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Abstract

Robot-based rehabilitation requires not only the use of a suitable robot, but also

an optimal strategy to guarantee that the interaction forces with the patient fit

his or her impairment level. In this work, an inclusive and seamless control

framework for upper limb rehabilitation robots is presented and validated. The

proposed control framework involves 1) a complete set of training modes (assis-

tive, corrective and resistive) that can be adapted to the needs of the different

states of the patient’s recovery, and 2) three different advanced controllers (posi-

tion, force, impedance) to track safely the force and motion references defined by

the aforementioned training modes. In addition, the proposed framework allows

one to tune the parameters critical to the safety of the user, such as the maxi-

mum interaction forces or the maximum speed of the robot movement. In order

to validate the proposed control framework, a set of experiments have been car-

ried out in the Universal Haptic Pantograph (UHP) upper-limb rehabilitation

robot. Results show that the proposed control framework for robot-mediated

therapy works properly in terms of adaptability, robustness, and safety, which

are crucial factors for use with patients.
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1. Introduction

In recent years, stroke has become one of the most common diseases. Ev-

ery year, more than 15 million attacks are diagnosed [1]. Due to global aging,

the number of attacks is expected to increase significantly in the coming years,

reaching an estimated 23 million in 2030 [2]. In addition, new medical and thera-5

peutic protocols have increased the survival rate of these patients [3]. Nowadays,

an estimated 33 million people have survived to stroke, and have to live with one

of its most common sequel: motor deficit. This way, due to the direct impact on

the autonomy of the patients, stroke has become the primary cause of physical

disability in industrialized countries in the last decades [4].10

In absence of surgical or pharmacological treatments, rehabilitation has be-

come essential to improve the quality of life for stroke patients. Rehabilitation

programs help to recover lost functionalities and contribute to the recovery of

self-esteem, reducing the risk of falling into a state of depression. However, reha-

bilitation of the lost functionalities is a long process that requires the therapist15

to both diagnose and treat the patient continuously [5]. As financial and staff

limitations exist, traditional rehabilitation programs are usually constrained by

time, making it difficult for the patient to achieve full recovery [6]. As a direct

consequence, in patients with hemiplegia, recovery of lower extremities is pri-

oritized over upper extremities to maximize the patient’s autonomy. However,20

upper limbs are essential to the performance of daily tasks, and their restoration

is critical to improve the quality of life of patients.

In this context, robot-mediated rehabilitation has been proposed in recent

decades. Robots can execute the programmed tasks efficiently, with high inten-

sity and precision, and can help to overcome the staff limitations of traditional25

programs. In fact, several studies have demonstrated that the performance of

robot-mediated rehabilitation can be equivalent to the results obtained with

traditional therapies [7, 8]. Based on these facts, several robotic devices have
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been proposed for the rehabilitation of the upper limbs over the last years [9].

However, for rehabilitation robots to be effective, it is important to design30

not only appropriate mechatronic hardware but also a suitable set of training

exercises that can be adapted to the impairment level of the patient. Generally

these are designed to be similar to those performed by a physiotherapist in a

conventional rehabilitation process. Thus, the exercises are usually based on

the guided manipulation of the affected limb, while trying to mimic daily tasks35

(picking and placing small elements, pushing light elements, opening drawers,

etc).

Up until now, robot-mediated rehabilitation exercises have been classified

into three main groups: Assistive, Corrective and Opposition training modes [10,

11]. In Assistive Training (which can be subdivided into passive, assistive and40

active), the robot applies forces in the direction of the motion to be performed,

helping the patient to accomplish the exercise. In Corrective Training Modes,

the robot helps the patient to move within a predefined region, forcing the

patient back into this region if the motion exerted by the user falls outside

it. Finally, in Opposition Training Modes the robot hampers the movement of45

the patient in order to improve his/her movement accuracy and coordination

capability. It is important to note that although Corrective and Opposition

training modes are regarded as the modes that have more impact in the recovery

of the motor function of the patient (especially in the last phases of the recovery),

these have rarely been implemented due to their complexity, instability issues50

and issues of applicability [12, 13].

In order to implement the aforementioned Training Modes in rehabilitation

robots, an adequate control strategy is required. In the literature, position con-

trol, torque/force control and admittance or impedance control have been used

for this purpose. For instance, the MIT-Manus [14, 15], the first rehabilitation55

robot on the market, uses an impedance controller to drive the robot. An-

other early robot, MIME (Mirror Image Movement Enabler) [16], and the ARM

Guide rehabilitation robot [17] implement a position controller in combination

with a torque controller. The ARMin exoskeleton [18], on the other hand, uses

3



admittance and impedance control approaches. The choice of control strategy60

depends on the particular specification of both the mechanical structure used

and the Training Modes to be implemented.

To implement all training modes (Assistive, Corrective and Opposition),

a combination of position, torque/force and impedance control algorithms is

usually required. For instance, if a high impedance is required for a Training65

Mode, the controller will be best implemented by a position controller, while if

a very low impedance is required, a force controller will be more suitable. For

example: the Assistive training mode encompasses three sub-modes that are

passive, assistive, and active. In each sub-mode, the robot plays a different role

in rehabilitating the limb. The passive mode, for instance, is used in the acute70

phase for stroke patients, and the robot’s role is to move the patient’s limb. For

this purpose a pure position controller is required. However, in assistive mode,

the role of the robot is to help the patient move the limb. Hence, an impedance

controller is more appropriate.

A robot-mediated rehabilitation exercise may not be only defined by its75

training mode. In fact, switching between different modes during a rehabil-

itation exercise has been demonstrated as an effective approach to maximize

patient’s involvement as well as training outcomes [5]. This requires an appro-

priate strategy to switch smoothly between the different low-level controllers,

such as the hybrid impedance control proposed in [9]. This technique includes80

both force-based and position-based impedance control, and the controller se-

lection is carried out by a switching matrix. Using this framework, most of the

aforementioned Training Modes can be implemented. For instance, the passive

training mode can be implemented using a position-based impedance control,

while active mode can be implemented using force-based impedance control.85

However, the framework proposed by [9] is not appropriate for robots with low

mechanical impedance, as the position-based impedance controller can decrease

the accuracy of movement in passive modes. For these robots, the best alterna-

tive is to combine impedance controllers with pure position and force controllers,

as proposed in this work.90
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Safety is also a critical point when designing low-level controllers, as in

most cases the robots are physically attached to patients and operate closely

with them in the same workspace. Moreover, rehabilitation robots usually have

heavy, high power actuators and stiff joints in order to interact with the patient.

This implies that there is risk of serious injury to the patient if the robot does not95

operate properly [19]. Robot safety can be implemented by imposing constraints

to the motion, speed and robot-user interaction forces [20, 21]. Specifically, the

motions performed by the robot have to be within the range of motion of the

user; the robot must not execute sudden movements but make gentle and robust

motions; and the interaction force between the user and the robot should not100

be greater than the maximum force that the patient can handle, nor should it

vary abruptly.

Taking into account this context, this work presents two main contributions

to the field of robotic rehabilitation of the upper limbs:

• A comprehensive control framework that involves a complete set of train-105

ing modes (Assistive, Corrective and Opposition) that can be adapted to

the needs of robot-mediated rehabilitation therapies in accordance with

any recovery state of patient. To the best of our knowledge, the proposed

strategy is the first approach that deals with all three training modes.

• An implementation strategy based on smooth and safe switching between110

three low-level controllers (position, force, impedance) during training.

The proposed control framework is validated in a specific upper limb reha-

bilitation robot, the Universal Haptic Pantograph (UHP). This robot is used for

the training of the shoulder, elbow and wrist in people who suffer motor deficit

after a stroke [22, 23].115

The rest of the article is organized as follows. In Section II, the overall

structure of the proposed control framework is presented. In Section III, the

three low level controllers (position, force, impedance) and the seamless switch-

ing strategy are described. In Section IV, several experimental studies with the
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UHP robot and a healthy subject are presented, in order to demonstrate the120

performance of the proposed control framework. Finally, the most important

ideas and future works are summarized in Section V.

2. Inclusive control framework for robot-mediated therapy

As stated in the introduction, rehabilitation training exercises should be

adapted to the recovery state of the patient, from acute to chronic phases.125

In this section, an inclusive control framework that involves a complete set

of training modes for robot-mediated upper limb rehabilitation is described in

detail.

Fig. 1 presents the proposed inclusive control framework. In this framework,

the therapist plays an important role in determining the training task (e.g. the130

game) as well as the training mode. Note that the therapist is aware not only

of the patient’s current abilities, but also the evolution of his or her state over

time. This way, from the user interface, the therapist can select the training

level, which groups such parameters as the training time (tm) or the maximum

interaction force (FMax).135

 SELECTED 
TRAINING MODE

THERAPIST 
+

 SOFTWARE

Training Mode

  Parameters
FORCE/POSITION 

CONTROL
(Section III)

Force/Position 
reference

xDes

                 Enhanced 
Corrective Mode

Adaptable 
Opposition Modes

Adaptable 
Assistive Modes 

Beginning of 

  

End of
 rehabilitation  rehabilitation

-    RECOVERY STATE OF THE PATIENT    + 

 Passive
 Assistive - Passive
 Active - Assistive - Passive
 Active - Passive

 Resistive
 Error amplification
 Random perturbations

Figure 1: Inclusive Control Framework.

The framework also includes an option to automatically perform flexion mo-

tions of the upper limb by the robot. This functionality is designed to allow the
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patient to focus on the extension motion of the limb. Note that impaired limbs

after a stroke tend to contract, making the extension of the limb difficult.

Using the configuration data and the training mode selected by the therapist,140

proper force (FRef ) and/or position (xRef ) references are generated. These

references are followed by the robot using low-level position/force/impedance

control strategies, which will be detailed in Section 3.

In the next section we describe in detail the proposed Training Modes for

robot-mediated upper limb rehabilitation.145

2.1. Adaptable Assistive Training Modes

Assistive Training Mode has been widely studied in the literature. This

mode is appropriate for the initial (acute) stages of the rehabilitation process.

In this stage, the patient does not have the ability to generate movement, and

consequently the robot moves the impaired limb [11]. Hence, the goal of this150

training mode is to help the patient to move the affected limb and execute the

desired movement.

Assistive Training Mode is commonly divided into three sub-modes depend-

ing on the level of assistance provided: passive, assistive and active. In the

passive mode, the robot performs the desired motion (xRef ) without consider-155

ing user activity [10]. In the assistive mode the patient attempts to execute the

task and the robot helps by applying an assistive force (FRef ) that depends on

the error between the real motion (xCn) and the desired one (xRef ) [24]. Finally,

in the active mode, the user is supposed to perform the desired task, and the

robot only constraints the range of motion and compensates the gravitational160

force (weight support) and/or robot inertia (FRef = 0) [11].

Although each sub-mode has its own role when training is considered, prop-

erly combining these modes can maximize training outcome and patient involve-

ment. For example, even if the patient is not fully able to complete the desired

motion in the early stages of rehabilitation, encouraging the patient to complete165

the exercise one way or another would increase his/her motivation and involve-

ment. To this end, appropriate combinations of assistive, active and passive
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modes is strongly recommended.

In order to adapt the Assistive Training mode to the the recovery state

of the patient, an Adaptable Assistive Training methodology is proposed in170

this work. In this methodology, each Adaptable Assistive Training Mode is

defined considering three stages, each of which with a configurable time window

(t0 → t1, t1 → t2 and t2 → t3). For each stage, a different sub-mode (passive,

assistive or active) is implemented, so that different combinations can be defined,

as summarized in Table 1.175

Adaptable Assistive Training Modes

Intensity of the robot assistance
High ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Low

Stage 1 (t0 → t1) Passive Assistive Active Active

Stage 2 (t1 → t2) Passive Assistive Assistive Active

Stage 3 (t2 → t3) Passive Passive Passive Passive

Table 1: Adaptable Assistive Training Modes according to the intensity of the robot assistance.

Based on this idea, four Adaptable Assistive Training Modes are proposed

(Table 1), which consider all possible states of the patient: from the case in

which the patient can barely make voluntary movement (Column 1, Passive-

Passive-Passive Mode) to the case in which the patient is able to perform some

motions (Column 4, Active-Active-Passive Mode). Note, however, that both the180

proper combination of Adaptable Assistive Training Modes, and the the length

of each time window (t0 → t1, t1 → t2 and t2 → t3) are to be determined by

the therapist based in the recovery state of the patient.

In order to explain the basic idea of the Adaptable Assistive Training method-

ology, the Active-Assistive-Passive adaptable assistive mode (Table 1-Column185

3) is considered. When this adaptable assistive mode is activated, in a first stage

the robot uses the active mode, providing zero resistance to the motion and al-

lowing voluntary movement of the patient during a first time window (t0 → t1).

However, if the patient is not able to initiate the movement during this first time

window, the adaptable assistive approach triggers the second stage in which the190
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assistive sub-mode is activated and the robot partially assists limb movement.

Finally, if a second time window (t1 → t2) expires and the patient has still not

finished the exercise, the adaptive approach triggers a final stage in which the

passive mode is activated and the robot drives the limb and finishes the exercise.

The proposed Adaptable Assistive Training Modes allow not only greater195

adaptability of the robot-mediated therapy but also greater involvement of the

patient to finish the rehabilitation task. To operate correctly, however, appro-

priate control of the reference force (FRef ) and motion (xRef ) and swift and

gentle mode changes are required.

2.2. Enhanced Corrective Training Mode200

Using the aforementioned Adaptable Assistive Training modes, patients can

achieve voluntary movement generation. Hence, the next step in the rehabili-

tation process is to improve movement coordination. For that purpose, studies

reported in the literature point to Corrective Training Modes as being most

effective.205

The main aim of these modes is to train the patient to correctly track a

desired trajectory, rather than simply reaching the final desired point. For that

purpose, Corrective Training Modes are based on letting the patient drive the

robot (active mode) through a defined region surrounding the desired path, but

correcting movements using an orthogonal assistive force when the patient leaves210

this region. Therefore, in these modes the patient has to be able to execute the

exercise without external assistance and the robot’s task is to prevent the patient

from deviating from a predefined region of the workspace.

The most common corrective training mode is based on tunneling. As de-

tailed before, in this strategy the robot only applies assistance (usually a con-215

stant force) if the user leaves a predefined region [10]. For optimal training,

however, in this work a progressive assistive force to drive the patient back into

the desired region has been implemented. Thus, when the user begins to move

away from the desired path, even within the predefined region, a small assistive

force is applied to correct the motion error. If this force is not enough and the220
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patient leaves the region, greater force is applied to force the patient into the

predefined region. This approach has been named the ’Enhanced Corrective

Training Mode’.

Fig. 2 illustrates how the proposed Enhanced Corrective Training Mode

works. During training, three cases have been identified depending on the po-225

sition of the limbs (xCn) that are being trained by the robot: A- xCn stays on

the desired path (xRef ), B- xCn is within the desired region, but not on the

desired path, and C- xCn is outside the desired region.

xDes

Desired path (xRef)     

Desired region

Line of hysteresis (xH)

FRefO
xInitial

A

B
C

xH
FRefO

H

Figure 2: Proposed Enhanced Corrective Training Mode.

In case A, which is an ideal case, the patients motion (xCn) is aligned

with the desired path (xRef ) so the orthogonal force (FRefO) is zero. If xCn230

starts deviating from xRef (case B), an assistive force FRefO proportional to

the orthogonal error (xRef −xCn) is applied to correct the movement direction.

If this force is not enough and the patient continues to deviate (case C), xCn

falls out of the desired region. In this case, the robot must force the limb back

into desired region. Note that, for safety reasons, the robot will move the limb235

not to the boundary of the desired region, but to an inner point within the line

of hysteresis (xH). This avoids possible chattering issues in the boundary line

area, as the user has an H margin to react, minimizing the possibility of leaving
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the region again.

The proposed Enhanced Corrective Training Mode can help to improve the240

patient’s mobility, and more specifically, their ability to perform coordinated

movements. However, as mentioned above, it requires switching between force

and position control depending on the current position of the limb (cases A,

B, C). Hence, a safe and seamless switching technique is crucial to prevent

any sudden and undesired behavior of the robot during the transition between245

controllers within this mode.

2.3. Adaptable Opposition Training Modes

The aforementioned proposed Assistive and Corrective Training modes are

designed so that the patient can recover the main functionality of the impaired

limb and coordinate its motion. However, in the last stages of the rehabilitation250

program, and in order to fully recover, it is important to improve the strength

and dexterity of the limb. For this purpose, Opposition Training Modes are

considered to be the best alternative [13]. In these training modes, the robot

exerts opposition forces to user motion, increasing the difficulty of the task.

In this work, three Adaptable Opposition Training Modes are proposed:255

resistive, error amplification and random disturbances. Each mode is described

briefly below:

1. Resistive mode: in this mode, the robot applies a force in the opposite

direction of the desired trajectory, simulating the compression of a spring

(Fig 3.a).260

The exerted resistive force (FRef ) is inversely proportional to the differ-

ence between the limb position (xCn) and the desired (xDes) one. In this

way, the opposite force increases as the limb position (xCn) approaches

the desired one (xDes). This helps the patient to modulate the force of

the impaired limb.265

Note that the maximum resistive force (FMax) to be exerted by the robot

is configurable, giving the therapist the possibility to adapt the exercise to

the patient’s current state of recovery. This maximum force value is always
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applied in the desired (final) position, which means that FRef = FMax

when xCn = xDes, while the force at the beginning of the exercise (the270

initial position) is zero (FRef = 0N) when xCn = xInitial.

xDes

xInitial

xDes

xInitial
(a) Resistive 
mode

(b) Error amplication
mode

FRefFRef

xCn xCn

xCn

Fref=0

Figure 3: Opposition training modes: (a) Resistive and (b) Error amplification. Note that

the circles represent the current position of the robot (xCn).

2. Error amplification mode: this mode has been proposed based on the no-

tion that kinematic errors generated during the movement provide funda-

mental neuronal signals that enhance the learning process of the patients

motor system [24, 25].275

Based on this idea, in this mode, the rehabilitation robot increases the

error caused by the user by applying an additional disturbance force in

the orthogonal direction to the trajectory (Fig 3.b). This disturbance force

(FRef ) varies with the motion error: when the error is small (the patient is

following the desired path) the force is zero, but when the patient moves280

his/her limb away from the desired path, additional disturbance forces

are applied. Note that, as in the resistive mode, the exerted disturbance

force (FRef ) is limited by a maximum force value (FMax) selected by the

therapist, which will depend on the state of the patient.

3. Random disturbances mode: this mode focuses on the training of the neu-285

ral responses in the case of unexpected situations. While it is known
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that humans have the ability to adapt to their environment by learning

to overcome external disturbances or unexpected forces, humans tend to

make erroneous moves in the opposite direction to the force when the dis-

turbance forces are unexpectedly removed [13]. By this process, humans290

learn how to deal with such cases, resulting in the improvement of neural

responses.

The aim of this mode is to train these neural responses. For that purpose,

the robot applies different disturbance forces during the exercise that vary

randomly, so that the patient has to overcome their effect while trying to295

reach the desired position. As in other modes, the applied force (FRef ) is

limited by the maximum force (FMax) selected by the therapist.

In summary, the proposed Adaptable Opposition Training Modes allow to

improve the dexterity of upper limbs in terms of force and motion. However, as

in the previous cases, it is necessary to control both contact force and motion300

between the user and the robot in all possible directions of the motion range,

which means that safe and seamless switching techniques between force and

position controls is also required.

3. Control architecture for safe and seamless force/impedance/position

control305

As stated in the previous section, proper control approaches are required to

implement the proposed Training Modes (Fig. 1). Moreover, their requirements

are different in terms of force and motion, requiring a set of controllers to fulfill

all the needs. In this work, a set of three control algorithms (force, position and

impedance) are proposed to implement the proposed Training Modes (Fig. 4):310

1. Impedance Controller : The impedance controller is suitable for most of the

proposed training modes (For instance for Assistive, Corrective, Resistive

and Error Amplification Modes). The role of this controller is to track a
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reference impedance,

ZDes(s) =
FRefI(s)

xRef (s)− xCn(s)
= K + B s+ M s2 (1)

where xRef and xCn are the reference and current positions of the robot,315

FRefI is the force reference generated by the impedance controller, K the

stiffness matrix, B the damping matrix, M the inertia matrix and ZDes

the desired mechanical impedance of the robot [26].

In order to comply with safety requirements, the desired impedance (ZDes)

is selected such that the force reference generated by the impedance con-320

troller (FRefI) is always less than the maximum force (FMax) defined by

the therapist. Moreover, to prevent sudden changes in the force gener-

ated by the robot that may harm the patient, a limit to the the first

time-derivative of the force (FRefI) is included.

2. Force Controller : The force controller is used to follow either a force325

reference generated by the impedance controller (FRefI) or a pure force

reference (FRef ). This latter case is used, in Active Mode, where FRef =

0N , and Random Disturbances Mode where FRef vary randomly.

The force controller is implemented using a PID control that compares

the reference force (FRef ) and the current patient/robot interaction force330

(FCn). Note that the controller output needs to be projected to the input

of the actuator system control loop (τmF
), which will depend on the par-

ticular structure of the rehabilitation robot. Similarly, the measurement

of the patient/robot interaction force (FCn) can be carried out using a

proper force sensor, or using force estimators.335

In the particular study case analyzed in Section IV, the Universal Hap-

tic Pantograph rehabilitation robot, the dynamic model of the robot is

used to estimate the interaction force (FCn) as detailed in [27]. And the

force controller is used to generate a reference (τmF
) to the low-level PID

controller that controls the Serial Elastic Actuator system of the robot.340

3. Position Controller : The position controller is mainly applied in cases

where the user is not able to complete the exercise, or the positioning ac-
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curacy of the impedance/force controller is not enough to guarantee proper

task execution due to the maximum impedance limit of the rehabilitation

robot. This controller is mainly used in Passive Mode, where the position345

controller tracks the desired position reference (xRef ) regardless of the

interaction between the user and robot. For safety reasons, the motion

speed is limited, being possible to select a different value according to the

status of the patient. In addition, a fifth-order trajectory generator is used

to generate smooth and robust position reference trajectories.350

The position controller is a PID controller which, based on the error be-

tween the position reference (xRef ) and the current robot position (xCn),

computes the torque/force command (τmP
) for the actuation system of

the robot. Note that the current robot position (xCn) is usually estimated

using the kinematic model of the robot [22].355

As in the force controller, the particular parameters of the controller de-

pends on the specific structure and actuation system of the rehabilitation

robot. In the particular study case analyzed in Section IV, the Universal

Haptic Pantograph rehabilitation robot, a classical servocontrol scheme

with nonlinear compensation has been implemented as defined in [28].360

The implementation of the Training Modes proposed in Section II requires

the implementation of all aforementioned controllers. Moreover, in several of

these modes, multiple controllers need to be combined, which requires switching

between them. This is critical, for instance, in Adaptable Training Modes.

However, suddenly switching from one controller to another can lead to365

instabilities and force/motion oscillations in the transition, which may harm

the patient. Hence, a proper switching strategy is needed to prevent those

undesired situations.

In this work a state-machine-based approach has been implemented to safely

manage controller switching, as depicted in Fig. 4. This state machine generates370

two Boolean signals (IC and FC), which are used to: a) determine the controller

corresponding to the selected training mode; and b) control the inputs of all
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engaged and unengaged controllers in order to prevent sudden motions of the

robot.

FORCE/IMPEDANCE/POSITION CONTROL

τm

FORCE 
CONTROL

POSITION 
CONTROL

τmF

τmP

F

T

F

T

T

F

FCn

XRef

SELECTED
TRAINING MODE

(Section II)

Task

 XRef

XCn

T

F
FRef

IMPEDANCE 
CONTROL

FRefI

STATE 
MACHINE 

FRef

IC

FC

 FMax

Figure 4: Control architecture and safe and smooth control switching approach.

Table 2 shows how both controller and controller inputs are determined375

by the Boolean signals. For instance, when both IC and FC are true (T) the

impedance controller is engaged (τm = τmF
); when FC is true (T) but IC is false

(F), the force controller is engaged (τm = τmF
); and the position controller is

engaged (τm = τmP
) when both signals are false (F). Note that when a controller

is not engaged, its input is connected to the current value of the corresponding380

variable (xCn for position and FCn for force) so that when the controller is

engaged, the control can start smoothly from its current value, resulting in

stable operation of the robot.

Table 2: Determination of the control mode and controller inputs by the state machine.

Boolean signals Control Controller input Actuator input

IC FC mode Force Position τm

T T Impedance FRefI xCn τmF

F T Force FRef xCn τmF

F F Position FCn xRef τmP
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In addition, a rate limiter has been introduced in the input of both force

and position controllers, and the input of the actuator control system (Fig. 4).385

This allows a progressive setpoint change, eliminating sudden actuator torque

changes.

4. Experimental Validation

The main goal of this section is to demonstrate the adaptability, robustness

and safety of the proposed control framework for rehabilitation purposes. For390

that purpose, an experimental validation of the framework is presented, based

on several tests carried out with the help of a healthy subject.

4.1. Universal Haptic Pantograph

The Universal Haptic Pantograph (UHP) (Fig. 5) is a rehabilitation robot

developed for upper limb training of people who suffer motor deficit after a395

stroke. The robot is an enhanced version of the previously designed Universal

Haptic Drive (UHD), which was described in detail in [29]. While the UHP uses

the same elastic component-based drive system as that used in the UHD, in the

new version the interaction of the patient with the robot is carried out using an

innovative pantograph-shaped mechanism [22].400

xTr

τm1

τm2

DRIVE SYSTEM

xCn

FCn

xTr

A

Slider

Actuated

Fixed

Parallel

Transverse

C

B

PANTOGRAPH

Figure 5: Universal Haptic Pantograph (UHP) rehabilitation robot.
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As shown in Fig. 5, the pantograph structure is a four-bar structure com-

posed of three movable bars (actuated, transverse and parallel) and a fixed bar.

The actuated bar is connected to the elastic drive system at the transmission

point xTr, while the contact point with the patient is xCn. The transverse bar is

used as a support for the hand and forearm of the patient. Finally, the parallel405

and fixed bars are used to support the rest of the structure, giving robustness

to the robot.

One of the main advantages of the UHP is the possibility of varying its

mechanical structure through three lockable/unlockable joints located in the

pantograph joints A, B and C and a slider placed in the actuated bar (Fig.410

5). Thanks to this reconfigurable structure, the UHP allows eight mechanical

configurations or rehabilitation modes which can be easily modified by the ther-

apist with minimal effort [30]. This way, all the joints of the upper limb (wrist,

elbow, shoulder) can be rehabilitated with a single device.

This work focuses on one of the most complete modes: the ARM opera-415

tion mode. This mode allows rehabilitation exercises associated with the three

shoulder movements (rotation, flexion/extension and abduction/adduction) and

flexion/extension movement of the elbow. Note that in ARM mode, due to its

mechanical configuration, the robot workspace is a partial spherical surface,

allowing the user to perform quasi-planar reaching movements.420

4.2. Experimental setup

The proposed control framework (Figs. 1 and 4) was implemented on a Na-

tional Instruments CompactRIO platform using Labview Real-Time program-

ming software. Communication between the robot and the CompactRIO plat-

form is achieved using analog and digital data acquisition cards, while UDP425

(User Datagram Protocol) is used to communicate with a graphical user inter-

face (GUI).

This GUI provides the functionalities required for user interaction, and is

based on the Telereha rehabilitation software [31]. The software provides dif-

ferent sets of games for the patient, including one to train reaching movements430
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(Fig. 6). This game defines 6 reaching points on a half-circle of radius 0.14m

in the xy plane which is mapped into the range of motion of the UHP robot in

ARM mode. The training modes and controllers detailed in Sections II and III

have been implemented in this framework and connected with this game.

 XInitial

XDes

0.14m

y

x

1

3 4

5

6

2

 XCn

Figure 6: Desired points (green circles) and path (green lines) for the reaching exercise in the

game from Telereha rehabilitation software.

As the objective of the experiments is to validate the proposed control frame-435

work in terms of applicability, adaptability, robustness and safety, a healthy sub-

ject was selected to perform the tests. From the proposed set of Training Modes,

Assistive (active-assistive-passive), Corrective and Opposition (resistive) modes

were tested. Table 3 shows the parameters used in the experiments.

4.3. Results and discussions440

In this subsection the most important results are evaluated and conclusions

are drawn for each tested training mode.

4.3.1. Adaptable Assistive Training Mode

Fig. 7 shows the performance of the robot in the case of ‘active-assistive-

passive’ training mode, which is one of the Adaptable Assistive Training Modes445

proposed (Table 1). In the first plot, the directions (θ) of the desired reaching

points in the xy plane are shown, while the second presents the desired setpoint
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Desired Total Training Max. Max.

positions time modes force force

tm FMax change

Randomly selected

120s

Assistive

25N

8.33N/s

from the 6 points (active-assistive)

(Fig. 6). -passive)

- Distance from t0 → t1 = 7s,

xInitial to all t1 → t2 = 4s,

xDes is 0.14m t2 → t3 = 3s

- xDes is detected
Corrective

20Nby the direction

(angle, θ) (Fig.2)

- Automatic flexion
Opposition

30Nmovement with

3s (0.47m/s) (resistive, Fig.3)

Table 3: Parameters used in the validation experiments.
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(xDes) and the current motion (xCn) of the robot in the direction of the tra-

jectory. In the third plot, the current (FCn) and reference (FRef ) user/robot

interaction forces in the direction of the trajectory are shown. The blue, orange450

and green regions correspond to the active, assistive and passive modes respec-

tively. Automatic flexion movement (return) is performed in the white region

using a position controller. Note that in the experiment, reaching and return

motions were executed for randomly selected desired points. Numbers 1, 2, ...

6 in the upper part of the first plot indicate the region of the game where the455

user has performed the exercise (see Fig. 6).
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Figure 7: Performance in the active-assistive-passive Adaptable Assistive Training sub-mode.

As can be seen in the data, the subject adopted several different behaviors

to emulate a real patient. In the first iteration, after starting the training, the

active mode was activated and the subject voluntarily moved to the robot in

order to reach desired point (blue region), while force control was applied to460

provide a zero interaction force effect for the user (FRef = FCn = 0).

In the third iteration (18s− 25s, desired point 5), the subject intentionally

stopped the motion in the middle of the exercise. In order to finish the exercise,

after 7 seconds, in stage 2, the assistive mode that uses impedance control

was activated to help the subject complete the reaching motion (first orange465

region). Note that in this region, the assistive force was proportional to the
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position error.

In the fifth iteration (51s−55s, desired point 2), the subject also intentionally

stopped the motion in the middle of the exercise, and in addition, resisted the

assistive force by maintaining the position of the robot constant. It can be seen470

that the robot engaged the assistive mode (orange region) and larger assistive

forces than in the previous case (around 20N) were generated to try to move

the robot to the desired point. Finally, as the robot detected that the subject

was unable to reach the desired point (xDes), the passive mode is engaged as

the third and final stage (green region). In this mode, a position controller was475

activated and the robot finished the task.

4.3.2. Enhanced Corrective Training Mode

Fig. 8 shows the performance of the proposed control framework in the

Corrective Mode. In the first plot, Direction represents the angle (θ) associated

to the region of each desired point xDes. The region number is indicated in the480

top of the plot (see Fig. 6). The second plot represents the absolute error of the

motion (e = |xDes − xCn|) in the orthogonal direction of the desired trajectory.

In the third plot, the current (FCn) and desired (FRef ) user/robot interaction

forces in the orthogonal direction of the desired trajectory are illustrated.

The blue areas in the plot indicate that the subject is within the desired485

region. In these areas, the impedance control is engaged, and it applies a cor-

rective force proportional to the trajectory tracking error. The orange areas

highlight when the user has left the desired region, and the position control

is engaged to force the user to return to the safe area. The automatic flexion

movement is indicated in white, as in the previous section.490

From the shown data, the performance of the Enhanced Corrective Training

Mode can be evaluated. Note that in the two first iterations of the exercise, the

subject tried to follow the desired trajectory as close as possible, making the

tracking error almost zero. In this ideal case, no corrective force is applied.

However, in the third iteration (18s, desired point 1), the subject intention-495

ally started moving away from the desired trajectory to test the corrective mode.
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As it can be seen, error increases from t = 22 seconds on, and the impedance

controller applies a proportional corrective force to assist the subject, helping

him/her back to the desired trajectory.

Finally, in the fifth iteration (48s, desired point 5 ), the user intentionally500

deviates from the desired trajectory and leaves the desired region at t = 56s.

When the region boundary is traversed, the UHP robot engages the position

control to force the user back to this region (orange zone). Note that the force

increased and the position error was reduced to a safe (albeit nonzero) value

inside the desired region ( t = 56− 58s ), after which the impedance controller505

was engaged again. It is important to point out that the controller transition

was smooth from the force and position point of view.
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Figure 8: Performance in the Enhanced Corrective Training Mode.

4.3.3. Adaptable Opposition training mode

Fig. 9 shows the performance of the robot in the case of resistive training,

which is one of the Adaptable Opposition Training Modes described in Fig. 3.510

As in the previous cases, the first plot represents the region of the game where

the exercise was performed, the second plot represents the desired and current

robot position and the third plot, the user/robot interaction force. In addition,

the blue regions correspond to limb extension movements with resistive forces,
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while the white regions represent the automatic flexion movement performed by515

the position controller.

In this training exercise, the user tried to reach the desired points while the

UHP applied resistive forces in the opposite direction of the desired trajectory

using an impedance controller. In the different iterations it can be seen that the

resistive forces were inversely proportional to the position error. In this way,520

zero resistive force was applied in the initial point xCn = xInitial, and maximum

in the desired point xCn = xDes = 0.14m. The data confirms that the designed

training mode works properly and the controllers are switched safely as well as

seamlessly.
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Figure 9: Performance in the resistive training mode.

Summing up, the results obtained experimentally with the UHP rehabili-525

tation robot show that the proposed control framework can be applied to any

recovery phase of the rehabilitation procedures for patients with neuromuscular

diseases. In the framework, the therapist plays an important role in determining

not only the right training mode but also safety parameters such as maximum

interaction force and velocity. Although this study was focused on a specific530

rehabilitation robot with only one training game for a reaching exercise, the

framework can be extended in a straightforward manner to other types of up-

per limb rehabilitation robots and training games for different types of exercises.
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5. Conclusion

In this work an inclusive and seamless control framework for upper limb535

rehabilitation robots was presented. The proposed control framework can be

adapted to different stages of the rehabilitation process and can be configured

to fit the needs of each patient considering his/her recovery state.

The control framework contains a complete set of training modes: Assistive,

Corrective and Opposition training modes. Assistive modes are appropriate for540

patients in acute phase where active help from the robot is required to properly

perform the rehabilitation exercise. Corrective modes are used to improve the

impaired limb motion coordination once the patient has gained the ability to

move. Finally, Opposition training modes focus on the improvement of dexterity

by applying disturbance forces during the exercises and are used in the last phase545

of the rehabilitation process.

To effectively implement the proposed training modes three controllers have

been implemented: impedance, force and position. These are combined in each

training mode, requiring switching from one to the other in the middle of the ex-

ercise. For that purpose, a state machine-based approach has been implemented,550

which ensures safe and smooth transitions from one controller to another.

Validation of the proposed control framework was conducted in a specific

upper limb rehabilitation robot, the Universal Haptic Pantograph (UHP). To

validate the approach, a training game for emulating reaching exercises was

used while a healthy subject emulated different patient behaviors. Results show555

that all training modes and controllers worked properly in terms of adaptability,

robustness, and safety. In addition, the extension of the proposed framework to

other upper-limb rehabilitation robots is straightforward.

On the basis of the performance that we have achieved, we intend in the

future to apply the proposed framework to rehabilitation processes covering a560

wide span of motor impairments caused by neuromuscular diseases.
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