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Interpreting correlated random parameters in choice experiments 

Abstract 

The random parameter logit (RPL) model with uncorrelated coefficients is a restrictive version 

of the mixed logit model, but it is one of the most frequently used models for analysing stated 

choice data in environmental valuation. The body of applied literature using a more flexible 

version, the RPL model with correlated coefficients, has been noticeably growing in the last 

years, but it has still been used less frequently due to its computational complexity and non-

trivial interpretation. The correlation matrix of the coefficients in this model captures not only 

the correlation due to a behavioural phenomenon but also the correlation caused by scale 

heterogeneity. These two effects cannot be identified empirically. Nevertheless, this paper 

proposes a simple procedure that enables an interpretation of some of the estimated 

correlations, which can help to disentangle the unobserved preference heterogeneity. The 

proposed procedure consists of two simple steps. Firstly, the signs of the attributes 

corresponding to the utility coefficients that have a negative mean coefficient are reversed. 

Secondly, only negative correlations are interpreted. We propose a theoretical model 

accounting for correlations induced both by hypothetical behavioural phenomena and by 

scale heterogeneity and apply the proposed procedure to three typical cases of environmental 

valuation.  

Keywords: choice experiment; correlated parameters; random parameter logit; scale 

heterogeneity 
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1. Introduction 

The random parameter logit (RPL) model with uncorrelated utility coefficients is 

probably the most frequently applied model in environmental valuation in spite of the 

fact that it is a relatively restrictive model. The assumption of uncorrelated random 

coefficients leads to a specific and restricted correlation structure of the willingness-to-

pay (WTP) values (Train and Weeks, 2005) and a fixed scale across individuals (Hess and 

Rose, 2012; Hess and Train, 2017). The practitioners applying this RPL model usually cite 

McFadden and Train’s (2000) work to justify their model choice, as it shows that any 

choice model, with any distribution of preferences, can be approximated to any degree 

of accuracy by a mixed logit model and its most widely used derivation, based on 

random coefficients. However, this is not true if the assumed variance−covariance 

matrix of the utility coefficients in the RPL is diagonal, as is the case in an RPL model with 

uncorrelated utility coefficients.   

A more flexible version, the RPL model with correlated utility coefficients, is used less 

frequently, probably due to different issues related to the estimation (local maxima) and 

non-trivial interpretation. The correlation matrix of the utility coefficients captures not 

only the correlation of the random parameters but also the correlation caused by scale 

heterogeneity, and these two effects cannot be identified empirically (Hess and Train, 

2017).  

Indeed, the RPL model with correlated coefficients is closely related to the widely 

discussed topic of scale heterogeneity. As stressed by Hess and Rose (2012), scale 

heterogeneity cannot be identified separately from other sources of heterogeneity and 

represents a specific type of correlation among utility coefficients. Scale heterogeneity 
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is usually introduced in the literature as the influence of unobserved factors on an 

individual’s choices, which can differ between them. An individual’s choices can mainly 

be determined by the included factors and thus are less influenced by unobserved 

heterogeneity, leading to utility coefficients that are large in magnitude. On the 

contrary, the choices influenced mainly by unincluded factors are expected to be small 

in magnitude. This is called scale heterogeneity, because the scale of the specific utility 

differs between individuals. For some individuals, all their coefficients are larger (or 

smaller) than their corresponding means and are therefore correlated.  

However, the correlation between utility coefficients can also appear due to behavioural 

phenomena. For example, people who support flora protection can also be supportive 

of fauna protection, creating a positive correlation between random flora and fauna 

coefficients. On the contrary, people who support flora protection can disapprove of the 

building of new recreational parks, creating a negative correlation between the random 

coefficients of fauna and recreational parks. 

The RPL models with full correlation among utility coefficients allow for all sources of 

correlation, including both scale heterogeneity and heterogeneity due to behavioural 

phenomena. These sources, however, cannot be empirically disentangled in any model. 

The RPL models with correlated random parameters require the estimation of a 

significantly higher number of parameters and thus increase not only the computation 

time but also the risk of local maxima. The estimation of the full variance–covariance 

matrix of the random coefficient can also increase the number of estimated parameters 

to the point that simulation-based methods become impractical, because the number 
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of draws required for estimation grows exponentially with the number of parameters 

(Cherchi and Guevara, 2012). 

Due to the computational burden, the estimated model can be restricted, avoiding the 

estimation of a full covariance matrix. These restrictions might be defensible in a specific 

case study, but the interpretation of the results needs to recognize the implications of 

the restrictions. For example, in a scaled multinomial logit model, the utility coefficients 

are allowed to vary only because of scale heterogeneity. Therefore, the scale parameter 

will capture any other existing source of variation in the utility coefficients. The 

generalized multinomial logit model was proposed to capture scale heterogeneity. 

However, given that it cannot be disentangled from other sources, the model estimates 

include the combined impact of all the sources of correlation of the parameter 

representing scale heterogeneity. The interpretation of the estimated coefficients must 

take this fact into account, and, as stated by Hess and Train (2017), that is not 

undertaken properly in many papers in the environmental valuation literature. 

The research question of this paper is whether the estimated correlations in the RPL 

model, which include not only the correlation due to behavioural phenomena but also 

the correlation caused by scale heterogeneity, can be used for the interpretation of the 

results, allowing deeper insights into the analysed data. The empirical identification of 

the two concepts is not possible, but, under some assumptions, we can at least draw a 

conclusion regarding the sign of the correlation caused by the behaviour phenomena. 

Therefore, this paper seeks to propose a procedure that allows for the interpretation of 

some of the estimated correlations. To achieve this goal, we propose a theoretical 

setting accounting for correlation due to a behavioural phenomenon and correlation 
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induced by scale heterogeneity. Then, we define a very simple procedure to interpret 

the estimated correlations that consists of two steps. Firstly, the signs of the attributes 

corresponding to the negative mean coefficients are reversed so that the re-estimated 

RPL has all positive mean coefficients. Secondly, only negative correlations are 

interpreted. This interpretation obviously depends on the reversed signs of the 

attributes. If one of the pair of attributes of which the correlation is being analysed has 

a reversed sign, the estimated correlation must be interpreted with the opposite sign. If 

neither of the two attributes has a reversed sign, their estimated correlation is 

interpreted with the estimated sign. The proposed procedure is applied to three typical 

cases of environmental valuation carried out in the Basque Country.  

Focusing on the environmental literature, the use of the RPL model in discrete choice 

model applications is overwhelming. Nevertheless, the application of the restrictive 

version of the RPL with uncorrelated utility coefficients clearly prevails. There are 

numerous examples of that approach in outdoor recreation (Murdock, 2006), 

environmental aspects of food production systems and environmental labelling (Bjørner 

et al., 2004; Carlsson et al., 2007; Lusk et al., 2007), landscape creation and conservation 

(Birol et al., 2006; Campbell, 2007; Scarpa et al., 2007) and hazard waste management  

(Layton, 2000). 

In spite of the computational complexity and non-trivial interpretation, the body of work 

based on the use of the RPL model with correlated parameters has grown markedly in 

the last years. Revelt and Train’s (1998) study represents one of the first applications to 

estimate the impact of rebates and loans on US residential customers’ choice of 

efficiency level for refrigerators. Table 1 presents examples of environmental valuation 
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studies using the RPL model with correlated parameters. These studies apply this 

approach because of its flexibility, but they do not focus on the estimation and 

interpretation of scale heterogeneity and generally do not pay attention to the 

interpretation of the estimated correlations. 

Table 1. Environmental valuation studies using the RPL model with correlated 

parameters 

Topic References 
Angler site destination  Von Haefen and Domanski (2018) 

Climate change mitigation Layton and Brown (2000), Ščasný et al. (2017), Alberini 
et al. (2018) 

Fauna  conservation  Hanley et al. (2010), Wakamatsu et al. (2018)  
Green pricing programme  Bae and Rishi (2018) 

Landscape and forest 
management 

Giergiczny et al. (2015), Czajkowski et al. (2016a), 
Valasiuk et al. (2018), Frontuto et al. (2020), Tyrväinen 
et al. (2020)  

Protection of cold-water 
coral marine ecosystems 

Aanesen et al. (2015), Tuhkanen et al. (2016), 
Armstrong et al. (2017)  

Waste treatment and 
household recycling Woldemariam et al. (2016), Czajkowski et al. (2019b)  

Wetland protection Carlsson et al. (2003), Glenk and Martin-Ortega (2018), 
Glenk et al. (2019) 

Recreation behaviour Provencher and Bishop (2004), Scarpa et al. (2008), 
Thiene et al. (2017) 

Sustainable agricultural 
practices Waldman et al. (2017) 

 

There are some applications of the RPL with correlated parameters that focus on the 

non-trivial interpretation of scale heterogeneity (Hess and Train, 2017). Examples of this 

approach focusing on forest management can be found in the studies by Czajkowski et 

al. (2014a, 2014b,  2015, 2016b). Some authors include the correlation of the 

parameters in other structures. Hybrid choice models based on RPL can include this 

feature easily, but the computational burden, which is already very high for this kind of 
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model, increases even more. Examples of this approach can be found in the studies by 

Zawojska et al. (2019) and Faccioli et al. (2020), which focus on peatland restoration and 

renewable energy development, respectively. 

Examples of the use of the RPL model with correlated parameters in transport 

economics include, for example, the studies by O’Neill and Hess (2014), who study the 

decision of workplace location of one member of a two-person household that affects 

the travel time and salary of both members, Hess et al. (2017), who analyse travellers’ 

choices of route by car and public transport in Singapore, and Hou et al. (2018), who 

analyse crash frequency in freeway tunnels. 

In other areas, the use of the RPL model with correlated parameters has also been 

increasing steadily. In education, Czajkowski et al. (2019a) study the preferences of 

young people for higher education, in labour economics, Eriksson and Kristensen (2014) 

estimate individuals’ willingness-to-pay values for fringe benefits and job amenities and, 

in cultural economics, Morey and Greer Rossmann (2003) focus on the preservation of 

marble monuments. 

The rest of the paper is organized as follows. Section 2 presents the theoretical model, 

which is followed by a description of the analysed case studies in Section 3. The last 

section concludes. 

2. The model 

Let the utility that individual ! obtains from alternative " in choice situation # be denoted 

as follows:  

$%&'∗ = *+%,--.1%&' + *1%,--.2%&' + 3%&'∗  
 

(1) 
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where ,--.1%&'  and ,--.2%&'  are observed attributes, *+% and *1% are their 

corresponding utility coefficients, which vary randomly over individuals, and 3%&'∗ is a 

random term that represents the unobserved component of utility.  

Sometimes, some explanatory factors that influence respondents’ choices are not 

included in the model. These factors can differ over respondents, and some respondents 

might be more affected by these factors than others such that their choices appear to 

be more random. This phenomenon, called scale heterogeneity, can be modelled by 

rewriting the utility function (1) as follows:  

$%&'∗ = *+%,--.1%&' + *1%,--.2%&' +
1
4%

3%&', 
 

(2) 
 

	
where 4% varies over people and is inversely proportional to the standard deviation of 

the error term. Equation (2) can be written as  

4%$%&'∗ = 4%*+%,--.1%&' + 4%*1%,--.2%&' + 3%&'  
 

$%&' = 6+%,--.1%&' + 61%,--.2%&' + 3%&'. 
 

 

(3) 
 

Let us assume that 4% and *% are independent and  *+% and *1% are normally 

distributed according to 

*% = 8*+%*1%9~; <8
=>?@=>A@9 , B

C>?@1

C>?@>A@ C>A@1 DE. 
 

(4) 
 

Let us also assume that the parameter representing scale heterogeneity 4% is 

lognormally distributed with F(4%) = =I@  and JKL(4%) = CI@1 . Thus, 4% = exp	(4%∗), 

where 4%∗~;Q=I@∗ , CI@∗ 1R and F(4%) = S
TUV@∗ WXV@

∗ A

A Y
, JKL(4%) = 8SZV@∗ A −

19 S81UV@∗ WZV@∗
A9. 
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If the original coefficients *+% and *1% in (2) are normally distributed according to 

equation (4), then the expected values of 6+% and 61% are  

F \6+%61%] = F 84%*+%4%*1%9 = 8=I@	=>?@=I@	=>A@9 (5) 
 

and the variance−covariance matrix (proofs are in the Appendix)  

JKL \6+%61%] = JKL 84%*+%4%*1%9 =	

^
CI@1 C>?@1 + CI@1 Q=>?@R

1 + C>?@1 Q=I@R
1 C>?@>A@ 8CI@1 + _=I@`

19 + CI@1 =>?@=>A@
C>?@>A@ 8CI@1 + _=I@`

19 + CI@1 =>?@=>A@ CI@1 C>A@1 + CI@1 Q=>A@R
1 + C>A@1 Q=I@R

1 a. 
(6) 

 

  

As the estimated utility coefficients are 6+% and 61%, we do not estimate the covariance 

bcd(*+%	, *1%	) = C>?@>A@ , which we assume to be caused by a behavioural 

phenomenon, but we estimate instead the transformed covariance affected by scale 

heterogeneity: 

bcd(6+%	, 61%	) = C>?@>A@ 8CI@1 + _=I@`
19 + CI@1 =>?@=>A@ . 

 
(7) 

 
As can easily be seen, bcd(6+%	, 61%	) = bcd(*+%	, *1%	) = C>?@>A@  only if there is no 

scale heterogeneity, that is, if CI@1 = 0 and =I@ = 1. 

The first term C>?@>A@ 8CI@1 + _=I@`
19 in (7) can be positive or negative, because the 

positive term 8CI@1 + _=I@`
19 magnifies or diminishes the original (positive or negative) 

covariance C>?@>A@ . The second term CI@1 =>?@=>A@  can be positive or negative, 

depending on the signs of the means =>?@  and =>A@ . As the parameters of scale 

heterogeneity (CI@1  and =I@) cannot be identified, there is no possibility of extracting 

the original covariance C>?@>A@  from an estimation of the transformed bcd(6+%	, 61%	) 

for interpretational purposes. 
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Nevertheless, the means =>?@  and =>A@  are to a certain extent under the control of the 

researcher. For example, if the sign of attribute ,--.1 is reversed, the sign of the mean 

of the distribution of its coefficient would be reversed. The main idea of our proposed 

procedure is as follows. If the two attributes are defined so that the signs of the 

corresponding means are both positive, then the second term CI@1 =>?@=>A@  of the 

transformed covariance bcd(6+%	, 61%	) defined in (7) is always positive. In this case, we 

know that a positive constant is added to the first term C>?@>A@ 8CI@1 + _=I@`
19. 

Therefore, if the estimated bcd(6+%	, 61%	) is negative in this case, it must be due to the 

fact that the original covariance C>?@>A@  is negative. Obviously, if the sign of one 

attribute is reversed, the sign of the original covariance C>?@>A@  is also reversed.  

To describe all the concepts analysed above in a more numerical way, let us 

assume different specific numerical values of scale and preference heterogeneity to 

identify the cases in which the original covariance C>?@>A@  deviates more from the 

estimated covariance defined in (7) and the cases in which it deviates less. Assuming 

that F(*f%) = =>g@ = 0.5, i = 	1,2, we generate two cases of low (J(*f%) = 0.11, i =

	1,2) and high (J(*f%) = 0.51, i = 	1,2) preference heterogeneity for the two 

attributes. These cases are combined with low (F(4%) = 1, JKL(4%) = 0.01) and high 

levels of scale heterogeneity (F(4%) = 1, JKL(4%) = 0.4) and with six different 

correlations between the two parameters representing low, medium and high negative 

and positive correlations (−0.9, −0.5,−0.1, 0.1, 0.5, 0.9). 
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Table 2. Differences between transformed and original correlations 

 Low level of pref. heterogeneity High level of pref. heterogeneity 
 F(*+) = 0.5 
 F(*1) = 0.5 

 JKL(*+) = 0.11 
 JKL(*1) = 0.11 

 F(*+) = 0.5 
 F(*1) = 0.5 

 JKL(*+) = 0.51 
 JKL(*1) = 0.51 

Small scale Large scale Small scale Large scale 
	F(4) = 1   

JKL(4) = 0.01 
F(4%) = 1   

JKL(4) = 0.4 
	F(4) = 1   

JKL(4) = 0.01 
F(4) = 1   

JKL(4) = 0.4 
Low 

positive 
correlation 

bcLL(*+, *1) = 0.1 0.18 0.79 0.01 0.20 

Medium 
positive 

correlation 
bcLL(*+, *1) = 0.5 0.10 0.44 <0.01 0.11 

High 
positive 

correlation 
bcLL(*+, *1) = 0.9 0.02 0.09 <0.01 0.02 

Low 
negative 

correlation 
bcLL(*+, *1) = −0.1 0.22 0.96 0.01 0.24 

Medium 
negative 

correlation 
bcLL(*+, *1) = −0.5 0.30 1.32 0.02 0.33 

High 
negative 

correlation 
bcLL(*+, *1) = −0.9 0.38 1.67 0.02 0.42 

 

Table 2 presents the differences between the population correlation bcLL(4*+%, 4*1%) 

and the population assumed value of bcLL(*+%, *1%).1 The specific cases presented in 

Table 2 are obtained by combinations of low and high levels of preference and scale 

heterogeneity. A low level of preference heterogeneity (third and fourth columns) is 

represented by low standard deviations of the utility coefficients (0.1), and a high level 

of preference heterogeneity (fifth and sixth columns) is represented by a high standard 

deviation (0.5). These two cases are combined with a low level of scale heterogeneity 

(F(4) = 1, JKL(4) = 0.01) presented in the third and fifth columns and with a high 

level of scale heterogeneity (F(4) = 1, JKL(4) = 0.4) presented in the fourth and sixth 

columns. These combinations of low and high levels of preference and scale 

                                                             
1 The detailed numerical values of these correlations together with a graphical explanation of the change 
in the original correlations into the transformed correlations (which are finally estimated in an RPL model) 
are presented in Tables A2.1−A2.4 in the Appendix. 
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heterogeneity are analysed for low (0.1 and -0.1), medium (0.5 and -0.5) and high (0.9 

and -0.9) positive and negative correlations (of the original parameters, (bcLL(*+, *1)) 

presented in the rows of Table  2. 

As explained above, bcd(4*+%, 4*1%) = bcd(*+%, *1%) + l, where l ≥ 0 for 

=>?@, =>A@ > 0. That is why the differences bcLL(4*+%, 4*1%) - bcLL(*+%, *1%) are 

always positive, as *+% = *1% = 0.5 > 0. The maximum value of this difference is two 

for the extreme case in which the correlations differ completely, bcLL(4*+%, 4*1%) - 

bcLL(*+%, *1%) = 1 − (−1) = 2, and the minimum value is zero for the case in which 

the two correlations are equal, bcLL(4*+%, 4*1%) = bcLL(*+%, *1%). 

The main and expected conclusion that can be drawn from Table 2 is that the columns 

corresponding to low-level scale heterogeneity (third and fifth columns) represent 

smaller differences than the columns of high-scale heterogeneity (fourth and sixth 

columns). The second conclusion is that the differences are generally smaller for high 

levels of preference heterogeneity (fifth and sixth columns).  

The last row in the fourth column of Table 2 presents the largest difference. In this case,  

the original bcd(*+%, *1%) = −0.9 is transformed by large-scale heterogeneity into a 

positive correlation of 0.77. The difference is therefore 1.67 = 0.77 − (−0.9). The 

bottom-right corner of Table A2.2 in the Appendix shows graphically this transformation 

of a large negative original correlation of -0.9 (behavioural phenomenon) by large-scale 

heterogeneity into a positive correlation of 0.77 of the estimated parameters. The right-

hand side of Table A2.2 shows the more severe transformations of the original negative 

correlations among all the analysed cases. The left-hand side of the same Table A2.2 

shows that even a low level (JKL(4) = 0.01) of scale heterogeneity can have a big 
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impact on the original correlations if the preference heterogeneity is small (JKL(*+%) =

JKL(*1%) = 0.11). In this case, the corresponding differences in the low part of the 

third column of Table 2 range from 0.22 to 0.38. The other cases with low preference 

heterogeneity but with positive original correlations are presented in Table A2.1 and the 

upper part of the third and fourth columns of Table 2. The differences are relatively small 

for low levels of scale heterogeneity and range from 0.02 to 0.18. For high levels of 

heterogeneity, the differences increase and range from 0.09 to 0.79, as can also be 

observed in Table A2.1. 

Given that only cases with =>?@ , =>A@ > 0 are considered, according to (7), if the 

transformed bcd(4*+%, 4*1%) is negative, the original  bcd(*+%, *1%) must also be 

negative. On the other hand, if bcd(4*+%, 4*1%) is positive, the original bcd(*+%, *1%) 

can be either negative or positive. Therefore, the proposed conservative rule is to 

interpret only the estimated negative correlations that must correspond to the original 

negative correlations. 

The proposed rule is based on the idea that the original covariance that we would like 

to interpret is always “shifted” by scale heterogeneity “to the right-hand side”. A small 

shift of a negative correlation keeps the final correlation negative, and a large skip 

changes its sign. That is why, we propose to interpret only the negative correlations.  

 

 3. Case studies 

Our empirical results are based on data from three stated preference choice 

experiments, described in Table 3. These three case studies have been already published 
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and described in detail in the literature (Hoyos et al., 2009, 2012; de Ayala et al., 2015). 

The objective of their use here is to show the applicability of the proposed procedure, 

as they can be considered typical environmental valuation case studies.  

The first case study (Hoyos et al., 2009) presents an economic valuation of Mount 

Jaizkibel, a natural area located in the Basque Country. Mount Jaizkibel is a 2400 ha 

natural site in the Basque Country that contains 15 zones declared to be of high 

ecological interest by the European Union, and it was incorporated into the European 

Natura 2000 network in 2004. A discrete choice experiment was conducted to 

determine the non-market values of the main environmental attributes of this natural 

site. The proposed programmes of protection aimed to prevent future environmental 

degradation at the site provoked by human activities. The attributes and levels 

considered in this study are presented in Table 3. The levels with asterisks represent the 

status quo scenario. The four non-cost attributes considered in the study were (1) 

landscape, measured by the percentage of surface area on which today’s landscape 

could be seen in the future; (2) flora, measured by the future level of protection of 

today’s population of armeria euskadiensis endemism; (3) avifauna, measured by the 

future level of protection of today’s population of lesser and peregrine falcons; and (4) 

seabed, measured by the future level of protection of today’s extension of red algae. 

The proposed payment vehicle was an annual contribution by all Basque citizens to a 

foundation exclusively dedicated to protecting Mount Jaizkibel. 

The second environmental valuation case study, described in detail by Hoyos et al. 

(2012), focuses on the area called Garate-Santa Barbara, which is located in the Basque 

province of Gipuzkoa. It covers about 142 ha of private property and was proposed as 
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part of the Natura 2000 network in 2003 as a site of community importance due to the 

presence of five forests and other environmentally valuable ecological habitats. The 

objective of the study was to evaluate the social preferences of the wider population on 

the regional scale for the key attributes of the protected site. These attributes were 

associated with the use value of agricultural development (vineyards), commercial 

forestry and recreation and the non-use values linked to the conservation of the natural 

forest remnants and biodiversity (endangered species). The resulting evaluation of 

social preferences was then used to assess the social desirability of potential future 

management plans. The information included in the discrete choice experiment referred 

to the potential effects of various levels of protection in terms of the following 

attributes: (1) native forest, represented by the percentage of land area covered by cork 

oak woodland; (2) the percentage of land area covered by vineyards; (3) exotic tree 

plantations, represented by the land area covered by productive pine forest plantations; 

(4) biodiversity, based on the number of endangered species of flora and fauna; (5) the 

level of conservation of recreational and cultural facilities; and (6) a cost attribute 

regarding the price of the conservation programme. Similar to the previous case study, 

the proposed payment vehicle was an annual contribution by all Basque citizens to a 

foundation exclusively dedicated to protecting the site. 

The last study, described by de Ayala et al. (2015), is a multidimensional landscape 

valuation applied to an area called Llanada Alavesa, located in the south of the Basque 

Country. Different types of landscapes, natural habitats and human activities coexist in 

this area, including forests, farming activities, industry, urban areas, infrastructure and 

swamps. The Basque Country adopted the European Landscape Convention (ELC) in 

2011; thus, the Basque authorities made a commitment to promoting the ELC’s 
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principles and objectives. Therefore, the Basque authorities should protect, manage and 

plan the different landscapes so that their quality is preserved and improved. In this 

context, this study tried to promote these principles and a future landscape law, 

choosing the landscapes of a specific area of the Basque province of Araba, which is 

suffering from different alterations. The attributes and levels considered in the study are 

presented in Table 3 and include (1) native forests, represented by the percentage of 

the area covered by native forests; (2) intensive farming, represented by the percentage 

of the land devoted to this activity; (3) organic farming, measured by the percentage of 

the land taken up by organic farming; (4) cemented surface, represented by the 

percentage of the surface occupied by urban, industrial and economic activity sites as 

well as by infrastructure; and (5) recreation areas, measured by the level of conservation 

and protection of recreation areas (e.g. swamps and picnic areas) and cultural heritage 

sites (e.g. megalithic monuments and the branch of the way of St James). The proposed 

payment vehicle was an annual payment through a new tax to be paid to an organization 

exclusively dedicated to coordinating the action plans. 

Table 3 presents the basic information regarding the three studies. All three studies used 

a three-alternative setting, and the number of choice occasions that each person faced 

in the experiment varied between two and six. The number of respondents was also 

relatively low (from 218 to 358), and the number of observations varied from 687 to 

1326. The attributes listed in Table 3 can be considered typical in environmental studies 

described by non-cost attributes with levels set on a particular percentage or Likert scale 

level.  
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Table 3. Empirical data sets 

            
Case study #1: Mount Jaizkibel Attributes Levels 

    Landscape  40%*, 60%, 80%, 100% 
Number of Flora 50%*, 70%, 85%, 100% 

alternatives choice occasions respondents observations Fauna 25%*, 50%, 75%, 100% 
3 2 358 687 Seabed 50%*, 70%, 85%, 100% 

        Annual payment (€) 0*, 5, 10, 15, 20, 30, 50, 100 

      
Case study #2: Garate-Santa Barbara Attributes Levels 

    Native forest  2%*, 10%, 20%, 30% 
Number of Biodiversity  25*, 15, 10, 5 

alternatives choice occasions respondents observations Recreation  Low*, medium, high, very high 

3 6 221 1326 
Exotic tree 
plantations  40%*, 30%, 25%, 15% 

    Vineyards  40%*, 30%, 20%, 10% 
        Annual payment (€) 0*, 5, 10, 30, 50, 100 

      
Case study #3: Llanada Alavesa  Attributes Levels 

    Intensive farming 15%, 20%, 29%*, 35% 
Number of Organic farming  8%, 16%*, 25%, 30% 

alternatives choice occasions respondents observations Native forests 39%*, 45%, 50%, 30% 
3 6 218 1308 Cemented surface 14%*, 16%, 20%, 25% 

    Recreation areas 
Very high,  high, medium*, 
low 

        Annual payment (€) 0*, 5, 15, 30, 50 
Sources: Hoyos et al. (2009, 2012), de Ayala et al. (2015). Levels with asterisks represent the status quo scenario. 
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Table 4. Case study #1: Mount Jaizkibel  

MNL     
RPL with correlated 
parameters    

 
         
  Coef. Std Error      Coef. Std Error   
Alternative specific constants     Alternative specific constants    
ASC1 0.630 0.304 **  ASC1 13.774 4.909 *** 
ASC2 0.505 0.326    ASC2 13.618 4.870 *** 
         
Attributes     Attributes (means)    
Landscape 0.016 0.003 ***  Landscape 0.044 0.018 ** 
Flora 0.008 0.004 *  Flora 0.026 0.017   
Avifauna 0.008 0.002 ***  Avifauna 0.023 0.011 ** 
Seabed 0.008 0.002 ***  Seabed 0.016 0.009 * 
Payment  -0.014 0.002 ***  Payment (sign reversed) -3.449 0.442 *** 

         
     Attributes (std deviations)    
     Landscape 0.077 0.036 ** 
     Flora 0.114 0.046 ** 
     Avifauna 0.061 0.026 ** 
     Seabed 0.040 0.020 ** 
     Payment (sign reversed) 2.022 0.268 *** 
          
Log-likelihood -587.1       -512.6     
Number of parameters 7     22   
Observations 687     687   
AIC 1188.2     1069.1   
BIC 1219.9       1168.8     

         
AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.      
***, ** and *: significance at the 1%, 5% and 10% levels.       
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Tables 4, 6 and 8 present the estimation results of the standard MNL and RPL models 

with correlated random parameters for the three data sets analysed. Both the MNL and 

the RPL models are presented with LogL, AIC and BIC values, so, for the RPL models, an 

important increase in fit can be observed. The random coefficients of the non-cost 

attributes are assumed to be normally distributed and the cost attribute is assumed to 

be log-normally distributed, but the sign of the attribute is reversed, which is the usual 

and recommended (Daly et al., 2012) approach in the literature.  

As can be seen in Table 4, all the estimated means of the non-cost attributes are positive 

in this case, so no auxiliary RPL model is needed for the interpretation of the correlation 

matrix of the random coefficients. Tables 6 and 8 present, apart from the standard RPL 

model, an auxiliary RPL model in which the signs of the non-cost attributes’ 

corresponding negative estimated mean coefficient in the standard RPL are reversed.  

The interpretation of the estimated standard RPL models is not a key objective of this 

paper and can be found in already-published works (Hoyos et al., 2009, 2012; de Ayala 

et al., 2015). These papers present the estimations and interpretations of the same 

models with slight variations, which include some interactions with sociodemographic 

variables. In this paper, we focus on the application of the proposed procedure for 

interpreting the estimated correlation matrices of the random coefficients, and that is 

why we analyse only the RPL model without interactions. Tables 5, 7 and 9 present these 

matrices for the three case studies. 
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Table 5. Case study #1: Mount Jaizkibel − Estimated correlation matrix 

  Signs of the non-cost attributes unchanged 
       

   Landscape Flora Avifauna Seabed Payment 
CV           (sign reversed) 

175% Landscape 1.00 0.88 0.70 0.62 -0.27 
438% Flora 0.88 1.00 0.81 0.55 -0.50 
265% Avifauna 0.70 0.81 1.00 0.00 -0.23 
250% Seabed 0.62 0.55 0.00 1.00 -0.38 
59% Payment (sign reversed) -0.27 -0.50 -0.23 -0.38 1.00 

 

Table 5 presents the estimated correlation matrix corresponding to the RPL estimation 

included in Table 4 based on the first case study: Mount Jaizkibel (Hoyos et al., 2009). 

The positive correlations between the coefficients of non-cost attributes cannot be 

interpreted according to the proposed rule. We can interpret only the negative 

correlations between the coefficients of Payment and all the non-cost attributes. As the 

sign of the Payment attribute was reversed, the interpretation of these correlations 

must be made with a reversed sign. A positive correlation between the coefficients of 

Payment and all the non-cost attributes indicates that people with a high coefficient of 

a non-cost attribute (that is, people who are in favour of protecting the landscape, flora, 

avifauna or seabed) have a low (in absolute values) cost coefficient, that is, a higher WTP 

for these attributes. This is not an unexpected result, and we can conclude, that, in this 

case study, the interpretation of the correlations did not offer valuable additional 

information on people’s preferences regarding our environmental attributes.  
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Table 6. Case study #2: Garate-Santa Barbara  

MNL     RPL with correlated parameters     RPL with correlated parameters    
   Signs of some non-cost attributes changed 
              
  Coef. Std Error      Coef. Std Error      Coef. Std Error   
Alternative specific constants     Alternative specific constants     Alternative specific constants    
ASC1 -0.172 0.254    ASC1 3.449 0.636 ***  ASC1 3.466 0.635 *** 
ASC2 -0.266 0.258    ASC2 3.278 0.641 ***  ASC2 3.269 0.643 *** 

              
Attributes     Attributes (means)     Attributes (means)    
Native forest 0.046 0.005 ***  Native forest 0.099 0.014 ***  Native forest 0.079 0.012 *** 
Vineyards 0.007 0.005    Vineyards -0.012 0.012    Vineyards (sign reversed) 0.005 0.011   
Exotic tree plantations -0.007 0.006    Exotic tree plantations 0.005 0.016    Exotic tree plantations 0.000 0.014   
Biodiversity -0.043 0.010 ***  Biodiversity -0.123 0.033 ***  Biodiversity (sign reversed) 0.118 0.032 *** 
Recreation 0.015 0.023    Recreation 0.012 0.061    Recreation 0.006 0.017   
Payment (sign reversed) -0.017 0.001 ***  Payment (sign reversed) -3.351 0.236 ***  Payment (sign reversed) -3.392 0.206 *** 

              
     Attributes (std deviations)     Attributes (std deviations)    
     Native forest 0.075 0.018 ***  Native forest 0.065 0.017 *** 
     Vineyards 0.065 0.019 ***  Vineyards (sign reversed) 0.058 0.016 *** 
     Exotic tree plantations 0.084 0.023 ***  Exotic tree plantations 0.074 0.019 *** 
     Biodiversity 0.232 0.039 ***  Biodiversity (sign reversed) 0.217 0.035 *** 
     Recreation 0.156 0.095    Recreation 0.145 0.083 * 
     Payment (sign reversed) 2.611 0.215 ***  Payment (sign reversed) 2.379 0.294 *** 
              

Log-likelihood -1208.7        -807.4        -808.2     
Number of parameters 8     29     29   
Observations 1326     1326     1326   
AIC 2433.4     1672.8     1674.5   
BIC 2474.9        1823.3        1825.0     

              
AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.           
***, ** and *: significance at the 1%, 5% and 10% levels.            
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Table 7. Case study #2: Garate-Santa Barbara − Estimated correlation matrix 

 Signs of the non-cost attributes unchanged 
       

  
Native 
forest Vineyards 

Exotic tree 
plantations Biodiversity Recreation Payment  

       
 (sign 

reversed) 
Native forest 1.00 -0.33 -0.45 -0.22 0.12 0.05 
Vineyards -0.33 1.00 0.01 0.00 -0.23 -0.59 
Exotic tree plantations -0.45 0.01 1.00 0.24 -0.25 0.45 
Biodiversity -0.22 0.00 0.24 1.00 0.11 -0.16 
Recreation 0.12 -0.23 -0.25 0.11 1.00 -0.34 
Payment (sign 
reversed) 0.05 -0.59 0.45 -0.16 -0.34 1.00 
       
       
 Signs of some non-cost attributes changed 
       

 
Native 
forest Vineyards 

Exotic tree 
plantations Biodiversity Recreation Payment 

    
(sign 

reversed)   
(sign 

reversed)   
(sign 

reversed) 
Native forest 1.00 0.27 -0.84 0.28 0.41 -0.46 
Vineyards (sign 
reversed) 

0.27 1.00 0.19 0.03 0.47 0.44 

Exotic tree plantations -0.84 0.19 1.00 -0.06 -0.02 0.53 
Biodiversity (sign 
reversed) 

0.28 0.03 -0.06 1.00 -0.06 0.07 

Recreation 0.41 0.47 -0.02 -0.06 1.00 -0.46 
Payment (sign 
reversed) 

-0.46 0.44 0.53 0.07 -0.46 1.00 

 

Table 7 presents the estimated correlation matrices corresponding to the RPL 

estimations included in Table 6, based on the second case study, which focuses on the 

region of Garate-Santa Barbara (Hoyos et al., 2012). Table 6 is in this case divided into 

two blocks. The left-hand block presents the RPL estimation with the original definition 

of all the attributes. As can be seen, two of the non-cost mean coefficients are negative 

(Vineyards and Biodiversity), and that is why an auxiliary RPL estimation is needed for 

the application of the proposed procedure. The signs of the two attributes (Vineyards 

and Biodiversity) are reversed in the RPL estimation presented in the right-hand block 
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of Table 6. As expected, the outcomes in the two blocks of Table 6 are very similar (only 

the estimated mean coefficients of Vineyards and Biodiversity are reversed), but their 

corresponding correlation matrices, presented in Table 7, are very different. 

The correlations in the first correlation matrix in Table 7, denoted as Signs of the non-

cost attributes unchanged, are, according to (7), affected positively or negatively by the 

(positive and negative) means of the assumed distributions, and their direct 

interpretation is therefore impossible. The second correlation matrix in Table 7 presents 

the correlation based on (7), and all the means of the non-cost attributes are positive. 

There are three large negative correlations. These are Native forest−Exotic tree 

plantations, Native forest−Payment and Recreation−Payment. The signs of these 

correlations are perfectly in line with our a priori hypotheses. The first correlation 

(Native forest−Exotic tree plantations), for example, is negative, because people with an 

above-average WTP value for Native forest are likely to have a below-average WTP for 

Exotic tree plantations. This is because people who are in favour of Native forest are 

expected to dislike policies supporting Exotic tree plantations, which are usually devoted 

to the timber business. The sign of the second (and the third) correlation between 

Native forest (Recreation) and Payment must be reversed, because the sign of the 

attribute payment has been reversed for the estimation. The inverted positive 

correlation of the two attributes indicates that people who are in favour of Native forest 

and Recreation areas are expected to have a lower negative payment coefficient (in 

absolute values), leading to a higher WTP value for the other environmental attributes. 
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Table 8. Case study #3: Llanada Alavesa  

MNL     
RPL with correlated 
parameters    RPL with correlated parameters    

  Signs of some non-cost attributes changed 
             
  Coef. Std Error      Coef. Std Error     Coef. Std Error   
Alternative specific constants     Alternative specific constants    Alternative specific constants    
ASC1 0.690 0.121 ***  ASC1 1.662 0.182 *** ASC1 1.662 0.182 *** 
ASC2 0.657 0.119 ***  ASC2 1.589 0.182 *** ASC2 1.589 0.182 *** 

             
Attributes (means)     Attributes (means)    Attributes (means)    
Intensive farming 0.016 0.012    Intensive farming 0.017 0.020   Intensive farming 0.017 0.020   
Organic farming 0.056 0.013 ***  Organic farming 0.090 0.023 *** Organic farming 0.090 0.027 *** 
Native forests 0.036 0.013 ***  Native forests 0.049 0.021 ** Native forests 0.049 0.021 ** 
Cemented surface 0.008 0.016    Cemented surface -0.007 0.027   Cemented surface (sign reversed) 0.007 0.027   
Recreation area 0.256 0.042 ***  Recreation area 0.398 0.072 *** Recreation area 0.398 0.072 *** 
Payment (sign reversed) -0.051 0.003 ***  Payment (sign reversed) -2.444 0.121 *** Payment (sign reversed) -2.444 0.121 *** 

             
     Attributes (std deviations)    Attributes (std deviations)    
     Intensive farming 0.119 0.028 *** Intensive farming 0.119 0.028 *** 
     Organic farming 0.154 0.029 *** Organic farming 0.154 0.029 *** 
     Native forests 0.138 0.027 *** Native forests 0.138 0.027 *** 
     Cemented surface 0.073 0.036 ** Cemented surface (sign reversed) 0.073 0.036 ** 
     Recreation area 0.330 0.123 *** Recreation area 0.330 0.123 *** 
     Payment (sign reversed) 1.223 0.127 *** Payment (sign reversed) 1.223 0.117 *** 
             

Log-likelihood -1228.3        -1091.4       -1091.4     
Number of parameters 8     29    29   
Observations 1308     1308    1308   
AIC 2472.6     2240.8    2240.8   
BIC 2514.0        2390.9       2390.9     

             
AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.          
***, ** and *: significance at the 1%, 5% and 10% levels.           
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Table 9. Case study #3: Llanada Alavesa − Estimated correlation matrix 

 Signs of the non-cost attributes unchanged 
       

  
Intensive 
farming 

Organic 
farming 

Native 
forests 

Cemented 
surface 

Recreation 
area 

Payment 

            
(sign 

reversed) 
Intensive farming 1.00 0.83 0.77 -0.09 -0.30 -0.13 
Organic farming 0.83 1.00 0.86 -0.24 -0.19 -0.14 
Native forests 0.77 0.86 1.00 -0.66 -0.79 -0.28 
Cemented surface -0.09 -0.24 -0.66 1.00 -0.09 0.42 
Recreation area -0.30 -0.19 -0.13 -0.09 1.00 0.48 
Payment (sign 
reversed) 

-0.13 -0.14 -0.28 0.42 0.48 1.00 

       
       
 Signs of some non-cost attributes changed 
       

  
Intensive 
farming 

Organic 
farming 

Native 
forests 

Cemented 
surface 

Recreation 
area 

Payment 

        
(sign 

reversed)   
 (sign 

reversed) 
Intensive farming 1.00 0.83 0.77 0.09 -0.31 -0.13 
Organic farming 0.83 1.00 0.85 0.24 -0.19 -0.14 
Native forests 0.77 0.85 1.00 0.66 -0.13 -0.28 
Cemented surface 
(sign reversed) 

0.09 0.24 0.66 1.00 0.09 -0.42 

Recreation area -0.31 -0.19 -0.13 0.09 1.00 0.48 
Payment (sign 
reversed) 

-0.13 -0.14 -0.28 -0.42 0.48 1.00 

 

Table 9 presents the estimated correlation matrix corresponding to the RPL estimation 

included in Table 8, based on the third case study of Llanada Alavesa, described in  the 

original study by de Ayala et al. (2015). The left-hand block of Table 8 presents the RPL 

estimation with the original definition of all the attributes. One of the non-cost mean 

coefficients (Cemented surface) is negative, and that is why the auxiliary RPL estimation 

is presented in the right-hand block of Table 8. In this case, the corresponding 

correlation matrices presented in Table 9 are relatively similar.  

If we focus on the highest negative correlations between coefficients of non-cost 

attributes, we can easily see that there is a negative correlation between Recreation 
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area and Intensive farming, Organic farming and Native forests. That means that people 

with high positive preferences for recreation areas are likely to have negative 

preferences for farming and forests. This differentiating behaviour of people with high 

preferences for recreational areas can also be observed in the correlations with the 

Payment attribute. The attributes Intensive farming, Organic farming and Native forests 

present a negative correlation with Payment, which, similar to the two previous cases 

(Payment’s sign is reversed), means that people with high preferences for these 

attributes are likely to have a lower coefficient for Payment, leading to a higher WTP for 

these attributes. This outcome is, however, not observed for the Recreation area and 

Cemented surface (sign reversed) attributes, confirming that people with high 

preferences for recreational and cemented surface areas are likely to present lower WTP 

values in general.  

 4. Conclusions 

The random parameter logit model has been widely used in the last two decades to 

analyse data from stated choice surveys, and it has become a relatively standard 

approach because it accounts for unobserved taste heterogeneity. The main goal of this 

paper is to try to disentangle, at least partially, the unobserved preference 

heterogeneity estimated by an RPL model, because any additional information on 

differences between people’s preferences can help to set better environmental policies.  

Therefore, we propose a procedure that helps to interpret the estimated correlations 

between utility random coefficients, correlations that arise due to a behavioural 

phenomenon. The proposed procedure is based on a standard RPL model in which the 

signs of the attributes are adjusted so that the means of the estimated distributions are 
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positive. Three typical cases of environmental valuation carried out in the Basque 

Country are used to show its application. 

The proposed procedure is limited, because only some of the correlations are 

interpreted, but this limitation assures that any incorrect interpretation is avoided. 

Another limitation could be the specific theoretical setting of our model. However, the 

proposed theoretical model is relatively flexible and only the first and second moments 

of the assumed distributions affect the main results. We tested our procedure on dozens 

of hypothetical data sets assuming normal and lognormal distributions of the utility 

coefficients mimicking the real data sets described in Section 3. The main result of the 

shift of the original correlation “to the right-hand side” by scale heterogeneity remains 

valid in spite of the use of different distributions.  

The interpretation of only the negative estimated correlations seems to be a 

shortcoming of the proposed procedure. Nevertheless, it does not mean that only 

negative correlations due to a behavioural phenomenon will be interpreted. A positive 

correlation can be related to two random coefficients with opposite signs of the mean 

parameters, and then one of the corresponding attributes will be included in the 

auxiliary RPL estimation with a reversed sign. This change will also invert the original 

positive correlation that would be estimated as negative so that it is eventually 

interpreted as positive. Which correlations will therefore remain without interpretation 

is highly case dependent. The three cases presented in Section 3 show this fact, and, in 

the first application, based on Hoyos et al. (2009), the interpretation of the correlations 

of the random parameters is very limited. However, in the remaining two studies, the 

interpreted correlations reveal interesting patterns of preference heterogeneity. 
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Another issue of the interpretation can be related to the nature of the original 

correlation. If there is more than one behavioural phenomenon and they cause opposite 

effects on the correlation, these cannot be identified separately, and the proposed 

procedure obviously identifies the final combined effect (Hess and Train, 2017). Suppose 

that two sources of correlation exist for people’s choices among environmental 

programmes in a landscape valuation study that involves native forest and recreational 

area attributes. On the one hand, people who are in favour of native forest can also be 

in favour of recreational areas, as these are usually located in native forests, creating a 

positive correlation between these two coefficients. On the other hand, some people 

who are in favour of native forest tend to dislike recreational areas, because their 

construction and use lead to degradation of native forest, creating a negative 

correlation. The researcher would estimate a combined effect of a specific sign 

depending on which of these two effects prevails. The researcher’s case study expertise 

should help to identify these cases. 

The policy implications of this paper are twofold. Firstly, any application of an RPL model 

should include correlated utility coefficients. Any possible restrictions imposed on these 

correlations should be based on a proper statistical test. A non-justified estimation of an 

RPL model with uncorrelated utility coefficients can imply biased estimation of the 

parameters, and this can lead to biased estimation of the WTP values. Secondly, the 

correlations of the utility coefficients in the estimated RPL model must not be 

interpreted directly. A direct interpretation could lead to incorrect policy setting. An 

incorrectly interpreted positive correlation between the coefficients of, for example, 

landscape and seabed could lead to a completely erroneous conclusion that people who 

like landscape also like seabed and that they are willing to pay more for both attributes. 
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The proposed approach helps to interpret correctly at least part of these correlations, 

which can lead to important policy implications. These interpretations can help to 

disentangle the preference heterogeneity by determining whether a high preference for 

one attribute is related to a high or a low preference for another attribute.  

More research using other data sets will be needed to confirm the gains of our 

procedure. Nevertheless, researchers should start to use the RPL model with correlated 

utility coefficients more broadly. Researchers’ expertise in the setting in which the 

model is applied should also allow for the definition of a priori hypotheses regarding the 

correlations that can be confirmed or rejected by the proposed procedure. The extent 

to which the proposed procedure allows the interpretation of the majority of the 

correlations in line with these hypotheses is still an open question. 
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Appendix A1. Proofs  

Given that !" and #" are independent:  

$(!"#&") = $(!")$(#&") = )*+  ),-+  

$(!"#.") = $(!")$(#.") = )*+),/+  

012(!"#&") 					= $4!"#&" − $(!"#&")6
.

= $(!"#&"). − 2$(!"#&")$(!"#&") + [$(!", #;&")].

= $(!"#&"). − [$(!", #&")]. = $(!".#&".) − [$(!", #&")].

= $(!".)$(#&".) − [$(!")$(#&")].

= $(!".)$(#&".) − [$(!")].[$(#&")].

= [012(!") + [$(!")].][012(#&") + [$(#&")].]

− [$(!")].[$(#&")].

= 012(!")	012(#&") + 012(!")[$(#&")]. + 012(#&")[$(!")]. 					

+ [$(!")].[$(#&")]. − [$(!")].[$(#&")].

= 012(!")	012(#&") + 012(!")[$(#&")]. + 012(#&")[$(!")].

= =*+. =,-+. + =*+. 4),-+6
. + =,-+. 4)*+6

.
 

 

>?@(!"#&", !"#.") = $[!"#&" − $(!"#&")][!"#." − $(!"#.")]	

= $[!"#&"!"#."] − $(!"#&")$(!"#.")	

= $(!".#&"#.") − $(!"#&")$(!"#.")	

= $(!".)$(#&"#.") − $(!"#&")$(!"#.")	
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= A(012(!") + [$(!")].)4>?@(#&", #.") + $(#&")$(#.")6B

− $(!"#&")$(!"#.")	

= A(012(!") + [$(!")].)4>?@(#&", #.") + $(#&")$(#.")6B

− [$(!")].$(#&")$(#.")	

= CA=*+. + D)*+E
.B 4=,-+,/+ + ),-+),/+6F − D)*+E

.),-+),/+	

= =,-+,/+ A=*+. + D)*+E
.B + =*+. ),-+),/+		
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Appendix A2. Tables 

Table A2.1. Low-preference heterogeneity, positive correlation 
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Table A2.2. Low-preference heterogeneity, negative correlation 
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Table A2.3. High-preference heterogeneity, positive correlation 
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Table A2.4. High-preference heterogeneity, negative correlation 
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