells, since the residues are small,

and only the few bound states present, which can be easily computed, determine

the whole transmission.

We consider a well with a value of s close to an integer M , this is, |s−M | ≪ 1.

This corresponds to the case of a bound state about to emerge or having just

emerged. We can write η(p0, x
′) considering only this state and the rest of the few

bound states. Using 1/Γ(s−M → 0) = s−M ,

η(p, x′) ≈ δ(x′) +
M−1∑

n=0

i
α(−1)n(2M − n)!

n!(M − n− 1)!(M − n)! × exp{−
[
α(M − n) + ip

]
x′}θ(x′)

(2.13)

+ i
α(−1)M(2M − 1)!

M !(M − 1)!
(s−M) exp{−

[
α(s−M) + ip

]
x′}×

× [θ(x′)θ(s−M) + θ(−x′)θ(M − s)].

We assume now that the momentum of the incident WP is very small, p/α≪ 1.

Integrating Eq.(2.13) to obtain the transmission amplitude, we have

T (p, V ) ≈ exp[iΘ(p)]− (−1)M(2M − 1)!

M !(M − 1)!

(s−M)

(s−M) + ip/α
, (2.14)

where

Θ(p) = −i ln



1−

M−1∑

n=0

(−1)n(2M − n)!
n!(M − n− 1)!(M − n)!

1

(M − n) + ip/α



 . (2.15)
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The last term in Eq.(2.14) is a Breit-Wigner term, that causes |T (p, V )| to be

peaked around s = M with a width 2p/α. This term becomes larger as p/α

becomes smaller, and it is the main contribution around s ∼ M . The centre-of-

mass delay, taking into account the momentum filtering, is given by

δxTCOM(t)− δv0t ≈
α(s−M)

α2(s−M)2 + p20
− ∂pΘ(p0). (2.16)

Figure 2.8: COM delay for an incident particle with P0 = 0.005, ∆P = 0.001,
X0 = −3×103 and T = 2×106, for a potential W from −3.5 to 0. We show the
delay computed with Eq.(1.29) (black solid line), numerical integration of the
WP, with no momentum filtering (yellow dashed line) and taking into account

it (red dashed line), and with Eq.(2.16) for M = 1 (blue dots).

As an example, we calculate the case ofM = 1 in Eq.(2.16) and compare it with

the delays obtained with Eq.(1.29), Fig.2.8. We see from the expressions above

that the largest advance occurs for s = 1 + p0/α, with δx
T
COM(t) − δv0 = 1/2p0,

Fig.2.8. This is due to the emerging bound state at E ≈ −p20/2µ. For s = M ,

maximum advance occur for s = M + p0/α. The fact that the advance is related

to the inverse of the momentum is the reason why this effect is more noticeable

for low-energy scattering, p0/α≪ 1.

Similarly, the largest delay appears at s = M − p0/α, with δxTCOM(t) − δv0 =

−1/2p0, Fig.2.8. In this case, the scattering is dominated by a long-lived virtual

state [39]. Consider the pole corresponding to a bound state, closest to the origin,

which dominates the transmission. If we reduce the depth of the well, this pole,

which was in the positive half-plane of Im(k), the pole will cross the origin. It
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will then be in the negative half-plane, but still lying on the imaginary axis and

being the closest pole to the origin. This pole now corresponds to the virtual state.

Although this is not a bound state, it dominates the transmission and delays the

transmitted WP.

2.6 Eckart barrier

For V0 > α2/8µ, s becomes complex and all the poles lie parallel to the imag-

inary axis in the negative half-plane. From Eq.(2.8), using Γ(z∗) = Γ∗(z), we see

that Res(kIn) = −Res∗(kIIn ). Both kinds of residues have the same imaginary part

and opposite real part. We can write

Re
[
kIIn

]
=α
√

8V0µ/α2 − 1/2 = −Re
[
kIn

]
≡ β, (2.17)

Im
[
kIIn

]
=− α(n+ 1/2) = Im

[
kIn

]
, n = 0, 1, 2, ...

2.6.1 Cancellation of residues

As in the case of very deep wells, for high barriers the residues take very high

values, orders of magnitude higher than η̃(p0, x
′). Using Eq.(1.33), we find that

each pole contributes with a decaying exponential, much larger than η̃(p0, x
′).

These high values tend to cancel each other out (see Fig.2.9). As more contri-

butions are added to the series, each one larger than η̃(p0, x
′), the sum decreases

in absolute value. Note in the figure the difference in magnitude between the

individual contributions of the poles, and the final delay distribution.

We obtain these large residues for low values of n. For larger n, the residues

tend to a constant value, smaller than the previous ones. Even though in principle

we should take all poles into account in order to compute the delay distribution,

we will see now that for low barriers a finite number of poles can be enough to

compute the transmitted WP without any noticeable error.
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Figure 2.9: For a barrier with a potential W = 200 and P0 = 0.2, the first 50
residues are shown, figure a), real (blue dots) and imaginary (red dots) parts. In
b) Re[ ˜η(p0, x′)] is shown, calculated with the contributions of the first 10 poles,
(blue solid line) the first 30 poles (red solid line) the first 50 poles (yellow solid
line ). The final delay distribution, using 5 × 103 poles (purple solid line), is

also shown.

2.6.2 Asymptotic behaviour of the residues for an Eckart

barrier and geometric progression

As n gets larger, the residues tend to a non-zero limit. This limit can be

computed evaluating the limit of the Γ functions in Eq.(2.8) for n → ∞. The

approximation is only valid for
∣∣arg(z)

∣∣ < π, which is satisfied by barriers, but not

by wells. For barriers, both kinds of residues have a real limit (see Appendix I)

lim
n→∞

Res(kIn) = −
α

2π
, lim

n→∞
Res(kIIn ) =

α

2π
, (2.18)

shown in Fig.2.10a). Even thought the sum of the residues does not converge, the

complete series, with the exponentials, does so. We can write

η̃(p0, x
′) ∼

∑

n

Res(kn) exp[iknx
′] (2.19)

=
∑

n

{[
Res(kIn) + α/2π

]
exp(ikInx

′) +
[
Res(kIIn )− α/2π

]
exp(ikIIn x

′)+

+ α/2π
[
− exp(ikInx

′) + exp(ikIIn x
′)
]}

.
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Using Eq.(2.18) we see that the first two terms converge directly to 0. The

remaining terms converge as we will show now. We can write, using Eq.(2.17),

α

2π

∑

n

exp
[
α(n+ 1/2)x′

] [
− exp(−iβx′) + exp(iβx′)

]
(2.20)

=− α

π
exp(αx′/2) sin(βx′)

∑

n

exp(αnx′),

where the sum in Eq.(2.20) is a geometric series,

∑

n

exp(αnx′) =
1

1− exp(αx′)
= − exp(−αx′/2)

[
2 sinh(αx′/2)

]−1
. (2.21)

Thus, the complete sum in Eq.(2.19) converges. We are analysing the case of a

barrier, so all poles correspond to resonant states, and η(p0, x
′ > 0) = 0. We can

insert Eqs.(2.20) and (2.21) into the main expression for η̃(p0, x
′), Eq.(1.33), and

obtain an alternative expression

η̃(p0, x
′ > 0) = (2π)−1 exp

[
−ip0x′

] [
F (x′)− α sin(βx′)

sinh(αx′/2)

]
. (2.22)

The last term in Eq.(2.22) is the contribution from the last term in Eq.(2.19),

computed as a geometric series, and F (x′) is a converging function,

F (x′) ≡ 4π
∞∑

n=0

exp
[
(n+ 1/2)αx′

]
Im

{[
Res(kIn) + α/2π

]
exp(−iβx′)

}
. (2.23)

The role of the higher poles, far from the real axis, is to cancel the contribution

of the δ in the delay distribution, and thus to cancel the freely propagating WP

in the convolution Eq.(1.16) (see Figs.2.10b) and c)). This ensures the correct

amplitude of the transmitted WP, Fig.2.10d).

As we see, for low barriers not a huge number of poles is needed in order to

recover the same transmitted WP as that computed by numerical integration,

Fig.2.10d), since the residues converge rapidly to their limit, Fig.2.10a). In the

case shown, the probability of tranmission computed with numerical integration is

0.7518 and the position of its COM is XT
COM(t) = 784.7297. Taking only the first
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2 poles into account, it gives a probability of 0.6096, with XT
COM(t) = 748.9430.

Taking 10 poles into account gives a probability of 0.7375 , already close enough,

with XT
COM(t) = 748.8302. Taking 5 × 103 gives a probability of 0.7517, with

XT
COM(t) = 748.7297, almost the same result as the probability of the WP ob-

tained numerically. The number of poles needed increases as the potential of the

barrier increases.

Figure 2.10: For a barrier with W = 1, s = −0.5 + 1.3229i, figure a) shows
its residues and their limit. Figure b) shows the contribution from each term in
Eq.(2.22) for an increasing number of poles. Figure c) shows the complete delay
distribution and the effect that taking more poles into account in Eq.(2.22) has
in the distribution. Finally, figure d) shows a transmitted WP through this
potential, with ∆P = 0.004, P = 1.5 and T = 500, computed with numerical
integration and as a convolution with the delay distribution, taking an increasing

number of poles.

2.6.3 Low barrier

The pole expansion is very useful for a low barrier. In this case, a few number

of poles dominate the scattering. We consider here the case −1/2 < s < 0, and



Chapter 2. Eckart potential 58

assume |s| ≪ 1 for the approximations used. For these values of s, the poles lie on

the imaginary axis, with kIn approaching the origin as s decreases, and kIIn moving

in the opposite direction. The scattering is dominated by the single pole closest

to the origin, kI0. As explained in Section 2.5.4, this pole, the closest to the origin

and in the negative half-plane, corresponds to a virtual state, a long-lived state.

Thus, it delays the transmitted WP.

We can write the delay distribution taking only this state into account. Using

1/Γ(s→ 0) ≈ s, we have

η(p0, x
′) ≈ δ(x′)− αs exp

[
−(αs+ ip0)x

′] θ(−x′), (2.24)

where θ(x′ > 0) = 1 and 0 otherwise is the Heaviside function. The delay distri-

bution is now formed by the δ function of the freely propagating WP and a single

decaying exponential, corresponding to the virtual state. We can calculate the

transmission amplitude

T (p, V ) ≈ ip0/α

s+ ip0/α
, (2.25)

and, using Eq.(1.29), the COM delay,

δxCOM(t)− δv0t ≈
αs

α2s2 + p20
. (2.26)

From Eq.(2.26) we see that the delay experienced is larger for smaller incident

momentum, p0/α ≪ 1, and it has a maximum at s = −p20/
√
α(2− α), where

the delay is
√
α(2− α)/2p0, Fig.2.11. In dimensionless units, from Eq.(2.4), this

maximum delay happens at s = −P 2
0 , and has a value of 1/2P0.

This approximation can be used up to s = −1/2. For higher values of the

potential, s becomes complex, and the poles become resonant states.
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Figure 2.11: COM delay for an incident particle with P0 = 0.005, ∆P = 0.001,
X0 = −3 × 103 and T = 2 × 106, for a potential W from 0 to 0.25. The delay
is computed with Eq.(1.29) (black solid line), integrating numerically the WP,
taking into account the momentum filtering (red dashed line) and with Eq.(2.26)

(blue dots).

2.7 Conclusions

We have seen some concrete examples of the pole representation presented

in Chapter 1. The delay distribution, η(p0, x
′), and hence, the transmitted WP,

ΨT (x, t), can be written in terms of the poles of the transmission amplitude. These

poles correspond to bound states or resonant states of the potential.

The pole representation depends on the residues of these poles, which become

extremely large for high barriers or very deep wells (see Fig.2.5). Although these

high values cancel each other out, they become prohibitively large for numerical

calculations in semiclassical scenarios. The pole representation is better suited

to describe low-energy scattering in low barriers and shallow wells, which are

pure quantum scenarios. In those cases, a few number of poles determine the

transmission.

In the case of wells, both bound and resonant states are present. The number

of bound states depends on the depth of the well. Their residues are much larger

than those of the infinite resonant states, and thus the bound states determine the

transmission. For the case of integer s, from Eq.(2.3), only the bound states are

needed to recover the transmitted WP exactly.

In the case of shallow wells, we can write the delay distribution using only the
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poles corresponding to bound states and the pole closest to 0, be it a bound state

or a resonant state. Classically, wells are related to an advance of the transmitted

WP (see Section 1.3). For these shallow wells, the barrier can delay or advance

the transmitted WP. There exist long-lived “virtual states” [39] that delay the

particle maximally. These correspond to poles lying on the imaginary axis close to

the origin, and determine the scattering. As the well deepens, this pole emerges

to the positive imaginary axis, and its corresponding state becomes a bound state,

related to a maximum advance.

In the case of barriers, all poles correspond to resonant states. Although the

number of these is infinite and their residues tend no a non-zero limit, a finite

number is enough to recover the transmitted WP with negligible error. In the

case of low barriers, transmission is determined by a single pole, corresponding to

a “virtual state”, that delays the transmitted WP.



Chapter 3

Zero-Range Potential

The Eisenbad-Wigner-Smith delay and the Larmor time give different results

for the time a tunnelled particle spends in a potential region. This is more pro-

nounced in the ultra-quantum case of a zero-range potential, considered here. We

discuss both approaches and analyse the apparent contradiction between them.

For the Eisenbud-Wigner-Smith delay the effect of the accuracy of the meter is

also studied, in the cases of transmission and reflection. The effect of the single

pole of the transmission and reflection amplitudes on the position of the COM of

the scattered particles is studied.

61
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3.1 Introduction

So far in this Thesis, we have considered spatial delays of transmitted particles

in order to discuss the time spent in the barrier. This approach is the Eisenbud-

Wigner-Smith method, and relies on the propagation of WP states, calculating the

distance between the COMs of a WP transmitted through a potential and a free

WP. As we saw in Chapter 1, in the quantum case the transmitted WP is not

the result of the incident one crossing the potential through a single well-defined

trajectory. Instead, the transmitted WP undergoes a reshaping mechanism, in

which WP with different delays interfere. Therefore, we cannot infer any “actual

time” from the spatial delay. Only in the classical case can this interference be

neglected and we can speak about a “time spent in the potential”. This is the

reason why the apparently “superluminal” tunnelling time is not in conflict with

Einstein’s special relativity.

An alternative method for measuring the tunnelling time was proposed by Baz’

[42]. It measures the Larmor time, that uses the precession of the spin of the

particle in a magnetic field introduced in the region of interest. As the spin

acquires an angle during its passage through the magnetic field, by measuring this

angle we can obtain the time spent in the region. This method has seen a renewed

interest recently due to its experimental realisation [15].

If we consider the Larmor time as a candidate for the “actual time” in a quan-

tum scenario, we face similar issues as with the phase time. Instead of measuring

spatial delays, one measures time delays. But, as with the EWS time, the final

measurement involves an interference of different delays available in the system. If

we measure “weakly” so as not to perturb the system, the measurement does not

destroy this interference. Thus, the resulting measured time is not a single delay

among the available ones and it is, therefore, impossible to say that the particle

has “selected” a single delay [31]. This measured time is in fact complex [19], like

the phase time in Eq.(1.42).

One might expect both methods to give the same time delay, but this is not

always the case for quantum transitions [1]. In this case the quantity measured
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by each method is different. One cannot say that one is right and the other one is

wrong. This question has been discussed in [6, 43], and, more recently, in [1].

In this chapter, we will study both methods for the simplest case of a zero-range

potential centred at the origin, that can be expressed as

V (x) = Ωδ(x), (3.1)

where δ(x) is a Dirac delta and Ω is the strength of the potential. A general

scattering is shown in Fig.3.1.

Figure 3.1: An incident WP, Ψ0(x, t = 0), through a zero-range potential,
barrier or well, with strength Ω, the transmitted WP, ΨT (x, t), and the reflected

one, ΨR(x, t), are shown.

This particular potential was chosen for two main reasons. The first one is

that this is an ultra-quantum case [18], where the difference between the results

obtained by the EWS method and the Larmor clock is most pronounced. Since the

particle’s de Broglie wavelength exceeds the width of the potential, no semiclassical

analysis is useful. The second reason is that the amplitudes for reflection and

transmission through the zero-range potential can be easily expressed in terms of

their single pole. With it, we can easily study the properties of the scattering for

the phase time, using the pole representation explained in Section 1.8.

The chapter is organised as follows. In Section 3.2 we describe the use of the

Larmor time to measure a tunnelling time. This method is applied to the zero-

range potential in Section 3.3, where the Larmor clock is introduced as a pointer
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coupled to the particle. The measured time for a zero-range potential is discussed.

In Section 3.4 we study the Eisenbud-Wigner-Smith for this potential, which gives

a contradiction to the Larmor time. The pole representation of the transmission is

studied in Section 3.5. We extend the EWS analysis to reflected WPs in Sections

3.6 and 3.7. Reflection has some particular characteristics not considered in the

case of transmission. Finally, in Section 3.8 we study how the width of the incident

WPs affects the phase delay. Our conclusions are given in Section 3.9.

3.2 Larmor time

The goal of the Larmor clock is to measure the time taken for a particle to cross

some region of space [a, b]. To do so, we consider the transmission of a particle

with a spin, and introduce a magnetic field in the region. After the passage, the

spin acquires an angle ϕ, related to the duration of the transmission through the

magnetic field. We can divide this angle by the Larmor frequency wL and obtain

the time spent in the region [a, b].

Conceptually, the idea is to measure the time it takes for the particle to make

a transition between an initial and a final state. This is shown in Fig.3.2, where

the region [a, b] contains the potential and the magnetic field, and the particle has

a spin that precesses due to the magnetic field. In a general way, we can express

the transition between any two states using Feynman’s path integrals [17]. We

consider the case of a particle making a transition from a state Ψ at (x, 0) to a

state Φ at (x′, t). The amplitude for this transition is given by

A(Φ,Ψ, t) =
∑

paths

Φ∗(x′) exp
[
iS(x, x′, t)

]
Ψ(x), (3.2)

where S is the classical action functional and
∑

paths =
∫
dx′
∫
dx
∫ (x′,t)
(x,0)

Dx(t)

sums over all possible paths x(t) connecting the initial and final points.

We are interested in transitions spending some time τ in the region [a, b]. We

define the net time the particle spends in the region [a, b] as a functional of the
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Figure 3.2: A particle, initially in state |Ψ⟩ at (x, 0) makes a transition to a
state |Φ⟩ at (x′, t) through a path x(t), passing through a potential in x = [a, b].
The spin of the particle acquires an angle ϕ due to the presence of a magnetic

field in the region [a, b].

path x(t),

t[a,b][x(t)] =

∫ t

0

Θ[a,b]

[
x(t′)

]
dt′, (3.3)

where Θ[a,b]

[
x(t)

]
= 1 if x(t) is inside the region [a, b], and 0 otherwise. We use

Eq.(3.3) to obtain the restricted transition amplitude for a particle that spends a

time τ in the region [a, b],

A(Φ,Ψ, t|τ) =
∑

paths

δ
(
t[a,b]

[
x(t)

]
− τ
)
Φ∗(x′) exp

[
iS(x, x′, t)

]
Ψ(x). (3.4)

Writing the Dirac delta as an integral, δ (z) = (2π)−1
∫
dW exp (−iWz), we can

rewrite Eq.(3.4) as

A(Φ,Ψ, t|τ) =
∑

paths

(2π)−1

∫
dW exp [iWτ ] Φ∗(x′) (3.5)

× exp

{
i
[
S(x, x′, t)−Wt[a,b]

[
x(t′)

]]}
Ψ(x).

We recall the definition of the classical action, S =
∫ t

0
Ldt′, where the Lagrangian

is L = K − V , with K and V being the kinetic and potential energy, respectively.

Therefore, the exponential in Eq.(3.5) is
∫ t

0
K −

{
V +WΘ[a,b]

[
x(t′)

]}
dt′ and we
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can rewrite Eq.(3.5) as

A(Φ,Ψ, t|τ) = (2π)−1

∫
dW exp(iWτ)AV (x)+WΘ[a,b]

(Φ,Ψ, t), (3.6)

where AV (x)+WΘ[a,b]
(Φ,Ψ, t) is the transition amplitude in the modified potential

V (x) +WΘ[a,b]

[
x(t′)

]
. Note that measuring the time τ implies an uncertainty in

the potential, introduced by the termW in the region where the time is measured.

In the case of transmission through a barrier, the transition takes place be-

tween an incident particle with momentum p and a final particle with the same

momentum p. Thus, |Ψ⟩ = |Φ⟩ = |p⟩, and the amplitude, AV (Φ,Ψ, t), is the bar-

rier’s transmission amplitude, T (p, V ). Introducing the transmission amplitude

into Eq.(3.6), renamed AT (p, τ) for simplicity, we have

AT (p, τ) = (2π)−1

∫
dW exp(iWτ)T (p, V +WΘ[a,b]). (3.7)

The amplitude AT (p, τ) in Eq.(3.7) is the Fourier Transform of the transmission

amplitude T (k, V +W ) and it can be calculated from the poles of the transmission

amplitude. In this case, these are poles in theW -complex plane. The transmission

is characterised by a range of durations τ , each with an amplitude AT (p, τ). In

order to calculate the complete transmission amplitude, we integrate over the

range of durations, T (p, V ) =
∫
AT (p, τ)dτ .

The amplitude in Eq.(3.7) has the potential W and the time τ as conjugate

variables. We can compare it with the amplitude distribution of the spatial delay

from the previous chapters (see Eq.(1.17)),

ηT (p0, x
′) = (2π)−1 exp(−ip0x′)

∫
dp exp(ipx′)T (p, V ). (3.8)

We can analyse the similarities between Eqs.(3.7) and Eq.(3.8). Both are Fourier

Transforms of the transmission amplitude, which is a function of the momentum

of the incident particle, p, and of the potential in the region of interest, V . To

measure a delay, spatial or temporal, one has to vary one of these two variables, p

or V . The measurement of the time delay τ introduces a variation, or uncertainty,
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in its conjugate variable, the potential, as seen in Eq.(3.7). This leads to an

amplitude distribution of the temporal delays, AT (p, τ). The measurement of the

spatial delay x′ is related to a variation of the momentum of the incident particle,

p (see Eq.(3.8)), that results in an amplitude distribution of the spatial delays,

ηT (p0, x
′).

An important difference between AT (p, τ) and the amplitude for the spatial

delays in Eq.(1.17) is that the former is a smooth function. We can see this by

taking the limit limW→±∞ T (p, V +WΘ[a,b])→ 0. Thus, AT (p, τ) does not contain

any δ-term, whereas ηT (p0, x
′) = δ(x′) + η̃(p0, x

′), where η̃(p0, x
′) is a smooth

function.

In principle, we cannot tell apart the interfering durations in Eq.(3.7). To do

so, we need to introduce a measuring device, the Larmor clock.

3.3 Larmor clock for a zero-range potential

A general quantum transition amplitude, as the one given in Eq.(3.2), sat-

isfies the usual Schrödinger equation. To measure the time delay, we have con-

structed a restricted path integral in Eq.(3.4). This amplitude satisfies a “clocked”

Schrödinger equation, [44], as

i∂tAT (p, τ) =
[
p2/2µ+ V (x)− i∂τΘ[a,b](x)

]
AT (p, τ), (3.9)

where x and p are the transmitted particle’s position and momentum, respectively.

The expression in Eq.(3.9) is similar to that of a particle coupled to a von-Neumann

meter in the region [a, b][45]. We consider a pointer, or meter, with position f and

momentum λ, that interacts with the particle while it passes through the region

[a, b]. The interaction Hamiltonian is Hint = −i∂fΘ[a,b] = λΘ[a,b]. The coupled

Hamiltonian is

H = p2/2µ+ V (x) + λΘ[a,b], (3.10)
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that has the same form as the Hamiltonian governing the particle in Eq.(3.9).

Outside the region [a, b], the Hamiltonian in Eq.(3.10) is that of a particle going

through the unmodified potential V (x). Thus, the meter introduces a potential

in the region of interest, just as the restricted path integral in Eq.(3.4) led to a

modified potential, V +W , in the region [a, b].

For the final pointer’s reading, we measure its position f at the initial time

t = 0, before entering the region, and at a time t, after passing through the region.

The pointer’s momentum λ is set to 0 so that it does not perturb the particle. The

final position of the pointer is proportional to the time spent in the region by the

particle. Solving Hamilton’s equations for the pointer’s position f from Eq.(3.10),

the reading after a time t is

f(t)− f(0) =
∫ t

0

Θ[a,b](x
cl(t′))dt′ =

∫ b

a

µ1/2dx/
√
2
[
E − V (x)

]
≡ τ(E), (3.11)

where E = p2/2µ + V (x) is the energy of the particle and xcl(t′) is the classical

trajectory of the particle.

To obtain the quantum version of Eq.(3.11), we prepare the pointer in an initial

state |G⟩. We consider an initial Gaussian clock around f = 0, as ⟨f |G⟩ = G(f) =

C exp
(
−f 2/∆f 2

)
, where ∆f is the uncertainty in the pointer’s position. If the

clock is coupled to the system, its final state is given by

Φ(f) =

∫
G(f − τ)AT (p, τ)dτ, (3.12)

where AT (p, τ) is the amplitude distribution of the temporal delays from Eq.(3.7).

Thus, the pointer’s final state is formed by the interference of envelopes, G(f),

shifted in space by some distance proportional to the time τ . Each envelope

delayed by τ has a complex weight, given by AT (p, τ). Eq.(3.12) has the same

form as the final state of the WP obtained in the previous chapters, where the

spatial delay was being measured (see Eq.(1.16)).
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To obtain the reading given by the final state we calculate the expectation value

of the pointer, as the COM of its final state,

⟨f⟩ =
∫
f |Φ(f)|2df∫
|Φ(f)|2df . (3.13)

The accuracy of the meter is controlled by its width ∆f . Sending ∆f → 0

for a very accurate measurement, we quench the transmission, and the particle is

reflected. This is due to the fact that ∆f → 0 implies that ∆W → ±∞, making

the transmission amplitude T (p, V +∆W → ±∞)→ 0 for all incident momenta.

The perturbation introduced by a meter with very high accuracy is larger than the

effect of the potential V (x), and destroys the transmission through the potential.

To have a pointer that does not perturb the dynamics of the particle, we take

∆f →∞, which is equivalent to an inaccurate measurement. The position of the

COM of the pointer is found to be [18]

lim
∆f→∞

⟨f⟩ = Re[τ [a,b](p)], (3.14)

where

τ [a,b](p) =

∫∞
0
τAτ (p, τ)dτ∫∞

0
Aτ (p, τ)dτ

= −i∂W
[
lnT (p, V +WΘ[a,b])

]
|W=0. (3.15)

Eq.(3.15) gives a complex time [19, 31]. It has the same form as Eq.(1.29),

since in both cases we evaluate the integral over a transition amplitude, and not

over a probability. This is a consequence of the measurement being inaccurate or

“weak”.

Our interest in this chapter is the calculation of the dealy experienced by a

particle through a zero-range potential, that can be defined as the limit of a square
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barrier,

V (x) = lim
a−b→0

V0Θ[a,b](x), (3.16)

with V0 →∞ and (a− b)V0 = Ω = const.

From Eq.(3.3) it can be seen that the net time tends to zero for any smooth

path as a− b→ 0. Nevertheless, Feynman’s paths are generally not smooth [17].

We can check the time delay measured in a zero-range potential more rigorously

by evaluating the amplitude distribution in Eq.(3.7). As mentioned above, the

transition amplitude AT (p, τ) can be calculated from the poles in the W -complex

plane of the transmission amplitude T (p, V +W ). In the limit a− b→ 0 only the

contribution of one pole survives, and we obtain [46]

lim
a−b→0

Aτ (p, τ)→ τ−1
0 exp

[
−iΩτ/(b− a)

]
exp

(
−τ/τ0

)
, (3.17)

where τ0 ≡ µ(b − a)/p = (b − a)/v. The amplitude in Eq.(3.17) tends to δ(τ),

and thus the measured time in Eq.(3.15) tends to 0. In the limit, there is a single

duration available, τ = 0, and the Larmor clock always measures a zero duration

in the region for the zero-range potential. We can now compare these results with

the time obtained with the EWS method for the same potential.

3.4 Eisenbad-Wigner-Smith times

We can alternatively measure the time spent in the potential region from the

spatial delays of WPs, as seen in Chapter 1. In order to do so, we consider the

time at which the COMs of the transmitted and freely propagating WP arrive at a

particular point to the right of the barrier. The time delay between their arrivals

is proportional to the spatial delay between the two WPs. We consider this spatial

delay as the distance between the positions of the COMs of the transmitted WP

and the freely propagating one,

δxTCOM(t) = xTCOM(t)− x0COM(t). (3.18)
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The time delay is therefore

δτEWS = −δxTCOM(t)/v0, (3.19)

where v0 = p0/µ is the velocity of the incident particle. Again, we consider

Gaussian WPs, given by Eqs.(1.1), (1.2) and (1.3).

The transmission amplitude for a zero-range potential, Eq.(3.1), is known,

T (k,Ω) = 1− iΩ

k + iΩ
, (3.20)

and can be written as T (k,Ω) = |T (k,Ω)| exp
[
iΦT (k,Ω)

]
. Using Eq.(1.26) we

obtain a complex delay

x̃′T = −∂kΦT (k,Ω)|k=p0 =
−Ω

p20 + Ω2
+ i

Ω2

p0(p20 + Ω2)
= x̃′T1 + ix̃′T2, (3.21)

where x̃′T1 and x̃′T2 are the real and imaginary parts of x̃′T , respectively. The

real part corresponds to the distance between the COM of the two WPs, while

the imaginary part is related to the previously explained “momentum filtering”

effect. Due to this effect, the resulting transmitted WP has a mean momentum

higher than the incident one, p0 + δp0, where δp = ∆p2x̃′T2/2. The spatial delay is

therefore

δxTCOM(t) = xTCOM(t, p0)− x0COM(t, p0) = x̃′T1 + δp0t/µ. (3.22)

We are interested in comparing the EWS time delay, Eq.(3.19), with that obtained

with the Larmor clock. Thus, we want to avoid measuring any delay caused by

the momentum filtering effect. To do this, we can calculate the COM distance

between the transmitted WP and a freely propagating one with mean momentum

p0 + δp0. As we will see later, we can equally acomplish this using dispersionless

WPs, with E(k) = ck, where c is a constant. These “dispersionless” spatial delays
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are

δxTCOM(t) = xTCOM(t, p0)− x0COM(t, p0 + δp0) = x̃′T1. (3.23)

For any Ω ̸= 0, the time delay calculated with Eq.(3.23) has clearly a non-zero

value. This seems to contradict the result of the Larmor clock seen in Section 3.2.

In Section 3.5 we will show that for the spatial delay distribution non-zero delays

are still available.

There is another unusual aspect of the delays for a zero-range potential. For the

square and Eckart potentials seen in Chapters 1 and 2, the tunnelled WP was

advanced relative to a freely propagating one. In the case of a zero-range potential,

we see from Eq.(3.21) that for a barrier, with Ω > 0, the transmitted WP is always

delayed with respect to a freely propagating one, Re[x̃′T ] < 0. Although the WP

does tunnel there is no advance for any Ω > 0. The transmitted WP is only

advanced in the case of a well, Ω < 0.

Thus, the EWS delays have a different behaviour for zero-range barriers. The

key to understand this difference is the role played by the poles of the transmission

amplitude in the momentum plane play, that we will analyse next.

For the numerical results presented in Sections 3.5 and 3.7 dimensionless units

will be used, taking as a reference the mean momentum of the incident WP, p0,

(with ℏ = 1 and c = 1)

p = p/p0, x = xp0, µ = µ/p0, Ω = µΩ/p20, t = tp20/µ. (3.24)

3.5 A pole representation of transmission

It is useful to recall the expression for the transmitted WP as a convolution of

envelopes,

ΨT (x, t) = exp
[
ip0x− iE(p0)t

] ∫
G0(x− x′, t)ηT (p0, x′)dx′, (3.25)
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where G0(x, t) is the envelope of the incident WP and ηT (p0, x) the delay distri-

bution given in Eq.(1.17), calculated as the Fourier Transform of the transmission

amplitude.

The transmission amplitude in Eq.(3.20) has a single pole. Hence, in this

case it is easy to write the delay distribution using the pole representation. By

calculating the residue for this single pole, placed at kp = −iΩ, we can obtain

an exact expression for ηT (p0, x
′). For a barrier, Ω > 0, the pole appears on the

negative Im(k)-axis, corresponding to an anti-bound state, while for a well with

Ω < 0, it corresponds to a bound state, and appears on the positive Im(k) axis.

We can compute the residue using Cauchy’s formula, as

Res(kp) = lim
k→kp

(k − kp)T (kp) exp
(
ikpx

′) = −iΩexp(Ωx′). (3.26)

Closing the contour of integration in the upper or lower half, for poles correspond-

ing to bound or anti-bound states, respectively, we obtain the delay distribution

ηT (p0, x
′) = δ(x′)− exp(−ip0x′)×




Θ(−x′)|Ω| exp(+|Ω|x′), for Ω > 0

Θ(x′)|Ω| exp(−|Ω|x′), for Ω < 0.
(3.27)

It can be split into a δ contribution and a smooth function, η̃T (p0, x
′). Since we

have a single pole, ηT (p0, x
′ > 0) = 0 for barriers, and ηT (p0, x

′ < 0) = 0 for wells.

To obtain the transmission amplitude we insert the delay distribution, Eq.(3.27),

into the integral for the WP in Eq.(3.25) and solve it using error functions to get

an analytic expression for the WP (see Appendix J).

For an incident wave on a barrier with Ω > 0 we have a transmitted WP

exp(ipx)→ T (p,Ω) exp(ipx) = exp(ipx)− Ω

∫ 0

−∞
exp(Ωx′) exp[ip(x− x′)]dx′,

(3.28)

i. e. it is the sum of a free WP, which is the incident one, and a negatively

delayed wave. Again, we can think of the barrier as an “interferometer”. It splits

the incident wave into components, each with a phase shift that corresponds to a
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spatial delay. In the case of barriers, the phase shifts correspond to delays, with

x′ < 0, while for wells, the delays are positive, x′ > 0.

Contrary to the cases of the square and Eckart potentials from Chapters 1

and 2, the delay distribution is formed by a single exponential, corresponding to

the single pole. In the case of a barrier, the single pole, corresponding to an anti-

bound state, delays the transmitted WP. For a well, the single pole corresponds to

a bound state, and thus advances the transmitted WP. This is a classical feature

that survives in this quantum case. There is no “anomalous” value for the delay,

as in the case of tunnelling through a potential of a non-zero width.

Figure 3.3: COM delay for transmission of a WP with ∆p = 0.2, µ = 100,
x0 = −20 and t = 80, incident on a barrier with Ω = −2× 103 to Ω = 2× 103.
Shown are the delays between transmitted and freely propagating WPs with the
same mean momentum (see Eq.(3.22)), computed with the numerical integration
of the WPs (blue solid line) and from the analytical results (red dashed line).
The same COM delays are shown for the dispersionless case (see Eq.(3.23)) of
E(k) = ck, with c = 1 (yellow solid line). The points for the maximum advance,

at Ω = −µ, and maximum delay, at Ω = µ, are also shown.

So far, we have only used particles with energy E(k) = k2/2µ. For large times,

these WPs spread. Now we will also consider dispersionless WPs, with an energy

E(k) = ck, where c is a constant. For these WP, although there is momentum

filtering, there is no speed-up of the transmitted WP associated to it, since all

momenta have the same velocity. All free and scattered WPs travel at a constant

velocity c and the delay corresponds exactly to x̃′T1 in Eq.(3.21). Fig.3.3 shows the
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effect of the poles on the COM delay for both cases, dispersive, with E(k) = k2/2µ,

and dispersionless, with E(k) = ck.

Using Eq.(3.21), we obtain the maximum delay of −1/2p0 (−1/2 in the dimen-

sionless units in the figure) for Ω = p0 (Ω = µ). It corresponds to the long-lived

anti-bound state. The maximum advance appears for Ω = −p0 (Ω = −µ), corre-
sponding to the bound state, and has a value of 1/2p0 (1/2).

3.6 Reflection

A similar analysis can be applied to the reflected WP,

ΨR(x, t) =

∫
R(p,Ω)A(p− p0) exp

[
−ipx− iE(p)t

]
dp, (3.29)

moving from right to left, and where

R(k,Ω) =
−iΩ
k + iΩ

(3.30)

is the reflection amplitude for the potential in Eq.(3.1). It can be checked, using

Eq.(3.20), that |T (k,Ω)|2 + |R(k,Ω)|2 = 1. We can write the reflected WP as a

convolution of freely propagating envelopes,

ΨR(x, t) =

∫
G0(−x− x′, t)ηR(p0, x′)dx′ (3.31)

where ηR(p0, x
′) is the delay distribution for reflection. Note that the envelope

G0 in Eq.(3.31) has the opposite sign in x to that of the transmitted WP. This is

equivalent to a perfect reflection from an infinite potential at x = 0. The reflected

WP appears as soon as the incident one reaches the potential, and travels from

the potential to the left, in the direction opposite to the transmitted one. Both

WPs move away from the barrier as t increases (see Fig.3.1).

In the case of transmission, we have calculated the COM delay as the distance

between the COMs of the transmitted WP and a freely propagating one. In

order to calculate the delay for reflection, we compare the reflected WP with the
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reflection from an infinite potential placed at the origin. This is the mirror image

of the freely propagating WP used in the case of transmission. Its COM is that of

the free WP with a minus sign, −x0COM(t). Thus, the delay for reflection is

δxRCOM(t) = xRCOM(t) + x0COM(t). (3.32)

The reflected WP is delayed if δxRCOM(t) > 0. That is, when, travelling from the

potential to negative x, the reflected WP appears behind the perfectly reflected

one. Equivalently, the reflected WP is advanced if δxRCOM(t) < 0. In this case,

the reflected WP appears ahead of the perfectly reflected one. This convention

is illustrated in Fig.3.4. We can think of placing a detector of the COM of the

WP to the left of the potential, far enough from it, and turning it on once the

incident WP has reached the potential. We can repeat the experiment with an

infinite potential barrier (or, for practical purposes, very large compared to the

initial one). Using the convention defined above, “delayed” reflected WPs reach

the detector after the perfectly reflected one. On the other hand, “advanced”

reflected WPs reach the detector before the perfectly reflected one.

The delay distribution is computed as the Fourier Transform of the reflection

amplitude, ηR(p0, x
′) = (2π)−1 exp (−ip0x′)

∫
R(k,Ω) exp (ikx′) dk. It is worth

noting that in this case the delay distribution, ηR(p0, x
′) is already a smooth

function. This is due to the large momentum contributions going through the

potential unaffected, and thus not being reflected. We can see from Eq.(3.30) that

R(k →∞,Ω)→ 0.

The case of reflection has one more detail that it is not present in the case of

transmission. The position of the potential does not affect the transmitted WP for

large enough times. The transmission amplitude for V (x−s), shifted by a distance

s, is the same as that obtained for V (x). The contribution to the delay by the

momentum filtering is proportional to the total time, Eq.(3.22), and therefore is

unaffected by a spatial shift in the potential.

This is not the case with reflection, since the reflected WP emerges from the

potential once the incident WP has reached it. For a potential V (x − s), the
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Figure 3.4: Schematic of the delays in the cases of a) transmission and b)
reflection over a well. When δxTCOM (t) > 0 and δxRCOM (t) < 0, the transmitted
and reflected WPs are advanced with respect to a free WP and its mirror image,

respectively.

incident WP has to travel some extra distance, if s > 0, or travel less distance, if

s < 0. In the same way, the reflected WP travels this extra distance back again,

or travels less distance. Thus, the reflection amplitude obtains an extra phase,

R(k, V )→ exp(2iks)R(k, V ) (see Fig.3.5). We can see this by making the change

x→ x− s in the following expression,

exp(ikx) +R(k, V ) exp(−ikx)→ T (k, V ) exp(ikx) (3.33)

↓ x→ x− s
[
exp[ik(x− s)] +R(k, V ) exp[−ik(x− s)]→ T (k, V ) exp[ik(x− s)]

]
× exp(iks)

= exp(ikx) +R(k, V ) exp(2iks) exp(−ikx)→ T (k, V ) exp(ikx).

So, for reflection, the mirror image of the freely propagating WP will be affected

by the choice of the position of the potential. For the rest of the analysis, we put

the potential at the origin.
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Figure 3.5: Plane wave scattering for a potential in three different positions.
An incident plane wave eikx over a zero-range potential, centred at x = 0 or
displaced ±s. The phase obtained by the reflection amplitude (see Eq.(3.33))
as the potential is shifted is a consequence of the extra distance it has to travel.

The transmission is unaffected by the displacement.

With this choice we can obtain the delays for reflection, calculating a “phase

delay”. Writing R(k,Ω) = |R(k,Ω)| exp
[
iΦR(k,Ω)

]
, we have that

x̃′R = −∂kΦR(k,Ω)|k=p0 = −
Ω

Ω2 + p20
− i p0

Ω2 + p20
≡ −x̃′R1 − ix̃′R2. (3.34)

The first term, x̃′R1, corresponds to a spatial delay, while the second one x̃′R2 is

related to the momentum filtering, δpR0 = ∆p2x̃′R2/2. Therefore, the delay for

reflection is given by

δxRCOM(t) = x̃′R1 + δpR0 t/µ. (3.35)

We have added a minus sign in Eq.(3.34) to account for the reflected WP travelling

in opposite direction to the incident one. Comparing with the delays for transmis-

sion, Eq.(3.21), we see that x̃′R1 = −x̃′T1. With our convention for the reflection

delays, both account for an advance in the case of wells, and for a delay in the

case of barriers. For any incident WP with p0 > 0, x̃′R2 is always positive, and

thus δpR0 is always positive. Therefore, the reflected WP is always slowed down.

The effect of the momentum filtering in the reflected WP is opposite to the effect

it has on the transmitted one, as it slows down the reflected WP and speeds up
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the transmitted one.

We can write the reflected WP in terms of a freely propagating WP, as we did

for transmission in Chapter 1, Eq.(1.14). Taking into account that it moves from

right to left, by changing x→ −x we have

ΨR(x, t) = R(p0,Ω) exp
[
∆p2x̃′2R2/2 + ip0x̃

′
R1

]
×Ψ0(−x+ x̃′R1, t, p0 − δpR0 ).

(3.36)

We see from the last term in Eq.(3.36) that the mean momentum of the reflected

WP has decreased, and that a positive value of x̃′R1 moves the reflected WP to the

right, delaying the reflected WP.

3.7 A pole representation for reflection

We can use the pole representation to calculate both the delay distribution

and the complete reflected WP. The reflection amplitude has the same pole as

the transmission amplitude, kp = −iΩ. The pole representation of the delay

distribution is given by

ηR(p0, x
′) = − exp(ip0x

′)×




Θ(−x′) exp(|Ω|x′), for Ω > 0

Θ(x′)|Ω| exp(−|Ω|x′), for Ω < 0,
(3.37)

which is equal to the smooth part of the delay distribution for transmission,

ηR(p0, x
′) = η̃T (p0, x

′), Eq.(3.27). We can solve the integral in Eq.(3.31) using

the delay distribution in Eq.(3.37) and error functions (see Appendix J).

As for the transmission case, we have that ηR(p0, x
′ > 0) = 0 for barriers, Ω > 0,

and ηR(p0, x
′ < 0) = 0 for wells, Ω < 0. Since the envelope in the convolution

formula in Eq.(3.31) has −x, a barrier shifts the left going envelopes to the right,

delaying them. In the case of a well, the envelopes are shifted to the left, advancing

them. This is the same as for transmission, as barriers delay the reflected WP and

wells advance it, but travelling in opposite directions.
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Figure 3.6: COM delay for reflection of a WP with ∆p = 0.2, µ = 100, x0 =
−20 and t = 80, incident on a barrier with Ω = −2×103 to Ω = 2×103. Shown
is the delay computed with the numerical integration of the WPs (blue solid
line), and using the results from Eq.(3.34) (red dashed line), taking momentum
filtering into account, in Eq.(3.34), and in the dispersionless case of E(k) = ck,
with c = 1 (yellow solid line). The points for the maximum delay, at Ω = −µ,

and maximum advance, at Ω = +µ, are also shown.

The COM delays are shown in Fig.3.6 for different values of Ω. The spatial

delay, with no momentum filtering (yellow solid line), is the same as the trans-

mission one in Fig.3.3, but of opposite sign. The maximum advance occurs for

Ω = −p0 (Ω = −µ in the figure) with a value of −1/2p0 (−1/2) and corresponds

to the bound state. The maximum delay occurs for Ω = p0 (Ω = +µ) with a value

of 1/2p0 (1/2), and is due to the virtual state.

3.8 COM delays for WP of an arbitrary width

We have focused on the cases of inaccurate measurements, ∆x → ∞, and

calculated the delays, in Eqs.(3.21) and (3.34), in this limit. We can calculate a

more general expression for the COM delay, and see the effect of the width of the

particle on it. Since the particle itself acts as the measuring device, the width

of the envelope will give the accuracy of the measurement. The COMs can be
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obatined from the averages over the amplitudes (see Appendix K for more details)

⟨x⟩0 = x0 + ⟨v(k)⟩0 t, (3.38)

⟨x⟩T,R = ±x0 ± ⟨v(k)⟩T,R t∓ ⟨∂kΦT,R(k, V )⟩T,R .

In the limit ∆x → ∞, we have that lim∆x→∞ ⟨f(k)⟩ = f(k) for any function f ,

and we recover the delays of Eqs.(3.21) and (3.34).

Figure 3.7: COM delay for a) transmission and b) reflection, for a varying
width of the incident WP. The parameters are x0 = −200, mΩ2t = 500 and
mΩ∆x changes from 0 to 80. Shown are the delays for the dispersive case
E(k) = k2/2µ, obtained integrating numerically the WPs (blue solid line) and
using the results from Eqs.(3.38) (red dashed line), and for the dispersionless
case, E(k) = ck, with c = 1, from Eqs.(3.38) (yellow solid line). The limit of

the delay for ∆x→∞ is also shown in both cases (black dashed line).

Figure 3.7 shows the delays for transmission and reflection as a function of

the width of the incident WP. In the limit ∆x → ∞, the delays tend to the

values obtained in Eqs.(3.21) and (3.34), the dispersive and dispersionless cases,

respectively.

We consider first the accurate limit, ∆x→ 0. The width of the WP in momen-

tum space increases, since ∆p ∼ ∆x−1. For transmission, since T (k → ∞) → 1

we have that |T (k)A(k)|2 ≈ |A(k)|2. Most of the WP gets transmitted without

any distortion or delay. We can see this in Fig.3.7a), where, in the dispersion-

less case, the delay for transmission of a very narrow WP tends to 0. For re-

flection, we insert Eq.(3.37) into Eq.(3.31) and find |ΨR(x, t)|2 ∼ Θ(±x ∓ ct ∓
x0)∆x exp

[
−2|Ω|(±x∓ ct∓)

]
, where the upper sign corresponds to a barrier and



Chapter 3. Zero-Range Potential 82

the lower one to a well. Calculating the COM delay in the limit for the disper-

sionless case we have that

lim
∆x→0

δxRCOM(t) = 1/2Ω. (3.39)

This limit is shown in Fig.3.7b).

For E(k) = k2/2µ, the dispersion increases as ∆x → 0. We can see it by

analysing the spreading of the envelopes. Using Eq.(3.25) for transmission, or

Eq.(3.31) for reflection, we obtain the envelope of the WP and the square of its

absolute value

G0(x, t) =[2∆x2/σ4
t ]

1/4 exp
[
−(x− vt− xI)2/σ2

t

]
, (3.40)

σt ≡(∆x2 + 2it/m)1/2,

|G0(x, t)|2 =
[
2π∆x2t

]2
exp

[
−2(x− vt− xI)2/∆x2t

]
,

∆xt ≡(∆x2 + 4t2/∆x2m2)1/2.

where σt(x, t) is the time-dependent spatial width of the WP and ∆xt is the

real time-dependent width. For ∆x → 0, the time-dependent width increases as

∆xt ∼ 2t/∆xµ→∞. The narrower the WP, the more dispersion it experiences.

3.9 Conclusions

3.9.1 The Larmor clock and the EWS method measure

different quantities

In a classical case, one can think of different ways of measuring the time a

particle takes to cross some region of space. For example, one can measure it

directly coupling a clock to the particle. Alternatively, once can measure a spatial

shift between the particle and a freely travelling one, and then calculate the time

from the spatial delay. The result is independent of the method used for the

measurement, and both lead to the same result. This is due to the quantity being

measured, the time spent in the region, being unique in the classical case. This is
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not the case for a quantum transition, as different methods, or different definitions

of this time, lead to different results [1, 6].

In the previous chapters we have focused on the EWS time. To compute it,

the position of the COM of the transmitted WP is compared with the position

of the COM of a freely propagating WP. The difference between the position of

their COMs is divided by the mean velocity in order to obtain the phase time

in Eq.(1.43). The WPs considered are very broad compared to the de Broglie

wavelength. Thus, all possible spatial delays interfere, and the phase time cannot

be associated with any single one of them (see Section 1.10).

An alternative method consists in using the precession of the spin of the trans-

mitted particle inside the potential to measure the time spent in the region. This

is the Larmor clock [39, 42]. Similar to the phase shift, the Larmor clock involves

the interference between available temporal delays. As the potential becomes nar-

rower, the range of available durations decreases, and in the limit of a zero-range

potential there is a single duration available, τ = 0. Thus, there is no interference.

The Larmor clock measures τ = 0 for any accuracy of the measuring device.

The case of the EWS for the zero-range potential gives a different result to that

of the Larmor clock. Even in the limit of the zero-range potential there is still

a range of different spatial shifts available. So, there is still interference, and a

weakly perturbing measurement preserves this interference. The resulting spatial

delay is non-zero even for the zero-range potential. There is no contradiction

between this result and that obtained with the Larmor clock, since in each case

we measure different quantities.

The Larmor clock method measures the duration in the potential region. This

measurement is related to the time the particle spends inside the potential. The

EWS method does not measure a time, but a spatial shift. The time one can infer

from the measured spatial delay (see Eq.(3.19)) is not being measured directly

in the same way as the Larmor clock [46, 47]. Only in the classical limit both

quantities coincide.
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In the quantum case, each method results in a different measured duration.

There is no unique definition of the time a quantum particle spends in a region,

and thus no method is “right” or “wrong”. In both cases, the accuracy of the

measurement affects the result, and for a weakly perturbing measurement may

lead to complex times [1, 19, 31]. Thus, neither method measures the “actual

time”, which exists only in the classical limit, but a quantity specified by the

method. This is the reading of a coupled meter in the Larmor clock case, and

the spatial shift between transmitted and free particles in the case of the EWS

method. There is no contradiction since both are different quantities.

3.9.2 The accuracy of the measurement in a zero-range

potential

As mentioned above, when measuring the duration of transmission of a WP

through a zero-range potential there is a single available duration, τ = 0. Thus,

the accuracy of the meter does not affect the result, as there is no interference

related to it. The Larmor clock measures a duration τ = 0 through a zero-range

potential both for ∆f → 0 and ∆f →∞.

This is not the case for a measurement of the EWS time, as even in the limit

of a zero-range potential, there are several available spatial delays. The accuracy

of the measurement, related to the width of the WP, affects the result. In the

case of a very broad incident WP, the available delays interfere, and the resulting

measured delay is not zero. Only in the limit ∆x → 0 the measured delay tends

to zero (see Fig.3.7).
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Chapter 4

Relativistic scattering across

supercritical barriers

We analyse different aspects of relativistic scattering across supercritical bar-

riers for Klein-Gordon and Dirac particles. We study transmission and reflection

through multiple-reflection series, for which both convergent and divergent ex-

pansions can be found. Some of these expansions allow for acausal transmission,

which is related to apparent “negative durations” in the barrier. For supercriti-

cal scattering, the divergent solution of the Klein-Gordon equation is related to

pair creation. For Dirac particles, the causal solution converges, and there is no

fermionic pair creation. We study the Klein paradox for both bosons and fermions.

87
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4.1 Introduction

In the previous chapters we have discussed the tunnelling times in the case

of non-relativistic scattering. One of our main focuses, and an initial motivation

behind this study, is the apparent “superluminal” tunnelling time.

It has been known since the 1930’s [11] that the centre of mass (COM) of a quan-

tum wave packet (WP) tunnelled through a rectangular barrier is advanced by the

width of the barrier with respect to a freely propagating one. Thus, if the spatial

delay is related to the time spent in the barrier, as in the classical case, the WP

appears to have crossed the barrier region infinitely fast. This would contradict

Einstein’s special relativity, since this speed exceeds that of light. One may think

that this apparent superluminal speed is an artefact of non-relativistic scattering.

But if one considers a one-particle relativistic treatment of tunnelling, replacing

the Schrödinger particles by relativistic ones, such as Klein-Gordon bosons or

Dirac fermions, the apparent superluminal tunnelling time persists [12–14, 28, 48].

Thus, the contradiction is not resolved with a relativistic treatment. The reason

behind the apparent superluminal tunnelling is in the reshaping of the tunnelled

WP in the barrier (see Chapter 1), that remains in the relativistic case.

We are interested in supercritical barriers, with a potential V0 > E+µc2, where

E is the energy of the incident particle and µ, its mass. For these barriers, the

height of the barrier exceeds the gap between the negative and positive energy

continua (see Fig. 4.1c)), and there is no suppression of transmission.

4.1.1 Supercritical barrier

For a particle with energy E2 = (p0c)
2 + (µc2)2, where p0 is its mean momen-

tum, incident on a potential barrier with V0, we can distinguish three regimes,

depending on the height of the barrier. The momentum inside the potential is

q =
√

(E − V0)2 − µ2c4/c. These regimes are:
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E

a)     Classically allowed b)          Tunnelling c)         Supercritial

Positive energy continuum

Negative energy continuum

0

+μc2

-μc2

V0 < E - μc2

E - μc2 < V0 < E + μc2 

V0 > E + μc2

V

Figure 4.1: The energy states for a) classically allowed, b) tunnelling and c)
the supercritical regimes for a fixed energy E of the incident particle. In a)
the positive energy states, in blue, and the negative energy ones, in orange, are
shown for a non-supercritical potential. There is a separation of 2µc2 between
the highest negative energy state and the lowest positive energy state. In the
case of a supercritical barrier, c), the potential is high enough so it allows the

incident particle to propagate through the second energy continuum.

� For V0 < E − µc2, Fig. 4.1 a), the transmitted WP goes over the barrier,

since q is real and finite. This is a classically allowed transmission, explained

in Section 1.3.

� For E − µc2 < V0 < E + µc2, Fig. 4.1 b), the momentum inside the barrier

becomes imaginary and the solution corresponds to evanescent waves. This

is the tunnelling regime, as explained in Section 1.4. In this regime, as

the potential increases, the transmitted amplitude becomes exponentially

smaller. There are no states inside the barrier through which the WP can

propagate.

� For V0 > E + µc2, Fig. 4.1 c), corresponding to a supercritical barrier,

the momentum inside the barrier becomes real again, which implies that

there is an energy continuum through which the particles can propagate

[32, 33, 49, 50]. We recover solutions with travelling WPs inside the barrier

with a single and well-defined trajectory. This is the Klein regime [51].
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Figure 4.2: Shown are the incident WP over a barrier of width d, a freely
propagating WP after a time t and for the same time, a tunnelled WP and a
bosonic WP transmitted through a supercritical barrier for E = V0/2, all in
arbitrary units. The tunnelled WP is advanced the width of the barrier relative
to the freely propagating one, while the advancement for the supercritical one,

with this choice of incident energy, is twice the width of the barrier.

In the supercritical regime, both fermions and bosons behave in a similar way,

since there is no suppression of transmission for either type of particle. Never-

theless, the scattering in the relativistic regime is very different for each kind of

particle, as we will study through this chapter.

We will consider the particular case of Klein-Gordon particles incident on a

supercritical barrier with an energy E = V0/2. For a broad WP, there is no

reflection, and we find that the transmitted particle is advanced by twice the

width of the barrier, 2d. Thus, the apparent time the WP spends inside the

barrier becomes negative, τ ≈ −µd/p0. This solution, along with free propagation

and a tunnelled WP, is depicted in Fig.4.2. The total transmission of quantum

particles through a potential barrier, with the condition E = V0/2, is known as

the super-Klein tunnelling (see [52] and [53]).

This solution is acausal, since there is a WP propagating inside the barrier even

before the arrival of the incident one. As we will see, the Klein-Gordon equation

allows for this kind of solutions. One can alternatively solve the scattering via a
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finite difference method. This forces the solution to be causal, since no particle can

propagate in the barrier before the arrival of the incident one. We will analyse both

the causal and acausal solutions with the Multiple Reflection Expansion (MRE)

method, expanding the transmission amplitude in a series. This method allows us

to describe the scattering in terms of transmitted and reflected parts of the WP at

the edges of the barrier, and can describe pair creation and annihilation [54, 55].

This apparently negative traversal time is not obtained for fermions. We will

apply the MRE method to Dirac fermionic particles, and study the differences

that arise between the two types of particles in the supercritical regime.

4.1.2 Organisation of the chapter

The chapter is divided into two main sections, discussing bosonic and fermionic

scattering. The solutions of the Klein-Gordon equation are presented in Section

4.2. Section 4.2.1 introduces the transmission amplitude of Klein-Gordon particles

for a square potential. The MRE is presented in Section 4.2.2, where the conver-

gent solution for the non-relativistic scattering is discussed. The divergent solution

of the MRE is analysed in Section 4.2.3, again for non-relativistic scattering. The

relativistic scattering for a supercritical barrier is treated in Section 4.2.4 for both

the convergent and divergent solutions. The super-Klein regime, where E = V0/2,

is also studied using the MRE method.

The solutions of the Dirac equation are analysed in Section 4.3. Section 4.3.1

introduces the transmission amplitude and the solutions for a Gaussian incident

fermionic WP. The MRE for the convergent and divergent solutions are presented

in Section 4.3.2. Relativistic scattering for a critical barrier is studied in Section

4.3.3.

Section 4.4 discusses the different results obtained for fermions and bosons, and

the relation of those with pair creation. The general conclusions of the chapter

are summarised, and the limitations and validity of the single-particle approach

are discussed.
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4.2 Bosons

The Klein-Gordon equation is the relativistic equation for spin-0 particles. It

can be obtained substituting the energy E and the momentum p by their operators

in the relativistic relation, E2 = p2c2 + µ2c4, where µ is the mass and c the speed

of light. In the one-dimensional case considered here, Ê = iℏ∂t and p̂ = −iℏ∂x.
The free Klein-Gordon equation is then,

[
1

c2
∂2

∂t2
− ∂2

∂x2
+
µ2c2

ℏ2

]
Ψ(x, t) = 0. (4.1)

The conserved quantity for the Klein-Gordon equation is the total charge [32].

Throughout this chapter we will use the charge density to describe bosonic scat-

tering. In the presence of a potential V = eA, this is

ρ =
iℏe
2µ

(Ψ∗ ∂

∂t
Ψ−Ψ

∂

∂t
Ψ∗)− e2

µc2
AΨΨ∗. (4.2)

The free Klein-Gordon equation in Eq.(4.1) allows for both positive and neg-

ative energy solutions. Positive energy solutions are labeled as “particles”, and

negative energy solutions as “antiparticles”. As we will see in Section 4.2.4, in

the presence of a supercritical potential the charge density in Eq.(4.2) becomes

negative.

For the numerical calculations we use dimensionless variables, taking the bar-

rier’s width d as a reference,

X = x/d, T = tc/d, W = dV/ℏc, M = µdc/ℏ and P = pd, (4.3)

with c = 1, e = 1 and ℏ = 1.

4.2.1 Transmission amplitude and scattering solution

We consider an incident WP from the left on a square potential with V (x) = V0

for 0 < x < d and 0 otherwise. The transmission amplitude can be obtained
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starting from a plane wave with momentum p travelling to the right after crossing

the barrier,

x > d : eipx. (4.4)

Inside the potential region there are waves moving to the left and to the right,

each with a coefficient,

0 < x < d : a+e
iqx + a−e

−iqx ← eipx, (4.5)

where q is the particle’s momentum inside the barrier, qc =
√
(E − V0)2 − µ2c4

and E =
√
p2c2 + µ2c4 is the energy of the incoming wave. Matching the ingoing

and outgoing waves at the left of the barrier,

x < 0 : b++e
ipx + b−+e

−ipx ← eiqx (4.6)

x < 0 : b+−e
ipx + b−−e

−ipx ← e−iqx,

and imposing continuity of the wave functions and their derivatives at x = d and

x = 0, we get the coefficients,

a+ =
1

2

(
1 +

p

q

)
ei(p−q)d, a− =

1

2

(
1− p

q

)
ei(p+q)d (4.7)

b++ = b−− =
1

2

(
1 +

q

p

)
, b−+ = b+− =

1

2

(
1− q

p

)
.

The transmission amplitude can be obtained from eipx(x < 0) = T (p, q)eipx(x > d),

T (p, q) =
1

b++a+ + b+−a−
=

4pq exp[−ipd]
(p+ q)2 exp[−iqd]− (p− q)2 exp[iqd] . (4.8)



Chapter 4. Relativistic scattering across supercritical barriers 94

Naming the three regions of space, x ≤ 0, 0 ≤ x ≤ d and x > d as 1, 2 and 3

respectively, the complete solution for the scattering states is

ϕ1(x, p) = R(p, q)e−ipx + eipx, x ≤ 0 (4.9)

ϕ2(x, p) = B+(p, q)e
iqx +B−(p, q)e

−iqx, 0 ≤ x ≤ d

ϕ3(x, p) = T (p, q)eipx, x > d,

with

B±(p, q) = a±T (p, q), R(p, q) = (b−+a+ + b−−a−)T (p, q). (4.10)

We can use the scattering states given in Eq.(4.9) to write the WPs that we

will use throughout this chapter. We consider an initial Gaussian WP. The WPs

for each region of space are

Ψi(x, t) =

∫
dpA(p, p0) exp[−iE(p)t]ϕi(p, x), (4.11)

A(p, p0) = 2−1/4π−3/4∆p−1/2 exp
[
−(p− p0)2/∆p2 − i(p− p0)x0

]
,

where ϕi(x, p) are the solutions given in Eq.(4.9), A(p, p0) is the momentum dis-

tribution of the WP, centred at p = p0, ∆p is its width of the WP in momentum

space, where ∆x = 2/∆p is the momentum in coordinate space, and x0 < 0 is the

initial position of the WP, which assures that the initial WP is far enough to the

left of the barrier. We consider throughout the chapter only a positive momentum

distribution, ∆p < p0.

4.2.2 Convergent MRE

We can represent the transmission amplitude in Eq.(4.8) as a convergent ge-

ometric progression, known as the Multiple Reflection Expansion (MRE). The
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series converges since |p− q| < |p+ q|. We can write

T (p, q) =
1

b++a+ + b+−a−
→ 1

b++a+

∑

n=0

(
b+−a−
b++a+

)n

(4.12)

=
4qpe−ipd

(p+ q)2

∞∑

n=0

(p− q)2n
(p+ q)2n

exp
[
i(2n+ 1)qd

]
≡

∞∑

n=0

Tn(p, q).

The reflection amplitude can also be represented as a geometric progression.

Using Eqs.(4.12) and (4.10) we have

R(p, q) =

[
(p2 − q2)e−iqd + (p2 + q2)eiqd

]
eipd

4pq
T (p, q) (4.13)

=
(p2 − q2)e−2iqd + (p2 + q2)

(p+ q)2e−iqd

∞∑

n=0

(p− q)2n
(p+ q)2n

exp [2inqd] ≡
∞∑

n=0

Rn(p, q).

To obtain the MRE of the transmitted WP, we insert Eqs.(4.12) into Eq.(4.9)

and obtain ϕi(x, p) =
∑∞

n=0 ϕ
i
n(x, p). So, from Eq.(4.11) we get

ΨT (x, t) =
∞∑

n=0

∫
dpA(p, p0) exp[−iE(p)t]ϕi

n(p, x) ≡
∑

n=0

ΨT
n (x, t). (4.14)

The reflected WP can be written as a series in a similar manner. Alternatively, we

can write the sub-amplitudes of these WPs explicitly to see their physical origin.

We consider the case where the potential is wider than the spatial width of the

WP, d > ∆x, so that there are travelling WPs inside the barrier.

A WP incident from the left on a potential of width d, shown in Fig. 4.3, is

reflected with an amplitude ril and transmitted with an amplitude til at the left

edge. The subindices l/r indicate that the scattering occurs at the left/right edges,

and the superindices i/o, that the transmitted part goes inside/outside the barrier.

The amplitude of the reflected and transmitted WPs are lower than the incident

one. The reflected WP travels away from the potential, while the transmitted one

travels inside the potential until it reaches the right edge. There, it is reflected

with an amplitude ror and transmitted with amplitude tor. The total amplitude of

the WP travelling inside the potential is now tilr
o
r , and the total amplitude of the
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emerged transmitted one is tilt
o
r. The WP inside the potential bounces back to the

left, where it is scattered again with amplitudes tol and rol , emitting one WP to

the left. The WP inside keeps bouncing, each time reducing its amplitude, while

consecutively smaller WPs emerge from the edges of the potential. The process

ends when the potential region is emptied.
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Figure 4.3: Schematic of the Multiple Reflection Expansion (MRE). The in-
cident WP splits into transmitted and reflected WPs. The reflected WP moves
away from the barrier, while the transmitted one travels through the barrier and
bounces off the right edge. The WP inside the barrier keeps bouncing, emitting
WPs to the right and to the left of the potential. At each bounce, the reflected
and transmitted WPs acquire a complex weight, as appears in Eq.(4.15). These

are equivalent to the series of amplitudes in Eq.(4.14).

The emerging transmission and reflection amplitudes can be written as

T =
∑

n

til(r
o
rr

o
l )

ntor, R = ril +
∑

n

tilr
o
r(r

o
l r

o
r)

ntor. (4.15)

Comparing these expressions with Eqs.(4.12) and (4.13), we can identify Tn(p, q) =

til(r
o
rr

o
l )

ntor and Rn(p, q) = tilr
o
r(r

o
l r

o
r)

ntor, since the expansions in Eq.(4.12) and

(4.13) are convergent.
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4.2.2.1 Non-relativistic convergent MRE

We study first the sub-amplitudes from Eq.(4.14) in a non-relativistic classically

allowed scenario of a WP going over a barrier or a well. Thus, the WPs can

propagate through the barrier. The Klein-Gordon equation in the non-relativistic

regime reduces to the Schrödinger equation. Nevertheless, we can still apply the

formalism of the MRE to study both the convergent and divergent solutions, and

later compare the relativistic and the non-relativistic solutions. For a momentum

distribution A(p, p0) sharp enough in momentum space, we can approximate the

momentum q inside the barrier as

q(p) ∼ q(p0) + ∂pq(p0)(p− p0) = q(p0) + p0/q0(p− p0), (4.16)

where p0 is the mean momentum of the incident particle, and q0 ≡ q(p0). Since

∂pq(p) > 0, the group velocity inside the barrier has the same direction as the

momentum. Inserting the MRE of the transmission amplitude in Eq.(4.12) into

the transmitted WPs of Eq.(4.14) for the region x > d we have

ΨT
I (x, t) ≈

∞∑

n=0

Xn(p0, q0)Ψ0(x− xn(p0, q0), t), (4.17)

where

Xn(p0, q0) =
4p0q0

(p0 + q0)2
(p0 − q0)2n
(p0 + q0)2n

ei(2n+1)(q0−p20/q0)d (4.18)

xn(p0, q0) = d
[
1− (2n+ 1)p0/q0

]
.

Xn(p0, q0) are the weights of each consecutive transmitted WP, and xn(p0, q0) their

corresponding delays. Since the weight of each consecutive WP in the series is

smaller than the previous one, Xn+1(p0, q0) < Xn(p0, q0), the series in Eq.(4.12) is

convergent. We label the transmitted WPs in Eq.(4.17) as I in order to distinguish

from the divergent solution in the following subsection, which we will label as II.

The case for reflection is similar and thus will not be studied here in the same

detail as transmission. Although the weights for each consecutive reflected WP
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are different than those for transmission, the spatial delay between consecutive

WPs and their proportional increase in amplitude is the same. The n-th WP is

proportional to a factor (p0−q0)2n/(p0+q0)2n in both the transmitted and reflected

cases. This corresponds to the (rol r
i
r)

n terms in Eq.(4.15) and has the same origin

for reflection and transmission.

For a well the WP travels faster in the potential region, q0 > p0. Thus, the first

emerging WP is advanced relative to free propagation, by x0 = d(1− p0/q0) > 0.

The rest of the WPs appear delayed an extra −2dp0/q0 distance. This case is

shown in Fig. 4.4. For a barrier the WP slows down, q0 < p0, and the emerging

transmitted WPs are delayed relative to the freely propagating WP, xn(p0, q0) < 0.

Figure 4.4: For a well with P0 = 100, M = 104, W/M = −2.5× 10−4 and T
from 0 to 220, figures a) and b) show the evolution of a Gaussian WP, and the
bounces inside the potential. The first emitted WP at the right of the barrier
is advanced relative to a freely propagating WP, whose trajectory is shown in
b) with a pink line. The inset in figure a) shows a scheme of the scattering.
Figure c) shows the conservation of the charge density through the scattering.
The oscillations are due to numerical errors, and could be reduced taking a finer
grid for the coordinate X. Figure d) shows the reflected WPs at the final time
T = 220. The separation between the peaks is related to the bounces inside the

barrier, and is equal to 2P0/Q0.
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Each new emitted WP is multiplied by a factor
(

p0−q0
p0+q0

)2
< 1. As time increases,

the probability for the particle to remain inside the barrier decreases, until it

escapes. The emitted WPs travel away from the barrier, to the left or to the right.

This is therefore a bound and causal solution.

4.2.3 Divergent MRE

A different solution can be obtained, using the fact that T (p, q) is single-valued

in the complex q-plane, since we have that T (p, q) = T (p,−q). We can make the

change q → −q in the expansion Eq.(4.12) and still get a solution of the Klein-

Gordon equation. This change makes the series to diverge. The transmission

amplitude is now

T (p, q) =
1

b++a+ + b+−a−
→ 1

b+−a−

∑

n=0

(
b++a+
b+−a−

)n

(4.19)

=
−4qpe−ipd

(p− q)2
∞∑

n=0

(p+ q)2n

(p− q)2n e
−i(2n+1)qd ≡

∞∑

n=0

Tn(p,−q).

Proceeding as in the previous section, we study first the non-relativistic case.

We write the transmitted particle as a sum of WPs, Eq.(4.17), changing q → −q,

ΨT
II(x, t) ≈

∞∑

n=0

Xn(p0,−q0)Ψ0(x− xn(p0,−q0), t), (4.20)

with

Xn(p0,−q0) =
−4p0q0

(p0 − q0)2
(p0 + q0)

2n

(p0 − q0)2n
ei(2n+1)(−q0+p20/q0)d (4.21)

xn(p0,−q0) =d
[
1 + (2n+ 1)p0/q0

]
.

In this case, each (n + 1)-th WP in the series has a larger amplitude than

the n-th WP, Xn+1(p0,−q0) > Xn(p0,−q0), and is further away from the barrier,

xn+1(p0,−q0) > xn(p0,−q0). Before the arrival of the incident WP, there is a WP

propagating inside the barrier, emitting WPs and decreasing its amplitude at each

bounce. This is shown in Fig.4.5 (for clarity, see the schematic diagram in Fig.4.5
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c) ). The continuous emission stops once the incident WP arrives at the left edge

of the barrier, is reflected and, in a coherent manner, interferes with the WP inside

the barrier, leaving the potential empty. The last emitted WP to the right of the

barrier has already left it when the incident particle reaches the potential, at a

time µd/q0 before.

Since there is no limit to the series, |Xn(p0,−q0)| → ∞ as n→∞, the solution

is unbound and not normalisable. The case for a divergent scattering solution

through a well is shown in Fig.4.5.

Figure 4.5: Divergent scattering for a well with P0 = 400, M = 2 × 104,
W/M = −2× 10−2, X0 = −0.5 up to T = 50. Before the incident WP reaches
the well, there are already WPs in the system, moving away from the well in
both directions and also bouncing inside the well. The WPs become smaller
each bounce, Eq.(4.21). Once the incident WP reaches the well, the creation of

WPs stops.

This solution, although mathematically possible, is not physically meaningful.

It describes a WP with an infinite amplitude being “injected” at an infinitely
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distant past. Nevertheless, we can combine both solutions to describe physical

(causal and bounce) scenarios, as we will show next.

4.2.3.1 Physical non-relativistic solution

The two previous solutions can be combined to obtain a physical solution. We

consider the particular case of a single particle whose wave function consists of

two spatially separated Gaussian WPs. The first of them starts the propagation

inside the well, and the emission starts at the edges of the barrier. After a given

number of bounces, the second WP arrives at the left edge of the barrier. This

second WP is tuned in such a way that it cancels the bouncing WP inside the

potential, as happened in the case of the acausal solution in the previous section.

This solution is shown in Fig.4.6 for 1 bounce.

Figure 4.6: P0 = 600, M = 3× 104, W/M = −1× 10−3 and X0 = −0.33. a)
shows the solution for a second wave packet cancelling the oscillations inside the
barrier. b) shows how the oscillations would continue inside the barrier without

the second WP.

4.2.4 Relativistic bosonic scattering: Supercritical barrier

For a supercritical barrier, with V0 > E + µc2, the momentum inside the bar-

rier is real and allows for WP propagation inside the barrier. We can study the

supercritical transmission using the same MRE formalism presented for the non-

relativistic scattering.
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As we will see, the charge density inside the barrier, given by Eq.(4.2), is nega-

tive. We will refer to the WPs propagating with negative charge as antiparticles,

since their charge has opposite sign to the incident positively charged particles

and they propagate through the second energy continuum. Both the transmitted

and the reflected WPs have positive charge density.

The behaviour of the scattering in a supercritical barrier will differ from the

non-relativistic case due to the change in the antiparticle’s momentum inside the

barrier. We can expand it around the mean momentum p0,

q(p) ≈ q(p0) + ∂p(p− p0) = q(p0)− p0/q0(p− p0). (4.22)

The group velocity inside the barrier has a sign opposite to the momentum, since

∂pq(p) < 0. As in the previous case, we can construct the convergent and divergent

solutions, taking +q or −q, respectively.

4.2.4.1 Convergent relativistic solution

Taking the solution for the supercritical scattering with +q, the main difference

with respect to the non-relativistic scattering is that now ∂pq(p) < 0. This changes

the sign of q in the xn expression. Using the convergent solution of Eq.(4.17), we

have a transmitted WP

ΨT
I (x, t) ≈

∞∑

n=0

Xn(p0, q0)Ψ0(x− xn(p0,−q0), t), (4.23)

where the weights Xn are given in Eq.(4.18) and the delays xn are those given in

Eq.(4.21). Thus, in the case of transmission through a supercritical barrier, the

convergent solution is acausal. The potential region is populated at t → ∞ by a

bouncing WP whose amplitude increases with each bounce, emitting consecutively

larger WPs from the edges. The incident WP terminates the scattering. This is

shown in Fig.4.7.

This behaviour can be understood using Feynman’s interpretation of the an-

tiparticles as particles travelling backwards in time [56]. Within this interpretation,
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Figure 4.7: Convergent and acausal solution for relativistic Klein-Gordon
particles, for a Gaussian WP with P0 = 104,M = 104,W/M = 4

√
2, ∆P = 100,

X0 = −0.75 and T = 0 to 2.5. a) absolute value of the charge density, b) charge
density, where the barrier is marked (red dotted lines), as well as the incident

WP (purple solid arrow) and c) schematic depiction of the scattering.

the scenario in Fig.4.7 corresponds to a particle that enters the supercritical region

in 0 < x < d and is scattered backwards in time, bouncing at the edges of the

barrier. At each bounce it emits increasingly smaller particles forward in time as

the antiparticle reduces its amplitude.

One can also think of the behaviour at the edges in terms of pair creation or

annihilation. Since particles and antiparticles have opposite charges, the total

charge is conserved through the scattering. When the antiparticle, injected at a

distant past, bounces off the barrier, pairs are created. The antiparticle inside

the supercritical barrier increases its amplitude, while increasingly larger particles

move away from the barrier. When the incident WP, corresponding to a particle,

reaches the barrier, it annihilates the existing antiparticle. At a time t large enough

so that the scattering has stopped, only the emitted WPs to the right and left of
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the potential remain. Their total charge is equal to the charge of the incident WP.

This solution is bound but acausal.

4.2.4.2 Singularity at E = V0/2

For the special case of the super-Klein tunnelling, at E = V0/2, we have that

p0 = q0, so, in Eq.(4.18), only one term of the series, X0(p0, q0), is different from

0. There is only one emitted particle in the region x > d. This scenario is shown

in Fig.4.8.

Figure 4.8: Bosonic convergent and acausal solution forM = 5×103,W/M =
2.2361, bM/d = 100, ∆P = 25/3, X0 = −2 and E(P0)/W = 1/2. Since the
antiparticle has negative charge density, the pair creation does not produce any

charge, and the charge density is conserved.

For this energy, the weights of the transmitted WPs, given in Eq.(4.21), have

a pole. This is due to the sharp edges of the square barrier we are considering,

and can be avoided using a smooth one. For the results shown in Fig.4.8, we

have used a hyperbolic barrier, V (x) = V0/2(tanh bx − tanh b(x− d)), where the

parameter b controls the smoothness of the potential. Using this potential one can

show that the poles move into the complex plane, as (p − q)−1 → (p − q + iδ)−1,

where δ = V 2
0 /2b. See Appendix M for details.
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Considering Feynman’s interpretation, this case corresponds to a single particle

transmitted backwards in time from the left edge, and then forward in time from

the right edge. Thus, it gains an extra 2d distance relative to free propagation,

twice the barrier’s width. The apparent “negative duration” of the tunnelling is a

result of the scattering being acausal, and thus physically impossible.

In terms of pair creation and annihilation, there is a single pair being created

at the right edge of the barrier at a time dp0/µ before the incident WP reaches it,

as shown in Fig.4.8. The particle and the antiparticle move forward in time, with

the antiparticle encountering and annihilating the incident particle.

4.2.4.3 Divergent relativistic solution

If we take the divergent series, by changing q → −q in Eq.(4.23), we obtain a

causal solution. The transmitted WP is

ΨT
II(x, t) ≈

∞∑

n=0

Xn(p0,−q0)Ψ0(x− xn(p0, q0), t), (4.24)

where again the weights and the delays are given by Eq.(4.18).

In this solution, the creation of pairs is started by the incoming particle, as

shown in Fig.4.9. A P-AP pair is created when the bouncing antiparticle reaches

the edge of the barrier. This creates a WP outside the barrier and increases the

amplitude of the WP inside. Each successive WP has a higher amplitude than the

previous one. As can be seen in Fig.4.9c), the total charge is conserved, although

there is local charge creation outside and inside the potential.

This is not a scattering type solution, as the final state is not a free state. The

emission of particles continues as t increases, and both the WP inside the barrier

and the travelling WPs outside it grow infinitely. This growth of the probabilities

is a sign of the limitations of the single particle approach. In a physical system, the

increase in the antiparticle density inside the potential should lead to a decrease in

the potential’s height [55]. Therefore, the continuous emission thus stops as soon

as the potential reaches a value below supercriticality.



Chapter 4. Relativistic scattering across supercritical barriers 106

Figure 4.9: Bosonic divergent and causal solution for M = 5 × 103, W/M =
2
√
2, bM/d = 2, ∆P = 100/3, X0 = −1, E(P0)/W = 1/2 and T from 0 to

9. The oscillations appearing in c) are due to numerical errors due to the grid
taken in X. The charge is conserved in every pair creation.

4.2.4.4 Physical relativistic solution

As in the non-relativistic case, there is a way to describe a physical solution

combining the two previous solutions. We consider a single particle, whose wave

function consists of two separated Gaussian WPs, tuned so that the pair produc-

tion is triggered by the first and, after a number of bounces, stopped by the second,

as shown in Fig.4.10.

The first WP triggers the P-AP pair creation in the supercritical barrier. In-

creasingly higher amplitude WPs are emitted as the WP bounces inside the barrier,

increasing in amplitude with each bounce. The emission ends with a P-AP pair

annihilation when the second WP reaches the barrier.
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Figure 4.10: Physical solution for a) one bounce and b) three bounces. The
first WP starts the creation of the negative charge inside the potential, and the
second one, which arrives at a later time, anninilates it, making this solution

causal and bound or convergent.

4.3 Fermions

The Dirac equation is the relativistic equation for spin-1/2 particles. In one

dimension, it takes the form

ĤΨE = EΨE, (4.25)

with the Hamiltonian

Ĥ = cσx(−iℏ∂x) + σzµc
2 + V (x)I, (4.26)

where σi are the Pauli matrices and V (x) the potential. Generally, a Dirac particle,

a solution of Eq.(4.27), is described with a spinor with four components to account

for the spin. In the one-dimensional case, the spin has no effect on the dynamics

[56] and we can consider a spinor with only two components. Fermions are a

solution of (ℏ = 1 and c = 1)

[i∂t − V ] Ψ(x, t) =
[
σx(−i∂x) + σzµ

]
Ψ(x, t). (4.27)
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A general positive energy solution of Eq.(4.27) has the form

Ψ(x, t) =




1

q
E−V+µ


 eiqx−iEt. (4.28)

where q =
√

(E − V )2 − µ2 is the momentum inside the potential. In the case of

a free particle, V (x) = 0 , it becomes p =
√
E2 − µ2, which is the momentum

of the free travelling fermion. The conserved quantity is the total probability

[32]. We consider the probability density, which is positive definite, to describe

the scattering solutions. In the one-dimensional two-component case studied here,

this is

ρ = Ψ∗Ψ =
2∑

i=1

Ψ∗
iΨi. (4.29)

For the numerical results of the figures, we will use the same dimensionless

units as for the Klein-Gordon case, given in Eq.(4.3).

In the non-relativistic limit, the Dirac equation tends to the Pauli equation

which, in the one-dimensional case and in the abscence of magnetic field, reduces to

the Schödinger equation. Thus, the non-relativistic solution described in Sections

4.2.2 and 4.2.3 for bosonic particles is also valid for fermions. Therefore, in the

current Section we will only focus on the relativistic case, where the differences

between the Klein-Gordon and the Dirac scattering do occur.

4.3.1 Transmission amplitude and scattering states

We consider a square potential with V (x) = V0 for 0 < x < d and 0 otherwise.

For fermions we only require continuity of the wave functions at the edges. We

can match the solutions outside and inside the barrier in order to obtain the

transmission amplitude and the scattering states. For clarity, we define Kp ≡
p/(E +m) and Kq ≡ q/(E − V +m). Starting with a free wave packet travelling
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away from the barrier at x > d,

x > d :




1

Kp


 eipx, (4.30)

we match it at x = d with two WPs propagating inside the barrier,

0 < x < d : a+




1

Kq


 eiqx/ℏ + a−




1

−Kq


 e−iqx/ℏ ←




1

Kp


 eipx/ℏ, (4.31)

and apply the same procedure at x = 0,

x < 0 : b++




1

Kp


 eipx + b−+




1

−Kp


 e−ipx ←




1

Kq


 eiqx (4.32)

x < 0 : b+−




1

Kp


 eipx + b−−




1

−Kp


 e−ipx ←




1

−Kq


 e−iqx.

From Eqs.(4.31) and (4.32) we get the coefficients

a+ =
1

2

(
1 +

Kp

Kq

)
ei(p−q)d, a− =

1

2

(
1− Kp

Kq

)
ei(p+q)d (4.33)

b++ =
1

2

(
1 +

Kq

Kp

)
= b−−, b−+ =

1

2

(
1− Kq

Kp

)
= b+−,

and the transmission amplitude,

T (p, q) =
1

b++a+ + b+−a−
=

4KpKqe
−ipd

(Kp +Kq)2e−iqd − (Kp −Kq)2eiqd
. (4.34)
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As we did for bosons, we name the region x ≤ 0 as 1, 0 ≤ x ≤ d as 2 and x > d

as 3. The complete solution of the scattering states in each region is

ϕ1(x, p) = R(p, q)




1

−Kp


 e−ipx +




1

Kp


 eipx, x ≤ 0, (4.35)

ϕ2(x, p) = B+(p)




1

Kq


 eiqx +B−(p)




1

−Kq


 e−iqx, 0 ≤ x ≤ d,

ϕ3(x, p) = T (p, q)




1

Kp


 eipx, x > d,

with

B±(p) = a±T (p, q), R(p, q) = (b−+a+ + b−−a−)T (p, q). (4.36)

With the scattering states ϕi(x, p) in Eq.(4.35), we can write the WPs using by

Eq.(4.11).

4.3.2 Multiple Reflection Expansion for fermions

As in the bosonic case, the transmission amplitude can be written as a MRE,

where each term in the series corresponds to a bounce of a particle inside the

barrier. Again, there are two different ways of doing this expansion, taking +q

T (p, q) =
1

b++a+ + b+−a−
→ 1

b++a+

∞∑

n=0

(
−b+−a−
b++a+

)n

(4.37)

=
4KpKq

(Kp +Kq)2
e−ipd

∞∑

n=0

(Kp −Kq)
2n

(Kp +Kq)2n
ei(2n+1)qd ≡

∞∑

n=0

Tn(p, q)
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and taking −q, which, since Kq(−q) = −Kq(q) ≡ −Kq, is equivalent to

T (p, q) =
1

b++a+ + b+−a−
→ 1

b+−a−

∞∑

n=0

(
−b++a+
b+−a−

)n

(4.38)

=
−4KpKq

(Kq −Kq)2
e−ipd

∞∑

n=0

(Kp +Kq)
2n

(Kp −Kq)2n
e−i(2n+1)qd ≡

∞∑

n=0

Tn(p,−q).

4.3.3 Relativistic fermionic scattering: Supercritical bar-

rier

We consider a supercritical rectangular barrier, with V0 > E + µc2. Taking a

WP narrow enough in momentum space, the momentum inside the barrier can be

approximated as in Eq.(4.22). We have that ∂pq(p)|p=p0 < 0, and thus the group

velocity inside the barrier has an opposite direction to that of the momentum.

4.3.3.1 Divergent MRE

Using the expansion (4.37), for +q, the supercritical fermionic WPs can be

written as

ΨT
I (x, t) ≈

∞∑

n=0

Xn(p0, q0)Ψ0(x− xn(p0, q0), t), (4.39)

with weights Xn(p0, q0) and delays xn(p0, q0) given by

Xn(p0, q0) =
4KpKq

(Kp +Kq)2
(Kp −Kq)

2n

(Kp +Kq)2n
ei(2n+1)(q0−p20/q0)d, (4.40)

xn(p0, q0) = d
[
1− (2n+ 1)p0/q0

]
.

This solution leads to divergent scattering. From Eq.(4.40) we see that each

emitted WP is multiplied by an extra factor ∼ (Kp − Kq)
2/(Kp + Kq)

2. For

the supercritical barrier we are considering, we have that V0 > E + µ, and thus

Kq = q/(E − V0 + µ) < 0. Since Kp = p/(E + µ) > 0, we have that (Kp −Kq)
2 >
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(Kp +Kq)
2, therefore Xn+1(p0, q0) > Xn(p0, q0) and the expansion diverges. The

solution is acausal.

Figure 4.11: Relativistic solution of the Dirac equation using +q, Eq.(4.39),
with P0 = 2 × 104, M = 2 × 104, W/M = 2

√
2, ∆P = 8, X0 = −5 and T = 0

to 10, which is acausal and divergent.

This behaviour is shown in Fig.4.11 and corresponds to a WP already prop-

agating inside the barrier before the arrival of the incident one. As in the non-

relativistic case, we can think of this WP as being “injected” at a time t→ −∞.

At each bounce, it reduces its amplitude, and a WP is emitted and travels away

from the barrier. The propagation inside the barrier stops when the incident WP

reaches it and interferes destructively with it, leaving the barrier empty. The

solution is acausal and unbound.

It is worth noting that there is no P-AP pair creation, and that the emission

of WPs at each bounce conserves not only the charge but also the probability.

4.3.3.2 Convergent MRE

Taking the expansion for −q , Eq.(4.38), the MRE of the transmitted WP is

ΨT
IIx, t) ≈

∞∑

n=0

Xn(p0, q0)Ψ0(x− xn(p0,−q0), t), (4.41)

where the weights and the delays are given in Eq.(4.39). This corresponds the

convergent solution. The successive weights are Xn+1(p0,−q0) < Xn(p0,−q0), and
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the delays correspond to the causal solution, xn(p0, q0), given in Eq.(4.40). This

case is shown in Fig.4.12, where the incident WP starts the propagation inside the

barrier.

Figure 4.12: Relativistic solution of the Dirac equation for −q, Eq.(4.41), with
P0 = 2 × 104, M = 2 × 104, W/M = 2

√
2, ∆P = 8, X0 = −2.5 and T = 0 to

10, which is causal and convergent.

The amplitude of the WP inside the barrier is reduced at each bounce, and

a WP is emitted to the right or to the left of the barrier. This continues until

the barrier is emptied, and there are only WPs outside the barrier region, moving

away from it.

4.4 Conclusions and discussion

In this chapter we have studied the scattering through a potential barrier for

both bosons, obeying the Klein-Gordon equation, and fermions, obeying the Dirac

equation, in non-relativistic and relativistic scenarios. We have used the Multi-

ple Reflection Expansion (MRE), writing the WPs inside and outside the barrier
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region in terms of reflection and transmission sub-amplitudes. We can make the

change q → −q in the series and obtain two different solutions for bosons and

fermions, making the series to be divergent or convergent [55]. This also changes

the types of scattering solutions.

In the non-relativistic limit, with potentials far below supercriticality and non-

relativistic velocities, both particles behave in the same way since both obey

the Schrödinger equation. The convergent solution is causal, as the scattering

is started by the incident particle. This is a scattering type solution which can

also be obtained with the S-matrix method, as it describes the scattering between

two asymptotically free states. The divergent solution describes a situation where

there are bouncing WPs inside the potential before the arrival of the incident one.

At each bounce a WP is emitted outside the barrier region, with larger amplitudes

the further they are from the barrier. The arrival of the incident WP interferes

destructively with the one inside the potential, stopping the oscillations.

For a supercritical barrier the scattering enters the Klein regime, where WPs

can propagate freely through the barrier. In this regime, bosons and fermions

scatter very differently. Again, we can construct two different MREs taking the

expansions with +q or −q.

4.4.1 Bosonic scattering

For bosons, there is no solution that is both causal and bound. The convergent

solution is acausal. It describes WPs already propagating in the barrier before the

arrival of the incident WP, with their amplitude decreasing with each bounce, and

being terminated by the arrival of the incident WP (see Fig.4.7). This scenario

can be described in terms of pair creation at the edges of the barrier, caused

by the supercritical barrier. Alternatively, the antiparticles can be though of as

particles moving backwards in time inside the potential [56]. At each bounce of the

antiparticle, a particle moving forward in time is emitted, while the antiparticle’s

amplitude decreases as it moves backwards in time. This process goes on until the

probability density is zero inside the barrier.
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For the particular case of E = V0/2, only one WP is emitted (see Fig.(4.8)),

which is advanced by twice the width of the barrier relative to free propagation.

If we derive a tunnelling time from this advance we obtain a “negative duration”,

which is a consequence of the solution being acausal. Using this interpretation

of the antiparticle as a particle moving backwards in time, one can obtain this

solution via the S-matrix method, since both the initial and final states are of

asymptotically free moving WPs.

The divergent solution is causal, and the arrival of the incident particle starts

the P-AP pair creation at the edges of the barrier, causing an increasing emission

of particles outside the potential and higher amplitude antiparticles inside it (see

Fig.4.9). Since antiparticles have opposite charge, pair creation does not create a

net charge, which is conserved through the scattering, unlike the total probability.

4.4.2 Fermionic scattering

This contrasts with the effect of the supercritical barrier on the fermionic scat-

tering, for which the convergent solution remains causal. The WP propagation

inside the barrier is started by the incoming particle, and its amplitude decays

with each bounce (see Fig.4.12). It is a scattering type solution. If we use the

divergent expansion of the WPs, Fig.4.11, we obtain an acausal solution, where

each successive WP in the MRE has a higher amplitude than the previous one

and is further away from the barrier. These solutions are similar to those obtained

for non-relativistic scattering. There is no P-AP pair creation, and both the total

charge and the total probability density are conserved through the scattering.

4.4.3 Beyond the one-particle approach: Quantum Field

Theory and future perspective

In this chapter we have considered a single-particle approach, for both bosons

and fermions. Nevertheless, the solutions for bosonic supercritical scattering that

we have studied seem to be compatible with P-AP creation. This pair creation

is not present in the MRE solutions for the Dirac equation. In the standard
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interpretation of fermionic pair creation, the concept of the Dirac sea is introduced,

[32], where all negative energy states are filled with electrons.

In order to describe completely a multi-particle process, such as the P-AP pair

creation, one has to rely on QFT. A time-dependent solution is studied in [57].

The solutions of the single-particle approach appear related to the multi-particle

solutions, studied for the Klein-Gordon equation in [58], and for the Dirac equation

in [59] for step potentials.

The single-particle approach taken in this work shows differences between the

supercritical solutions to the Klein-Gordon and the Dirac equations. We believe

these differences can be further understood taken a multi-particle QFT approach,

where bosonic and fermionic pair creation appears. We intend to continue the

present work in this direction.



Conclusions

Conclusions on Part I: non-relativistic scattering

� Eisenbud-Wigner-Smith times

– We have analysed the Eisenbud-Wigner-Smith (EWS) delay, given by

the energy derivative of the phase shift. In the limit of a very broad

wave packet (WP), we obtain the time delay experienced by the WP

from the measurement of the spatial delay.

– The spatial delay is calculated as the distance between the centres of

mass (COM) of the transmitted and the free WPs.

– In the case of tunnelling, the EWS times are very short, apparently

superluminal.

� Delay distribution and quantum measurements

– The transmitted WP can be represented as the sum of freely propagat-

ing envelopes, each shifted in space by x′, with a complex weight given

by the delay distribution, η(p0, x
′)(see Eq.(1.16)), which is the Fourier

Transform of the transmission amplitude. This delay distribution con-

tains the available shifts that the interfering envelopes can acquire in a

particular potential.

– The amplitude in Eq.(1.16) for the transmitted WP can be interpreted

as a quantum measurement of the spatial delay x′, where G0(x, t) plays

the role of the “apparatus function”.
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– A narrower WP corresponds to an accurate measurement and can “dis-

criminate” between interfering delays, while a wider WP corresponds

to inaccurate measurements. The case of an accurate measurement is

highly perturbative, and destroys the studied transition (see Fig.3.7).

– Classically allowed transition: In the semiclassical limit, the delay dis-

tribution, η(p0, x
′), has a real saddle point, x̃′, in the complex x′-plane.

The interference of the shifted envelopes cancels all the envelopes except

the one delayed by x̃′, so there is a single delayed envelope, G0(x−x̃′, t),
“selected” by the transition. This (classical) value of x′ gives the clas-

sical duration of the transition. The delay can be written in terms

of the mean velocity of the WP inside and outside the potential (see

Eq.(1.11)).

– Tunnelling: In the semiclassical limit, the transition is classically for-

bidden and the saddle point is complex, x̃′ ≡ x̃′1 + ix̃′2. There are two

effects that shift the COM of the tunnelled WP. The imaginary part of

the delay, x̃′2, contributes to a momentum filtering effect, increasing the

mean momentum of the transmitted WP. When the momentum filtering

can be neglected, x̃′1 accounts for the spatial delay. The classically for-

bidden region does not contribute to x̃′1 (see Eq.(1.12)), which explains

the apparently instantaneous transmission. No single shift is selected

on the x′-axis. Instead, the resulting WP comes from interference via

a reshaping mechanism.

� Reshaping mechanism for tunnelling

– In the case of tunnelling, the delay distribution shows fast oscillations

along the x′-axis (see Fig. 1.6 c)), which results in the suppression

of transmission. The reshaping mechanism is such that only the front

tails of the envelopes interfere constructively, so that the COM of the

tunnelled WP is advanced relative to a freely propagating one. The

resulting position of the transmitted WP is not the result of a single

real spatial shift, but of the interference of several spatial delays.
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– As in the double-slit experiment, the Uncertainty Principle “hides” the

information about the path taken by the particle inside the potential

[25]. The spatial delay can be related to the time at which COM arrives

at a detector to the right of the barrier, but not to the duration of the

transition.

� The Eisenbud-Wigner-Smith delay as a weak value

– If we neglect the momentum filtering effect, the spatial delay of the

tunnelled particle can be calculated as the real part of the first moment

of the delay distribution (see Eqs.(1.30) and (1.29)). Even though for

a barrier η(p0, x
′) vanishes for positive x′, in the case of tunnelling the

resulting shift of the COM is positive.

– The delay is calculated as an “average” obtained with amplitudes in-

stead of probabilities. This can be understood as a “weak measurement”

of the shifts x′ [22], which is designed to perturb the system minimally,

and thus do not to destroy the interference. It is a well-known property

of quantum measurements that if interference were not destroyed (...)

the quantum theory could be shown to lead to absurd results [24].

� A pole representation

– The delay distribution and the transmitted WP can be conveniently

expressed in terms of the singularities of the transmission amplitude in

the complex momentum plane. These singularities, or poles, are related

to bound states, which lie on the positive imaginary axis, Re(k) = 0, or

to resonant states, which lie on the negative half plane, Im(k) < 0. The

contribution of each pole to the delay distribution is a decaying expo-

nential, weighted by the residue of the poles (see Eq.(1.33)). η(p0, x
′)

only has non-zero positive x′ contributions for bound states, and non-

zero negative x′ contributions for resonant states.
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� The Eckart potential

– As an example, we have used the Eckart potential [40], barrier or well,

and reproduced the results for classically allowed transmission and tun-

nelling (see Figs. 2.2 and 2.3).

– We have applied the pole representation to the Eckart potential, and

studied the delay distributions obtained. The resonant and bound

states are related to a slow-down or a speed-up effect, respectively.

The pole representation becomes impractical in the semiclassical case,

for very high barriers and deep wells, since the value of the residues

becomes prohibitively large.

– We have studied in more detail the cases of low-energy scattering by

shallow wells and low barriers, where a single pole determines the trans-

mission (see Figs. 2.8 and 2.11). This pole corresponds to a bound state

in the case of a well, and to virtual state, a long-lived state [39], in the

case of a barrier.

� Zero-range potential

– We have compared the results of the EWS delays for a zero-range po-

tential, which is an ultra-quantum case, with those obtained using the

Larmor clock. Both approaches agree in the classical limit, but become

contradictory in an ultra-quantum scattering scenario [6].

– Larmor clock: This approach measures the net time spent by the parti-

cle in the potential. In the limit of the zero-range potential the range of

available temporal delays narrows to only τ = 0. Thus, the measured

delay is always zero. The accuracy of the meter is irrelevant, since there

are no alternative delays.

– EWS delay: As explained before, the quantity measured is the dis-

placement x′. For a zero-range potential, there is still a range of spatial

delays available, and thus there is an interference between different de-

lays that produce a shifted transmitted WP. Since the transmission
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amplitude has a single pole, η(p0, x
′) has a simple form, with a sin-

gle decaying exponential. We have extended the study of the delay

distribution to reflection.

Conclusions on Part II: relativistic scattering

� Multiple Reflection Expansion

– We have studied the dynamics of relativistic scattering of WPs through

rectangular potentials using the Klein-Gordon and Dirac equations.

This is a first quantized, and therefore single-particle approach.

– The transmission amplitude can be expanded in a convergent geomet-

ric series, the Multiple Reflection Expansion (MRE), by writing it as a

sum of sub-amplitudes. This leads to a decomposition of the scatter-

ing states as a sum of consecutively delayed WPs. Each term in the

series has a weight and a phase, related to the spatial delay between

consecutive WPs.

� Convergent and divergent solutions

– We can change q → −q in the MRE of the scattered WPs, and obtain

a divergent series, which is still a solution of the equations. Each new

WP emitted from the barrier has a larger amplitude than the previous

one.

– Causality: The solutions can be causal or acausal. A causal solution is

one in which the barrier is initially empty, and the scattering is triggered

by the incoming WP. In the acausal solution, even before the initial WP

reaches the barrier, there is a WP propagating inside it and emitted

WPs on both sides of the barrier.

� Non-relativistic limit

– Both types of particles can be described by the Schrödinger equation

in the non-relativistic limit. We have considered classically allowed
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transitions. The convergent solution is causal (see Fig. 4.4), while the

divergent solution is acausal (see Fig. 4.5).

– The convergent and divergent solutions can be combined to describe a

new physical situation. It consists of two incident WPs, tuned so that

the first one triggers the oscillations inside the barrier, and the second

one stops them (see Fig. 4.6).

� Supercritical barriers

– For relativistic scattering, we are interested in supercritical barriers,

V0 > E + µc2, where there are WPs propagating inside the barrier

region. For a causal solution, the sign of q in the MRE must be changed.

– Bosons: The divergent solution is causal (see Fig.4.9). The divergence

is related to the creation of particle-antiparticle (P-AP) pairs at the

edges of the barrier, triggered by the incoming WP. A P-AP creation

(or annihilation) satisfies the Klein-Gordon equation and the charge is

conserved, although the probability is not. The convergent solution for

bosons is acausal (see Fig.4.7).

For E = V0/2, corresponding to the super-Klein tunnelling [52, 53],

there is complete transmission. A single P-AP pair is created at the

opposite edge of the barrier before the arrival of the incident WP (see

Fig.4.8). When the incident WP reaches the barrier, it annihilates the

antiparticle inside it. The transmitted WP is advanced by twice the

width of the barrier, resulting in the apparent negative tunnelling time.

Following Feynman [56], antiparticles can be though of as particles

travelling backwards in time. A WP incident from the left is scattered

backwards in time inside the barrier and, when it reaches the right edge,

a particle is scattered forwards in time, while the antiparticle continues

to travel backwards in time. In the case of super-Klein tunnelling, there

is a single WP that is transmitted backwards in time at the left edge of

the barrier and forwards in time at the right edge, without reflection.
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– Fermions: The causal solution is convergent, and there is no P-AP

creation (see Fig.4.12). If we choose the divergent solution instead,

we get an acausal scattering (see Fig.4.11). The conserved quantity

for fermions is the probability density, the same as for the Schrödinger

equation. Thus, the solutions are similar. The conservation of the prob-

ability density does not allow for P-AP creation or annihilation, and

therefore the charge density is also conserved. For a negatively charged

incident WP, as an electron, the WP travelling inside the potential has

also negative charge.

– All these solutions, for both particles and in the non-relativistic and

relativistic cases, appear summarised in the table below.

q in the
MRE

non-relativistic
Schrödinger

above the barrier

relativistic
Klein-Gordon
supercritical

relativistic
Dirac

supercritical

+q convergent/causal convergent/acausal divergent/acausal
−q divergent/acausal divergent/causal convergent/causal

� Limitations of the single-particle approach and QFT

– The use of the Dirac equation does not lead to P-AP pair production.

In the case of the Klein-Gordon equation we have analysed how the

causal solution diverges, as pairs are being created at the edge of the

supercritical barrier. Both approaches are limited describing pair pro-

duction, as they are single-particle approaches. To deal properly with

multi-particle dynamics, one has to resort to Quantum Field Theory

[57–59].
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Appendix A

A square potential

For a square barrier of width d, V (x) = V0 for 0 < x < d and V (x) = 0

elsewhere, the transmission amplitude is known (see for example [30]), and has an

expression

T (k, V ) =
4kqe−ikd

(k + q)2e−iqd + (k − q)2eiqd . (A.1)

Since this potential does not vary with x, except for the discontinuities at its

edges, the semiclassical condition is met everywhere, except at the edges. The

semiclassical delays in Eqs. (1.11) and (1.12) are given by

x̃′ =
[
1− p0/q(x, p0)

]
d, (A.2)

x̃′1 = d,

x̃′2 = −
[
p0/
∣∣q(x, p0)

∣∣
]
d.

The tunnelled particle is advanced exactly the width of the potential, because

the whole potential corresponds to the classically forbidden region.

The reason for using different potentials in the following chapters is that the

transmission amplitude for the square potential in Eq.(A.1) has no easy analytical

solution for the poles kp, which play a central role in the pole representation

127



Appendix A. A square potential 128

explained in Section 1.8. Contrary to this case, the poles appear easily in the case

of the Eckart potential and the zero-range potential, used in the following chapters.

The pole representation allows for an analytical exact expression in Eq.(1.33).



Appendix B

The steepest descent method

The steepest descent method[60] is an approximation for highly oscillatory in-

tegrals with the form I =
∫
eiλf(x)g(x)dx, where λ → ∞. The main contribution

comes from a small region around the maximum of f(x), at the stationary point

x0, defined as f ′(x0) = 0. Far from that point, the rapid oscillations, much faster

than the change in g(x), tend to cancel each other. Only the region around the sta-

tionary point, where the frequency of these oscillations decreases, contribute to the

final integral with the value of g(x) at the point x0. We expand the phase around

that point and keep up to the second order term. When this function is complex,

this stationary point x0 becomes a saddle point. The integral, evaluating the re-

maining Gaussian integral after the expansion, is I ≈ eiλf(x0)g(x0)ı
√

2π/λ|f ′′(x0)|.

We can apply this method to evaluate the integral for the delay distribution

Eq.(1.17),

η(p0, x
′) =

exp (−ip0x′)
2π

∫ ∞

−∞
exp

[
iΦ(k, V ) + ikx′

]
dk, (B.1)

where Φ(k, V ) is the semiclassical phase of the transmission amplitude given in

Eq.(1.8) and we identify g(x) = 1, f(x) = Φ(k, V ) + kx′ and λ = 1/ℏ. The

condition for the semiclassical approximation that we are using is that the actions,

in this case, f(x), are much larger than ℏ, so we can use the steepest descent
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method. The stationary momentum, k̃, which is a function of x′, must verify

∂k
[
Φ(k, V ) + kx′

]
|k=k̃(x′) =

∂Φ(k, V )

∂k

∣∣∣∣
k=k̃(x′)

+ x′ = 0. (B.2)

With this, we can solve Eq.(B.1)

η(p0, x
′) ≈

(
2π/
∣∣∣∂2kΦ(k, V )|k=k̃(x′)

∣∣∣
)−1/2

exp
[
−ip0x′ + iΦ(k̃(x′), V ) + ik̃(x′)x′

]
.

(B.3)

and use this result to evaluate the integral for the transmitted WP, ΨT (x, t) in

Eq.(1.16), again with the steepest descent method. For simplicity we name Θ =

−p0x′ + Φ(k̃(x′), V ) + k̃(x′)x′ and get the condition for the stationary point

∂x′Θ = ∂x′

[
Φ(k̃(x′)) + k̃(x′)x′ − p0x′

]∣∣∣∣
x′=x̃′

= (B.4)

=
∂Φ(k̃(x′), V )

∂k

∂k̃(x′)

∂x′
+ x̃′

∂k̃(x̃′)

∂x′
+ k̃(x′)− p0 =

=
∂k̃(x′)

∂x′

[
∂Φ(k, V )

∂k

∣∣∣∣
k=k̃(x′)

+ x̃′

]
+ k̃(x̃′)− p0 = 0.

The term in brackets is 0 directly from Eq.(1.24). For the second derivative of

the phase, which appears as a prefactor after evaluating the Gaussian integral, we

have that

∂2Θ

∂x′2
=

∂

∂x′

[
k̃(x̃′)− p0

]
=
∂k̃(x′)

∂x′
. (B.5)

We can differentiate the term in bracket in Eq.(B.4) with respect to x′, which

is zero, and obtain

∂

∂x′

[
∂Φ(k, V )

∂k

∣∣∣∣
k=k̃(x′)

+ x′ = 0

]
=
∂2Φ(k, V )

∂k2

∣∣∣∣∣
k=k̃′(x′)

∂k̃(x′)

∂x′
+ 1 = 0, (B.6)
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from where, combining it with Eq.(B.5), we get that

∂2Θ

∂x′2
=


−∂

2Φ(k, V )

∂k2

∣∣∣∣∣
k=k̃(x′)




−1

, (B.7)

which cancels out the second derivative of the prefactor in Eq.(B.3). Finally, the

transmitted WP is the same as the one in Eq.(1.14).





Appendix C

Superimposed oscillations at the

stationary point of η(p0, x
′)

Knowing that the FT of the transmission amplitude, exp(ip0x
′)η(p0, x′), is a

real function, from Eq.(B.3), we can write

η(p0, x
′) ∼ exp

[
−ip0x′

]
cos
[
iΦ(k̃(x′), V ) + ik̃(x′)x′

]
= (C.1)

=
[
cos(−ip0x′) + i sin(−ip0x′)

]
cos
[
iΦ(k̃(x′), V ) + ik̃(x′)x′

]
.

The real part of Eq.(C.1), plotted in Fig.1.6, is

Re
[
η(p0, x

′)
]
∼ cos

(
−ip0x′

)
cos
[
iΦ(k̃(x′), V ) + ik̃(x′)x′

]
= (C.2)

=
1

2

{
cos
[
−ip0x′ + iΦ(k̃(x′), V ) + ik̃(x′)x′

]
+

+ cos
[
−ip0x′ − iΦ(k̃(x′), V )− ik̃(x′)x′

]}
.

Only the oscillations of the first cosine in Eq.(C.2) cancel at the stationary

point given by Eq.(1.26), but not the ones coming from the second cosine, which

is the responsible of the superimposed oscillations in Fig.1.6. The imaginary part

of η(p0, x
′) can be done equivalently, and has also superimposed oscillations.
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Approximation of the delay for

wide WPs

Inserting the expansion G0(x−x′, t) ≈ G0(x, t)−∂xG0(x, t)x
′ into Eq.(1.16) we

have

ΨT (x, t) = exp
[
ip0x− iE(p0)t

] [
G0(x, t)

∫
η(p0, x

′)dx′ − ∂xG0(x, t)

∫
x′η(p0, x

′)dx′
]

(D.1)

≡ exp
[
ip0x− iE(p0)t

] [
G0I −G′

0J
]
,

where G′
0 = ∂xG0(x, t), I =

∫
η(p0, x

′)dx′ and J =
∫
x′η(p0, x′)dx′. From there,

|ΨT (x, t)|2 ≈ |G0|2|I|2 + |G′
0|2|J |2 −G0G

′∗
0 IJ

∗ −G∗
0G

′
0I

∗J. (D.2)

In order to compute the delay of the particle, Eq.(1.5), for a large enough time

so that the particle is far enough to the right of the barrier, we take as the COM

of the freely propagating particle

x0COM(x, t) = v0t, (D.3)
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where v0 = p/µ is the mean velocity of the free particle. For the COM of the

tunnelled particle we have

xTCOM(x, t) =

∫
x|ΨT (x, t)|2dx∫
|ΨT (x, t)|2dx . (D.4)

The denominator can be approximated considering that
∫
G′

0(x, t)dx ≪ 1, so we

end up with only one term,

∫
|ΨT (x, t)|2dx ≈

∫
|G0|2|I|2dx = |I|2, (D.5)

where we have used that |G0|2 is normalised over x.

We will compute the numerator of Eq.(D.4) by inserting the expansion in

Eq.(D.2) into it,

∫
x|ΨT (x, t)|2dx =

∫
x|G0|2dx|I|2 +

∫
x|G′

0|2dx|J |2 (D.6)

−
∫
xG0G

′∗
0 IJ

∗dx−
∫
xG∗

0G
′
0I

∗Jdx.

The first term is directly
∫
x|G0|2dx|I|2 ≈ v0t|I|2, which with the denominator

in Eq.(D.5) cancels the position of the COM of the freely propagating WP in

Eq.(D.3). For the second term we have that
∫
x|G′

0|2dx ≈ 0. We can expand the

remaining terms,

−
∫
xG0G

′∗
0 IJ

∗dx−
∫
xG∗

0G
′
0I

∗Jdx = (D.7)

− (1/2)

∫
xG0G

′∗
0 IJ

∗dx− (1/2)

∫
xG∗

0G
′
0I

∗Jdx−

− (1/2)

∫
xG0G

′∗
0 IJ

∗dx− (1/2)

∫
xG∗

0G
′
0I

∗Jdx+

+ (1/2)

∫
xG0G

′∗
0 I

∗Jdx+ (1/2)

∫
xG∗

0G
′
0IJ

∗dx+

+ (1/2)

∫
xG0G

′∗
0 I

∗Jdx+ (1/2)

∫
xG∗

0G
′
0IJ

∗dx,

where the last four terms add up to 0.
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Grouping the first two and the fifth and sixth terms, we have

− (1/2)

∫
xG0G

′∗
0 IJ

∗dx− (1/2)

∫
xG∗

0G
′
0I

∗Jdx+ (D.8)

+ (1/2)

∫
xG0G

′∗
0 I

∗Jdx+ (1/2)

∫
xG∗

0G
′
0IJ

∗dx =

− (1/2)(I∗J − IJ∗)

(∫
xG′

0G
∗
0dx−

∫
xG0G

′∗
0 dx

)
.

We divide this solution in Eq.(D.8) by Eq.(D.5), writing this last result as

|I|2 = II∗, and get

− (1/2)
I∗J − IJ∗

II∗

[∫
xG′

0G
∗
0dx−

(∫
xG∗

0G
′
0dx

)∗
]
= (D.9)

=(1/2)

(
J

I
− J∗

I∗

)
× (2i)Im

[∫
xG′

0G
∗
0dx

]
=

=2Im
[
x′
]
Im

[∫
xG∗

0G
′
0dx

]
,

since J/I = x′ is the first moment of the amplitude distribution of the delays,

Eq.(1.30). The rest of the terms give

(II∗)−1 [ − (1/2)

∫
xG0G

′∗
0 IJ

∗dx− (1/2)

∫
xG∗

0G
′
0I

∗Jdx (D.10)

+ (1/2)

∫
xG0G

′∗
0 I

∗Jdx+ (1/2)

∫
xG∗

0G
′
0IJ

∗dx

]
=

− 2Re
[
x′
]
Re

[∫
xG∗

0G
′
0dx

]
.

We can develop further the last term, taking into account that

|G0|2′ = G∗
0G

′
0 +G∗′

0 G0, (D.11)

Re

[∫
xG∗

0G0dx = (1/2)

∫
x(G∗

0G
′
0 +G∗′

0 G0) = (1/2)

∫
x|G0|2′

]
.

Integrating it by parts we get

(1/2)

∫
x|G0|2′ = (1/2)

[
x|G0|2

∣∣∞
−∞ −

∫
|G0|2dx

]
= −1/2. (D.12)
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Inserting Eq.(D.12) into Eq.(D.10) we have that −2Re[x′] × (−2) = Re[x′], the

real part of the first moment of the delay distribution. This result and Eq.(D.9)

gives the delay in Eq.(1.29).



Appendix E

Momentum filtering

The integral in the second term of Eq.(1.29), using that ∂xG0 =
[
−2(x− p0t/µ− x0)/∆x2t

]
G0, can be rewritten as

Im

[∫
xG∗

0∂xG0dx

]
= Im

[
− 2

∆x2t

∫
xG∗

0(x− p0tµ− x0)G0dx

]
= (E.1)

=Im

[
− 2

∆x2t

∫
x(x− p0t/µ− x0)|G0|2 dx

]
=

=Im

[
− 2

∆x2t

∫
x2|G0|2 dx+

2

∆x2t
(p0t/µ+ x0)

∫
x|G0|2 dx

]
.

The last integral is directly the position of the COM of the WP at a time

t,
∫
x|G0|2 dx = (p0t/µ + x0). The first integral is, making a change of basis

x→ x− p0t/µ− x0,

∫
x2|G0|2 dx =

√
2

π

1

|∆xt|

∫
(x+ p0tµ+ x0)

2 exp
(
−2x2/|∆xt|2

)
dx (E.2)

=

√
2

π

1

|∆xt|

[∫
x2 exp

(
−2x2/|∆xt|2

)
dx

+ 2(p0t/µ+ x0)

∫
x exp

(
−2x2/|∆xt|2

)
dx

+
(
p0t/µ+ x0

)2
∫

exp
(
−2x2/|∆xt|2

)
dx

]
.
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The second integral in Eq.(E.2) is directly 0, as the Gaussian is centered around

x = 0. The last one, with the prefactor, is equal to 1 since G0 is normalized. For

the first one we have

√
2

π

1

|∆xt|

∫
x2 exp

(
−2x2/|∆xt|2

)
dx =

√
2

π

1

|∆xt|
√
π
|∆xt|3
25/2

=
|∆xt|2

4
. (E.3)

Inserting Eqs.(E.2) and (E.3) into Eq.(E.1) we have

Im

[∫
xG∗

0∂xG0dx

]
= (E.4)

=Im

[
− 2

∆x2t

{|∆xt|2
4
−
(
p0t/µ+ x0

)2
+
(
p0t/µ+ x0

)2
}]

= −|∆xt|2 Im
[

1

2∆x2t

]
=

=− ∆x4 + 4t2/µ2

∆x2
−t/µ

∆x4 + 4t2/µ2
=

1

∆x2µ
t =

∆p2

4µ
t.

Going back to Eq.(1.29), multiplying the result in Eq.(E.4) by 2Im [x′] gives

Im [x′] ∆p2t/(2µ) = δv0t. We can identify Im [x′] with the imaginary part of the

complex delay, x̃′2 in Eq.(1.12).



Appendix F

Approximation for the residues

For large z we approximate Γ(z) as [61]

Γ(z) ≈ zz−1/2e−z
√
2π (F.1)

which is valid for
∣∣arg(z)

∣∣ < π. In the case of wells, this approximation will not

be valid for the non-bound state poles, since z is real and negative. Nevertheless,

generally we will only need the bound state poles, which can be calculated exactly.

We can also approximate the 1/n! factor appearing in Eq.(2.8), using that, for

large n, Γ(z + 1) = n!, so, from Eq.(F.1),

n! ≈
√
2πn

(
n

e

)n

. (F.2)

Each Γ function in Eq.(2.2) may take an extremelly high value, so Matlab is

not able to compute them. Still, we can rewrite the Γ’s in an expoential form,

using zz−1/2 = exp[(z− 1/2) ln(z)] and considering that −ik1p(n)/α = −n+ s. For
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the approximation of Res
[
T (k), k1p(n)

]
we obtain

Res
[
T (k), k1p(n)

]
≈ α

−i
(−1)n
2π
√
n
exp[(−n+ 2s− 1/2) ln(−n+ 2s+ 1) (F.3)

− (−n+ s− 1/2) ln(−n+ s)

− (−n+ s+ 1/2) ln(1− n+ s)− n ln(n)].

All terms with e−z give en−2s−1−n+s+1−n+s = e−n, which cancels the en term

from the factorial in Eq.(F.2).

Applying the same approximation for Res
[
T (k), k2p(n)

]
, and using in this case

that −ik2p(n)/α = −n− s− 1, we obtain

Res
[
T (k), k2p(n)

]
≈ α

−i
(−1)n
2π
√
n
exp([−n− 2s− 3/2) ln(−n− 2s− 1) (F.4)

− (−n− s− 3/2) ln(−n− s− 1)

− (−n− s− 1/2) ln(−n− s)− n ln(n)],

which can equivalently be computed using that Res
[
T (k), k1p(n)

]
=

− Res∗
[
T (k), k1p(n)

]
.

For the resonant states of a well, which had z < 0, we can use the relation

Γ(1− z)Γ(z) = π

sin(πz)
, (F.5)

sice 1 − z > 0, and we can again use the approximation in Eq.(F.1). The final

expressions for the first kind of residues are

Res
[
T (k), k1p(n)

]
≈ α

−i
(−1)n
π
√
2πn

sin[π(−n+ s)] sin[π(−n+ s+ 1)]

sin[π(−n+ 2s+ 1)]
(F.6)

× exp[(n− s+ 1/2) ln(1 + n− s)

+ (n− s− 1/2) ln(n− s)

− (n− 2s− 1/2) ln(n− 2s)− 1− n ln(n)],
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and for the second kind

Res
[
T (k), k2p(n)

]
≈ α

−i
(−1)n
π
√
2πn

sin[π(−n− s− 1)] sin[π(−n− s)]
sin[π(−n− 2s− 1)]

(F.7)

× exp[(n+ s+ 3/2) ln(n+ s+ 2)

+ (n+ s+ 1/2) ln(n+ s+ 1)

− (n+ 2s+ 3/2) ln(n+ 2s+ 2)− 1− n ln(n)].





Appendix G

Perfect transmission for integer s

We can expand the transmission amplitude in Eq.(2.2) for integer s using Γ(z+

1) = zΓ(z) and Γ(z − 1) = (z − 1)−1Γ(z).

The Γ functions in the numerator are expanded as

Γ(−ip/α− s) =(−1)−s(ip/α + s)−1 × ...× (ip/α + 1)−1Γ(−ip/α) (G.1)

Γ(−ip/α + s+ 1) =(−ip/α + s)× ...× (−ip/α + 1)(−ip/α)Γ(−ip/α).

The denominator becomes

Γ(−ip/α)Γ(1− ip/α) = (−ip/α)Γ2(−ip/α). (G.2)

Everything together gives

T (p, V ) =(−1)s (−ip/α + s)× ...× (−ip/α + 1)(−ip/α)
(ip/α + s)× ...× (ip/α + 1)(−ip/α) = (G.3)

=(−1)s (−ip/α + s)× ...× (−ip/α + 1)

(ip/α + s)× ...× (ip/α + 1)
≡ (−1)s K

K∗ ,

and from it we find
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|T (p, V )| =
∣∣∣∣
K

K∗

∣∣∣∣ = 1. (G.4)

Therefore, for integer s, as a new bound state enters the well, the potential is trans-

parent for all incident momenta. There is perfect transmission, as the transmitted

particle is only affected by a phase.



Appendix H

Residues for double poles

Since we have (−i/α)(kIIn − kIn) = 2s + 1, the residue for a double pole will

be proportional to the product of two Gammas separated by 2s + 1. Using the

Cauchy integration formula for double poles this is

Res(Γ(z)Γ(z − 2s− 1), z = −n) = lim
z→−n

∂

∂z
[(z + n)2Γ(z)Γ(z − 2s− 1)]. (H.1)

This equation can be solved taking into account that 2s is an integer. Thus,

we can use that Γ(z + n + 1) = z(z + 1)...(z + n − 1)Γ(z). Using also that

∂/∂zΓ(z = 1) = −γ(1) ≈ −0.5772, where γ(1) is the Euler-Mascheroni constant,

we expand Eq. (H.1) as

Res(Γ(z)Γ(z − 2s− 1), z = −n) = (H.2)

= lim
z→−n

∂

∂z

Γ2(z + n+ 1)

[z(z + 1)...(z + n− 1)]2(z − 2s− 1)...(z − 1)

=
−2Γ(1)γ(1)[−n...(−1)]2[(−n− 2s− 1)...(−n− 1)]

[−n(−n+ 1)...(1)]4[(−n− 2s− 1)...(−n− 1)]2

− Γ2(1)2[−n...(−1)]×

× [(−n+ 1)...(−1) + ...+−n...(−1)]× [(−n− 2s− 1)...(−n− 1)]

[−n(−n+ 1)...(1)]4[(−n− 2s− 1)...(−n− 1)]2

− Γ2(1)[(−n(−n+ 1)...(−1))]2×

× [(−n− 2s− 2)...(−n− 1) + ...+ (−n− 2s− 1)...(−n− 2)]

[−n(−n+ 1)...(1)]4[(−n− 2s− 1)...(−n− 1)]2
.
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The first term of H.2 is

−2Γ(1)γ(1)[−n(−n+ 1)...(1)]2[(−n− 2s− 1)...(−n− 1)]

[−n(−n+ 1)...(1)]4[(−n− 2s− 1)...(−n− 1)]2
(H.3)

=
−2γ(1)

n!2[(−n− 2s− 1)...(−n− 1)]
=

−2γ(1)
n!(n+ 2s+ 1)!

.

The second term contains terms as

−Γ2(1)2[−n(−n+ 1)...(1)]× [(−n+ 1)...(1)][(−n− 2s− 1)...(−n− 1)]

[−n(−n+ 1)...(1)]4[(−n− 2s− 1)...(−n− 1)]2
(H.4)

=
−Γ2(1)2× [(−n+ 1)...(1)]

[−n(−n+ 1)...(1)]3[(−n− 2s− 1)...(−n− 1)]
× −n−n

=
−1

(−n)n!(n+ 2s+ 1)!
=

1

n

1

n!(n+ 2s+ 1)!
,

and equivalently for the rest of the terms. The following terms will be 1/(n −
1)1/[n!(n+ 2s+ 1)!], 1/(n− 2)1/[n!(n+ 2s+ 1)!] and so on.

The last part is similar. Taking the first term as before

−[−n...(−1)]2 × [(−n− 2s− 2)...(−n− 1)]

[−n...(−1)]4[(−n− 2s− 1)...(−n− 1)]2
× −n− 2s− 1

−n− 2s− 1
= (H.5)

=
1

n+ 2s+ 1

1

n!(n+ 2s+ 1)!
,

and similarly for the rest of the terms. The final result of Eq.(H.2) is

Res(Γ(z)Γ(z − 2s− 1), z = −n) = 2

n!(n+ 2s+ 1)!




k=n∑

k=1

1

k
+

k=n+2s+1∑

k=n+1

1

2k
− γ(1)


 .

(H.6)
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Finally, the residue is

Res(T (k), n) =− α2 2

n!(n+ 2s+ 1)!




k=n∑

k=1

1

k
+

k=n+2s+1∑

k=n+1

1

2k
− γ(1)


 (H.7)

× 1

Γ(−ik1p(2s+ 1)/α)Γ(−ik1p(2s+ 1)/α + 1)
.





Appendix I

Limit of the residues for n→∞

We can compute the asymptotic limit of the residues for n→∞ from Eqs.(F.3)

and (F.4) evaluating the limit of everything inside the exponentials as

lim
n→∞

(−n+ s)n−s+1/2(1− n+ s)n−s−1/2

(−n+ 2s+ 1)n−2s−1/2nn
=

(−n)n−s+1/2e−s(−n)n−s−1/2e−s−1

(−n)n−2s−1/2e−2s−1nn
=

(I.1)

=
(−n)n−s+1/2(−n)n−s−1/2

(−n)n−2s−1/2nn
,

where we have used (−n+ s)n−s+1/2 = (−n)n−s+1/2(1− s/n)n(1− s/n)−s+1/2 and

that limn→∞(1− s/n)n = e−s. The second term for large n is (1− s/n)−s+1/2 ≈ 1.

From the last result,

(−n)n−s+1/2(−n)n−s−1/2

(−n)n−2s−1/2nn
=

(
(−n)(−n)
(−n)n

)n
(−n)−s+1/2(−n)−s−1/2

(−n)−2s−1/2
= (I.2)

= (−1)n(−n)1/2 = i(−1)n√n.
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Inserting Eq.(K.2) into Eq.(F.3) we have

lim
n→∞

Res
[
T (k), k1p(n)

]
= − α

2π
. (I.3)

Equivalently, we have that Res
[
T (k), k2p(n)

]
= α/2π.



Appendix J

Error functions for zero-range

potentials

The integrals for ΨT,R(x, t) in Eqs. (3.25) and (3.31) can also be expressed as

error functions for a Gaussian envelope G(x− x′ ∓ pt) =(
2∆2

x

π∆4
xt

(t)

)1/4
exp

[
−(x∓ x0 − x′ ∓ pt)2/∆2

xt
(t)
]
, where ∆xt = ∆x

√
1 + 2it/∆2

x is

the time-dependent complex width accounting for the spreading of the WP over

time. We will use

∫ 0

−∞
exp(−aTx2 + bTx)dx = exp(b2T/4aT )

√
πerfc(bT/2

√
aT )/2

√
aT , (J.1)

where erfc(z) = 1− erf(z) = 1− 2/
√
π
∫ z

0
e−t2dt is the complementary error func-

tion.
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The final expressions for the transmitted and reflected particles are

ΨT,R(x, t) =CT,Rexp(b
2
T,R/4aT,R)

√
π × erfc(bT,R/2

√
aT,R)/2

√
aT,R, (J.2)

with CT,R =− Ω

(
2∆2

x

π∆4
xt
(t)

)1/4

exp{−(1/∆2
xt
(t))×

[
(x∓ x0)2 ∓ 2pt(x∓ x0) + (pt)2)

]
},

aT,R =1/∆2
xt
(t),

bT,R =
[
2 (x∓ x0 ∓ pt) /∆2

xt
(t)∓ ip+ Ω

]
,

where in ∓, the minus sign corresponds to the transmission coefficients and the

plus sign to the reflection ones.



Appendix K

COM delays and momentum

filtering for ∆x→ 0

For a WP with a general expression Ψ(x) =
∫
F (k) exp(ikx)dk, where F (k)

is the momentum distribution for the free case, transmission or reflection, the

position of its COM is ⟨x⟩ =
∫
x|Ψ(x)|2dx/

∫
|Ψ(x)|2dx. We use that xΨ(x, t) =

−i
∫
F (k)∂k

[
exp(ikx)

]
= i
∫
exp(ikx)∂kF (k)dk and find

⟨x⟩ = −
∫
Im
[
F ∗(k)∂kF (k)

]
dk∫

|F (k)|2dk . (K.1)

For the three WPs we are analysing, the amplitude we evaluate is, for the freely

propagating one, F0(k) = A(k), for the transmitted one FT (k) = A(k)T (k, V ) and

for the reflected one FR(k) = A(k)R(k, V ). Using these amplitudes we obtain the

delay in Eq.(K.1) as

⟨x⟩0 =x0 + ⟨v(k)⟩0 t, (K.2)

⟨x⟩T,R =± x0 ± ⟨v(k)⟩T,R t∓ ⟨∂kΦT,R(k, V )⟩T,R ,

where ⟨f(k)⟩0,T,R ≡
∫
f(k)|F0,T,R(k)|2dk/

∫
|F0,T,R(k)|2dk, the velocity is v(k) =

∂kE(k), T (k, V ) = |T (k, V )| exp[iΦT (k, V )] andR(k, V ) = |R(k, V )| exp[iΦR(k, V )].
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In the limit ∆x → ∞, we have that lim∆x→∞ ⟨f(k)⟩ = f(k), and we recover the

delays from Eqs.(3.21) and (3.34).

We can use the term corresponding to the velocity in Eq.(3.38) to compute the

momentum filtering in the case E(k) = k2/2µ. We compare the velocity of the

transmitted WP with p0/µ. The increase in the momentum of the transmitted

WP is thus

⟨δpT0 ⟩ = ⟨vT (k)− p0/µ⟩ = ⟨∂k|T (k, V )|⟩∆k2/2µ. (K.3)

We can calculate equivalently the momentum filtering of the reflected WP. In the

limit ∆x→∞, we have that ⟨δpT ⟩ = δpT .



Appendix L

Expansion in scattering states

For a particle incident from the left, the left scattering states are

Φl(k, x) = ⟨x⟩Φl(k) =





1√
2π

[
eikx +R(k)e−ikx

]
, x<0

1√
2π
T (k)eikx, x>0.

(L.1)

The right scattering states are obtained as Φr(k, x) = Φl(k,−x). We start with a

WP state as

G(k′, p) = ⟨k′|G(p)⟩ = A(k′, p)e−ik′x0 , (L.2)

where k′ is the momentum, A(k′, p) is the momentum distribution, centered around

k′ = p, and with x0 < 0, so it is initially at the left of the barrier. We can expand

this state in the scattering states of Eq.(L.1), projecting on the initial states for

x < 0, letting the time increase with the time evolution operator, which for this

case is just eiE(k)t, and projecting it finally on the states to the right or left of the
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barrier, after the scattering has occurred. Doing so, we get

G(x > 0, p, t) =

∫
dk ⟨Φr(k)⟩G(p)e−iE(k)t ⟨x > 0⟩Φr(k)+ (L.3)

+

∫
dk ⟨x > 0| ⟨Φl(k)⟩G(p)e−iE(k)t ⟨x > 0⟩Φl(k)

=

∫
dk

[∫ ∫
dk′dx ⟨Φr(k)⟩x ⟨x⟩ k′ ⟨k′⟩G(p)e−iE(k)tΦr(k, x > 0)

+

∫ ∫
dk′dx ⟨Φl(k)⟩x ⟨x⟩ k′ ⟨k′⟩G(p)e−iE(k)tΦl(k, x > 0)

]
,

with ⟨x|k′⟩ = (1/
√
2π)eik

′x.

Starting with the initial projection on the right scattering states, we have

∫ ∫
dk′dx ⟨Φr(k)⟩x ⟨x⟩ k′ ⟨k′⟩G(p) = (L.4)

=
1

2π

∫ ∫
dk′dx

[
e−ikx +R∗(k)eikx

]
eik

′xA(k′, p)e−ik′x0)

=
1

2π

[∫ ∫
dk′dxA(k′, p)e−ik′x0ei(k

′−k)xdx

+

∫ ∫
dk′dxA(k′, p)R∗(k)e−ik′x0ei(k

′+k)x

]
.

Using that 1
2π

∫
ei(k

′±k)xdx = δ(k′ ± k) we write

∫
dk′A(k′, p)e−ik′x0δ(k′ − k) +

∫
dk′A(k′, p)R∗(k)e−ik′x0δ(k′ + k) (L.5)

=A(k, p)e−ikx0 + A(−k, p)R∗(k)eikx0 .

Equivalently, projecting on the right scattering states gives

∫ ∫
dk′dx ⟨Φl(k)⟩x ⟨x⟩ k′ ⟨k′⟩G(p) =

∫ ∫
dk′dxT ∗(k)eikxeik

′xA(k′, p)e−ik′x0

(L.6)

=

∫
T ∗(k)A(k′, p)δ(k′ + k)e−ik′x0dk = A(−k, p)T ∗(k)eikx0 .
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The complete expansion is, then,

G(x > 0, p, t) =

∫ ∞

0

[
A(k, p)e−ikx0 + A(−k, p)R∗(k)eikx0

]
e−iE(k)tT (k)eikxdk

(L.7)

+

∫ ∞

0

A(−k, p)T ∗(k)eikx0e−iE(k)t
[
R(k)eikx + e−ikx

]
dk,

where the integrals over the momentum are taken from 0 to∞ as we are interested

in the states from Eq.(L.1) that, coming from the left, travel to the right and

reach the potential with eikx, and Φl(k, x > 0) = T (k)eikx and Φr(k, x > 0) =

R(k)eikx + e−ikx.

The cross terms of the transmission and reflection amplitudes cancel each

other, as R(k)T ∗(k) = −R∗(k)T (k). In the remaining term with T ∗(k) we can

make a change of variable as k → −k, using that T ∗(−k) = T (k) and E(−k) =
(−k)2/2m = E(k). We are left with

G(x > 0, p, t) =

∫ ∞

0

A(k, p)T (k)eik(x−x0)e−iE(k)tdk− (L.8)

∫ −∞

0

A(k, p)T (k)eik(x−x0)e−iE(k)tdk

=

∫ ∞

−∞
A(k, p)T (k)eik(x−x0)−iE(k)tdk.

This is the usual transmitted WP expression, where in this case we have not made

any assumption about the shape of the envelope A(k, p). This also applies to the

case of a particle wide enough in momentum space so it has positive and negative

momentum contributions, and, due to the spreading, partly runs away from the

barrier.

We can make the same expansion for the scattered particle at x < 0, which

gives

G(x < 0, p, t) =

∫ ∞

−∞
A(k, p)

[
eik(x−x0) +R(k)e−ik(x+x0)

]
e−iE(k)tdk, (L.9)

where again the expression applies for any shape of A(k, p).





Appendix M

A smooth potential for

Klein-Gordon particles

For a smooth step potential with the form V (x) = a tanh bx, an incident plane

wave will be reflected and transmitted as [62]

Φinc(x) = Ae2ibνx (M.1)

Φref (x) = Be−2ibνx

Φtrans(x) = e2ibµx

where

A =
Γ(1− 2iµ)Γ(−2iν)

Γ(−iν + λ− iµ)Γ(1− iν − λ− iµ) , B =
Γ(1− 2iµ)Γ(2iν)

Γ(iν − λ− iµ)Γ(1 + iν − λ− iµ)
(M.2)

and

ν =

√
(E + a)2 −m2

2b
, µ =

√
(E − a)2 −m2

2b
, λ =

b+
√
b2 − 4a2

2b
.

(M.3)
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For a smooth barrier we take V (x) = V0/2(tanh bx− tanh b(x− d)), where the

solution in x = 0 and x = d is given by the scattering coefficients in Eq.(M.1). For

the matching at x = d one has to take the complex conjugate of the plane waves.

Using p = 2bν, q = 2bµ, V0/2 = a and the solution from Eqs.(4.5) and (4.6), the

coefficients for scattering are

a+ =
Γ(1− ip/b)Γ(−iq/b)

Γ(−iq/2b+ λ− ip/2b)Γ(1− iq/2b− λ− ip/2b)e
i(p−q)d (M.4)

a− =
Γ(1− ip/b)Γ(iq/b)

Γ(iq/2b+ λ− ip/2b)Γ(1 + iq/2b− λ− ip/2b)e
i(p+q)d,

b++ =
Γ(1− iq/b)Γ(−ip/b)

Γ(−ip/2b+ λ− iq/2b)Γ(1− ip/2b− λ− iq/2b)

b−+ =
Γ(1− iq/b)Γ(ip/b)

Γ(ip/2b+ λ− iq/2b)Γ(1 + ip/2b− λ− iq/2b)

b+− =
Γ(1 + iq/b)Γ(ip/b)

Γ(ip/2b+ λ+ iq/2b)Γ(1 + ip/2b− λ+ iq/2b)

b−− =
Γ(1 + iq/b)Γ(−ip/b)

Γ(−ip/2b+ λ+ iq/2b)Γ(1− ip/2b− λ+ iq/2b)
.

The same convergent and divergent expansions used for the square barrier are

valid here (see Eqs.(4.12) and (4.19)).

In the limit b → ∞, the coefficients tend to the solutions obtained for the

square potential. We use that for large b we have that λ → 1. For the Gamma

functions, we can approximate Γ(1 + (z → 0)) → 1 and 1
Γ(z→0)

→ z. Using these

expressions we can take, as an example, the hyperbolic coefficient a+, Eq.(4), and

compute its limit

a+,hyperbolic =
Γ(1− ip/b)Γ(−iq/b)

Γ(−iq/2b+ λ− ip/2b)Γ(1− iq/2b− λ− ip/2b)e
i(p−q)d → (M.5)

→
1× 1

−iq/b

1× 1
−iq/2b−ip/2b

ei(p−q)d =
−q/2− p/2
−q ei(p−q)d =

=
1

2
(1 +

p

q
)ei(p−q)d = a+,square,
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where we have recovered the coefficient obtained for the square potential, Eq.(4.7).

The rest of the coefficients can be calculated equivalently.

The transmission amplitude, using that 1−λ ≈ V 2
0 /2b and the coefficients from

Eq.(M.4), is

Tsmooth(p,−q) =
Γ(iq/b− ip/b+ λ)Γ(iq/b− ip/b+ 1− λ)

Γ(1 + 2iq/b)Γ(−2ip/b) . (M.6)

Approximating for large b we get

lim
b→∞

Tsmooth(p,−q) =
2p

p− q + iδ
, δ = V 2

0 /2b, (M.7)

which moves the pole to the complex plane, making it avoidable for carrying out

the WP integration.
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