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University of the Basque Country UPV/EHU
Avda. Lehendakari Aguirre 83, 48015 Bilbao, Spain

Revised: 12th February 2021

Abstract

Estimation of the Value at risk (VaR) requires prediction of the future volatility.
Whereas this is a simple task in ARCH and related models, it becomes much more
complicated in Stochastic Volatility (SV) processes where the volatility is a function of
a latent variable that is not observable. In-sample (present and past values) and out-
of-sample (future values) prediction of that unobservable variable are thus necessary.
This paper proposes Singular Spectrum Analysis (SSA), which is a fully non-parametric
technique that can be used for both purposes. A combination of traditional forecasting
techniques and SSA is also considered to estimate the VaR. Their performance is assessed
in an extensive Monte Carlo and with an application to a daily series of SP500 returns.
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1 Introduction

Prediction is very difficult, especially if it’s about the future.

(usually attributed to the Nobel laureate in Physics Neils Bohr)

Cambridge Dictionary defines prediction as a statement about what you think will happen

in the future. In a time series setting that prediction implies estimation of the observation

at time t+h with the information provided upto time t, where h is the horizon of prediction.

The definition in Cambridge Dictionary asserts that prediction always refers to the future

entailing h > 0 and thus the previous quote might be considered just a rhetorical figure.

However, the quote makes sense when dealing with latent variables where prediction may

be in-sample (h ≤ 0) or out-of-sample (h > 0). The former implies estimation of past and

present values of a latent variable using all the information contained within the sample

whereas the latter refers to estimation of future values at time t + h for h > 0 using

observations upto time t. Thus, in-sample prediction with h ≤ 0 does not refer to the

future but it implies signal extraction where the latent variable is the signal that needs to

be extracted from the available information composed of the observables. More difficult, as

stated in the quote, is the prediction of future values, especially when dealing with latent

variables because no past or current observations of the variable to be predicted are available.

Stochastic Volatility (SV) models are typical examples of this kind of situations, where

the volatility is the latent variable that needs in-sample and out-of-sample prediction to

assess the risk premium (in-sample) and the Value at Risk (VaR) (out-of-sample). The

former requires extraction of a latent signal, and there exist nowadays many techniques for

that purpose. One of them is the fully nonparametric Singular Spectrum Analysis (SSA)

proposed recently by Arteche and Garćıa-Enŕıquez (2017), who show the advantages of

SSA over competitors. But the main focus of this paper is out-of-sample prediction and

estimation of the VaR, where SV models are of especial value (see González-Rivera et al.,

2004). This is currently of great importance because financial institutions are required to

hold regulatory capital based on their VaR forecasts. We propose a combination of SSA for

in-sample volatility prediction with some out-of-sample forecasting techniques to estimate

2



the VaR in SV models. The methods for out-of-sample prediction considered range from

traditional strategies such as ARIMA models to more sophisticated techniques such as the

extension of SSA for out-of-sample prediction, never before used for the estimation of the

VaR.

The rest of the paper is structured as follows. SV models and the formal definition of

VaR are described in Section 2. Section 3 details the SSA technique proposed for signal

extraction or in-sample prediction of the volatility. These in-sample predictions are used

as the base for out-of-sample prediction of the volatility as described in Section 4, which

pays special attention to its use for VaR estimation. The performance of SSA and other

prediction techniques for VaR estimation in SV models is analysed in a Monte Carlo in

Section 5. Finally, Section 6 applies these techniques to estimate the VaR in a daily series

of SP500 returns, presenting some backtesting results.

2 Value at Risk in Stochastic Volatility models

We consider SV models of the form

zt = σtεt , (1)

where σt = σ exp(vt/2) is the conditional volatility for σ a positive constant scale factor,

vt is the volatility component and εt ∼ iid(0, 1) (see Taylor, 1986). The series zt can be

residuals after extracting the dynamics of the conditional mean. In this context estimation

of the conditional volatility σt+h is interesting to assess the risk premium (h ≤ 0) or to

estimate the V aR (h > 0). Linearising by taking logs of the squares gives a signal plus noise

process of the form

yt = log z2t = µ+ vt + ξt, (2)

with µ = log σ2+E log ε2t , and where the added noise ξt = log ε2t −E log ε2t is i.i.d. with zero

mean and variance σ2ξ . For example, if εt ∼ N(0, 1) then ξt is a centred logχ2
1 variable with

E log ε2t = −1.27 and σ2ξ = π2/2. However the Gaussianity in financial time series is often

questioned and some leptokurtic distribution can be used instead to adapt to the excess of

kurtosis usually found in those series. The Student´s t distribution is one popular alternative

for εt. If εt ∼ tv then E log ε2t = ψ(1/2) − ψ(v/2) + log v and σ2ξ = ψ′(1/2) + ψ′(v/2) =
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π2/2 + ψ′(v/2), where ψ and ψ′ are the digamma and trigamma functions respectively.

It is thus interesting to propose distribution-free forecasting techniques, in the sense that

they do not rely on the particular distribution of vt or ξt. Uncorrelation between vt and

ξs at all leads and lags is assumed hereafter. Note that this does not preclude the possible

existence of leverage in the form of correlation between vt and εs. In fact, as long as the

joint distribution of vt and εs is symmetric around the origin (e.g., Gaussian, Student’s t

or a Generalized Error Distribution among others) the possible correlation between the two

does not preclude the absence of correlation between vt and ξs (see Harvey et al., 1994).

The Value at Risk (VaR) is defined as the quantile in the lower tail of the distribution

of a future return, conditional on the available information set In. More explicitly, the h-

horizon VaR for h > 0 and a confidence 1−α is defined as the α-quantile of the conditional

future return distribution, i.e.

V aRn+h|n(α) = inf
x
{x ∈ R : Pr(zn+h ≤ x|In) ≥ α},

which for SV models is estimated as V̂ aRn+h|n(α) = σ̂n+h|nqε(α), where Prob(εt < qε(α)) =

α and σ̂n+h|n is the out-of-sample prediction of the volatility with horizon of prediction h

based on the information set upto period n. σ̂n+h|n can be obtained via out-of-sample

predictions of vn+h, which are then plugged into the formula for σt to obtain the estimates

of the out-of-sample volatilities σ̂n+h|n = σ̂ exp(v̂n+h|n/2). In-sample predictions of the vt

and σt, that is v̂t|n and σ̂t|n = σ̂ exp(v̂t|n/2) for t = 1, ..., n, are also useful for several

purposes. First, the constant σ can be estimated as the square root of the sample variance

of zt exp(−v̂t|n/2), t = 1, ..., n (see equation (4) below). Second, qε(α) can be obtained as

empirical quantiles of the Studentised observations zt/σ̂t|n, t = 1, ..., n, where the series of

returns are prefiltered by using in-sample predictions of the volatility in order to approach

the behaviour of ϵ and exploit its iid characteristic. This strategy resembles the Filtered

Historical Simulation (FHS) in that Studentised observations are used to obtain qε(α) (see

Barone-Adesi et al. 1998 or McNeil and Fey, 2000). Third, v̂t|n, t = 1, 2, ..., n can be used

as the base to predict vn+h with standard prediction techniques, avoiding in that way the

distorting effect of the added noise (see for example Soofi and Cao, 2002). More details

are given in Section 4. Following Arteche and Garćıa-Enŕıquez (2017), Singular Spectrum

Analysis (SSA) is proposed for in-sample estimation of the volatility as described in next
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section.

3 In-sample prediction: SSA for signal extraction

Singular Spectrum Analysis (SSA) is a relatively novel tool for signal extraction and pre-

diction of a latent variable in a signal plus noise process as that in (2). Although previously

used in signal processing and oceanography, its application in the analysis of time series was

generalised by Broomhead and King (1986) who applied it in nonlinear dynamics. Finally,

the book by Golyandina et al. (2001) extended its interest in wider areas of time series

analysis. The procedure makes use of the different spectral behaviour of signal and noise to

identify and estimate the signal. This makes it especially useful for in-sample prediction of

the volatility component vt in SV models, where the noise satisfies ξt ∼ iid(0, σ2ξ ) with flat

spectrum. Using the complete uncorrelation between ξt and vt, all the spectral structure

in yt is thus due to vt, which permits identification of the volatility component. SSA is

then based on decomposing the original series into a sum of components so that each of

those components is characterised by a particular spectral behaviour, displayed in the peri-

odogram. The signal can then be estimated by reconstructing the original series using only

those components that share a spectral behaviour similar to that of the latent signal. For

example, a signal with a persistent trend can be estimated by selecting those components

with spectral concentration around the origin, with no need to know whether that trend is

deterministic or stochastic, stationary or non-stationary.

The detailed procedure consists of the following steps:

� Step 1: Let y∗t = yt − µ̂ be the centred series of observations for t = 1, 2, ..., n (we

use µ̂ =
∑
yt/n but other options are also possible, see Arteche, 2015). Construct

the trajectory matrix Y = [Y1 : ... : YK ] for Yj = (y∗j , ..., y
∗
j+L−1)

′ where 1 < L < n is

called the window length and K = n−L+1. By definition Y is a Hankel matrix and

we assume with no loss of generality that L ≤ K.

� Step 2: Apply the Singular Value Decomposition (SVD) to Y

Y =
∑
j∈J

√
µjUjV

′
j , Vj =

1
√
µj
Y ′Uj , J = {j such that µj > 0},
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where µj and Uj are the j-th eigenvalue and eigenvector respectively of Y Y ′. Each Uj

is an L× 1 vector known as Empirical Orthogonal Function (EOF).

� Step 3: Reconstruction. Select a subgroup ג of SVD components and form the matrix

Yג =
∑
j∈ג

√
µjUjV

′
j .

ג contains the SVD components with EOFs sharing the same spectral characteristics

as the latent signal.

� Step 4: Estimate vt, t = 1, ...n, by Hankelization of the matrix Yג as

v̂ssat|n =



1

t

t∑
l=1

cl,t−l+1 1 ≤ t ≤ L,

1

L

L∑
l=1

cl,t−l+1 L < t ≤ K,

1

n− t

L∑
l=t−K+1

cl,t−l+1 K < t ≤ n,

where cj,k is the (j, k)-th element of the matrix Yג (see Vautard et al. 1992).

The procedure requires the intervention of the user in Steps 1 and 3 to select L and .ג

Golyandina (2010) suggests a window length L multiple of the periodicity of the series and

close to but smaller than half the sample size to obtain minimal errors in many situations.

See also Golyandina et al. (2001). We follow this suggestion in the Monte Carlo and the

empirical application below. For the selection of ,ג Arteche and Garćıa-Enŕıquez (2017)

suggest to choose a set containing those elements with EOFs with spectral concentration,

measured through the periodogram of the observables, similar to the signal. This is justified

because under uncorrelation of vt and ξs ∀t, s, the spectral density function of yt (fy(λ)) is

the sum of the spectral densities of vt (fv(λ)) and ξt (fξ(λ)). But fξ(λ) is constant and then

fy(λ) is just a shifted version of fv(λ). Thus, yt inherits the spectral characteristics of vt and

can be used to select the components in .ג In particular, for low frequency behaviours as

those considered in the Monte Carlo below, ג is selected to contain those components with

EOFs showing relative periodogram concentration as large as that in the observable series

yt at the k closer to zero Fourier frequencies where k is a user-chosen value. See Arteche

and Garćıa-Enŕıquez (2017) for details and recommendations on how to select k.
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The decomposition in Step 2 is based on Y Y ′, forming what is usually known as Basic

SSA. Other alternatives are the Toeplitz SSA (Vautard and Ghil 1989) who use the sample

lagged covariance matrix instead of Y Y ′ in a stationary context and the Circulant SSA

(Bógalo et al. 2021) based on a circulant alternative matrix of second moments. This recent

alternative seems promising because it identifies eigenvalues with the spectral density, which

may be used for selection of components in the reconstruction Step 3, but further analysis

is necessary. Moreover all these techniques offer similar empirical performance (Bógalo et

al. 2021) and thus we stick to the more popular Basic SSA.

4 Out-of-sample prediction: Forecasting techniques

Taking into account the latent character of vt, two general approaches can be considered

to predict vn+h. First, noting that the optimal predictor of vn+h in (2) coincides with the

optimal predictor of yn+h − µ, traditional forecasting techniques can be implemented in

the centred sample of observables y1, ..., yn to predict yn+h − µ and use this prediction as

the forecast of vn+h. However, the added noise may cause significant differences between

the empirical prediction and vn+h (see for example Soofi and Cao, 2002). To avoid that

potentially distorting effect of the added noise, the second approach consists in predicting

vn+h by applying the forecasting strategies on the estimated vt, t = 1, ..., n obtained by the

application of some signal extraction technique. Following Arteche and Garćıa-Enŕıquez

(2017) we use SSA as described in the previous section. Once we get rid of the noise the

estimated signal is predicted. In this case we avoid the effect of the added noise but instead

the prior estimation of vt may significantly affect the performance of the prediction of vn+h.

We consider five different techniques to predict vn+h, h = 1, 2, .... The first one is an

extension of the SSA for out-of-sample forecasting of vn+h. This is a quite novel technique

never before used for estimation of the VaR. The other four are more traditional techniques,

which are applied on the series of centred observables y∗t and on the signal extracted using

SSA, v̂ssat|n . First, two different techniques, embedded in the popular Box-Jenkins methodol-

ogy, are considered. They make use of fitted AR and ARIMA processes. Then Exponential

Smoothing and Neural Networks as implemented in the package forecast in R are also im-

plemented. The application of these four techniques on the series of observables y∗t and on
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the signal extracted using SSA v̂ssat|n permits us to assess if the added noise exerts a negative

effect in the prediction of the signal as advocated by Soofi and Cao (2002) or if, on the con-

trary, the error generated in the extraction of the signal is of such a magnitude that using

y∗t is a better option. In order to distinguish notationally both strategies, a hat is used to

denote predictions that have been obtained by applying the corresponding technique to v̂ssat|n

whereas a tilde is used if it has been applied to the series of observables y∗t . A total of nine

different forecasting strategies are thus considered.

4.1 SSA forecasting

The SSA algorithm can be extended to predict future values of the latent signal using a

linear recurrence expression for vt that does not depend on the actual structure of the latent

variable. The SSA prediction of vn+h is defined as

v̂ssan+h|n = R′V̂

for V̂ = (v̂ssan+h−L+1|n, ..., v̂
ssa
n+h−1|n)

′, R = (1 − v2)−1
∑

j=ג πjU
∆
j for v2 =

∑
j=ג π

2
j , πj is the

L-th element of Uj and U
∆
j denotes the first L−1 elements of Uj . For h > 1 the predictions

are obtained recursively (see Golyandina et al. 2001).

The application of SSA for forecasting is recently gaining attention and has been dis-

cussed and implemented in real time series by Lisi and Medio (1997), Hassani et al. (2009),

Beneki et al. (2012), de Carvalho et al. (2012), Hassani et al. (2013), Silva and Hassani

(2015), Khan and Poskitt (2017), Papailias and Thomakos (2017), among others. Unlike

all this extant literature centred on prediction of observables, we focus on prediction of a

latent variable and its consequent use for VaR estimation in SV models. An additional

contribution is the analysis of its performance in an extensive Monte Carlo in Section 5, not

relying only on its performance in a single time series as all the mentioned papers do.

4.2 Box-Jenkins methodology

One of the main benefits of the Box-Jenkins methodology is that it provides a simple and

effective tool to predict a time series exploiting the linear dependence existing within the

sample. Mathematically tractable ARIMA models are proposed to capture such dependence
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and to extrapolate the behaviour of the sample into the future. Considering that the main

predictive capacity of ARIMAmodels lies in the AR part, we consider two different strategies

for prediction:

� Fit an AR(p) model, either to v̂ssat|n or to y∗t , t = 1, ..., n, with p selected by minimizing

the AIC and use the estimated model to obtain the predictions v̂arn+h|n and ṽarn+h|n .

� Fit an ARIMA(p, d, q) with d selected by KPSS and p, q by minimizing the AIC and

use the estimated model to get v̂arima
n+h|n if v̂ssat|n is used and ṽarima

n+h|n if the model is applied

on y∗t , t = 1, ..., n.

The main difference between both strategies is that the second one includes the possi-

bility of unit roots, which may be relevant for predicting strong dependent series, whereas

the first one proposes to capture such dependence with a large enough p.

4.3 Exponential Smoothing (ETS)

While linear exponential smoothing models are all special cases of ARIMA, non-linear ex-

ponential smoothing models are far more general and afford different types of behaviour.

Additive and multiplicative, possibly damped components are here considered and the spec-

ification that is used for forecasting is selected by minimizing the AIC. See Hyndman et al.

(2002) or Hyndman and Khandakar (2008) for more details. Using v̂ssat|n or y∗t as input

variables leads to v̂etsn+h|n and ṽetsn+h|n respectively.

4.4 Autoregressive Neural Networks (NN)

Neural networks are universal approximations of non-linear functions. In this case, a feed-

forward neural network is considered with p lagged values of the variable to be predicted as

inputs and a single hidden layer with k hidden nodes. The mathematical expression of this

neural network is then

xt = β0 +

k∑
j=1

βjψ(xt−1, .., xt−p; γj).
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The logistic function is used as activation function such that

ψ(xt−1, .., xt−p; γj) =

[
1 + exp

(
−γj0 +

p∑
i=1

γjixt−i

)]−1

.

The number of lags p is selected by AIC when applied to a linear AR(p). The number of

hidden nodes is selected as k = (p+1)/2 rounded to the nearest integer. The predictions of

xn+h are recursively obtained based on this specification. See Hyndman and Athanasopoulos

(2014) for a more detailed description of the methodology. Replacing xt by v̂
ssa
t|n or y∗t we

get v̂nnn+h|n and ṽnnn+h|n respectively.

5 Finite sample behaviour: VaR evaluation

All the prediction techniques described in the previous section, except the SSA, are imple-

mented using the package forecast in R. Forecasting with the Kalman Filter based on the

AR(p) with p selected by AIC was also considered, but the results were worse than those

shown here, and thus are not included (available upon request).

In this Monte Carlo SV models as defined in equations (1) and (2) are generated with

σ = 1 and three different distributions for εt: N (0, 1) and tν for degrees of freedom ν = 4, 8.

The value ν = 4 implies an infinite kurtosis whereas ν = 8 is closer to the values estimated

in real financial time series (see for example Liesenfeld and Jung, 2000). Note that all the

prediction techniques considered in this Monte Carlo are distribution free in the sense that

they do not rely on any particular distribution for their implementation. The signal vt is

chosen to be of the form:

Model 1: (1− ϕB)vt = σ1wt with ϕ = 0.8.

Model 2: vt = σ2(v1t + 2µt) where (1− 0.8B)v1t = wt and µt is a level shift of the form:

a) Deterministic level shift: at = It>n/4 and µt = at − ā.

b) Stochastic level shifts: µt =
∑t

j=1δjηj .

Model 3: (1−B)dvt = σ3wt for d = 0.4.

Model 4: (1−B)dvt = σ4wt for d = 0.8.
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where B is the backshift operator (Bkvt = vt−k), wt and ηj are independent standard

normal random variables and δj is a sequence of independent Bernoulli random variables

taking value 1 with probability p, i.e. δj ∼ B(1, p). The variables wt, ηr and δs are mutually

independent for all t, r, s.

These models have been previously considered in Arteche and Garćıa-Enŕıquez (2017)

to asses the performance of the SSA for signal extraction, showing that SSA performs in

general better than other alternatives. The analysis is restricted to these four models with

low frequency spectral concentration, either stationary (Models 1 and 3) or non-stationary

(Models 2 and 4), because this is the most common situation in economic and financial time

series where SV models are employed. For example, the AR(1) in Model 1 was the process

that attracted most interest in the origins of SV modeling (see Harvey et al., 1994, among

many others). Later, the high persistence found in the volatility of most financial series led

many authors to propose a vt with long memory as in Models 3 and 4 (e.g. Bollerslev and

Mikkelsen, 1996, Harvey, 1998, Breidt et al. 1998, Deo and Hurvich, 2001, Arteche, 2004,

Hurvich, Moulines and Soulier, 2005, Arteche, 2015). Other authors, however, suggest that

the apparent strong persistence in the volatility of financial time series is not due to long

memory in vt but to level shifts as those in Model 2 (Lobato and Savin, 1998, Granger and

Hyung, 2004, Perron and Qu, 2010, Qu and Perron, 2013). For the stochastic shift we follow

Perron and Qu (2010) and consider p = 10/n, which models relatively infrequent shifts that

disappear as the sample size increases. Thus, the models considered here cover a wide range

of realistic and diverse situations.

Two different Noise to Signal Ratios, defined asNSR = V ar(ξt)/V ar(vt), are considered:

NSR = π2, 5π2. In the generated models V ar(ξt) = π2/2 if εt ∼ N (0, 1) and V ar(ξt) =

π2/2 + ψ′(v/2) for Student’s tv, where ψ′ is the trigamma function. The constants σi,

i = 1, 2, 3, 4 are chosen to adapt to the selected NSR. In Models 1, 2a) and 3 V ar(vt)

are population variances whereas in the non-stationary Models 2b) and 4 the population

variance is undefined and then V ar(vt) is replaced by the sample variance and the constants

σ3 and σ4 adjusted in every replication in order to maintain the NSR fixed.

The sample size is n = 2048 which is comparable to the size of many financial series as

the one analysed in the empirical section. The number of replications is 1000. The SSA
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is applied using a window length L = 1008 (similar values give similar results) in keeping

with the comments in the previous section. The selection of ג is based on k = 5 (values of

k = 10 and k = 15 were also analysed, giving similar results) as explained in Section 3 (see

also Arteche and Garcia-Enŕıquez, 2017).

Once the predictions of vn+h are obtained, the variances of the returns conditional on

the volatility component are predicted as

σ̄2n+h|n = σ̂2 exp(v̄n+h|n), (3)

where the v̄n+h|n are obtained by one of the forecasting techniques discussed before and the

constant σ2 is estimated with the signal extracted by SSA as

σ̂2 =
1

n

n∑
t=1

z2t exp(−v̂ssat|n ). (4)

This prediction of the conditional variance is used to estimate the h-horizon VaR for a

confidence 1 − α conditional on the information at time n: V̂ aRn+h|n(α) = σ̄n+h|nqε(α),

where Prob(εt < qε(α)) = α. The quantile qε(α) is calculated as the sample quantile of the

Studentised series zt/σ̂
ssa
t|n , t = 1, ..., n, where σ̂ssat|n are in-sample predictions of the latent

volatility obtained with SSA. Note that SSA is then used for VaR estimation with all the

different out-of-sample forecasting techniques here considered, being necessary in two of the

steps: in the estimation of the constant σ2 and to obtain the quantile qε(α).

In order to evaluate the adequacy of the different techniques for VaR estimation, we use

two criteria. First, the proportion of VaR violations, that is the proportion of times that

zn+h < V̂ aRn+h|n(α), is calculated. The closer this value is to the nominal risk α the better

the performance. Tables 1-2 show average distances (in absolute values) of the proportion

of violations to the nominal risks 0.05 and 0.01 (multiplied by 100). The second criteria

is the magnitude of the exceedance. Not only the number of violations is important, but

the magnitude of the exceedance when a violation occurs is also of great relevance for the

estimation of the VaR. Undoubtedly a violation with a large loss is more harmful than one

with a small exceedance. Tables 3-4 show average losses based on a quadratic loss function

defined as

L(V aRn+h|n(α)) =

{
(zn+h − V aRn+h|n(α))

2 if zn+h ≤ V aRn+h|n(α)

0 if zn+h > V aRn+h|n(α)
(5)
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In order to evaluate the factors that may affect the performance of the different forecast-

ing techniques, different averages are presented in Tables 1-4. For example the row starting

with N(0, 1) shows average distances and losses over 1000 replications, all the models, two

NSRs and three horizons of predictions with standard normal innovations. The numbers in

the rest of rows are similarly obtained. The following conclusions can be extracted:

� The first question to answer is if the different prediction techniques should be applied

on the original series or on the in-sample SSA estimation of the signal. Based on the

obtained results the answer is not categorical but it depends on the applied technique.

Whereas AR and ETS give smaller distances when applied to the original series, NN

and ARIMA tend to offer better results when applied to the extracted signal.

� If we consider only predictions implemented on the estimated signals, SSA is usually

the best option, the only exceptions being the average loss for α = 0.05, where other

techniques have lower losses. If we include also predictions implemented on the centred

observables, SSA tends to be the second best, in general only beaten by ETS when

applied on the original series, which tends to be the best option.

� Even though the frequencies of violation with leptokurtic innovations are closer to the

nominal risk than the frequencies with standard normal innovations, larger kurtoses

lead to greater losses.

� Larger NSRs lead to frequencies of violation further from the nominal risk but the

losses are smaller. However, this does not imply that larger NSRs produce lower

losses. The explanation is more related with the fact that the variance of the signal

in the low NSR case is five times larger than the variance with high NSR, affecting

directly the quadratic loss.
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Table 1: Average absolute distances (×100) of the proportion of VaR violations to the
nominal risk (α = 0.05).

Based on extracted signals Based on original series

SSA AR ARIMA ETS NN AR ARIMA ETS NN

N(0, 1) 1.473 1.723 1.893 2.033 1.627 1.390 1.823 1.050 2.130
t4 0.987 1.207 1.313 1.417 1.090 1.100 1.553 0.937 1.540
t8 1.310 1.523 1.657 1.747 1.443 1.327 1.717 1.010 1.970

Model 1 1.144 1.594 1.817 2.100 1.172 0.844 1.106 0.944 1.456
Model 2a 1.350 1.533 1.567 1.728 1.628 1.689 1.911 1.050 2.394
Model 2b 1.233 1.356 1.550 1.494 1.328 1.372 2.239 0.911 2.067
Model 3 1.611 1.978 1.983 2.094 1.822 1.617 1.989 1.589 1.900
Model 4 0.944 0.961 1.189 1.244 0.983 0.839 1.244 0.500 1.583

Low NSR 1.204 1.391 1.473 1.513 1.338 1.240 1.140 0.904 2.293
High NSR 1.309 1.578 1.769 1.951 1.436 1.304 2.256 1.093 1.467

h = 1 1.300 1.633 1.813 1.737 1.533 1.233 1.767 0.957 1.373
h = 5 1.107 1.360 1.420 1.557 1.217 1.177 1.587 1.067 1.757
h = 10 1.363 1.460 1.630 1.903 1.410 1.407 1.740 0.973 2.510

Total 1.256 1.484 1.621 1.732 1.387 1.272 1.698 0.998 1.880
Note: Averages of 100 times the absolute value of the distance of the frequency of violations to 0.05.

Table 2: Average absolute distances (×100) of the proportion of VaR violations to nominal
risk (α = 0.01).

Based on extracted signals Based on original series

SSA AR ARIMA ETS NN AR ARIMA ETS NN

N(0, 1) 0.980 1.187 1.340 1.433 1.020 0.847 1.533 0.663 1.180
t4 0.630 0.743 0.850 0.950 0.683 0.550 1.180 0.477 0.787
t8 0.743 0.970 1.123 1.247 0.913 0.777 1.250 0.583 1.137

Model 1 0.739 1.000 1.083 1.350 0.789 0.528 0.683 0.578 0.761
Model 2a 0.806 1.022 1.211 1.294 1.022 0.867 1.717 0.617 1.278
Model 2b 0.733 0.928 1.122 1.194 0.922 0.883 1.761 0.594 1.289
Model 3 0.978 1.100 1.244 1.411 0.900 0.728 1.261 0.744 0.883
Model 4 0.667 0.783 0.861 0.800 0.728 0.617 1.183 0.339 0.961

Low NSR 0.778 0.898 1.016 1.087 0.891 0.767 0.773 0.553 1.278
High NSR 0.791 1.036 1.193 1.333 0.853 0.672 1.869 0.596 0.791

h = 1 0.830 1.207 1.260 1.223 1.013 0.720 1.207 0.593 0.810
h = 5 0.720 0.810 0.943 1.077 0.673 0.650 1.310 0.497 0.940
h = 10 0.803 0.883 1.110 1.330 0.930 0.803 1.447 0.633 1.353

Total 0.784 0.967 1.104 1.210 0.872 0.719 1.321 0.574 1.034
Note: Averages of 100 times the absolute value of the distance of the frequency of violations to 0.01.
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Table 3: Average loss of VaR violations (α = 0.05).

Based on extracted signals Based on original series

SSA AR ARIMA ETS NN AR ARIMA ETS NN

N(0, 1) 0.0274 0.0249 0.0257 0.0244 0.0260 0.0303 0.0227 0.0226 0.0369
t4 0.1165 0.1159 0.1154 0.1171 0.1196 0.1318 0.1153 0.1114 0.1367
t8 0.0454 0.0456 0.0448 0.0471 0.0483 0.0540 0.0441 0.0412 0.0612

Model 1 0.0349 0.0319 0.0334 0.0343 0.0335 0.0359 0.0340 0.0350 0.0405
Model 2a 0.0898 0.0912 0.0911 0.0928 0.0939 0.0947 0.0927 0.0872 0.1069
Model 2b 0.1030 0.1025 0.0999 0.1002 0.1100 0.1401 0.1057 0.0974 0.1435
Model 3 0.0397 0.0399 0.0399 0.0415 0.0410 0.0424 0.0397 0.0405 0.0448
Model 4 0.0482 0.0450 0.0455 0.0454 0.0447 0.0469 0.0318 0.0318 0.0557

Low NSR 0.0884 0.0866 0.0860 0.0875 0.0908 0.1053 0.0811 0.0796 0.1174
High NSR 0.0378 0.0377 0.0379 0.0382 0.0385 0.0387 0.0404 0.0372 0.0391

h = 1 0.0589 0.0583 0.0584 0.0587 0.0579 0.0590 0.0509 0.0510 0.0601
h = 5 0.0445 0.0446 0.0451 0.0463 0.0474 0.0571 0.0468 0.0449 0.0644
h = 10 0.0860 0.0835 0.0824 0.0836 0.0886 0.1000 0.0847 0.0793 0.1103

Total 0.0631 0.0621 0.0619 0.0628 0.0646 0.0720 0.0607 0.0584 0.0782
Note: Quadratic loss of violations.

Table 4: Average loss of VaR violations (α = 0.01).

Based on extracted signals Based on original series

SSA AR ARIMA ETS NN AR ARIMA ETS NN

N(0, 1) 0.0105 0.0107 0.0125 0.0120 0.0103 0.0113 0.0149 0.0072 0.0161
t4 0.0618 0.0619 0.0622 0.0635 0.0635 0.0726 0.0636 0.0571 0.0734
t8 0.0203 0.0212 0.0220 0.0236 0.0221 0.0207 0.0211 0.0157 0.0254

Model 1 0.0174 0.0172 0.0184 0.0200 0.0170 0.0174 0.0157 0.0158 0.0200
Model 2a 0.0539 0.0558 0.0577 0.0592 0.0562 0.0543 0.0625 0.0516 0.0632
Model 2b 0.0458 0.0445 0.0452 0.0452 0.0490 0.0640 0.0540 0.0364 0.0643
Model 3 0.0202 0.0222 0.0225 0.0238 0.0226 0.0213 0.0187 0.0198 0.0216
Model 4 0.0170 0.0166 0.0174 0.0170 0.0150 0.0174 0.0151 0.0096 0.0223

Low NSR 0.0405 0.0399 0.0406 0.0414 0.0419 0.0481 0.0367 0.0336 0.0542
High NSR 0.0212 0.0226 0.0239 0.0247 0.0220 0.0217 0.0297 0.0197 0.0224

h = 1 0.0278 0.0300 0.0308 0.0307 0.0287 0.0252 0.0265 0.0222 0.0256
h = 5 0.0192 0.0205 0.0211 0.0224 0.0216 0.0254 0.0249 0.0187 0.0297
h = 10 0.0456 0.0432 0.0448 0.0460 0.0455 0.0541 0.0482 0.0390 0.0595

Total 0.0308 0.0312 0.0322 0.0330 0.0319 0.0349 0.0332 0.0266 0.0383
Note: Quadratic loss of violations.
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6 VaR in SP500

A daily series of returns of the SP500 index from the 10th of July of 2007 to the 31st of

August of 2017 (2558 observations) is shown in Figure 1. This interval includes important

economic turbulences, such as the subprime crisis, and periods of greater stability. The

possible absence of autocorrelation in the returns as imposed in the models in equation (1)

is tested with the corrected version of the Box-Pierce statistic as suggested by Deo (2000)

and Lobato et al. (2001), which is robust to the presence of higher order dependence typical

of financial time series. The corrected Box-Pierce statistic for the first 10, 50 and 100

autocorrelations takes values of 13.31, 47.05 and 99.24 with p-values 0.21, 0.59 and 0.50,

confirming the absence of linear correlation in the returns for the usual levels of significance

and their agreement with the typical form of the Efficient Market Hypothesis.

Figure 1: SP500 daily returns

2008 2010 2012 2014 2016 2018

−1
0

−5
0

5
10

The VaR is estimated in this series in 500 rolling samples with n = 2048 observations

and horizon of predictions h = 1, 5, 10 in such a way that the 500 predictions correspond

to the more recent observations, regardless the horizon of prediction. The sample size is

the same as the one used in the Monte Carlo in the previous section, which allows us to

use the fast Fourier transform to calculate the periodogram, implying a significant saving

in computational time. The SSA is implemented with the same window lengths L = 1008

16



and k = 5 as in the Monte Carlo.

Table 5 shows the proportions of VaR violations, that is the proportion of times when

zn+h < V aRn+h|n(α), for α = 0.05, 0.01 over the 500 hundred rolling samples. Table 5 also

shows the average V aR over these 500 rolling series. The closer this value is to zero the

tighter the control of losses for a given confidence, that is the lower the amount of capital

required to cover for potential losses for a given confidence. Finally, the magnitude of the

effective losses when a violation occurs is also included. An adequate VaR should not only

control for the frequency of violations but it is also important for the loss not to be very

large when a violation occur. Table 5 shows the average loss (over the 500 rolling samples)

calculated as 100 times the quadratic loss defined in (5). For comparative purposes, in

addition to the quantile of the Studentised returns, the naive quantile from a standard

normal distribution is also considered for qε(α).

Table 5: Comparison of different VaR in SP500

α = 0.05

SSA ETS (series) GJR-GARCH

h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

Viol. 0.038 0.038 0.042 0.044 0.044 0.038 0.034 0.032 0.030
Viol.(S) 0.038 0.038 0.042 0.044 0.046 0.040 0.022 0.030 0.026

Av. VaR -1.428 -1.440 -1.448 -1.191 -1.207 -1.222 -1.315 -1.402 -1.487
Av. VaR (S) -1.427 -1.439 -1.447 -1.191 -1.206 -1.222 -1.412 -1.505 -1.597

Av. loss 2.257 2.246 2.468 3.004 3.230 3.418 2.450 2.204 1.969
Av. loss (S) 2.273 2.218 2.455 3.018 3.212 3.413 2.213 1.902 1.660

α = 0.01

SSA ETS (series) GJR-GARCH

h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

Viol. 0.018 0.018 0.020 0.016 0.016 0.018 0.010 0.012 0.012
Viol. (S) 0.014 0.010 0.010 0.014 0.016 0.018 0.008 0.006 0.004

Av. VaR -2.018 -2.036 -2.047 -1.684 -1.706 -1.728 -1.860 -1.982 -2.103
Av. VaR (S) -2.356 -2.376 -2.389 -1.966 -1.991 -2.017 -2.205 -2.350 -2.493

Av. loss 0.715 0.670 0.794 1.838 2.051 2.145 1.464 1.050 0.823
Av. loss (S) 0.333 0.303 0.374 1.419 1.568 1.639 1.087 0.696 0.517
Note: h, Viol., Av. VaR and Av. loss denote the prediction horizon, the proportion of violations,

the average VaR and the average quadratic loss over the 500 rolling samples using N(0, 1)

quantiles. Viol. (S), Av. VaR (S) and Av. loss (S) denote the proportion of violations, average

VaRs and average quadratic loss using sample quantiles of the Studentised series.
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Based on the performance of the different techniques previously analysed, Table 5 only

shows the results obtained with ETS in the observables and SSA. In addition to these

two techniques, the VaR is also calculated with the GJR-GARCH(1,1) model proposed

by Glosten et al. (1993) in order to analyse the applicability of these simpler techniques

(EGARCH(1,1) and GARCH(1,1) models were also considered, giving similar or slightly

worse results). The GJR-GARCH model has been selected based on Bams et al. (2017),

who show that it performs very well in SP500 daily series and other indexes, and in particular

gives better VaR forecasts than other implied volatility and historical volatility models. It

is then interesting to see if the VaR estimation techniques proposed in this paper can offer

better estimation than the GJR-GARCH, which can then be considered as the benchmark.

Note that in this case the Studentisation of the returns used to obtain qε(α) is done with

conditional standard deviations obtained in the estimation of the GJR-GARCH model. In

the rest of cases SSA is employed.

Table 5 shows that the three strategies overstate the risk at 5%, with a lower number

of violations than desired, especially the GJR-GARCH, where the proportion of violations

is clearly inferior to 0.05. However, all the techniques tend to understate the risk at 1%,

except the GJR-GARCH using the sample quantiles of the Studentised series. Regarding

the average VaRs, lower frequencies of violations generally come with larger VaR and lower

losses. However, it is noteworthy that SSA with the quantile based on Studentised series may

lead to lower losses with larger frequencies of violation closer to the nominal α, especially

for α = 0.01.

Different backtesting techniques can be used to asses the adequacy of the VaR estimates.

Some of the most common tests for backtesting VaRs are:

� The Unconditional Coverage test proposed by Kupiec (1995). It compares the fre-

quency of violations (α̂) with the unconditional coverage α with a likelihood ratio

test. The test statistic is 2[log(α̂x(1 − α̂)500−x − log(αx(1 − α)500−x)] where x is the

number of violations. Under the equality of α̂ and α the asymptotic distribution of

the test statistic is χ2
1.

� The independence test proposed by Christoffersen (1998). Under a correct specifi-
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cation of the VaR, violations should occur independently of the rest of violations.

The test examines whether the probability of a violation depends on the previous out-

come. The statistic is 2[log((1−π0)n00πn01
0 (1−π1)n10πn11

1 )−log((1−π)n00+n10πn01+n11)]

where nij is the number of times that a j follows a i, where j, i = 0 means no vio-

lations and j, i = 1 denotes violation, π0 = n01/(n00 + n01), π1 = n11/(n10 + n11)

and π = (n01 + n11)/(n00 + n01 + n10 + n11). Under the null hypothesis of indepen-

dence of violations π0 and π1 should be equal and the test statistic has a χ2
1 limiting

distribution.

� Traffic lights (Basel regulations). The Basel Committee on Banking Supervision pro-

posed a Traffic Light approach to analyse the VaR violations in their 1996 document

Basel Committee on Banking Supervision (1996). Therein the Basel Committee de-

fines three color zones through cumulative probabilities of the number of realized VaR

violations. The Green Zone is defined as the number of violations whereby the cu-

mulative probability of obtaining that many violations or fewer is less than 95% if

the VaR is correct. The Yellow Zone is defined as the number of violations whereby

the cumulative probability of obtaining that many violations or fewer is greater than

95% but less than 99.99%. Finally, the Red Zone is defined by a cumulative proba-

bility of 99.99% or more. Table 6 shows the different zones for α = 0.05, 0.01 and 500

observations.

Table 6: Traffic light approach (Basel Committee 1996)

α = 0.01 α = 0.05

Zone Green Yellow Red Green Yellow Red
N. of violations ≤ 8 9 14 ≥ 15 ≤ 32 33 44 ≥ 45
Cumulative prob. 93.29 96.89 99.98 99.99 93.36 95.46 99.97 99.99

Note: Cumulative probability is the probability of obtaining a number violations less or equal to

the especified value when the VaR is correct (i.e. true coverage is 100*(1-α)%). Based on a sample

of 500 observations. The yellow zone begins where cumulative probability exceeds 95%, and the red

zone begins at a cumulative probability of 99.99%.

� Out-of-sample dynamic quantile test. Engle & Manganelli (2004) proposed a test

to check the independence of the series of violations of past violations, VaR es-

timates and other past variables. For a given confidence α, the test statistic is
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(V iol − α)′X(X ′X)−1X ′(V iol − α)/(α(1 − α) where V iol is a vector with typical

element V iolt = 1 if a violation occurs and 0 otherwise and X is a matrix with

columns containing the observations of variables whose orthogonality with V iol is to

be tested (e.g. constant, lagged V iol, VaR...). The limiting null distribution is χ2
q ,

where q = rank(X).

Table 7 shows the results of these backtesting tests in the 500 rolling sub-series of SP500

daily returns. The dynamic quantile test has been obtained with constant term, four lags

and the VaR used as instruments, and thus the null limit distribution is χ2
6. Considering

first a confidence of 95%, it is noteworthy that the unconditional coverage test rejects the

VaR estimated with GJR-GARCH, which taking into account the widely documented low

power of this test suggests against the use of this model, at least for α = 0.05. The rest of

techniques perform quite well, especially if the Studentised returns are used for qε(α), and

the only rejection is for the dynamic quantile test for SSA with h = 1. For a confidence of

99%, SSA with Studentised returns does remarkably well, better than the ETS applied on

the original series.
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Finally, Figure 2 shows the 500 SP500 returns used for forecasting evaluation together

with the VaR at 95% and 99% confidence levels predicted by SSA for horizons of prediction

h = 1 and h = 5, with the quantiles obtained with the Studentised returns. The figure

corroborates the good performance of SSA, showing that the estimated VaR rapidly reacts

to the changes in volatility even for a far horizon of prediction h = 5.

Figure 2: VaR for SP500
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(b) h = 5
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7 Conclusion

Estimation of VaR in SV models requires prediction of the conditional variance, which is

not a simple task due to the latent character of the factor that drives the volatility. A

combination of in-sample prediction based on SSA with other out-of-sample forecasting

techniques can be used to estimate the future volatility and the VaR. The Monte Carlo

analysis and an application to a real series of daily SP500 returns show that SSA for in-

sample and out-of-sample prediction and a combination of SSA for in-sample and ETS for

out-of-sample prediction are good options, performing better than GJR-GARCH models,

which was shown in Bams et al. (2017) to provide very satisfactory results.
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Data availability statement

The empirical data used in this paper can be freely downloaded from different sources. For

example from the FRED Economic Data, website https://fred.stlouisfed.org/.

References

Armstrong, J.S. 1985. Long-range Forecasting: From Crystal Ball to Computer. 2nd. ed.

Wiley. ISBN 978-0-471-82260-8.

Arteche, J., 2004. Gaussian Semiparametric Estimation in Long Memory in Stochastic

Volatility and Signal Plus Noise Models. Journal of Econometrics 119, 131-154.

Arteche, J., 2015. Signal extraction in Long Memory Stochastic Volatility. Econometric

Theory 31, 1382-1402.
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