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Abstract 

The enantioselective Brønsted acid-catalyzed α-amidoalkylation reaction is a useful procedure is for the production 
of new drugs and natural products. In this context, Chiral Phosphoric Acid (CPA) catalysts are versatile catalysts for this 
type of reactions. The selection and design of new CPA catalysts for different enantioselective reactions has a dual 
interest because new CPA catalysts (tools) and chiral drugs or materials (products) can be obtained. However, this 
process is difficult and time consuming if approached from an experimental trial and error perspective. In this work, 
an Heuristic Perturbation-Theory and Machine Learning (HPTML) algorithm was used to seek a predictive model 
for CPA catalysts performance in terms of enantioselectivity in α-amidoalkylation reactions with R2 = 0.96 overall 
for training and validation series. It involved a Monte Carlo sampling of > 100,000 pairs of query and reference reac‑
tions. In addition, the computational and experimental investigation of a new set of intermolecular α-amidoalkylation 
reactions using BINOL-derived N-triflylphosphoramides as CPA catalysts is reported as a case of study. The model 
was implemented in a web server called MATEO: InterMolecular Amidoalkylation Theoretical Enantioselectivity 
Optimization, available online at: https://​cptml​tool.​rnasa-​imedir.​com/​CPTML​Tools-​Web/​mateo. This new user-friendly 
online computational tool would enable sustainable optimization of reaction conditions that could lead to the design 
of new CPA catalysts along with new organic synthesis products.
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Introduction
Chiral Phosphoric Acid (CPA) and related catalysts are 
widely recognized and versatile tools in catalysis and 
organic synthesis useful for the synthesis of chiral drugs 
products [1–3]. The selection and design of new CPA 
catalysts for different enantioselective reactions has a 
dual interest because new CPA catalysts (tools) and chi-
ral drugs or materials (products) can be obtained [4]. 
However, this process is difficult and time consuming if 
approached from an experimental trial and error per-
spective. Quantum Computational Chemistry tools may 
help to unravel the mechanism of reactions and help in 
the design of new CPA catalysts [5, 6]. Unfortunately, 
these techniques are less useful when it is necessary a 
fast scanning/optimization of new CPA catalysts for large 
libraries of reactions with diverse substrates, nucleo-
philes, products, and conditions (temperature, time, cat-
alyst load, etc.). Cheminformatics methods relying upon 
Artificial Intelligence/Machine Learning (AI/ML) algo-
rithms could help to speed up the discovery of new mol-
ecules [7–9] and in the design new chiral catalysts and 
products without engaging in a long term, empirical or 
quantum investigation [10–13]. Therefore, there is a need 
to develop fast-track computational tools able to predict 
the enantiomeric excess saving time and experimental 
resources. However, the application of AI/ML techniques 
to the study of enantioselective reactions is still uncom-
mon due to the inherent complexity of the problem. In 
addition, most models are not implemented in public 
online web servers or they are not available for research-
ers or companies. In this context, it is remarkable 
Sigman’s et  al. platform for CPA catalysts and organo-
phosphorous ligand design [14, 15]. In these works, 
the authors predict reactivity using structural informa-
tion of the query reactants/products. However, useful 
experimental/operational conditions of already known 
reference reactions similar to the query reaction are not 
considered. Recently, our group has faced this problem 
by introducing the Perturbation-Theory and Machine 
Learning (PTML) approach that employs as inputs both 
vectors of structural variables Dkqi and vectors of mul-
tiple experimental conditions cqj. These PTML algo-
rithms have been applied in medicinal chemistry, vaccine 
design, nanotechnology, and in catalysis as well [16–21]. 
In fact, we have previously reported a preliminary PTML 
model for the design of CPA catalysts for intermolecular 
α-amidoalkylation reactions [22]. However, the model 
was not implemented on a public online web server and 
is difficult to use by an experimentalist.

Consequently, in this work, we are going to focus on 
the development of a public web server for the selection 
and design of CPAs catalysts for enantioselective inter-
molecular α-amidoalkylation reactions (Scheme  1). In 

these reactions, the protonation of an α-hydroxylactam 
by the CPA would give a chiral conjugate base/N-acylim-
inium ion pair, which would be trapped by a nucleophile 
enantioselectively, generating a new tertiary or quater-
nary stereocenter [23, 24]. The α-amidoalkylation reac-
tion of aromatic systems using N-acyliminium ions as 
electrophiles is a Friedel–Crafts-type reaction that has 
found widespread application in organic synthesis for 
the production of new drugs and natural products [25, 
26]. For example, we have applied the procedure to the 
enantioselective synthesis  of Nuevamine type alkaloids. 
Thus, indol and acyl moieties can be easily introduced in 
the alpha position of the nitrogen atom, using sterically 
demanding BINOL-derived CPA catalyst [27]. However, 
the enantioselectivity of these CPA catalyzed reactions is 
sensitive to many factors, from the nature of the nucleo-
phile and the catalyst to the experimental conditions (sol-
vent, temperature, etc.). In this context, many efforts have 
been made to understand the role of non-covalent inter-
actions in organocatalyzed reactions and to rationalize 
and predict their stereochemical outcome using Quan-
tum Chemical methods [28–30]. However, the chemical 
space accessible by organic synthesis is very wide, and all 
compatible combinations of substrate, nucleophile, cata-
lyst, and solvent should have to be scanned.

Therefore, the use of Cheminformatics models to 
explore the chemical space of these reactions becomes a 
very interesting option in order to reduce costs and time. 
Therefore, we decided to develop a new user-friendly 
online computational tool able to carry out screenings 
of this CPA-catalyzed intermolecular α-amidoalkylation 
reaction space for a large number of chiral catalysts, 
substrates, nucleophiles, solvents, chiral products, and 
reaction conditions. First, we carried out a re-evaluation 
of all the available data in our record to obtain a better 
estimate of the chemical space of these reactions. Next, 
we developed a new PTML model using Heuristics and 
Monte Carlo sampling calculations without relying on 
costly computational calculations. This PTML model was 
able to predict the enantioselectivity with R2 = 0.96 after 
a comparative study 332 reactions, which can be paired 
in > 100,000 ways, as each reaction can be a query or ref-
erence reaction.

Later, we developed the web server called MATEO 
(interMolecular Amidoalkylation Theoretical 
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Scheme 1  General scheme for CPA-catalyzed intermolecular 
α-amidoalkylation reactions
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Enantioselectivity Optimization), which is available at the 
online platform CPTMLTool (https://​cptml​tool.​rnasa-​
imedir.​com/). Finally, we have illustrated the practical 
use of the online tool with the experimental-theoretical 
study of a new set of CPA-catalyzed α-amidoalkylation 
reactions starting from bicyclic α-hydroxylactams 1 to 
construct the isoindoloisoquinoline framework 2 with a 
quaternary stereocenter. Electron-rich heteroaromatics 
(indole and pyrrole derivatives) 3 will be used as nucle-
ophiles and chiral BINOL-derived N-triflylphosphora-
mides 4 as catalysts (Scheme 2). This new tool may help 
experimentalists in organic, medicinal, and materials 
chemistry to explore the chemical space of CPA-cata-
lyzed α-amidoalkylation reactions and to optimize the 
reaction conditions for practical purposes.

Materials and methods
Dataset and parameter studied
In this paper, we have carried out the study of the enan-
tiomeric excess eeR(%)obs parameter in intermolecular 
α-amidoalkylation reactions. The value eeR(%)obs allows 
to quantify the enantiomeric excess by applying an (R)-
catalyst. This parameter is represented as eeR(%)obs = Sign
(Prod)·Sign(CatR)·ee(%)obs, where Sign(Prod) = 1 for (R)-
product or Sign(Prod) = −  1 for (S)-product, taking into 
account an R or S notation of products experimentally 
obtained consistent with the Cahn-Ingold-Prelog (CIP) 
rules [31]. The function Sign(Cat) = 1 for all reactions 
carried out with an (R)-catalyst, irrespective of the prod-
uct obtained. On the other hand, the sign was switched 
from + 1 to Sign(Cat) = − 1 for the reactions carried out 
with (S)-catalyst and the sign Sign(Prod) was changed 
to the opposed. This operation transform (S)-catalyst 
reactions into (R)-catalyst reactions with the same abso-
lute value of enantiomeric excess but opposed sign of 
eeR(%)obs. All reactions are expected to give the same 
result but with inverse configuration when you change 
the chirality of the Catalyst. Consequently, all reactions 

were studied as if they have been performed using an (R)-
catalyst keeping the (R)-catalyst when originally used or 
switching the signs of Sign(Prod) and Sign(Cat) for (S)-
catalyst reactions. In practice, this procedure will allow 
us to omit the use of chiral molecular descriptors for sub-
strates, products, catalysts, etc., because all the chirality 
information will be included in the eeR(%) terms for the 
query or reference reactions (see next sections). In fact, 
the method worked properly in this specific case because 
all the reactions give products with only one stereogenic 
center. Consequently, we have all the chirality informa-
tion necessary included in both sides of the equation 
without necessity of using chiral molecular descriptors.

Reaction condition variables
Apart from defining the molecular descriptors, we also 
consider different reaction conditions variables Vk(cqi) as 
input variables in order to quantify a kth property (k = 1, 
2, 3) related to a general reaction condition (cq) and/or 
specific reactant. In this chemical reaction dataset, the 
variables taken into account for the ith query reactions 
were: V1(cqi) = T(oC) = Temperature, V2(cqi) = t(h) = reac-
tion time and V3(cqi) = L(%) = catalyst loading. By anal-
ogy, the values of variables considered for each jth 
reference reactions were: V1(crj) = T(oC) = Temperature, 
V2(crj) = t(h) = reaction time, and V3(crj) = L(%) = catalyst 
loading.

Dataset studied, compounds and reactions notation
A dataset of 332 CPA-catalyzed enantioselective intermo-
lecular α-amidoalkylation reactions has been compiled, 
which comprised 324 reactions obtained from literature 
(see Additional file 3) and 8 new reactions studied in this 
work for the first time (see Table 8). These reactions have 
been grouped into 34 families according to the different 
structural patterns of the substrates, nucleophiles, and 
catalysts. There are different types of substrates S (mostly 
cyclic and bicyclic α-hydroxylactams, but also 3-hydrox-
yindolines) that are reacted with different types of nucle-
ophiles Nu (indoles, pyrroles, Hantzsch esters, enols and 
enamides) using CPAs (phosphoric acids or the corre-
sponding N-triflylphosphoramides and sulfonamides) as 
catalysts Cat.

All compounds have been labeled with a 5-element 
code Xyznn, X = S for Substrates, X = Nu for Nucleo-
philes, and X = Family of Catalysts; y = is the structural 
family (a, b, c,…), z = is the structural sub-family, if any 
(a, b, c, …), and nn = is the ID number of the compound 
in the dataset. When the structural sub-family is missing, 
the label y in the notation is omitted. Then, a code was 
created to classify each reaction in the dataset into dif-
ferent reactions types based on the structure of the mole-
cules involved. Thus, the values of the family label y of the 
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intermolecular α-amidoalkylation reactions
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Substrate, Nucleophile, and Catalyst were concatenated 
in this order to obtain the ID code of each reaction type. 
For example, the reaction of the Substrate S03aa with the 
Nucleophile Nua04 and the Catalyst Fab04 belongs to 
the reaction type with the ID code aaa. Scheme 3 shows 
selected examples of different reaction types included 
in the dataset using different types of cyclic hydroxylac-
tams as substrates (S03, S04, S06) and different nucleo-
philes, such indoles (Nua) [32, 33] enamides (Nuf) [34] 

or Hantzsch esters as reducing agents (Nuc) [35], with 
CPAs catalysts (F). The full experimental detail of each 
of the 324 reference reactions (substrate, nucleophile, 
catalysts, catalyst loading product, solvent, temperature, 
time, yield, % ee) is included in the Supporting Informa-
tion (Additional file  3), which also includes the SMILE 
code of the substrate, nucleophile and catalyst in each 
case. To have a general view of the chemical space in the 
dataset, general schemes for all reactions included in the 
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reference dataset are included in the Supporting Informa-
tion (Additional file 1: Schemes S1 to S9). The structures 
and codification of substrates (S), nucleophiles (Nu), and 
catalysts (cat.) is included in the Supporting Information 
(Additional file 1).

Molecular descriptors calculation
First, the web tool MMDcalc was used to calculate the 
molecular descriptors Dk(msqi)g and Dk(msri)g of the 
molecules msqi and msri involved in the query and refer-
ence reactions [36]. The MMDcalc tool is an online web 
server available at the PTMLTool platform (https://​cptml​
tool.​rnasa-​imedir.​com/) for public use. This tool imple-
ments the Markov Chain Invariants for Networks Simu-
lation and Design (MARCH-INSIDE) algorithm online. 
MARCH algorithm uses Markov Chains to calculate the 
average value of different atomic properties. These aver-
age values of atomic properties are calculated for prede-
fined groups of atoms (g) inside the molecule and all their 
neighbors placed at topological distance (d). In the nota-
tion Dk(msqi)g/Dk(msri)g the letter D = Descriptor, k = type 
of descriptor, s = sub-type of molecule, q = molecules 
involved in query reaction, r = molecules involved in ref-
erence reaction, i = ID number of the molecule, g = group 
of atoms inside the molecule. The general formula for the 
calculation is shown in Eq. 1 (see MARCH-INSIDE algo-
rithm details in literature) [37].

The kth types (k = 1, 2, 3, 4, and 5) of molecular descrip-
tors are: D1 = Number of Valence Electrons (Zv), D2 = van 
der Waals Volume (Vvdw), D3 = Sanderson Electronega-
tivity (χ), D4 = Polarizability (α), and D5 = Electron Affin-
ity (EA). The sub-types (s) of query molecules msqi(s = 1, 
2, 3, 4, and 5) are: m1qi = Substrateqi, m2qi = Nucleofileqi, 
m3qi = Catalystqi, m4qi = Solventqi, and m5qi = Productqi. 
The chemical functional groups or atom groups Gg (g = 1, 
2, 3, 4, 5) are the following: G1 = Saturated Carbon atoms 
(Csat), G2 = Unsaturated Carbon atoms (Cuns), G3 = Heter-
oatoms (Het), G4 = NonHalogen (X) Heteroatoms (Het-
NoX), and G5 = Total (Tot). The groups of atoms indicate 
which atoms in the molecules were used as the basis for 
calculating the different local (g < 5) and/or total (g = 5) 
molecular descriptors.

ML linear model
In this section, Dk(msqi)g values were introduced in order 
to look for a linear ML model. It is worth mentioning 

(1)

Dk(msqi)g =
1

dmax

dmax
∑

d=1

∀a∈g
∑

a∈g

Dd(msqi)a = �Dd(msqi)a�

that each entry line of the dataset denotes only one query 
reaction (Rqi). The enantiomeric excess eeR(%)qicalc of 
the query reaction (Rqi) was predicted by applying both 
variables Vk(cqi) as input depending on the experimental 
conditions and the molecular descriptors Dk(msqi)g of the 
molecules taken into consideration in the reaction. With 
both sets of variables as inputs, we can seek a linear AI/
ML additive model. A best practice, the following equal-
ity holds eeR(%)calcqi≈ eeR(%)qiobs, when the additive linear 
hypothesis is correct. The general additive form of AI/
ML model to be developed is the following.

PTML linear model
The PTML model is a well-known approach that can be 
used to predict the reactivity of a new case (reaction) 
through making comparisons with other known reac-
tions. Our model can provide as output the eeR(%)calcqi. 
On the other hand, the eeR(%)calcqi is calculated for a 
query reaction(Rqi) due to the observed enantiomeric 
excess eeR(%)rjobs = eeR(%)refj of a reaction (Rrj) used as 
reaction of reference is already known. For this reason, 
the dataset applied to train/validate the PTML model, 
each entry line takes into consideration a pair of reac-
tions, specifically a query reaction compared to a ref-
erence reaction (Rqi vs. Rrj). The PTML linear model 
enables to predict eeR(%)calci starting with the experimen-
tal value of eeR(%)refj of a reference reaction. Afterwards, 
the model includes the influences of different structural, 
operational or experimental conditions variations (per-
turbations) in the query in regard to the reference reac-
tion. We use PT Operators (PTOs) in order to quantify 
these variations or perturbations. The parameter of PTOs 
are denoted as the form ΔDk(msqi, msrj)g for structural 
variations and ΔVk(cqi, crj) for variations in the experi-
mental reactions conditions. The formula of the PTML 
models used in this section are shown in Eqs. 3 and 4;

(2)

eeR(%)calcqi =

kmax
∑

k=1

smax
∑

s=1

ak ,s · Vk(cqi)

+

kmax
∑

k=1

smax
∑

s=1

gmax
∑

g=1

bk ,s,g · Dk(msqi)g + e0

(3)
eeR(%)calcqi = eeR(%)refj +

kmax
∑

k=1

imax
∑

i=1
ak ,i ·�Vk (cqi , crj)

+

kmax
∑

k=1

smax
∑

s=1

gmax
∑

g=1
bk ·�Dk (msqi ,msrj)g + e0
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In this work, the linear additive model used as a func-
tion of reference eeR(%)robs and two sets of PTOs repre-
sented by ΔV(cqi, crj) and ΔD(msqi, msrj)g as input. The 
function of reference eeR(%)robs is equal to the observed 
values of enantiomeric excess ee(%), when the refer-
ence reaction used a (R)-catalyst with R configuration. 
We have developed two types of PTO in order to seek 
the PTML linear model. On the one hand, the first type 
of PTO is described as ΔVk(cqi, crj) = [Vk(cqi)–Vk(crj)]. 
It takes into account the perturbations/deviations in 
the values of the kth variables/conditions of reactions 
V(cqi) of the qth query reaction against the original val-
ues of the same variables Vk(cr) for the rth reaction of 
reference. On the other hand, the second type of PTO 
is denoted as: ΔDk(msqi, msrj) = [Dk(msqi) – Dk(msrj)]g. 
It considers the perturbations/deviations in the val-
ues of the molecular descriptors of the query with 
respect to the reference molecules. Subsequently, the 
input variables for the reaction of the reference Vk(crj) 
are related to a kth property (k = 1, 2, 3). The connec-
tion between the input variables and kth property ena-
bles the connection in terms of general experimental 
conditions of reaction (crj) and/or specific reactants: 
V1(crj) = T(oC) = Temperature, V2(crj) = t(h) = reaction 
time, and V3(crj) = L(%) = catalyst loading, for the reac-
tion of reference (Rrj). The input variables denoted as 
Dk(mri)g are the molecular descriptors of type kth for the 

(4)

eeR(%)calcqi = eeR(%)refj +
kmax
∑

k=1

imax
∑

i=1
ak ,i ·

[

Vk
(

cqi
)

− Vk
(

crj
)]

+

kmax
∑

k=1

imax
∑

i=1

gmax
∑

g=1
bk ·

[

Dk (msqi)g − Dk (msrj)g

]

+ e0

ith molecules (msri) of type qth involved in the reference 
reaction (Rrj). Analogously, the molecules mri taken 
part in the reaction of reference are mr1j = Substraterj, 
mr2j = Nucleofilej, mr3j = Catalystrj, and m4rj = Solventrj. 
In addition, we use the kth types of molecular descrip-
tors as the same way as for the query reaction 
D1 = Number of Valence Electrons (Zv), D2 = Van der 
Waals Volume (Vvdw), D3 = Sanderson Electronegativ-
ity (χ), D4 = Polarizability (α), and D5 = Electron Affinity 
(EA). In Table 1, we illustrate the detailed information 
about of all the PTOs used as input variables in the 
PTML models.

AI/ML vs. PTML linear model development
So as to seek the AI/ML and PTML linear models, we 
apply Multivariate Linear Regression (MLR) and Lin-
ear Neural Network (LNN) algorithms by using the 
software STATISTICA [38]. In this sense, in the PTML 
regression models, the values of observed (experimental) 
enantiomeric excess eeR(%)obsqi against multiple values 
of reference eeR(%)refj have to be fitted. The regression 
model allows to generate artifacts in the standard distri-
bution of the data [39]. The parameters ak,s bk,s,g and e0 
are the coefficients of the model to be fitted by AI/ML 
algorithms. The formula for the PTML linear regression 
models was fitted as presented in the Eq. 5;

(5)
�eeR(%)qi =

kmax
∑

k=1

smax
∑

s=1
ak ,s ·�Vk (cqi , crj)

+

kmax
∑

k=1

smax
∑

s=1

gmax
∑

g=1
bk ,s,g ·�Dk (msqi ,msrj)g + e0

Table 1  Definition of variables used as inputs of the PTML model

a Molecules (m) involved in the reaction with distinguishable roles: mqsi = Substrate (Subq), Product (Prodq), Nucleophile (Nucq), Catalyst (Catq), and Solvent (Solvq)
b PTOs with formula ΔV(mq, mr)g = [V(mq)g–V(mr)]g. These PTOs measure the variation of the value of the molecular property/structural variable (V) in the query 
molecules mqwith respect to the value for molecule mr with the same role in the reaction of reference. The values of Vk(mq)g are average values of the properties 
Vk = Sanderson Electronegativities (χ), Polarizabilities, etc., for all the atoms in the group g and all their neighboring atoms placed at a topological distance k ≤ 5. 
Consequently, these properties have been calculated for all the atoms in the molecule (Tot) or for subsets of atoms (group g). The groups of atoms studied are 
g = unsaturated carbons (Cuns), saturated carbons (Csat), Heteroatoms (Het), Heteroatoms non-Halogen (HetNoX)

Experimental conditions (cq) Perturbation operatorsb Type of operator

Reaction temperature (T) ΔV(T) = ΔT = Tq–Tr Temperature deviation

Reaction time (t) ΔV(t) = Δt = tq–tr Time deviation

Catalyst loading [Load (%)] ΔV(Load(%)) = Load(%)q–Load(%)r Conc. difference

Molecules (mq)a Perturbation terms Type of operatora

Substrate (Sub) ΔDk(Subqi, Subrj)g = [Dk(Subqi)g–Dk(Subrj)]g Structural variation

Product (Prod) ΔDk(Prodqi, Prodrj)g = [Dk(Prodqi)g–Dk(Prodrj)]g

Nucleophile (Nuc) ΔDk(Nucqi, Nucrj)g = [Dk(Nucqi)g–Dk(Nucrj)]g

Catalyst (Cat) ΔDk(Catqi, Catrj)g = [Dk(Catqi)g–Dk(Catrj)]g

Solvent (Solv) ΔDk(Solvqi, Solvrj)g = [Dk(Solvqi)g–Dk(Solvrj)]g
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HPTML linear model
The PTML linear model built can predict diverse out-
puts for the same reaction taking into consideration 
the selected reference reactions. Therefore, in this sec-
tion we introduced different Heuristics (H) in order to 
define the best reaction performance or set of reactions 
as reference. In this work, specifically we used two fol-
lowing heuristic. On the one hand, the first heuristic 
(H1) can calculate the final predicted value as this form: 
eeR(%)qrpred = eeR(%)qrmin. This value is obtained using as 
reference the reaction with a minimum (Min) value of 
the PTOs in other words, the minimal deviation. Specif-
ically, the heuristic (H1) uses as reference, the reaction 
with a minimal difference/deviation (Δ) between the 
input variables ΔV(mqsi, mrsj) and ΔV(cqi, crj) for all (∀) 
pairs of reactions. On the other hand, the second heu-
ristic (H2) can calculate the value eeR(%)qrpred = eeR(%)qra

vg = Avg(eeR(%)qrcalc). Particularly, the heuristic (H2) uses 
as reference the values of variables ΔD(mqi, mrj) (mole-
cule structural variations) and ΔV(cqi, crj) (experimental 
conditions variations) for all (∀) pairs of reactions. As 
the first step, we calculated the 331 different eeR(%)qrcal 
values, not including the query. Then, we obtained the 
final values as the average for all the references. These 
two heuristics can be described as illustrated in Eqs. 6 
and 7.

(6)

H1 : eeR(%)qrpred = eeR(%)qrmin
∀q,r
⇒ Min

{

PTOs
[

�V
(

mqi, mrj
)

,�V
(

cqi, crj
)]}

Monte carlo simulation
Most reactivity prediction models already reported take 
into consideration only the structure of the reactants but 
omit the values of temperature, catalyst loading, time of 
reaction, solvent polarity, etc. when predicting the enan-
tiomeric excess of the reactions. In fact, many of the 
works focus only on yield at specific conditions of T, time, 
load, etc., and do not predict the enantiomeric excess. In 
addition, the values of enantiomeric excess, T, time, load, 
solvent polarity, etc. when measured experimentally con-
tains a certain degree of error because most researchers 
do not measured them for triplicate or lead them uncon-
trolled like when using room temperature conditions. 

(7)

H2 : eeR(%)qrpred = eeR(%)qravg
∀q,r
⇒ Avg

{

PTOs[(�V
(

mqi, mrj
)

,�V
(

cqi, crj
)

]
}

In this context, the Monte Carlo Simulation (MC) starts 
with the original values of the non-structural variables T, 
t, Load and using a random generator creates new values 
with small variations with respect to the original values. 
MC experiments are a wide-ranging class of computa-
tional algorithms that base on repeated random sampling 
to obtain numerical results. This method are among the 
most useful data sampling in Cheminformatics [40–42].

In this work, we used an MC algorithm to predict the 
enantiomeric excess of the reactions taking into consid-
eration all these factors, which are of the major relevance 
to optimize the reaction in the laboratory. In order to 
demonstrate the robustness of the model we generated 
a new set of reactions with “perturbations” in the values 
of T, t, Load, etc. and retrained the models. The values 
of the values of T, t, Load, where changed randomly but 
inside the limits of min and max reported for this reac-
tions. This allowed to test the robustness of the model in 
terms of ability of the model to continue working prop-
erly (giving good predictions) despite of changes/errors 
etc. in the reports of temperature, time, etc.

For this purpose, we generated a new set of reactions 
with “perturbations” in the values of T (ºC), t(h), Load(%), 
etc. and retrained the models. The values of T (ºC), t(h), 
Load(%) where changed randomly between the limits 
set in the minimum Vk(cqi)min and maximum Vk(cqi)max 
reported for this type of reactions. The synthetic data 
allow to test the robustness of the PTML model in terms 
of ability to continue giving good predictions despite of 
changes/errors, etc. In addition, the values of minimum 
Vk(cqi)min, maximum Vk(cqi)max, and step Vk(cqj)step for 
all the operational conditions were calculated (Table  2). 

Table 2  Summary of basic statistics for reactions in the dataset

a Stat. = Statistical parameters for the input parameters (operational conditions) 
of all the reactions present in our dataset: Nreacc = Number of reactions present 
in our dataset, Avg. = average value, S.D. = Standard deviation, Max. = maximum 
value, Min. = minimum value, Range = Max.—Min., Step = minimal change 
allowed in one experimental condition, Nexpr. = Number of experiments 
(reactions) changing one condition and keeping the others constant
b Operational conditions: T(oC) = temperature, t(h) = reaction time, 
Load(%) = catalyst loading

Stat.a Dataset reaction conditions (cqi)
b

T (oC) T (h) Load (%)

Nreacc 12 53 7

Avg 11.59 35.87 9.10

S.D 26.80 33.94 5.72

Min − 78.00 1.00 2.00

Max 66.00 240.00 30.00

Range 144 239 28

Step 10 1 1

Nexpr 14 239 28
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Afterwards, we used a MC model based on the following 
system of equations in order to create the new synthetic 
data.

Firstly, the Eqs. 8 and 9 were applied so as to generate 
new Vk(cqi)new values starting from the original mini-
mum value Vk(cqi)min (Eq. 8). Later, with the Eq.  (9), we 
obtained the new synthetic data value Vk(cqi)synth after 
introducing a boundary condition. This boundary condi-
tion is set up taking into consideration the conditions of 
α-amidoalkylation reactions. In other words, the bound-
ary condition keeps the synthetic values Vk(cqi)synth 
within the range [Vk(cqi)min, Vk(cqi)max]. The synthet-
ics values were created for the experimental condition 
variables V1(cqi) = T(°C), V2(cqi) = t(h), V3(cqi) = L(%). It 
means that the new synthetic data values are equal to 
V(ck)synth = V(ck)min + rnd(0, Nmax)·V(ck)step iff (if and 
only if ) they are lower than Vk(cqi)max; otherwise, they 
are equal to Vk(cqi)max. The function Rnd(0, nmax) is a 
generator of pseudo-random natural numbers (n = 0, 1, 
2, … Nmax) based on Mersenne-Twister MC algorithm 
(MT19937). The same system of equations was used to 
form new synthetic data for the input variables of the ref-
erence Vk(crj) equation.

As mentioned above, we have only made small random 
changes to the values of the input variables t, T, and cata-
lyst loading from the original ones. Consequently, in the 
new synthetic data cases generated by MC, we assumed 
that the deviations in the new values of input variables 
(perturbations) from the original ones are small enough 
to cause unetectable/non-measurable changes in the out-
put values of eeR(%). The supposition is based on practi-
cal empiric evidence, which seems to confirm that new 
reactions/repetitions carried out with small changes of a 
few degrees of Temperature, minutes of reaction time, or 
catalyst loading will not alter i the value of eeR(%) by a 
measurable amount. In fact, in Eq. (8) the new synthetic 
value is equal to the minimum value in all the dataset 
plus the value of the step multiplied by a random value 
getting values 0, 1, 2, nmax.

Experimental methods
We describe here the typical procedure for the enantiose-
lective intermolecular α-amidoalkylation reaction lead-
ing to the synthesis of ( +)-2e (See Table 8, entry 8). For 
full experimental details and characterization data for 

(8)Vk
(

cqi
)

new
=

(

Vk
(

cqi
)

min
+ Rnd(0, nmax) · Vk

(

cqi
)

step

)

(9)
Vk

(

cqi
)

synth = if
[

Vk
(

cqi
)

new

> Vk
(

cqi
)

max;Vk
(

cqi
)

max;Vk
(

cqi
)

new
]

compounds 2a-d, See Supporting Information file SI00.
pdf).

( +)-(R)-2,3-dimethoxy-12b-(1H-pyrrol-2-yl)-5,12b-
dihydroisoindolo[1,2-a]isoquinolin-8(6H)-one(2e). A 
solution of 12b-hydroxyisoindoloisoquinoline 1 (60  mg, 
0.19 mmol), pyrrole 3e (0.014 mL, 0.19 mmol) and N-tri-
flylphosphoramide 4a (28  mg, 0.038  mmol 20  mol%) in 
dry THF (5  mL) were stirred during 5  h at room tem-
perature. The solvent was evaporated under reduced 
pressure, and the crude reaction mixture was purified 
by flash column chromatography (alumina, Hexane/
EtOAc 3:7) to afford isoindolo[1,2-a]isoquinoline 2e 
(68  mg, quant.); [α]D

20 =  + 40.3 (c = 0.28; CH2Cl2). The 
enantiomeric excess was determined by HPLC to be 54% 
[Chiralcel OD, 15% Hexane/2-propanol, 1  mL/min, tR 
(S) = 23.2 min (22.87%), tR (R) = 29.4 min (77.13%)]. m.p. 
(Hexane/EtOAc): 254–256 °C; IR (Film): 3188 (NH) cm−1, 
1672 (CO) cm-1; 1H NMR (300 MHz, CDCl3): δ 2.70–2.76 
(m, 1H), 3.06 (ddd, J = 17.3, 11.1, 6.5 Hz, 1H), 3.23 (ddd, 
J = 12.6, 11.1, 4.8 Hz, 1H), 3.85 (s, 3H), 3.87 (s, 3H), 4.26 
(ddd, J = 12.6, 6.5, 2.2  Hz, 1H), 5.86–5.88 (m, 1H), 6.08 
(dd, J = 5.8, 2.7  Hz, 1H), 6.62 (s, 1H), 6.74 (td, J = 2.7, 
1.5 Hz, 1H), 7.23 (s, 1H), 7.44 (t, J = 7.5 Hz, 1H),7.58 (t, 
J = 7.5  Hz, 1H), 7.70–7.72 (m, 2H), 8.70 (s, 1H)ppm; 
13C[1H] NMR (75.5 MHz, CDCl3):δ 28.7, 35.2, 55.9, 56.2, 
65.7, 108.1, 110.5, 110.8, 111.7, 119.0, 123.7, 123.9, 127.1, 
127.9, 128.8, 131.5, 132.1, 147.1, 148.6, 148.9, 167.2 ppm; 
MS (CI) m/z (%): 361 (100) [MH]+, 360 (50) [M]+, 294 
(37), 293 (33); HRMS (CI): cacld. for C22H21N2O3 [MH]+: 
361.1552; found: 361.1556.

Results and discussion
CPA catalyzed α‑amidoalkylation reactions chemical space
As stated above, the chemical space of α-amidoalkylation 
reactions is very wide. In this work, the dataset is based 
on 332 reactions which contains 55 different substrates 
(cyclic and bicyclic hydroxylactams), 53 nucleophiles 
(enamides, indoles, etc.), 39 chiral catalysts (phosphoric 
acids, phosphoramides, etc.), and 17 different solvents 
undertaken by multiple experimental conditions (see 
Supporting Information, file SI00.pdf for structures and 
reaction schemes; see Additional file 3 for full details of 
each reference reaction, including reaction conditions, 
yield, enantiomeric excess, and SMILE codes for reac-
tants and catalysts in each case). The combination of all 
possible substrates, catalysts, and reactions conditions to 
be explored is potentially high to be covered by trial and 
error experiments. To better understanding the amount 
of all possible combination, we illustrate an example, if 
reactions are run independently by changing one reac-
tant at a time, a total of Ncomb = N(Subsqi)·N(Nucqi)·N(C
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atqi)·N(Solvqi) = 55·53·39·17 = 1,932,645 unique combina-
tions of molecule subtypes should be run. This could be a 
new source of interesting products [changes in N(Subsqi) 
or N(Nucqi)] or a way to improve the reaction efficiency 
[changes in N(Catqi) or N(Solvqi)]. This estimation con-
siders only the combinations of different molecular enti-
ties. Unfortunately, the vast majority of these reactions 
remain unexplored in terms of high cost in time and 
resources.

On the other hand, there are also important varia-
tions in the three main experimental condition variables 
Vk(cqi) [T(oC), t(h), and L(%)]. Table  2 shows different 
statistics parameters of these variables for the reported 
reactions. The integer values for maximum (Tmax, tmax, 
and Lmax), minimum (Tmin, tmin, and Lmin), and step (Tstep, 
tstep, and Lstep) are included. This is important because 
the expression Range [Vk(cqi)] = Vk(cqi)max – Vk(cqi)min] 
gives us the range of this variable that can be cov-
ered in actual practice in the laboratory. Consequently, 
when this range is divided by the minimum value, we 
decided to change in practice Step [Vk(cqi)], the num-
ber of experiments N(cqi) = Range[Vk(cqi))/Step(Vk(cqi)] 
that we can run in order to explore this variable can be 
obtained. When reactions are run independently by 
changing one experimental condition at a time, a total 
of Nexp experiments must be run. This will be equal to 
Nexp = N(c1)·N(c2)·N(c3) = N(T)·N(t)·N(L) = [Range(T)/
Step(T)]·[Range(t)/Step(t)]·[Range(L)/Step(L)] = [144/10
]·[(239/1]·[(28/1] = 96,365 optimization experiments for 
each unique combination of molecule sub-types giving as 
result an specific Productqi of the reactions Rqi (Table 2). 
The multiplication of both parts of the equation gives an 
estimate of the very large number of reactions accessible 
in this chemical space N(Rqi)max = Ncomb·Nexp ≈ 1011.The 
equations used to carry out the calculations of the num-
ber of reactions in this chemical space are shown below 
(Eq. 10) [39]:

(10)

N (Rqi)max = N (Subqi) · N (Nucqi) · N (Catqi)

· N (Solvqi) ·
Range(T )

Step(T )
·
Range(t)

Step(t)

·
Range(L)

Step(L)

N (Rqi)max =

s=4
∏

s=1

[

N (msqi)
]

·

k=3
∏

k=1







Vk (cqi)max − Vk (cqi)min
Step(Vk

(

cqi
)

max
)







The previous calculation gives an idea on the dimen-
sion of chemical reaction space for enantioselective CPA-
catalyzed intermolecular α-amidoalkylation reactions. It 
is inviable to study all possible combinations in the labo-
ratory due to the time and cost in material and human 
resources. In the daily practice, chemists can use expert 
criteria and experimental design techniques to reduce 
the number of combinations to be tested, to decrease the 
range of the different experimental conditions variables, 
etc. This can support researchers to reduce meaning-
fully the number of reactions to perform in the practice. 
However, the use of the previous well-known experimen-
tal expert criteria, researchers will never test interesting 
products. Therefore, the main objective of this project 
was the development of a new user-friendly predictive 
regression model for these reactions. This predictive 
model may become a useful tool to reduce the time and 
cost of experimentation.

ML linear model for α‑amidoalkylation reactions
In the α-amidoalkylation reactions, there is no clear 
relationship between the chirality of the catalysts and 
the CIP notation of the product. In fact, in our litera-
ture dataset one can note the following ratio of Cata-
lyst/Product chirality relationship, count, and ratio 
(R)/(R)140 reactions (43.2%), (S)/(R)102 reactions 
(31.5%), (R)/(S) 72 reactions (22.2%) and (S)/(S) 9 reac-
tions (2.8%) of 324 reactions. There is only one reaction 
in the entire dataset with an (S)configuration catalyst 
and enantiomeric excess equal to zero. Therefore, it is 
very important to have a computational model to pre-
dict the absolute stereochemistry and the enantiomeric 
excess of the reaction product. This type of models 
could be used as a useful tool in order to address the 
design of new catalysts and/or selecting the optimal 
reaction conditions a priori. In this work, we decided 
to tackle this problem using AI/ML techniques. We 
trained this classic linear ML model using only the 
Original Data (OD) from reactions. The equation of 
this model is shown in Eq. 11;

N (Rqi)max =

s=4
∏

s=1

[

N
(

msqi

)]

·

k=3
∏

k=1

[

N
(

cqi
)]

N (Rqi)max = Ncomb · Nexp
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This ML model does not use reference reactions for 
comparison. The statistic parameters of the model are 
n = 332, Regression coefficient R2 = 0.74, Fisher ratio 
F = 59.2, Standard Error of Estimates SEE = 37.1, p-level 
p < 0.05. More detailed information about coefficients 
and variables of the model as well as symbols and names 
of variables, Standard Error (SE), Students’ t values, and 
p-level are given in Table  3. The model obtains 74.0% 
of variance (coefficient R2 = 0.74), which is an accept-
able prediction percentage for organic synthesis reac-
tions (although extremely improbable). By the way, the 
SEE = 37.1 could be considered relatively high[39]. On 
the other hand, an essential short-coming of this classic 
ML linear model is that it does not provide us any evi-
dence about the most similar reactions conveyed in the 
scientific literature. Consequently, this may limit our abil-
ity to deduce possible mechanisms and/or compare our 
results with others already known. Therefore, this ML 

(11)

eeR(%)qpred = 912.48 · Load(%)+ 21.90 · T (oC)− 194.76 · t(h)

− 13.21 · ∝
(

Catqi
)

Cuns
− 45.02 · ∝

(

Prodq
)

HetNoX

+ 830.06 ·�EA
(

Prodq
)

Csat − 0.34 · EA
(

Catqi
)

HetNoX

+ 0.22 · χ
(

Nucqi
)

Het
− 2024.05 · χ

(

Catq
)

HetNoX

− 178.69 · V
(

Subqi
)

Tot
− 1678.05 · Zv

(

Catqi
)

Cuns

− 34.41 · Zv
(

Solvq
)

Cuns − 0.70

n = 332(reactions)R2 = 0.74F = 59.2p < 0.5

model needs to be used along with another search strat-
egy for similar molecules to obtain clues of similar reac-
tions for a specific reaction under study. One option is to 
couple this model with similarity search strategies based 
on Tanimoto’s similarity indices [43]. In fact, there are 
interesting works that report the coupling of Cheminfor-
matics models with search strategies based on similarity 
[44–46]. A well-known example of online search tools is 
the Scifinder platform [47, 48].

PTML model for α‑amidoalkylation reactions
As mentioned in the previous section, we have reported 
a PTML model for α-amidoalkylation reactions, although 
it is difficult to use in practice and not implemented on 
a publicly available online web server. Unfortunately, the 
input variables used in that model are not available as an 
open source code. For this reason, it could be advanta-
geous to implement the model on a public online server. 
Consequently, we decided to develop a new linear PTML 
model using our own library to calculate the molecular 
descriptors. PTML reactivity models can study pair-wise 
reactions [39]. The model infers the reactivity of a query 
reaction (q) by comparing it to a previously known refer-
ence reaction (r). Some PTML models use different Heu-
ristics (H) to match q and r reactions. These models can 
be called HPTML models. The Fig. 1 illustrates the gen-
eral workflow that has been followed during this word to 
look for the new HPTML models. In step 1, the reference 
dataset and reaction pairs q vs. r were created. In step 2, 

Table 3  Results of the PTML regression model

a Input variables with coefficient bk are the values of shift (Δ) in q-reac vs. r-reac for different properties: α = average atomic polarizability, EA = average atomic Electro 
Affinity, χ = average atomic Sanderson Electronegativity, Zv = average atomic number
b Coefficients of the variables in the model, the output variable is the Δ in enantiomeric excess ee(%)* of the q-reac with respect to the r-reac when both reactions have 
been carried out with(R)-catalyst
c Standard error of the coefficients
d Student t-value
e p-level of error

Model Input Varsa Symbol Coeff eeR(%)qr
b S.E.c td p-levele

ML Load(%)qr V3(cqi) a1 912.48 258.3259 3.53227  < 0.05

T(oC)qr V1(cqi) a2 21.90 18.7647 1.16732 0.24

t(h)qr V2(cqi) a3 − 194.76 55.2274 − 3.52654  < 0.05

α(Catqi)Cuns D4(m3qi)2 b1 − 13.21 2.7499 − 4.80465  < 0.05

α(Prodqi)HetNoX D4(m5qi)4 b2 − 45.02 21.8624 − 2.05905  < 0.05

EA(Prodqi)Csat D5(m5qi)1 b3 830.06 163.3526 5.08139  < 0.05

EA(Catqi)HetNoX D5(m3qi)4 b4 − 0.34 0.0949 − 3.62574  < 0.05

χ(Nucqi)Het D3(m2qi)3 b5 0.22 0.0742 3.01949  < 0.05

χ(Catqi)HetNoX D3(m3qi)4 b6 − 2024.05 484.4448 − 4.17809  < 0.05

V(Subqi)Tot D2(m1qi)5 b7 − 178.69 43.4355 − 4.11390  < 0.05

Zv(Catqi)Cuns D1(m3qi)2 b8 − 1678.05 468.7747 − 3.57965  < 0.05

Zv(Solvqi)Cuns D1(m4qi)2 b9 − 34.41 11.6896 − 2.94399  < 0.05

Intercept – e0 − 0.70 0.5150 − 1.35948 0.18



Page 11 of 24Carracedo‑Reboredo et al. Journal of Cheminformatics            (2024) 16:9 	

the SMILE codes of the molecules (mqsi, mrsj) involved in 
both q and r reactions (substrates, nucleophiles, catalysts, 
solvents, products) were entered in the MCDCalc server 
[49] to calculate their molecular descriptors Dk(mqsi)g and 
Dk(mrsj)g. In step 3, the PTOs for pairs of reactions were 
calculated. In step 4, the Multivariate Linear Regression 
(MLR) algorithm implemented in the STATISTICA [38] 
software was used to seek the PTML model. In step 5, 
heuristics H1 and H2 were tested interactively. In step 6, 
the best HPTML model was selected. Finally, in step 7, 
this model was implemented on a public web server (see 
the following sections). The best linear HPTML model 
found is shown in Eq. 12;

(12)

�eeR(%)qr = −0.82 ·�Load(%)− 0.34 ·�T (oC)

+ 0.21 ·�t(h)

− 174.37 ·� ∝
(

Catq ,Catr
)

Cuns

− 1534.17 ·� ∝
(

Prodq ,Prodr
)

HetNoX

− 215.98 ·�EA
(

Prodq ,Prodr
)

Csat

− 1747.12 ·�EA
(

Catq ,Catr
)

HetNoX

− 42.49 ·�χ
(

Nucq ,Nucr
)

Het

+ 750.76 ·�χ
(

Catq ,Catr
)

HetNoX

− 34.19 ·�V
(

Subq , Subr
)

Tot

+ 22.04 ·�Zv
(

Catq ,Catr
)

Cuns

− 12.46 ·�Zv
(

Solvq , Solvr
)

Cuns
− 0.91

Fig. 1  HPTML models general workflow used in this work
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Table 4  Results of the PTML regression model

a Input variables with coefficient bk are the values of shift (Δ) in q-reacvs. r-reac for different properties: α average atomic polarizability, EA average atomic Electro 
Affinity, χ average atomic Sanderson Electronegativity, Zv average atomic number
b Coefficients of the variables in the model, the output variable is the Δ in enantiomeric excess ee(%)* of the q-reac with respect to the r-reac when both reactions have 
been carried out with(R)-catalyst
c Standard error of the coefficients
d Student t-value
e p-level of error

Model Input Varsa Symbol Coeff.b ΔeeR(%)qr
b S.E.c td p-levele

PMTL ΔLoad(%)qr ΔV3(cqi, crj) a1 − 0.82 0.03243 − 25.3154  < 0.005

ΔT(oC)qr ΔV1(cqi, crj) a2 − 0.34 0.00594 − 57.8960  < 0.005

Δt(h)qr ΔV2(cqi, crj) a3 0.21 0.00476 44.4627  < 0.005

α(Catq, Catr)Cuns ΔD4(m3qi, m3rj)2 b1 − 174.37 2.67954 − 65.0741  < 0.005

α(Prodq, Prodr)HetNoX ΔD4(m5qi, m5rj)4 b2 − 1534.17 26.38185 − 58.1525  < 0.005

EA(Prodq, Prodr)Csat ΔD5(m5qi, m5rj)1 b3 − 215.98 3.38484 − 63.8086  < 0.005

EA(Catq, Catr)HetNoX ΔD5(m3qi, m3rj)4 b4 − 1747.12 26.48292 − 65.9715  < 0.005

χ(Nucq, Nucr)Het ΔD3(m2qi, m2rj)3 b5 − 42.49 1.33694 − 31.7788  < 0.005

χ(Catq, Catr))HetNoX ΔD3(m3qi, m3rj)4 b6 750.76 8.98832 83.5259  < 0.005

V(Subq, Subr)Tot ΔD2(m1qi, m1rj)5 b7 − 34.19 0.70023 − 48.8225  < 0.005

Zv(Catq, Catr)Cuns ΔD1(m3qi, m3rj)2 b8 22.04 1.16398 18.9356  < 0.005

Zv(Solvq, Solvr)Cuns ΔD1(m4qi, m4rj)2 b9 − 12.46 0.16653 − 74.8101  < 0.005

Intercept – e0 − 0.91 0.18257 − 5.0065  < 0.005

Fig. 2  Observed vs. Predicted (ΔeeR(%)qrobs vs. ΔeeR(%)qrcalc) for equation Eq. 12 (R = 0.84 in training series). Only 10,000 reaction pairs of reactions 
(cases) are depicted due to software limitations
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The HPTML model was trained with a total of 
ntrain = 78,732 arbitrarily selected reaction pairs. The sta-
tistical parameters obtained for this model are the regres-
sion coefficient value of Rtrain = 0.84 and Standard Error of 
Estimates SEE = 51.67 and a Fisher’s ratio of F = 15,238.7 
with a p-level < 0.05 in training series. This points out a 
important relationship between the observed relative val-
ues of ∆eeR(%)qrobs and the predicted values ∆eeR(%)qrobs.

In addition, another subset of nval = 28,836 reaction 
pairs was used to validate the model. A regression coef-
ficient Rval = 0.77 and SEE = 60.225 were found for this 
validation series. The output of the model is eeR(%)qrcalc. 
This variable represents the enantiomeric excess value 
calculated using a single reference reaction. The eeR(%)calc 
value quantifies the enantiomeric excess obtained using 
an (R)-catalyst. If eeR(%)calc > 0, the product is predicted 
to have (R) notation; if eeR(%)calc < 0, the product is pre-
dicted to have (S) notation; if eeR(%)calc = 0 racemic mix-
ture. The overall p-level of the model is p < 0.05. All the 
variables introduced in the model are statistically signifi-
cant (Table 4). The three first input variables quantify the 
effect of non-structural factors on the enantioselectiv-
ity parameter, eeR(%)calc. The remaining input variables 
quantify the contribution of structural variations in the 
Substrate (Sub), Catalyst (Cat), Product (Prod), Nucleo-
phile (Nuc), and Solvent (Solv).

PTML calculations with a single reference reaction
As we explained above, this PTML reactivity model 
studies pair-wise reactions. To avoid distortions 
in the distribution of the variables, PTML model 
uses the variable ∆eeR(%)qrobs as objective function 
(see Eq.  5) [39]. This objective function is the func-
tion to fit and is equal to ∆eeR(%)qrobs = eeR(%)qobs—
eeR(%)robs. As a result, the output of the new model is 
∆eeR(%)qrcalc = eeR(%)qcalc- eeR(%)rcalc. For non-accurate 
models ∆eeR(%)qrcalc ≠ ∆eeR(%)qrobs (where ≠ indicates 
not ≈). Conversely, for a not-random accurate predic-
tor, like this one, one can approximate ∆eeR(%)qrcalc 
≈ ∆eeR(%)qrobs. This presupposes that eeR(%)qcalc ≈ 
eeR(%)qobs and eeR(%)rcalc ≈ eeR(%)robs. Therefore, for prac-
tical purposes, we use the model to predict the enantio-
meric excess of new query reactions eeR(%)qcalc, based 
on the observed enantiomeric excess of a reference reac-
tion eeR(%)qrobs. The approximation is only valid for not-
random accurate predictors and takes into account that 
eeR(%)rcalc ≈ eeR(%)robs is always a known reference reac-
tion, so it is necessary to rearrange the variables in Eq. 5 
as shown in Eq. 13;

n = 78732(react.pairs)Rtrain

= 0.84F
= 15238.7p < 0.5

As a result of this approach, the model calculates dif-
ferent values of eeR(%)calcqi for the same reaction depend-
ing on the experimental value eeR(%)refj of the reaction 
used as reference in the pair [39]. Figure 2 illustrates the 
observed values of ΔeeR(%)qrobs vs. the predicted (calcu-
lated) values of ΔeeR(%)calcqi for 10,000 selected reaction 
pairs. We depict only 10000 pairs due to software plot-
ting limitations (this the top number of points allowed by 
the software). A certain linear trend is observed (points 
with ∆eeR(%)qrcalc ≈ ∆eeR(%)qrobs), however, despite 
being a predictor with adequate goodness of fit, there 
are many points with higher dispersion (points with 
∆eeR(%)qrcalc ≠ ∆eeR(%)qrobs).

In fact, PTML models may be included on a broader 
class of learning problems, such as delta ML, trans-
fer ML, template selection ML, etc. [50–53]. In general, 
these models involve the use of a query item (item to be 
predicted) compared to a reference item (template, pair, 
known case, item from related domain, etc.). To cal-
culate the output of a query item (quantum field, drug, 
protein, or reaction in this case), it is necessary to use an 
already known item or population of reference items as 
input. Query items can be in the same or a different data 
domain from the reference item. In this context, the low 
population (low number of available cases) of some of 
the studied data subset (data domains) is also a common 
problem. In our case, to calculate the value of eeR(%)calcqi 
for a query reaction (q), the observed eeR(%)refj values of 
an already known reference reaction (r) must be used 
as input. Here both the query and reference items come 
from the same data domain (both are the same type of 
reactions). The reaction of reference can be selected from 
our reaction dataset (same data domain) [54]. Conse-
quently, for a new query reaction, there are n = 332 reac-
tions in the dataset that can be used as the reference 
reaction, which pave the way for the question of which is/
are the best candidate/candidates to be used as reference 

(13)

eeR(%)calcqi = eeR(%)refj − 0.82 ·�Load(%)

− 0.34 ·�T (oC)+ 0.21 ·�t(h)

− 174.37 ·� ∝
(

Catq ,Catr
)

Cuns

− 1534.17 ·� ∝
(

Prodq ,Prodr
)

HetNoX

− 215.98 ·�EA
(

Prodq ,Prodr
)

Csat

− 1747.12 ·�EA
(

Catq ,Catr
)

HetNoX

− 42.49 ·�χ
(

Nucq ,Nucr
)

Het

+ 750.76 ·�χ
(

Catq ,Catr
)

HetNoX

− 34.19 ·�V
(

Subq , Subr
)

Tot

+ 22.04 ·�Zv
(

Catq ,Catr
)

Cuns

− 12.46 ·�Zv
(

Solvq , Solvr
)

Cuns
− 0.91
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reaction in each case (see next section). Thus, 332 differ-
ent values of eeR(%)calcqi can be calculated for the same 
query reaction based on the selected pairing reaction 
of reference. In this step, heuristic rules can be used to 
approximate the final predicted value eeR(%)qpred depend-
ing on the eeR(%)calc values of the model, as we have dem-
onstrated previously to solve a similar problem [39].

HPTML model for prediction with multiple reactions 
of reference
As mentioned above, it is necessary to define the 
best reaction or set of reactions to use. Defining an 

appropriate reference reaction can also help reduce 
the dispersion and increase the value of the regres-
sion coefficient, because each query reaction will have 
a single predicted value. With this purpose, a Heuris-
tic rule coupled to the PTML model can be used to 
select the best reference. Heuristic-based methods have 
been widely used in Cheminformatics to solve practi-
cal problems [55–57]. In our case, the combination of 
the PTML model with a Heuristic (H) rule defines the 
term HPTML = H + PTML algorithm. Two Heuristics 
(H1 and H2) were tested by calculating the eeR(%)qrpred 
values for the 332 reactions in our dataset, using the 

Fig. 3  HPTML data re-arrangement and MC data enrichment schematic illustration

Table 5  HPTML models obtained with different datasets vs. alternative heuristics

a OD Original Data, MC Monte Carlo, ODMC OD + MC enriched dataset
b nreacc Number of reactions present in our dataset
c npairs Number of pairs of reactions present in our dataset

Algorithma Data Heuristic nreacc
b npairs

c R2 SEE F p-level

ML OD H0 332 0 0.55 37.1 59.2  < 0.05

HPTML OD H1 332 107626 0.81 29.5 1332.2  < 0.05

OD H2 332 107626 0.64 39.3 603.0  < 0.05

HPTML ODMC H1 332 109298 0.96 13.5 7560.6  < 0.05

 + MC ODMC H2 332 109298 0.66 38.7 631.4  < 0.05
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PTML trained with the OD set. These HPTML models 
based on Heuristics H1 and H2 were compared with a 
classic ML model. This classic ML model includes no 
PT terms and was built without using Heuristics (H0). 
Figure  3 shows a schematic illustration of the ML, 
PTML, and HPTML data re-arrangement, as well as the 
MC data enrichment procedures used here.

Table 5 shows the statistical parameters for these stud-
ies (see only entries with Data = OD). Detailed informa-
tion can be found in Additional file  2: Table  S1of the 
Supporting Information file (Additional file 2). It should 
be noted that both HPTML models using Heuristics 
give good results with an OD regression coefficient in 
the range R2 = 0.64–0.81 and p < 0.05. Specifically, the 
HPTML OD H1 model has a higher regression coef-
ficient (R2 = 0.81 vs. 0.55) and a lower SEE (R2 = 29.5 vs. 
37.1) than the classic ML model. However, this SEE value 
is still relatively high. Interestingly, MC data enrichment 
improved both R2 = 0.96 and SEE = 13.5 values of the 
HPTML OD H1 model. In addition, the HPTML model 

automatically provides the most similar reference reac-
tion from the reference dataset, including the reference 
of the article, which might give some clues about the pos-
sible reaction mechanism, etc. of the query reaction. In 
contrast, the classic ML model does not give information 
about the plausible reaction mechanism or similar reac-
tions in the literature. Overall, these results justify the 
use of the HPTML algorithm instead of the classic ML 
algorithm.

Interestingly, the pair-wise strategy can rapidly increase 
the number of cases, as you go from datasets with n items 
(reactions) to n x n items (pairs of reactions). In this 
case, we go from nreacc = 332 reactions to npairs = 107,626 
pairs of reactions, which could be an advantage of PTML 
model, since increasing the number of items to train 
the ML model can improve learning. However, those 
items that are underrepresented in the original data are 
still underrepresented in the new data in relative terms. 
In addition, you take the risk of including mismatched 
pair, that is, you take the risk of trying to predict an 

Table 6  Selected subsets of reactions

a Sub Substrate, Nuc Nucleophile, Cat Catalyst, patterns a, b, c, aaa, etc. are the different families of reactants/reactions, see the text, ND no data
b OD Original Data, MC Monte Carlo, ODMC OD + MC enriched dataset. nreacc Number of reactions present in our dataset. npairs Number of pairs of reactions present in 
our dataset, nmcpairs Number of pairs of reactions present in our dataset in MC experiments

Structural React Absolute abundance b S-catalyst products R-catalyst products

Patternsa Family OD OD MC  < eeS(%) > qobs  < eeR(%) > qobs

Sub Nuc Cat (Subset) nreacc npairs nmcpairs S R R S

a a a aaa 120 37570 605 − 43.2 76.1 43.2 − 76.1

a f a afa 42 13943 211 − 71.0 76.0 71.0 − 76.0

h a a haa 38 12616 190 ND 78.1 ND − 78.1

c a b cab 29 9628 145 − 17.0 69.8 17.0 − 69.8

a f b afb 19 6307 95 − 53.0 87.4 53.0 − 87.4

a c b acb 17 5644 85 ND 50.4 ND − 50.4

c a a caa 14 4648 70 − 15.5 27.7 15.5 − 27.7

e a b eab 8 2656 40 ND 79.9 ND − 79.9

a a b aab 4 1328 20 − 21.0 ND 21.0 ND

d a b dab 3 995 15 ND 85.7 ND − 85.7

Table 7  HPTML Data set vs. heuristics correlation matrix

a OD Original Data, MC Monte Carlo, ODMC OD + MC enriched dataset

HPTML eeR(%)qcalc

Modelsa OD OMCD MCD OD MCD

Heuristic Data eeR(%)qobs H1 H2

H1 OD 0.90 1.00

ODMC 0.98 0.92 1.00

MC 0.99 0.90 0.98 1.00

H2 ODMC 0.80 0.84 0.81 0.80 1.00

MC 0.81 0.84 0.81 0.81 1.00 1.00
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underrepresented query item (reaction) using as refer-
ence an overrepresented item (reaction family) that is 
not similar to the reference. For example, reactions from 
the aaa family are generally the most represented with 
nreacc = 120 cases (36.14% of cases) and npairs = 37,570 
(34.91%) including many pairs with reactions from the 
same family. In contrast, reactions from the dab family 
are very poorly represented (low abundance) with only 
nreacc = 3 cases (0.9% of cases) appearing in npairs = 995 
pairs of reactions. Almost all of these pairs are formed 
with reactions from other families and the relative abun-
dance remains low (0.9%).

Table  6 shows the absolute and relative abundance of 
different reaction families (subsets) in the original data-
set and the number of pairs formed with them. It should 
be noted that the formation of pairs of mismatched reac-
tions can lead to inaccurate predictions. For example, 
predicting a query reaction from the aab family may 
give an inaccurate result if we use a reaction from the 
haa family as reference, because aab reactions have an 
average enantiomeric excess < eeR(%) > qobs = 21.0 while 
haa reactions have < eeR(%) > qobs = -78.1. Both reaction 
families not only have a markedly different average enan-
tiomeric excess, but also give products with reverse (R) 

or (S) CIP notation of absolute configuration [31]. The 
compound codes, SMILE codes, and chemical structures 
of the different families of substrates, nucleophiles, and 
catalysts are shown on the Supporting Information file 
SI00.pdf.

In this regard, synthetic data generation techniques 
can be used to palliate the presence of low populated 
data subsets. In any case, the total abundance of each 
enriched data subset should remain essentially constant 
to avoid creating data artifacts. MC sampling meth-
ods have widely used in chemistry for similar purposes 
[58]. To palliate this situation, we have used a Mersenne-
Twister MC algorithm (MT19937) [59] for data enrich-
ment by creating new synthetic data. Therefore, synthetic 
data cases of the input variables Vk(cqi) = T(°C)qi, t(h)qi, 
or L(%)qi of query reactions were generated using a MC 
algorithm (see system of equations in Materials and 
Methods section). The same MC algorithm (system of 
equations) was used to generate new synthetic data for 
the input variables of the equation of reference Vk(crj). 
Nevertheless, the molecular descriptors Dk(msqi) and 
Dk(msrj) were never modified in the MC data enrich-
ment simulation, because one can reasonably expect 
that small changes in the input reaction condition 

Fig. 4  HPTML eeR(%) observed vs. predicted values with Eq. 12 (R2 = 0.98) after applying both MC synthetic data and best Heuristic rule 
(ODMC + H1). Overall data for training and validation series. The reaction number from the database (See Additional file 2) has been included 
for selected examples
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variables [Vk(cqi) = T(°C), t(h), or L(%)] do not to signifi-
cantly change the output eeR(%). However, the same can-
not be guaranteed for changes in chemical structure. 
Thus, we obtained a slightly higher number of cases for 
very low abundant reactions. For example, we were able 
to add nmcpairs = 15, 20, or 40 new cases for the dab, aab, 
and eab families of reactions; but we kept their rela-
tive abundance essentially low in the range, 0.9–2.47%. 

Table 6 shows that both models trained with the ODMC 
dataset (OD enriched by MC) give essentially the same 
value of R = 0.8–0.9 and p < 0.05 obtained with OD 
alone. However, the error decreased from SEE = 29.5% to 
SEE = 13.5% using Heuristic H1. Table 7 shows the corre-
lation matrix for the outputs of all models that illustrates 
the high correlation obtained among them, R = 0.80–
0.99. The results of eeR(%)qrobs observed vs. eeR(%)qrpred 
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Scheme 4.  New enantioselective α-amidoalkylation reactions of indoles 3a-d and pyrrole 3e with Triflamide catalysts 4a-d and their comparison 
with CPA catalyst 5e. Synthesis of enantioenriched isoindoloisoquinolines 2a-e (Table 8)

Table 8  Enantioselective intermolecular α-amidoalkylation reactions of N-triflamides vs. phosphoric acids as catalysts

a Yield (%) of isolated pure compound, the symbols 2a - 5e are the reactants and products, see scheme 4
b Determined by chiral stationary-phase HPLC
c Reaction time: 5 h
d Reactions previously reported by our group using the (R)-phosphoric acid 5e as catalyst
e Temperature: − 30 ºC
f  Catalyst loading 2.5 mol%, reaction time 48 h

Reactions entry Nucqi Catqi Prod Yield (%)a eeR(%)obs
b

New reactions (Catalysts 4a-4d) 1 3a 4a 2a 90 93

2 3a 4b 2a 70 0

3 3a 4c 2a 70 26

4 3a 4d 2a 70 65

5 3b 4a 2b 94 11

6 3c 4a 2c quant 67

7 3d 4a 2d quant 52

8 3e 4ac 2e quant 54

Reported reactions (Catalyst 5e) 9 3a 5ed 2a 70 74

10 3b 5ed 2b – –

11 3c 5ed 2c 74 58

12 3d 5ed 2d 79 74

13 3e 5e 2e 77 21

14 3e 5ee 2e 18 12

15 3e 5ef 2e 27 24
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predicted with this HTPML model using ODMC dataset 
and H1 heuristic are graphically depicted in Fig. 4, where 
each point corresponds to a reaction included in the 
dataset. It can be graphically observed that although an 
excellent correlation of the predicted and obtained ee(%) 
value is generally obtained, some values are far from the 
line of correlation. In selected cases, the correspond-
ing reaction number from the database (See SI001.xls 
file) has been included. It is difficult to draw any conclu-
sions from these cases, as the reactants used are struc-
turally heterogeneous and the experimental conditions 
diverse as well. In any case, the model has already a very 
high R2 = 0.98 value. We can conclude that using ODMC 
enriched data decreased the error of the model without 
decreasing the regression quality.

HPTML vs. Experimental study of new reactions
In this section, we report an additional test of the 
HPTML model comparing the computational predic-
tions with the experimental study of new reactions. Thus, 
we performed both an experimental and a theoretical 
study of new intermolecular α-amidoalkylation reac-
tions not previously reported in the literature. First, the 
α-amidoalkylation reactions carried out experimentally 
are described. Next, we report the use of the HPTML 
model to predict these reactions and compare the results 
with the experimental values.

Experimental study of α‑amidoalkylation reactions.
As stated above, the α-amidoalkylation reaction is 
a very attractive method for C–C bond formation 
in organic synthesis. In this context, we have previ-
ously reported [27] that the α-amidoalkylation reac-
tion is an efficient procedure for the enantioselective 
synthesis of 12b-substituted isoindoloisoquinolines 
(Nuevamine-type alkaloids [60]) using BINOL-derived 
Brønsted acids as catalysts. It should be pointed out 
that these catalysts have been used in intermolecular 
α-amidoalkylation of indoles with cyclic N-acyliminium 
ions formed in  situ from cyclic hydroxylactams to form 
tertiary or quaternary stereogenic centers, but this was 
the first example of bicyclic N-acyliminium intermedi-
ates in intermolecular α-amidoalkylation reactions of 
indoles [30].The best results were obtained using a steri-
cally demanding CPA (20  mol% catalyst loading) under 
the following conditions: THF as solvent at room tem-
perature for 24  h. However, in some cases, moderate 
enantioselectivity (enantiomeric excess) and/or yields 
were obtained. Therefore, we decided to test BINOL-
derived N-triflylphosphoramides as catalysts to enhance 
the enantioselectivity of these reactions, because they 
are known to have an increased acidity when compared 
to the corresponding CPAs, so they can form tighter 
ion pairs leading to an improved reactivity [61, 62]. 
Thus, the N-triflylphosphoramides 4a-d were synthe-
sized [63, 64] and tested as catalysts in the reaction of 

Table 9  HPTML study of new enantioselective intermolecular α-amidoalkylation reactions

a OD Original Data, MC Monte Carlo, ODMC OD + MC enriched dataset. Nuc = Nucleophile, Cat = Catalyst, Load (%) Catalyst loading (%), the symbols 3a - 4d are Nuc and 
Cat, see scheme 4

Reaction inputsa Reaction featuresb New reactions (Table 8)

1 2 3 4 5 6 7 8

Reactants Nuc 3a 3a 3a 3a 3b 3c 3d 3e
Cat 4a 4b 4c 4d 4a 4a 4a 4a

Input conditions Load (%) 20 20 20 20 20 20 20 20

T (0C) 25 25 25 25 25 25 25 25

T (h) 24 24 24 24 16 24 24 5

Heuristic Data eeR (%) Observed, Predicted, and Residual values

– OD Observed 93 0 26 65 11 67 52 54

H1 OD Predicted 66.0 29.7 64.1 25.1 − 90.5 74.9 61.8 42.4

Residual 27.0 − 29.7 − 38.1 39.9 101.5 − 7.9 − 9.8 11.6

ODMC Predicted 91.1 0.3 64.1 25.1 12.1 66.6 50.8 52.1

Residual 1.9 − 0.3 − 38.1 39.9 − 1.1 0.4 1.2 1.9

H2 OD Predicted − 36.2 22.0 − 50.8 − 50.9 − 121.3 − 36.1 − 49.2 − 57.9

Residual 129.2 − 22.0 76.8 115.9 132.3 103.1 101.2 111.9

ODMC Predicted − 34.3 21.6 − 49.6 − 49.2 − 119.3 − 34.5 − 47.7 − 56.2

Residual 127.3 − 21.6 75.6 114.2 130.3 101.5 99.7 110.2
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12b-hydroxyisoindoloisoquinoline 1 with the indoles 3a-
d (Scheme 4). Table 8 summarizes these new results com-
pared with those previously obtained with phosphoric 
acid 5e, which has demonstrated to be the most efficient 

catalyst for indole [30].The best results were obtained 
with the catalyst 4a, although good to excellent yields 
were achieved with all the phosphoramides. Successfully, 
we were able to improve our previous result obtaining 
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Fig. 5  MATEO web server user interface
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with the corresponding phosphoric acids, obtaining 2a 
with excellent yield and enantioselectivity (90, 93% ee). 
In addition, the intermolecular α-amidoalkylation reac-
tion was extended to 5-substituted indoles 3b-d, obtain-
ing excellent yields, even when a strong acceptor group 
(NO2) was introduced (Table  8, entry 5). However, the 
use of the substituted indoles led to lower enantiomeric 
excesses (Table 8, entries 5–7). The reaction could also be 

applied to other electron-rich heteroaromatics as pyrrole 
3e, obtaining 2e quantitatively, although with moderate 
ee (Table 8, entry 8). In this case, the reaction was cleaner 
and faster (reaction completed in 5  h) than when using 
phosphoric acid 5e as catalyst (Table 8, entries 13–15).

HPTML prediction of new α‑amidoalkylation reactions
Next, using the developed HPTML ODMC H1 model, 
we predicted the values of eeR(%) for the new enantiose-
lective intermolecular α-amidoalkylation reactions. We 
first calculated the molecular Dk(mqsi)g descriptors of 
all the molecules (Substrateqi, Nucleophileqi, Catalystqi, 
Solventqi, and Productqi) involved in the new query reac-
tions (Rq) using the web server MCDCalc [38]. Then, the 
Heuristic H1was used to find the best reference reaction 
for each new query reaction. Next, we substituted in the 
model equation the values of the molecular descriptors 
Dk(mqsi)g and Dr(mrsj)g of the molecules, as well as the 
values of the input experimental conditions variables 
Vk(cqi) and Vk(crj), from both the query (Rq) and reference 
reaction (Rr), respectively. Table  9 shows the predicted 
eeR(%) values for each reaction compared to the values 

Table 10  MATEO Web server operational conditions

a Stat. Statistical parameters for the input parameters (operational conditions) 
of all the reactions present in our dataset: Max. maximum value, Min. minimum 
value, Step minimal change allowed in one experimental condition
b Operational conditions: T(oC) temperature, t(h) reaction time, Load(%) catalyst 
loading

Stat.a MATEO application operational conditionsb

T (oC) T (h) Load (%)

Default 25.00 0.5 2.00

Min − 78.00 0.5 2.00

Max 70.00 72.0 5.00

Step 20 1.0 1.00

Fig. 6  MATEO server use workflow
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predicted with the other Datasets (OD vs. ODMC) and 
Heuristics (H1 and H2).

The other HPTML models have notably larger residuals 
values, confirming our decision to discard them as good 
predictors for this type of reaction. In general, the best 
results are obtained with the HPTML ODMC H1 model. 
For a total of 6 out of 8 reactions the model almost per-
fectly predicts the observed values of eeR(%)qrobs with 
residual values in the range eeR(%)qrres = −  1.1–1.9% 
(reactions 1, 2, 5–8) (Table 9). The experimental and pre-
dicted values for the obtention of 2a-e using catalyst 4a 
are represented in Scheme 5. For the other two reactions, 
the model correctly predicts the absolute stereochemis-
try of the final products, although with a relatively higher 
error. In addition to the results of training and valida-
tions series, these results validate the HPTML ODMC H1 
model as a useful predictor for enantioselective intermo-
lecular α-amidoalkylation reactions. The Microsoft Excel 
software was used to run all these calculations. However, 
this HPTML calculation algorithm is slow because it is 
not automatic and need more than one software applica-
tions (MCDCalc, Excel) to run. Furthermore, the model 
is not available for use by other groups and requires some 
degree of expertise in Cheminformatics, so we decided to 
implement it on a public web server.

MATEO web server
The HPTML model was implemented on a new pub-
lic web server called MATEO: interMolecular Ami-
doalkylation Theoretical Enantioselectivity Optimization. 
MATEO server is available for public use online (free of 
charge) through the link: https://​cptml​tool.​rnasa-​imedir.​
com/​CPTML​Tools-​Web/​mateo. The graphical interface 
of the web server is shownin Fig. 5.Users worldwide can 
upload their own sets of query reactions to predict the 
values of eeR(%)qrcalc under different experimental condi-
tions (solvent, time, temperature, catalyst loading), see 
Table 10.

Figure 6 graphically illustrates (from bottom to top) the 
steps required to use this web server. Step 1 is to upload 
the chemical structures of all the molecules involved in 
the reaction. The server is required to upload the struc-
tures in the Simplified Molecular Input Line Entry Speci-
fication (SMILES) code format [65]. SMILES has become 
a simplified and memory-optimal way of managing 
molecular structures widely used in Cheminformatics 
today [66, 67]. These codes can be pasted directly on the 
web interface or uploaded as a text file. The server allows 
uploading large collections of reactions with different 
combinations of substrate, nucleophile, and catalyst. This 
could be useful for exploring large libraries of molecules 
(products, substrates, and nucleophiles) and/or for the 
design of new catalysts. The server also allows uploading 

of the solvent structure, making it easy to explore a large 
variety of solvents. In Step 2, three general types of cal-
culations can be selected: (1) Similarity Search, (2) Struc-
tural Scan, or (3) Conditions Scan. Option (1) allows us 
to predict the enantiomeric excess values, in addition to 
obtaining a report of the most similar reactions from the 
references in our dataset. Option (2) allows uploading the 
specific structures (substrate, nucleophile, catalyst, and/
or solvent) and running a scan of these molecules under 
reaction conditions similar to those reported in the liter-
ature. Option (3) allows to keep the structure parameters 
constant (same molecules), while the software performs 
a scan of different combinations of input variables (tem-
perature, time, catalyst loading). Table  10 shows the 
range (minimum, maximum) and step of the variables 
allowed by the server.

In this context, Goodman et al. have recently developed 
a rule-based web tool BINOPtimal for the online selec-
tion of CPA catalysts in a related reaction, the addition 
of nucleophiles to imines, by analyzing the reagent struc-
tures [68]. MATEO is web server allows the user to make 
quantitative predictions of enantiomeric excess param-
eter eeR(%) at different reaction temperature, time, cata-
lysts loading or solvent polarity, which are known factors 
that affect the enantioselectivity of α-amidoalkylation 
reactions. Therefore, MATEO web server will be useful 
to guide not only the catalyst selection but also the exper-
imental conditions.

Conclusions
In conclusion, we have shown that classic linear ML 
models are not very accurate in predicting the enanti-
oselectivity of α-amidoalkylation reactions using phys-
icochemical properties calculated with a Markov chain 
approach as input. Besides, these linear ML models do 
not allow detecting the most similar reaction directly 
from the model. The PTML algorithm outperforms 
the classic linear ML model using the same dataset and 
molecular descriptors. Moreover, the HPTML algorithm 
based on PTML model + heuristic rule allows direct 
detection of the most similar reference reactions. In addi-
tion, MC synthetic data re-sampling/enrichment pro-
cedures reduce the procedural error. The final HPTML 
model responds very well in computational experiments 
with validation series. The HPTML model also repro-
duces very well the experimental values of a new series 
of reactions studied experimentally by the first time in 
this work. Finally, the implementation of the HPTML 
model on the MATEO online server makes the algorithm 
available for public use worldwide with a user-friendly 
interface.

https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo
https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo


Page 22 of 24Carracedo‑Reboredo et al. Journal of Cheminformatics            (2024) 16:9 

Abbreviations
AI	� Artificial intelligence
ANN	� Artificial neural networks
CPA	� Chiral phosphoric acid
GLR	� General linear regression
ML	� Machine learning
HPTML	� Heuristic perturbation-theory and machine learning
LNN	� Linear neural network
MARCH-INSIDE	� Markov chain invariants for networks simulation and design
MATEO	� InterMolecular amidoalkylation theoretical enantioselectiv‑

ity optimization
MC	� Monte carlo
ML	� Machine learning
MLR	� Multivariate linear regression
THF	� Tetrahydrofuran
OD	� Original data
PT	� Perturbation theory
PTO	� Perturbation theory operator
SE	� Standard error
SEE	� Standard error estimates
SMILE	� Simplified molecular input line entry specification
eeR(%)obs	� Observed enantiomeric excess (experimental) using 

(R)-Catalyst
eeR(%)ref	� Enantiomeric excess of reference (experimental) using 

(R)-Catalyst
eeR(%)calc	� Enantiomeric excess using (R)-Catalyst calculated using one 

reference
eeR(%)pred	� Enantiomeric excess using (R)-Catalyst predicted by the 

model
eeR(%)res	� Residual enantiomeric excess using (R)-Catalyst

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00802-7.

Additional file1: The following files are available free of charge. General 
experimental methods; Synthetic procedures and structural determina‑
tion for 2a-d; Copies of HPLC chromatograms of racemic and enantioen‑
riched 2a-d; Copies of 1H and 13C NMR spectra

Additional file2: Dataset of reactions, molecular descriptors, SMILE codes, 
etc.

Additional file3: MATEO server reactions of reference

Acknowledgements
Technical and human support provided by General Research Services SGIker 
(UPV/EHU, MINECO, GV/EJ, ERDF and ESF) is also acknowledged.

Author contributions
SA, CRM, CFL, NS, EL, and HGD conceived the presented idea. PCR and CRM 
implemented the idea computationally, performed the computations and 
analysis. EA performed the organic synthesis experiments. SH carried out the 
data analysis and software validation. SA, CRM, CFL, NS, EL, and HGD super‑
vised the findings of this work. All authors discussed the results and wrote the 
manuscript with input of all authors. All authors read and approved the final 
manuscript.

Funding
The authors acknowledge financial support from Grant PID2019-
104148 GB-I00 and PID2022-137365NB-I00 funded by MCIN/ 
AEI/10.13039/501100011033 and Grant IT1558-22 funded by Basque Govern‑
ment/Eusko Jaurlaritza, 2022–2025.CITIC is funded by the Xunta de Galicia 
through the collaboration agreement between the Department of Culture, 
Education, Vocational Training and Universities and the Galician universities to 
strengthen the research centers of the Galician University System (CIGUS).

Availability of data and materials
MATEO web server was implemented for public use by experimental organic 
chemists, see link: https://​cptml​tool.​rnasa-​imedir.​com/​CPTML​Tools-​Web/​

mateo.​The code of the software was uploaded to a GitHub repository and is 
available free for use by cheminformatics researchers with MIT license. The 
links are the following. For the MATEO server code the link is: https://​github.​
com/​glezd​iazh/​MATEO. For libraries used to calculate the molecular descrip‑
tors the link is: https://​github.​com/​munti​sa/​RMark​ovTI.​All data files (SI00, SI01, 
and SI02) have been uploaded to a public data repository and are available for 
use free of charge under universal commons creative license (CC0). The links 
are, SI00.pdf file link: https://​doi.​org/https://​doi.​org/​10.​6084/​m9.​figsh​are.​21981​
740.​v2, Additional file 2: https://​doi.​org/https://​doi.​org/​10.​6084/​m9.​figsh​are.​
21971​690.​v2, and Additional file 3: https://​doi.​org/https://​doi.​org/​10.​6084/​m9.​
figsh​are.​21971​696.​v2.

Declarations

Ethics approval and consent to participate
Bioethics approval is not applicable (not laboratory animals or personal data is 
used). All authors consent to participate in the paper.

Competing interests
The authors declare that they have no competing interests.

Received: 1 March 2023   Accepted: 11 January 2024

References
	1.	 Parmar D, Sugiono E, Raja S, Rueping M (2014) Complete field guide 

to asymmetric BINOL-phosphate derived Brønsted acid and metal 
catalysis: history and classification by mode of activation; Brønsted acid‑
ity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 
114:9047–9153

	2.	 Parmar D, Sugiono E, Raja S, Rueping M (2017) Addition and correction to 
complete field guide to asymmetric BINOL-phosphate derived Brønsted 
acid and metal catalysis: History and classification by mode of activation; 
Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. 
Chem Rev 117:10608–10620

	3.	 Akiyama T (2012) Asymmetric C-C bond formation using chiral phos‑
phoric acid. In: Christman N, Bräse S (eds) Asymmetric Synthesis II: More 
Methods and Applications. Wiley, Weinheim, pp 261–266

	4.	 Wu X, Gong LZ (2014) Chiral phosphoric acid-catalyzed asymmetric mul‑
ticomponent reactions. In: Zhu J, Wang Q, Wamg MX (eds) Multicompo‑
nent reactions in organic synthesis. Wiley, Weinheim, pp 439–470

	5.	 Zhu L, Mohamed H, Yuan H, Zhang J (2019) The control effects of differ‑
ent scaffolds in chiral phosphoric acids: a case study of enantioselective 
asymmetric arylation. Catal Sci Technol 9:6482–6491

	6.	 ElKerdawy A, Güssregen S, Matter H, Hennemann M, Clark T (2014) 
Quantum-mechanics-based molecular interaction fields for 3D-QSAR. J 
Cheminform 6:1–2

	7.	 Spjuth O (2018) Novel applications of machine learning in cheminformat‑
ics. J Cheminform 10:1–2

	8.	 Drakakis G, Koutsoukas A, Brewerton SC, Evans DD, Bender A (2013) Using 
machine learning techniques for rationalising phenotypic readouts from 
a rat sleeping model. J Cheminform 5:1–1

	9.	 Ye Z, Ouyang D (2021) Prediction of small-molecule compound solubil‑
ity in organic solvents by machine learning algorithms. J Cheminform 
13:1–13

	10.	 Ruscher M, Herzog A, Timoshenko J, Jeon HS, Frandsen W, Kuhl S, Roldan 
Cuenya B (2022) Tracking heterogeneous structural motifs and the redox 
behaviour of copper-zinc nanocatalysts for the electrocatalytic CO(2) 
reduction using operando time resolved spectroscopy and machine 
learning. Catal Sci Technol 12:3028–3043

	11.	 Takahashi K, Ohyama J, Nishimura S, Fujima J, Takahashi L, Uno T, Taniike T 
(2023) Catalysts informatics: paradigm shift towards data-driven catalyst 
design. Chem Commun 59:2222–2238

	12.	 Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD (2023) Design of single-
atom catalysts and tracking their fate using operando and advanced 
X-ray spectroscopic tools. Chem Rev 123:379–444

https://doi.org/10.1186/s13321-024-00802-7
https://doi.org/10.1186/s13321-024-00802-7
https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo.The
https://cptmltool.rnasa-imedir.com/CPTMLTools-Web/mateo.The
https://github.com/glezdiazh/MATEO
https://github.com/glezdiazh/MATEO
https://github.com/muntisa/RMarkovTI.All
https://doi.org/
https://doi.org/10.6084/m9.figshare.21981740.v2
https://doi.org/10.6084/m9.figshare.21981740.v2
https://doi.org/
https://doi.org/10.6084/m9.figshare.21971690.v2
https://doi.org/10.6084/m9.figshare.21971690.v2
https://doi.org/
https://doi.org/10.6084/m9.figshare.21971696.v2
https://doi.org/10.6084/m9.figshare.21971696.v2


Page 23 of 24Carracedo‑Reboredo et al. Journal of Cheminformatics            (2024) 16:9 	

	13.	 Freeze JG, Kelly HR, Batista VS (2019) Search for catalysts by inverse 
design: artificial intelligence, mountain climbers, and alchemists. Chem 
Rev 119:6595–6612

	14.	 Tsai CC, Sandford C, Wu T, Chen B, Sigman MS, Toste FD (2020) Enantiose‑
lective intramolecular allylic substitution via synergistic palladium/chiral 
phosphoric acid catalysis: insight into stereoinduction through statistical 
modeling. Angew Chem Int Ed Engl 59:14647–14655

	15.	 Gensch T, Dos Passos GG, Friederich P, Peters E, Gaudin T, Pollice R, Jorner 
K, Nigam A, Lindner-D’Addario M, Sigman MS, Aspuru-Guzik A (2022) A 
comprehensive discovery platform for organophosphorus ligands for 
catalysis. J Am Chem Soc 144:1205–1217

	16.	 Dieguez-Santana K, Gonzalez-Diaz H (2021) Towards machine learning 
discovery of dual antibacterial drug-nanoparticle systems. Nanoscale 
13:17854–17870

	17.	 Barbolla I, Hernandez-Suarez L, Quevedo-Tumailli V, Nocedo-Mena D, 
Arrasate S, Dea-Ayuela MA, Gonzalez-Diaz H, Sotomayor N, Lete E (2021) 
Palladium-mediated synthesis and biological evaluation of C-10b substi‑
tuted dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents. Eur J 
Med Chem 220:113458

	18.	 Ortega-Tenezaca B, Gonzalez-Diaz H (2021) IFPTML mapping of nanopar‑
ticle antibacterial activity vs. pathogen metabolic networks. Nanoscale 
13:1318–1330

	19.	 Sampaio-Dias IE, Rodriguez-Borges JE, Yanez-Perez V, Arrasate S, Llorente 
J, Brea JM, Bediaga H, Vina D, Loza MI, Caamano O, Garcia-Mera X, 
Gonzalez-Diaz H (2021) Synthesis, pharmacological, and biological evalu‑
ation of 2-furoyl-based MIF-1 peptidomimetics and the development of a 
general-purpose model for allosteric modulators (ALLOPTML). ACS Chem 
Neurosci 12:203–215

	20.	 Santana R, Zuluaga R, Ganan P, Arrasate S, Onieva E, Gonzalez-Diaz 
H (2020) Predicting coated-nanoparticle drug release systems with 
perturbation-theory machine learning (PTML) models. Nanoscale 
12:13471–13483

	21.	 Santana R, Zuluaga R, Ganan P, Arrasate S, Onieva Caracuel E, Gonzalez-
Diaz H (2020) PTML model of ChEMBL compounds assays for vitamin 
derivatives. ACS Comb Sci 22:129–141

	22.	 Aranzamendi E, Arrasate S, Sotomayor N, Gonzalez-Diaz H, Lete E (2016) 
Chiral bronsted acid-catalyzed enantioselective alpha-amidoalkylation 
reactions: a joint experimental and predictive study. ChemistryOpen 
5:540–549

	23.	 Yazici A, Pyne SG (2009) Intermolecular addition reactions of N-acylimin‑
ium ions (Part II). Synthesis 2009:513–541

	24.	 Rahman A, Lin X (2018) Development and application of chiral spi‑
rocyclic phosphoric acids in asymmetric catalysis. Org Biomol Chem 
16:4753–4777

	25.	 Han B, He X-H, Liu Y-Q, He G, Peng C, Li J-L (2021) Asymmetric organoca‑
talysis: an enabling technology for medicinal chemistry. Chem Soc Rev 
50:1522–1586

	26.	 Merad J, Lalli C, Bernadat G, Maury J, Masson G (2018) Enantioselective 
Brønsted acid catalysis as a tool for the synthesis of natural products and 
pharmaceuticals. Chem-Eur J 24:3925–3943

	27.	 Aranzamendi E, Sotomayor N, Lete E (2012) Brønsted acid catalyzed 
enantioselective α-amidoalkylation in the synthesis of isoindoloisoquino‑
lines. J Org Chem 77:2986–2991

	28.	 Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016) Noncovalent interactions 
in organocatalysis and the prospect of computational catalyst design. 
Accounts Chem Res 49:1061–1069

	29.	 Peng Q, Duarte F, Paton RS (2016) Computing organic stereoselectiv‑
ity–from concepts to quantitative calculations and predictions. Chem Soc 
Rev 45:6093–6107

	30.	 Maji R, Mallojjala SC, Wheeler SE (2018) Chiral phosphoric acid catalysis: 
from numbers to insights. Chem Soc Rev 47:1142–1158

	31.	 Helmchen G (2016) The 50th anniversary of the cahn–ingold–prelog 
specification of molecular chirality. Angew Chem Int Ed 55:6798–6799

	32.	 Yu X, Lu A, Wang Y, Wu G, Song H, Zhou Z, Tang C (2011) Chiral phos‑
phoric acid catalyzed asymmetric friedel-crafts alkylation of indole with 
3-hydroxyisoindolin-1-one: enantioselective synthesis of 3-indolyl-substi‑
tuted isoindolin-1-ones. Eur J Org Chem 2011:892–897

	33.	 Yu X, Wang Y, Wu G, Song H, Zhou Z, Tang C (2011) Organocatalyzed 
enantioselective synthesis of quaternary carbon-containing isoindolin-
1-ones. Eur J Org Chem 2011:3060–3066

	34.	 Guo C, Song J, Huang JZ, Chen PH, Luo SW, Gong LZ (2012) Core-struc‑
ture-oriented asymmetric organocatalytic substitution of 3-hydroxyox‑
indoles: application in the enantioselective totalsynthesis of (+)-folican‑
thine. Angew Chem Int Ed 51:1046–1050

	35.	 Yin Q, Wang S-G, You S-L (2013) Asymmetric synthesis of tetrahydro-β-
carbolines via chiral phosphoric acid catalyzed transfer hydrogenation 
reaction org. Lett 15:2688–2691

	36.	 Carracedo-Reboredo P, Corona R, Martinez-Nunes M, Fernandez-Lozano 
C, Tsiliki G, Sarimveis H, Aranzamendi E, Arrasate S, Sotomayor N, Lete 
E (2020) MCDCalc: markov chain molecular descriptors calculator for 
medicinal chemistry. Curr Top Med Chem 20:305–317

	37.	 Gonzalez-Diaz H, Duardo-Sanchez A, Ubeira FM, Prado-Prado F, Perez-
Montoto LG, Concu R, Podda G, Shen B (2010) Review of MARCH-INSIDE 
& complex networks prediction of drugs: ADMET, anti-parasite activity, 
metabolizing enzymes and cardiotoxicity proteome biomarkers. Curr 
Drug Metab 11:379–406

	38.	 Hill T, Lewicki P, Lewicki P (2006) Statistics: methods and applications: a 
comprehensive reference for science, industry, and data mining. StatSoft 
Inc., Tulsa

	39.	 Simon-Vidal L, Garcia-Calvo O, Oteo U, Arrasate S, Lete E, Sotomayor 
N, Gonzalez-Diaz H (2018) Perturbation-theory and machine learning 
(PTML) model for high-throughput screening of parham reactions: 
experimental and theoretical studies. J Chem Inf Model 58:1384–1396

	40.	 Liu H, Deng J, Luo Z, Lin Y, Merz KM Jr, Zheng Z (2020) Receptor-ligand 
binding free energies from a consecutive histograms monte carlo sam‑
pling method. J Chem Theory Comput 16:6645–6655

	41.	 Cabeza de Vaca I, Qian Y, Vilseck JZ, Tirado-Rives J, Jorgensen WL (2018) 
Enhanced monte carlo methods for modeling proteins including com‑
putation of absolute free energies of binding. J Chem Theory Comput 
14:3279–3288

	42.	 Cole DJ, Tirado-Rives J, Jorgensen WL (2014) Enhanced monte carlo sam‑
pling through replica exchange with solute tempering. J Chem Theory 
Comput 10:565–571

	43.	 Bajusz D, Rácz A, Héberger K (2015) Why is tanimoto index an appropriate 
choice for fingerprint-based similarity calculations? J Cheminform 7:1–13

	44.	 Škuta C, Cortés-Ciriano I, Dehaen W, Kříž P, van Westen GJ, Tetko IV, 
Bender A, Svozil D (2020) QSAR-derived affinity fingerprints (part 1): fin‑
gerprint construction and modeling performance for similarity searching, 
bioactivity classification and scaffold hopping. J Cheminform 12:1–16

	45.	 Cortes-Ciriano I, Firth NC, Bender A, Watson O (2018) Discovering highly 
potent molecules from an initial set of inactives using iterative screening. 
J Chem Inf Model 58:2000–2014

	46.	 Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW (2009) 
How similar are similarity searching methods? A principal component 
analysis of molecular descriptor space. J Chem Inf Model 49:108–119

	47.	 Wagner AB (2006) SciFinder scholar 2006: an empirical analysis of 
research topic query processing. J Chem Inf Model 46:767–774

	48.	 Ridley DD (2000) Strategies for chemical reaction searching in SciFinder. J 
Chem Inf Comp Sci 40:1077–1084

	49.	 Carracedo-Reboredo P, Corona R, Martinez-Nunes M, Fernandez-Lozano 
C, Tsiliki G, Sarimveis H, Aranzamendi E, Arrasate S, Sotomayor N, Lete E, 
Munteanu CR, Gonzalez-Diaz H (2020) MCDCalc: markov chain molecular 
descriptors calculator for medicinal chemistry. Curr Top Med Chem 
20:305–317

	50.	 Pesciullesi G, Schwaller P, Laino T, Reymond J-L (2020) Transfer learning 
enables the molecular transformer to predict regio-and stereoselective 
reactions on carbohydrates. Nat Commun 11:4874

	51.	 Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak 
S, Isayev O, Roitberg AE (2019) Approaching coupled cluster accuracy 
with a general-purpose neural network potential through transfer learn‑
ing. Nat Commun 10:2903

	52.	 Grambow CA, Li Y-P, Green WH (2019) Accurate thermochemistry 
with small data sets: a bond additivity correction and transfer learning 
approach. J Phys Chem A 123:5826–5835

	53.	 Sun G, Sautet P (2019) Toward fast and reliable potential energy surfaces 
for metallic Pt clusters by hierarchical delta neural networks. J Chem 
Theory Comput 15:5614–5627

	54.	 Feuz KD, Cook DJ (2015) Transfer learning across feature-rich heterogene‑
ous feature spaces via feature-space remapping (FSR). ACM T Intel Syst 
Tec 6:1–27



Page 24 of 24Carracedo‑Reboredo et al. Journal of Cheminformatics            (2024) 16:9 

	55.	 Grazioli G, Roy S, Butts CT (2019) Predicting reaction products and auto‑
mating reactive trajectory characterization in molecular simulations with 
support vector machines. J Chem Inf Model 59:2753–2764

	56.	 Charpentier A, Mignon D, Barbe S, Cortes J, Schiex T, Simonson T, 
Allouche D (2018) Variable neighborhood search with cost function 
networks to solve large computational protein design problems. J Chem 
Inf Model 59:127–136

	57.	 Abramyan TM, An Y, Kireev D (2019) Off-pocket activity cliffs: a puzzling 
facet of molecular recognition. J Chem Inf Model 60:152–161

	58.	 Endo K, Yuhara D, Yasuoka K (2022) Efficient monte carlo sampling for 
molecular systems using continuous normalizing flow. J Chem Inf Model 
18:1395–1405

	59.	 Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimension‑
ally equidistributed uniform pseudo-random number generator. ACM T 
Model Comput S 8:3–30

	60.	 Moreau A, Couture A, Deniau E, Grandclaudon P (2005) Construction of 
the six-and five-membered Aza-heterocyclic units of the isoindoloisoqui‑
nolone nucleus by parham-type cyclization sequences-total synthesis of 
nuevamine. Eur J Org Chem 2005:3437–3443

	61.	 Akiyama T (2007) Stronger brønsted acids. Chem Rev 107:5744–5758
	62.	 Akiyama T, Mori K (2015) Stronger brønsted acids: recent progress. Chem 

Rev 115:9277–9306
	63.	 Caballero-García G, Goodman JM (2021) N-Triflylphosphoramides: highly 

acidic catalysts for asymmetric transformations. Org Biomol Chem 
19:9565–9618

	64.	 Nakashima D, Yamamoto H (2006) Design of chiral N-triflyl phosphora‑
mide as a strong chiral brønsted acid and its application to asymmetric 
diels− alder reaction. J Am Chem Soc 128:9626–9627

	65.	 Weininger D (1988) SMILES, a chemical language and information system. 
1. Introduction to methodology and encoding rules. J Chem Inf Comput 
Sci 28:31–36

	66.	 Pogány P, Arad N, Genway S, Pickett SD (2018) De novo molecule 
design by translating from reduced graphs to SMILES. J Chem Inf Model 
59:1136–1146

	67.	 Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J (2010) 
SMILES-based optimal descriptors: QSAR analysis of fullerene-based 
HIV-1 PR inhibitors by means of balance of correlations. J Comput Chem 
31:381–392

	68.	 Reid JP, Ermanis K, Goodman JM (2019) BINOPtimal: a web tool for 
optimal chiral phosphoric acid catalyst selection. Chem Commun 
55:1778–1781

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	MATEO: intermolecular α-amidoalkylation theoretical enantioselectivity optimization. Online tool for selection and design of chiral catalysts and products
	Abstract 
	Introduction
	Materials and methods
	Dataset and parameter studied
	Reaction condition variables
	Dataset studied, compounds and reactions notation
	Molecular descriptors calculation
	ML linear model
	PTML linear model
	AIML vs. PTML linear model development
	HPTML linear model
	Monte carlo simulation
	Experimental methods

	Results and discussion
	CPA catalyzed α-amidoalkylation reactions chemical space
	ML linear model for α-amidoalkylation reactions
	PTML model for α-amidoalkylation reactions
	PTML calculations with a single reference reaction
	HPTML model for prediction with multiple reactions of reference
	HPTML vs. Experimental study of new reactions
	Experimental study of α-amidoalkylation reactions.
	HPTML prediction of new α-amidoalkylation reactions
	MATEO web server

	Conclusions
	Acknowledgements
	References


