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Abstract

Temporal logic has become essential for various areas in computer science, most notably for the specification and ver-
ification of hardware and software systems. For the specification purposes rich temporal languages are required that,
in particular, can express fairness constraints. For linear-time logics which deal with fairness in the linear-time set-
ting, one-pass and two-pass tableau methods have been developed. In the repository of the CTL-type branching-time
setting, the well-known logics ECTL and ECTL+ were developed to explicitly deal with fairness. However, due to the
syntactical restrictions, these logics can only express restricted versions of fairness. The logic CTL�, often considered
as ‘the full branching-time logic’ overcomes these restrictions on expressing fairness. However, CTL� is extremely
challenging for the application of verification techniques, and the tableau technique, in particular. For example, there
is no one-pass tableau construction for CTL�, while one-pass tableau has an additional benefit enabling the formu-
lation of dual sequent calculi that are often treated as more ‘natural’ being more friendly for human understanding.
These two considerations lead to the following problem - are there logics that have richer expressiveness than ECTL+,
allowing the formulation of a new range of fairness constraints with ‘until’ operator, yet ‘simpler’ than CTL�, and for
which a one-pass tableau can be developed? Here we give a positive answer to this question, introducing a sub-logic
of CTL� called ECTL#, its tree-style one-pass tableau, and an algorithm for obtaining a systematic tableau, for any
given admissible branching-time formulae. We prove the termination, soundness and completeness of the method.
As tree-shaped one-pass tableaux are well suited for the automation and are amenable for the implementation and for
the formulation of sequent calculi. Our results also open a prospect of relevant developments of the automation and
implementation of the tableau method for ECTL#, and of a dual sequent calculi.
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1. Introduction

Temporal logic has become essential for the specification and verification of hardware and software systems. For
the specification of the reactive and distributed systems, or, most recently, autonomous systems, the modelling of the
possibilities ‘branching’ into the future is essential. Among important properties of these systems, so called fairness
properties are important. In the standard formalisation of fairness, operators ♦ (eventually) and � (always) have been5

used: A♦�p – ‘p’ is true along all computation paths except possibly their finite initial interval, where ‘A’ is ‘for
all paths’ quantifier, and E�♦p – ‘p’ is true along a computation path at infinitely many states, where ‘E’ stands
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for ‘there exists a path’ quantifier. Branching-time logics (BTL) here give us an appropriate reasoning framework,
where the most used class of formalisms are ‘CTL’ (Computation Tree Logic) type logics. CTL itself requires every
temporal operator to be preceded by a path quantifier, thus, cannot express fairness. ECTL (Extended CTL) [1]10

enables simple fairness constraints but not their Boolean combinations. ECTL+ [2] further extends the expressiveness
of ECTL allowing Boolean combinations of temporal operators and ECTL fairness constraints (but not permitting
their nesting). The logic CTL�, often considered as ‘the full branching-time logic’ overcomes these restrictions on
expressing fairness. However, CTL� is extremely challenging for the application of any known technique of automated
reasoning. Note that, unlike fair CTL [3] which, in tackling fairness, changes the underlying trees to those with ‘fair15

paths’ only, ECTL and ECTL+ do not impose these changes.
From another perspective, the literature on fairness constraints, even in the linear-time setting, lacks the analysis

of their formulation with the U (‘until’) operator. To the best of our knowledge, there are only a few research papers
that raise or discuss the problem. For example, [4], introduces the logic LCTL, providing an extension of liveness
constraints by the "until" operator. However, LCTL belongs to ‘Fair CTL-type’ logics [5]. ‘Generalised liveness20

assumptions, which allow to express that the conclusion f2 U f3 of a liveness assumption �(f1 ⇒ (f2 U f3)) has to
be satisfied’ are addressed in [6]. The U operator in the formulation of the fairness can also be found in [7] which
considers the sequential composition of processes, providing the following example - the composition of processes
P1 and P2 ‘behaves as P1 until its termination and then behaves as P2’. Finally, [8] utilises restricted linear-time
fairness constraints with U in the linear-time setting. We are not aware of any other analysis of fairness constraints25

in branching-time setting using the U operator and without restricting the underlying logic to be interpreted over the
‘fair’ paths. We bridge this gap, presenting the logic ECTL# (we use # to indicate some restrictions on concatenations
of the modalities and their Boolean combinations). It is weaker than CTL� but extends ECTL+ by allowing the
combinations �(AU B) or AU �B, referred to as modalities �U and U �. This enables the formulation of stronger
fairness constraints in the branching-time setting. The fairness constraint A(pU �q) reads as ‘invariant q is true along30

all paths of the computation except possibly their finite initial interval, where p is true’. For example, the following
property specifies that whenever the user of an account is requested to change the current password, either it is changed
to a fresh one, or the account is deactivated:

A((Pw
n U �(Rn ⇒ A�(Pw�

n ⇒ w �= w�)) ∨ ((Ln ∧ Pw
n )U �((Rn ∧ (¬Pw�

n ∨ w� = w)) ⇒ ¬Ln))) (1)

where Pw
n (Pw�

n ) stands for the account n has an associated password w (w�); Ln stands for the account n is live,
and Rn means the account number n is requested to change the password, Note that formula (1) represents one of the35

difficult cases of ECTL# structures - an A-disjunctive formula, see §2.

B(U ,◦) (CTL) extensions E(�♦q) E(�♦q ∧ �♦r) A((pU �q) ∨ (sU �¬r)) A♦(◦p ∧ E◦¬p)
B(U ,◦,�♦) (ECTL)

√
X X X

B+(U ,◦,�♦) (ECTL+)
√ √

X X

B+(U ,◦, U �) (ECTL#)
√ √ √

X

B�(U ,◦) (CTL�)
√ √ √ √

Figure 1: Classification of CTL-type logics and their expressiveness

Figure 1, which utilises another temporal operator - ◦ - ‘at the next moment of time’, places our logic in the
hierarchy of BTL representing their expressiveness: logics are classified by using ‘B’ for ‘Branching’, followed by
the set of only allowed modalities as parameters; B+ indicates admissible Boolean combinations of the modalities
and B� reflects ‘no restrictions’ in either concatenations of the modalities or Boolean combinations between them.340

Thus, B(U ,◦) denotes the logic CTL. In this hierarchy ECTL# is B+(U ,◦, U �).
We present a tree-style one-pass tableau for ECTL# continuing the analogous developments in linear-time case

[11, 12] and for CTL [11]. An indicative feature of this approach is a context-based tableau technique. Context-
based tableaux have dual sequent calculi due to their handling of eventualities exclusively by using logical rules.

3This notation goes back to [9], here we use its nice tuning by Nicolas Markey in [10]. In the last column we use a short CTL� formula
A♦(◦p∧E◦¬p), not expressible by weaker logics. We found this formula indicative for CTL� as its validity is directly linked to the limit closure
property [9].
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To the best of our knowledge, BTL more expressive than CTL have not enjoyed the context-based tableau though45

other kinds of tableaux exist for these logics. There is a single-pass tableau for CTL that carries out an ‘on the
fly’ eventualities checking (non-logical mechanism) following the Schwendimann’s approach [13]. For CTL�, which
definitely is a super-logic of ECTL#, different other kinds of tableau-style methods exist, remarkably [14, 15, 16,
17, 18]. Since CTL� is much more expressive than ECTL#, such methods often utilise additional mechanisms (non
only inference rules) to control loops, which are, for example, automata-theoretic-based mechanism [17]. This brings50

extra complexity, which is justified to handle the CTL� expressivity. However, simpler proofs could be obtained for
a weaker logic such as ECTL# . There are also extensions of the tableau methods to super-logics of CTL�. For
example, [19] introduces a two-pass tableau method for a logic that is a multiagent extension of CTL�. Tree-style
one-pass tableaux (without additional procedures for checking meta-logical properties) have dual (cut-free) sequent
calculi, see [12], enabling the construction of human-understandable proofs. In addition, these tableaux are well suited55

for the automation and are amenable for the implementation.4 Our tableau is effectively an AND-OR tree where nodes
are labelled by sets of state (see the definitions in §2) formulae. There are difficult cases of ECTL# formulae that
appear due to the enriched syntax: disjunctions of formulae in the scope of the A quantifier and conjunctions of
formulae in the scope of the E quantifier. To tackle these cases, in addition to α − β rules, that are standard to the
tableaux, we define novel β+-rules which use the context to force the eventualities to be fulfilled as soon as possible.60

Outline of the paper. The rest of this paper, an extended version of [21], includes more examples, explanations,
and detailed proofs of the results. It commences with §2 where we describe ECTL# as a sublogic of CTL�. The
formulation of the tableau method is given in §3, where we define and explain tableau rules. A systematic tableau
construction and relevant examples are introduced in §4. The soundness and completeness of our tableau method
are proved in §5 and in §6, respectively; for the latter, we prove the refutational completeness and termination of the65

presented method. Finally, in §7 we draw the conclusions and prospects of future work that the presented results open.

2. The logic ECTL#

As ECTL# is a sublogic of CTL� we first recall CTL� syntax and semantics.

Definition 1 (Syntax of CTL�). Given Prop is a fixed set of propositions, and p ∈ Prop, we define sets of state (σ)
and path (π) CTL� formulae over Prop as follows: σ ::= T | p | σ1 ∧ σ2 | ¬σ | Eπ and π ::= σ | π1 ∧ π2 | ¬π | ◦π |70

π U π | �π.

In CTL�, and all BTL logics, well formed formulae are state formulae.

Definition 2 (Labelled Kripke structure). A Kripke structure, K, is a triple (S,R, L) where S �= ∅ is a set of states,
R ⊆ S × S is a total binary relation, called the transition relation, and L : S → 2Prop is a labelling function.

A fullpath x through a Kripke structure K is an infinite sequence of states s0, s1, . . . such that (si, si+1) ∈ R, for every75

i ≥ 0. Let ‘fullpaths(K)’ be the set of all fullpaths in K. Given a fullpath x = s0, s1, . . . , sk, . . . (k ≥ 0), we denote
its state sk by x(k), its finite prefix by the sequence x≤k = s0, s1, . . . , sk and the suffix path x≥k = sk, sk+1, . . . .
When a fullpath x is given, instead of x(k) we will often write k, referring to k as ‘a state index of x’. If x is a
fullpath and y is a path such that y(0) = x(k), for some k > 0, then the juxtaposition x≤ky is a fullpath. Our Kripke
structures are labelled directed graphs that correspond to Emerson’s R-generable structures, i.e. the transition relation80

R is suffix, fusion and limit closed [9]. For any K, any x ∈ fullpaths(K) and any natural number i, the notation
K �x(i) denotes a Kripke structure with the set of states of K restricted to those that are R-reachable from x(i).

Definition 3. Given the structure K = (S,R, L), the relation |=, which evaluates path formulae in a given path x
and state formulae at the state index i of the given path x, is defined bellow:
K, x, i |= T and K, x, i |= p iff p ∈ L(x(i)).

K, x, i |= ¬σ iff K, x, i |= σ does not hold.

K, x, i |= σ1 ∧ σ2 iff K, x, i |= σ1 and K, x, i |= σ2.

K, x, i |= Eπ iff there exists a path y ∈ fullpaths(K �x(i)) such that K, y |= π.

85

4An excellent survey of the seminal tableau techniques for temporal logics can be found in [20].
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K, x |= ◦π iff K, x≥1 |= π.

K, x |= ¬π iff K, x |= π does not hold.

K, x |= π1 ∧ π2 iff K, x |= π1 and K, x |= π2.

K, x |= π1 U π2 iff there exists k ≥ i such that K, x≥k |= π2 and K, x≥j |= π1 for all j ∈ {0, . . . , k − 1}.
K, x |= �π iff K, x≥j |= π for all j ≥ 0.

In addition, for any set Σ of state formulae, K, x, i |= Σ iff K, x, i |= σ, for all σ ∈ Σ .

Many other usual operators can be derived from those introduced, in particular, the ‘falsehood’ constant F ≡ ¬T, and
the disjunction operator ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), as well as the temporal operator ♦π ≡ TU π and the universal
path quantifier Aπ ≡ ¬E¬π. It is also known that �π ≡ ¬♦¬π but, for technical convenience, we define it as a90

primitive operator. Let us recall some meta-logical concepts that are essential for the paper.

Definition 4 (Syntactically Consistent Set of Formulae). A set Σ of state formulae σ is syntactically consistent ab-
breviated as Σ� if F �∈ Σ and {σ,¬σ} �⊆ Σ for any σ; otherwise, Σ is inconsistent denoted as Σ⊥.

Definition 5 (Satisfiability). For a set of state formulae Σ, the set of its models, Mod(Σ), is formed by all triples
(K, x, i) such that K, x, i |= Σ. Σ is satisfiable (Sat(Σ)) if Mod(Σ) �= ∅, otherwise Σ is unsatisfiable (UnSat(Σ)).95

If Mod(Σ) = Mod(Σ�) then Σ and Σ� are equivalent denoted as Σ ≡ Σ�. For a set of state formulae Σ, if for any
fullpath x ∈ fullpaths(K), we have K, x, 0 |= Σ, then we simply write K |= Σ.

Definition 6 (Cyclic Sequence, Cyclic Path and Cyclic Kripke structure). Let z be a finite sequence of states z =
s0, s1, . . . , sj such that, for every 0 ≤ k < j, (sk, sk+1) ∈ R. Then, z is cyclic iff there exists si, 0 ≤ i ≤ j
such that (sj , si) ∈ R. Let z be a finite cyclic sequence, the subsequence si, . . . , sj of z is called a loop and si100

is called the cycling element. We denote the loop as �si, . . . , sj�ω . A cyclic path over z is an infinite sequence
path(z) = s0, s1, . . . , si−1�si, si+1, . . . , sj�ω .5 A Kripke structure K is cyclic if every fullpath is a cyclic path over a
cyclic sequence of states.

The fact that CTL� satisfiability can be reduced to the emptiness problem for automata on infinite trees (see [22, 23]),
ensures that the (non-empty) collection of models of a given satisfiable CTL� formula can be obtained by infinitely105

unwinding (in any possible way) a finite graph. Hence, for any CTL� formula φ, such that Mod(φ) �= ∅, there always
exists a model K ∈ Mod(φ) such that K is cyclic. Therefore, when speaking about the satisfiability in CTL� (hence
ECTL#) we can consider cyclic Kripke structures.

Proposing a new logic, ECTL#, we aim at defining a sublogic of CTL� that extends the ECTL+ formulae �♦σ
and ♦�σ (where σ means state formula), respectively, to �(σ U σ) and σ U �σ.110

Definition 7 (Syntax of ECTL# ). The set of ECTL# formulae, over a fixed set of propositions Prop, are formed
according to the following restriction of the CTL� grammar in Definition 1 for path formulae (state formulae are the
same): π ::= σ | π1 ∧ π2 | ¬π | ◦σ | σ U σ | �σ | σ U (�σ) | �(σ U σ).

Note that the nesting of pure path formulae, totally unrestricted in CTL�, is now restricted by the grammar cases:
◦σ | σ U σ | �σ | σ U �σ | �(σ U σ). In particular, aU �(b ∧ �c) (where a, b, c ∈ Prop) is not an ECTL# formula115

because b ∧ �c is directly in the scope of the � but is not a state formula. For technical convenience, we assume that
the tableau construction applies to the formulae in negation normal form (shortly, nnf). Therefore, we introduce here
a grammar for the set of ECTL# formulae that is closed under negation and requires the negation to apply to atomic
propositions (instead of state and path formulae).

Definition 8 (Syntax of ECTL# in nnf). Let Prop be a fixed set of propositions, let ρ ∈ Prop and let Lit ::= F | T |120

ρ | ¬ρ, be the set of literals. The set FProp of ECTL# formulae in nnf (over Prop) is given by the grammar:
σ ::= Lit | σ1 ∧ σ2 | σ1 ∨ σ2 | Eπ | Aπ
π ::= π1 ∧ π2 | π1 ∨ π2 | ◦σ | σ U (�σ) | �(σ U σ) | �(σ ∨ �σ) | σ U (σ ∧ ♦σ)

where σ means a state formula, π means a path formula, and ♦σ abbreviates TU σ.

5Cyclic paths are also known as ultimately periodic paths.
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The modified grammar is obtained by extending the state formulae grammar by Aπ-formulae and the path formulae
grammar by �(σ ∨ �σ) and σ U (σ ∧ ♦σ). Cases σ U σ and �σ are omitted because they respectively abbreviate125

σ U (σ ∧ ♦T) and �(σ ∨ �F). Note that, for a, b, c ∈ Prop, the formula �(a ∨ �(b ∨ �c)) is not in FProp because
b ∨ �c is not a state formula. The following proposition ensures that the set FProp is closed under negation.

Proposition 9 (Closure under Negation). For any ϕ ∈ FProp, we also have nnf(¬ϕ) ∈ FProp. Moreover, the nega-
tion of a state (resp. path) formula is a state (resp. path) formula.

PROOF. By structural induction on the formulae, using the following equivalences (and well known classical ones):130

1. ¬Aϕ ≡ E¬ϕ 5. ¬�(ϕ1 U ϕ2) ≡ ♦�¬ϕ2 ∨ ♦((¬ϕ1) ∧ (¬ϕ2))

2. ¬Eϕ ≡ A¬ϕ 6. ¬(ϕ1 U �ϕ2) ≡ (�♦¬ϕ2) ∨ ♦(¬ϕ1 ∧ ♦¬ϕ2)

3. ¬◦ϕ ≡ ◦¬ϕ 7. ¬(ϕ1 U (ϕ2 ∧ ♦ϕ3)) ≡ �(¬ϕ2 ∨ �¬ϕ3) ∨ ((¬ϕ2)U (¬ϕ1 ∧ ¬ϕ2))

4. ¬�ϕ ≡ ♦¬ϕ
Equivalences 1-5 are very well known (e.g. [9]); the validity of 6 and 7 is easily established. It is also easy to see that
7, when ϕ3 is T, is reduced to the known equivalence ¬(ϕ1 U ϕ2) ≡ (�¬ϕ2) ∨ (¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2))

For simplicity, we will write ¬ϕ instead of nnf(¬ϕ). Thus, ¬A(pU ✷q) represents (E�♦¬q) ∨ E♦(¬p ∧ ♦¬q)).
Also, for a finite set Δ = {ϕ1, . . . ,ϕn}, we let nnf(¬�n

i=1 ϕi) = ¬Δ.135

Type of a difficult case A-disjunctive formula E-conjunctive formula

Example A(◦q ∨ �r) E(◦r ∧ q U �¬p)
Our representation A(◦q,�r) E(◦r, q U �¬p)

Figure 2: Difficult cases of temporal operators in the scope of path quantifiers

For ECTL#, we identify the following difficult cases of the nesting and Boolean combinations of temporal opera-
tors in the scope of path quantifiers: A-disjunctive formula – disjunctions of temporal operators in the scope of A and
E-conjunctive formula – conjunctions of temporal operators in the scope of E. For convenience, we will, respectively,
write A(π1, . . . ,πn) and E(π1, . . . ,πn), where n ≥ 1, and if "," is in the scope of A it means ∨ while being in the140

scope of E it means ∧. Formulae serving as relevant examples in Figure 2 will be used to illustrate tableau, in Figure 6.
Note that any A-formula (E-formula) σ can be transformed into an equivalent Boolean combination of A-disjunctive
formulae A(π1, . . . ,πn) (E-conjunctive formulae E(π1, . . . ,πn)), such that every πi (1 ≤ i ≤ n) is of one of the
following: ◦σ, σ U (σ ∧ ♦σ), σ U �σ, �(σ ∨ �σ), and �(σ U σ), and σ stands for a state formula. For example,
A(((◦q)∧ (�E◦r))∨◦p) is equivalent to A(◦q)∧A(�E◦r,◦p); and E(((◦A◦r)∨ (q U �E¬p))∧◦q) is equivalent to145

E(◦A◦r) ∨ E(q U �E¬p,◦q). In what follows, Q abbreviates either of the path quantifiers. For a set of path formulae
Π = {π1, . . . ,πn}, we write QΠ to denote Q(π1, . . . ,πn), and Q◦Π to denote Q(◦π1, . . . ,◦πn). If Φ is an empty
set of formulae it means T when Φ occurs in a conjunctive expression, and F in a disjunctive expression. In particular,
when Π is ∅ then AΠ is F and EΠ is T. We write Σ,σ to represent the set Σ ∪ {σ}. We consider that every formula
σ ∈ FProp is given in its equivalent ‘negation normal form’, nnf(σ).150

3. The Tableau Method

3.1. Preliminaries

Definition 10 (Tableau, Consistent Node, Closed branch). A tableau for a set of ECTL# state formulae Σ is a
labelled tree T , where nodes are τ -labeled with sets of state formulae, such that the following two conditions hold:

(a) The root is labelled by the set Σ.155

(b) Any other node m is labelled with sets of state formulae as the result of the application of one of the rules in
Figures 3, 4, 5 and 7 to its parent node n. Given the applied rule is R, we term m an R-successor of n.

A node n of T is consistent, abbreviated as n�, if τ(n) is a syntactically consistent set of formulae (see Def. 4), else
n is inconsistent, abbreviated as n⊥. If a branch b of T , contains n⊥ ∈ b, then b is closed else b is open.
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α Sα

(∧) σ1 ∧ σ2 {σ1,σ2}
(Eσ) E(σ1, . . . ,σn,Π) {σ1, . . . ,σn,EΠ}

(E�U ) E(�(σ1 U σ2),Π) {E(σ1 U σ2,◦�(σ1 U σ2),Π)}
(A�U ) A(�(σ1 U σ2),Π) {A(σ1 U σ2,Π),A(◦�(σ1 U σ2),Π)}

Figure 3: ALPHA RULES. (Notation: σ,σi stand for state formulae and Π is a set of path formulae, possibly empty.)

β_Rule β k Sβi
(1 ≤ i ≤ k)

(∨) σ1 ∨ σ2 2
Sβ1

= {σ1}
Sβ2

= {σ2}

(Aσ) A(σ1, . . . ,σn,Π) n+ 1

Sβ1
= {σ1}

...

Sβn
= {σn}

Sβn+1
= {AΠ}

(E�σ) E(�(σ1 ∨ �σ2),Π) 2
Sβ1

= {σ1,E(◦�(σ1 ∨ �σ2),Π)}
Sβ2

= {¬σ1,σ2,E(◦�σ2,Π)}

(EU σ) E(σ1 U (σ2 ∧ ♦σ3),Π) 2
Sβ1

= {σ2,E(♦σ3,Π}
Sβ2

= {σ1,E(◦(σ1 U (σ2 ∧ ♦σ3)),Π)}

(EU �) E(σ1 U �σ2,Π) 2
Sβ1

= {E(�σ2,Π)}
Sβ2

= {σ1,E(◦(σ1 U �σ2),Π)}

(E�U ) E(�(σ1 U σ2),Π) 2
Sβ1

= {σ2,E(◦�(σ1 U σ2),Π)}
Sβ2

= {σ1,E(◦�(σ1 U σ2),Π)}

(A�σ) A(�(σ1 ∨ �σ2),Π) 3

Sβ1
= {σ1,A(◦�(σ1 ∨ �σ2),Π)}

Sβ2
= {¬σ1,σ2,A(◦�σ2,Π)}

Sβ3 = {AΠ}

(AU σ) A(σ1 U (σ2 ∧ ♦σ3),Π) 3

Sβ1
= {σ2,A(♦σ3,Π)}

Sβ2 = {σ1,A(◦(σ1 U (σ2 ∧ ♦σ3)),Π)}
Sβ3 = {AΠ}

(AU �) A(σ1 U �σ2,Π) 2
Sβ1 = {A(�σ2,Π)}
Sβ2 = {σ1,σ2,A(◦(σ1 U �σ2),Π)}

Figure 4: BETA RULES. (Notation: σ,σi stand for state formulae, πi stand for path formulae, and Π is a (possibly empty) set of path formulae.)

To make the presentation more transparent we give an informal overview of the tableau construction. Any tableau has160

a root-node that is exclusively labelled by a set of state formulae. To extend a node we apply one of α, β or β+ rule.
The first two types of rules are standard to the tableau, and are essentially based on the fixpoint characterisation of Q�
and QU modalities, while β+ rules are characteristic (and crucial!) for our construction. They tackle difficult cases
of formulae in ECTL#, and are related to our dedicated account of the eventualities.

Namely, we treat an eventuality as occurring in some context, which, in turn, is a collection of all state formulae,165

called ‘an outer context’ or path formulae called ‘an inner context’. As we will see, β+ rules use the context to
force eventualities to be fulfilled as soon as possible. The α − β − β+ rules apply repeatedly until they produce
an inconsistent node n⊥, or a node with the labels that already occurred within the path under consideration. In the
former case the expansion of the given branch terminates with n⊥ as its leaf. In the latter case, a repetitive node
in the branch suggests that the input formula is satisfied forever, and we select another eventuality (if any) see §4.1.170
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Obviously, n⊥ has an unsatisfiable τ(n) and is a ‘deadlock’ in the construction of a model. However, open branches
do not necessarily give us a model. In particular, an open branch could be a prefix of a closed one. Later we introduce
the notion of an expanded branch that enables the model construction. Once no more expansion rules are applicable to
the given branch with the last node n�, we are ensured that τ(n) = Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm, where
Σ is a set of literals. This labelling τ(n) is similar to a ‘state’ in the standard temporal tableau. Then the ‘next-state’175

rule applies to generate the successors of n with the labels that are arguments of all Q◦ modalities. The whole cycle
of applying α − β − β+ and ‘next-state’ rules is repeated until the tableau construction terminates. The nature of
our rules ensures that the terminated tableau represents a model for the tableau input if all the leaves in a collection
of branches, called a bunch, are consistent and all eventualities occurring in looping branches are fulfilled, otherwise,
the tableau input is unsatisfiable.180

(Q◦) Σ,A◦Φ1, . . . ,A◦Φ�,E◦Ψ1, . . . ,E◦Ψk,

AΦ1, . . . ,AΦ�,EΨ1 & . . . & AΦ1, . . . ,AΦ�,EΨk

Figure 5: NEXT-STATE RULE. (Notation: Σ is a (possibly empty) set of literals, and Φi,Ψi are non-empty sets of formulae.)

3.2. Alpha, Beta Rules and Next-State Rule

The α- and β-rules are the most elementary rules of our tableau system. An α-rule enlarges a branch with a node
labelled by Σ,α, by a successor node labelled by Σ, Sα, where Sα is the set of formulae associated with α in Figure 3.

An α-rule is represented as Σ,α
Σ, Sα

while β-rules as Σ,β
Σ, Sβ1

| · · · | Σ, Sβk

. β-rule splits a branch containing a node

labelled by a set Σ,β (where β is one of the formulae of Figure 4), in k new nodes each labelled by the corresponding185

Σ, Sβi
, according to Figure 4. The next-state rule (Q◦), Figure 5, also splits the branch into k branches each of them

rooted by node n labelled by a set AΦ1, . . . ,AΦl�,Ψi, for i ∈ {1, . . . , k}. This is the only rule of our system that
splits branches in a conjunctive way. We use the symbol & to represent the generation of AND-successors of node n.
When � = k = 0, the rule yields a unique new node labelled by the empty set. We assume that whenever k = 0 and
� > 0, there exists a unique descendant labelled by AΦ1, . . . ,AΦl.190

Example 11. Let n be a node such that τ(n) = {a,¬b,A◦c,E◦p,E◦¬p,A◦�((E◦p) ∧ (E◦¬p))}. Then the next-
state rule (Q◦) applies to n generating the following AND-successors of n: {Ac, p,A�((E◦p) ∧ (E◦¬p))} and
{Ac,¬p,A�((E◦p) ∧ (E◦¬p))}. Note that Ac requires the application of the β-rule (Aσ) to be reduced to c.

3.3. The Uniform Tableau

In this subsection we explain how to construct a tableau where leaves are labelled by sets of formulae of a specific195

form – Uniform sets of state formulae.

Definition 12 (Elementary Set of ECTL# State Formulae). A set of ECTL# state formulae is elementary if and
only if it is exclusively formed by literals and formulae of the form Q◦Π.

Proposition 13. Any set of ECTL# state formulae has a tableau T such that all its leaves are labelled by elementary
sets of state formulae.200

PROOF. Repeatedly apply to every expandable node any applicable α-rule or β-rule.

Example 14. Figure 6 depicts a tableau with elementary leaves for A(◦q,�r),E(◦r, q U �¬p),E◦q. Recall that
A(◦q,�r) is an abbreviation of A(◦q,�(r ∨ �F)).

Definition 15 (Basic Path/State Formula and Uniform Set of Formulae). Every ECTL# path formula of the type
◦σ,σ1 U (σ2∧♦σ3), σ1 U (�σ2), �(σ1∨�σ2), �(σ1 U σ2) is called basic. Every state formula QΠ where Π is a set205

of basic-path formulae is also called basic. A set of state formulae Σ is uniform iff Σ is exclusively formed by literals
and basic state formulae, and Σ contains at most one E-conjunctive formula.
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Proposition 16. Any set of ECTL# state formulae Σ has a tableau T such that labels of all its leaves are uniform
sets of state formulae. Moreover, each open branch of T contains exactly one application of (Q◦).
PROOF. Use Proposition 13 to construct a tableau with all its leaves labelled by elementary sets of formulae. Then210

apply the rule (Q◦), to any relevant node and, finally, repeatedly apply (to every expandable node) the rules (Eσ),
(Aσ), (∧), and (∨).
Definition 17 (Uniform Tableaux). For any set Σ of ECTL# state formulae, the tableau for Σ provided by Proposi-
tion 16 is denoted Uniform_Tableau(Σ).

Figure 6: A tableau whose leaves are elementary

Example 18. Constructing a uniform tableau for the set {A(◦q,�r),E(◦r, q U �¬p),E◦q)}, we first obtain the215

tableau in Figure 6. Then we apply the (Q◦) rule enlarging each of the four branches and producing the follow-
ing eight leaves, left to right (we refer to the node by its labels):

1. A(q,�r),E(r,�¬p) 2. A(q,�r),Eq 3. Aq,E(r,�¬p) 4. Aq,Eq

5. A(q,�r),E(r, q U �¬p) 6. A(q,�r),Eq 7. Aq,E(r, q U �¬p) 8. Aq,Eq
Then we apply the rules (Aσ) and (Eσ): the first branch is split into q, r,E�¬p and A�r, r,E�¬p; the second into q
and A�r, q; the third yields only a child q, r,E�¬p; the fourth and the eighth yield only q; the fifth is split into two220

nodes q, r,E(q U �¬p) and A�r, r,E(q U �¬p); the sixth into q and A�r, q; and the seventh yields the unique child
q, r,E(q U �¬p).

3.4. The Beta-plus Rules
In this subsection we extend our set of tableau rules with the new four rules named as β+-rules (Figure 7). These

rules, similarly to β-rules, also split a branch, but this time into a number of branches depending on the treated formula.225

The rules for A-disjunctive formulae apply to a label Σ,β, where β has the form A(π,Π), Π is a set of basic-path
formulae, and π is either σ U (σ ∧ ♦σ) or σ U �σ. The rule (EU σ�)+ for E-conjunctive formulae applies to a set
Σ,β, where β has the form EΠ and Π is a set of basic-path formulae that contains at least one formula σ U (σ ∧ ♦σ)
or σ U �σ. The β+-rules are the only rules in our system that make use of the so-called context for forcing the
eventualities to be satisfied as soon as possible. The context is given by the sets Σ containing state formulae and Π230

containing path formulae. We name Σ the outer context and Π the inner context. The outer context is used by all the
β+-rules. The inner context is only needed to deal with formulae AΠ. The following formula, ϕΠ, introduced in Def.
19 is used to manage the inner context Π in rules (AU σ)+ and (AU �)+.

Definition 19 (Formula ϕΠ for β+-rules on A-disjunctive formulae). Let Π be a set of basic path formulae. We
define the formula ϕΠ to be the following disjunction of state formulae (ϕΠ is F, if the below disjunction is empty):

�

�(σ1∨�σ2)∈Π

(σ1 ∨ σ2) ∨
�

σ1 U �σ2∈Π

σ2 ∨
�

�(σ1 U σ2)∈Π

E(♦σ2).

It is worth noting that each β+-rule, when applied to some formula of the form Q(σ1 U ϕ,Π) –where ϕ could
be σ2 ∧ ♦σ3 or �σ2– generates one or more successors that contain a formula of the form Q(◦((σ1 ∧ σ)U ϕ),Π)235

where σ depends on both the inner and the outer context, and is defined depending on whether Q is E or A. We call
(σ1 ∧ σ)U ϕ the next-step variant of σ U ϕ. Example 20 illustrates the main ideas behind the application of β+-rules
(AU σ)+ and (AU σ).
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β+-Rule Σ,β k S+
Σ,βi

(1 ≤ i ≤ k)

(AU σ)+ Σ,A(σ1 U (σ2 ∧ ♦σ3),Π) 3
S+
Σ,β1

= {σ2,A(♦σ3,Π)}
S+
Σ,β2

= {σ1,A(◦((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)),Π)}
S+
Σ,β3

= {AΠ}

(AU �)+ Σ,A(σ1 U �σ2,Π) 2
S+
Σ,β1

= {A(�σ2,Π)}
S+
Σ,β2

= {σ1,A(◦((σ1 ∧ (¬Σ ∨ ϕΠ ∨ σ2))U �σ2),Π)}
β+-Rule Σ,β k S+

Σ,βi
(1 ≤ i ≤ k)

(EU σ�)+ Σ,EΠ 2n

S+
Σ,β1

...

S+
Σ,βi

=
...

S+
Σ,βn

�
{σ2,E(♦σ3,Π

−i)} if πi = σ1 U (σ2 ∧ ♦σ3)

{E(�σ2,Π
−i)} if πi = σ1 U �σ2

S+
Σ,βn+1

...

S+
Σ,β2i

=

�
{σ1,E(◦((σ1 ∧ ¬Σ)U (σ2 ∧ ♦σ3)),Π

−i)} if πi = σ1 U (σ2 ∧ ♦σ3)

{σ1,E(◦((σ1 ∧ ¬Σ)U �σ2),Π
−i)} if πi = σ1 U �σ2

...

S+
Σ,β2n

Figure 7: BETA-PLUS RULES. (Notation: σ,σi stand for state formulae, Σ is a (possibly empty) set of state formulae, Π is a (possibly empty) set
of basic-path formulae. Formula ϕΠ is defined in Def. 19. We denote by ΠU the set of all formulae in Π that have the forms σ1 U (σ2 ∧ ♦σ3)
and σ1 U �σ2. ΠU is enumerated as {π1, . . . ,πn} for n ≥ 1, and Π−i = Π \ {πi}.)

Example 20. The β+-rules (AU σ)+ applies to one selected formula with exactly one marked eventuality. Conse-
quently, the (AU σ)-rule applies to all the eventualities (in the selected formula) except to the marked one.240

τ(n0) : ¬b,A( aU b , pU q)

τ(n1) : ¬b, b

τ(n2) : ¬b, a,A(◦( (a ∧ b)U b ), pU q)

¬b, a, q ¬b, a, p,A(◦( (a ∧ b)U b ),◦(pU q)) ¬b, a,A◦( (a ∧ b)U b )

τ(n3) : ¬b,A( pU q )

¬b, q ¬b, p,

(AU σ)+

(AU σ)

(AU σ)+

Figure 8: Application of (AU σ)+ and (AU σ) rules to {¬b,A(aU b, pU q)}

In Figure 8 the marked eventualities are in gray boxes. Assume aU b is the marked eventuality. Then, the (AU σ)+-
rule can be applied to aU b) with outer context Σ = {¬b} and inner context, Π = {pU q}. According to Definition 19,
ϕΠ is F. Therefore, S+

Σ,β1
= {b}, S+

Σ,β3
= {A(pU q)}, and S+

Σ,β2
= {a,A(◦((a∧ b)U b), pU q)} respectively gener-

ate nodes n1, n2 and n3. In node n2, the (AU σ)-rule is applied to pU q. That produces three new nodes. Regarding
node n3, the marked eventuality disappears. Then, a new selection is made and pU q is marked. Consequently,245

(AU σ)+-rule is applied with outer context Σ = {¬b}. The inner context is the empty set. Note that all leaves in
Figure 8 are elementary. Hence, the construction of the tableau, would continue applying the next-state rule (Q◦).
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3.5. Simplification Rules

A large set of simplification rules can be used to reduce the tableau construction. Here we only mention those
that are essential for termination. First, to stop the growth of the subformula σ in the successive next-step variants250

(σ1 ∧ σ)U ϕ, we use trivial simplification rules such as ϕ ∧ ϕ −→ ϕ and ϕ ∨ ϕ −→ ϕ, as well as classical
subsumptions rules. Second, to simplify the detection of equal labels (for looping in tableau branches) we use the
following (subsumption-based) rules:
(�E�U ) E(σ1 U σ2,�(σ1 U σ2),Π) −→ E(�(σ1 U σ2),Π).
(�A�U ) If Π� ⊆ Π then A(σ1 U σ2,Π) ∧ A(�(σ1 U σ2),Π

�) −→ A(�(σ1 U σ2),Π
�).255

Finally, to prevent the duplications of the original eventuality σ1 U σ2 and its successive new-step variants by rules
(Q�U ) and (QU σ)+, and to ensure termination, we use the following (subsumption-based) simplification rules:
(�Aσ U ) σ2 ∧ A(σ1 U σ2,Π) −→ σ2.
(�EU σ) E((σ1 ∧ σ)U ϕ,σ1 U ϕ,Π) −→ E((σ1 ∧ σ)U ϕ,Π)
(�AU σ) If Π� ⊆ Π then A((σ1 ∧ σ)U ϕ,Π�) ∧ A(σ1 U ϕ,Π) −→ A((σ1 ∧ σ)U ϕ,Π�).260

3.6. The role of ϕΠ in the Beta-plus Rules

Let us consider a set of formulae Φ = Σ,A(σ U ϕ,Π). A model, K, of Φ could satisfy A(σ U χ,Π) because each
fullpath of K satisfies either σ U χ or some formula π ∈ Π. The next-step variant of σ U χ is ◦(σ ∧ (¬Σ∨ϕΠ))U χ),
which makes ¬Σ or ϕΠ satisfiable before χ is satisfied. The former produces open branches where χ is fulfilled as
soon as possible, whereas the latter produces open branches that satisfy some of the π ∈ Π. Therefore, ϕΠ allows to265

generate a model from a branch in which σ U ϕ is not fulfilled, and some π ∈ Π is satisfied. Example 21 illustrates
these ideas from the constructive view, i.e when we construct a tableau for a formula A(π1, . . . ,πn).

τ(n1) : A(aU b,�c, r U �s,�(pU q))

τ(n2) : a,A(◦(
α1� �� �

(a ∧ (c ∨ s ∨ E♦q))U b),�c, r U �s,�(pU q))

τ(n3) : A(α1,�c, (r U �s),�(pU q))

τ(n4) : a, (a ∧ (c ∨ s ∨ E♦q)),A(◦(α1),�c, r U �s,�(pU q))

τ(n5) : a, q, c, r, p,A(◦(α1),◦�c,◦(r U �s),◦(pU q)),A(◦(α1),◦�c,◦(r U �s),◦�(pU q))

τ(n6) : A(α1,�c, (r U �s),�(pU q))

(AU σ)+

(A�σ) + (AU �) + A�U ) + (AU σ) + (Q◦) + (�A�U )

(AU σ)+

(A�σ) + (AU �) + A�U ) + (AU σ) + (∧) + (∨)

(Q◦) + (�A�U )

Figure 9: A branch of a tableau for A(aU b,�c, r U �s,�(pU q).

Example 21. Let Π = {�c, r U �s,�(pU q)}, and consider an application of the rule (AU σ)+ to the formula
A(aU b, Π), where a, b, c, p, q, r, s ∈ Prop (see Figure 9). The outer context, namely Σ, is empty and the inner
context is Π. Then ¬Σ is F and ϕΠ = c ∨ s ∨ E♦q. Hence, the second child, namely S+

Σ,β2
, raised by the application270

of (AU σ)+ is labelled by {a,A(◦α1,Π)} where α1 = (a∧ϕΠ)U b = (a∧(c∨s∨E♦q)U b. Then, Uniform_Tableau
applies the (corresponding) rules to �c, r U �s, �(pU q), and, finally, (Q◦) and the simplification rule (� A�U ),
obtaining the node n3. Now, one of the leaves raised by Uniform_Tableau is the fifth node; by applying here (Q◦)
and (� A�U ) we obtain the last node n6 such that τ(n6) = τ(n3). This branch represents a model of the initial
A-disjunctive formula where both disjuncts �(pU q) and �c are satisfied, though the other two disjuncts are not.275

Indeed, it represents the model {a, c, r, p}, ({a, c, r, p, q})ω .

4. Systematic Tableau Construction

In this section we define an algorithm, Asys, that constructs a systematic tableau and illustrate its performance
with some examples. Recall that due to the rule (Q◦), any open tableau should have a collection of open branches
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including all the (Q◦)-successors of any node labelled by an elementary set of formulae. These collections of branches280

are called bunches. Any open bunch of the systematic tableau, constructed by the algorithm Asys introduced in this
section, enables the construction of a model for the initial set of formulae.

Algorithm 1 Systematic Tableau Construction

1: procedure SYSTEMATIC_TABLEAU(Σ0) � where Σ0: set of state formulae
2: if Σ0 is not uniform then T := Uniform_Tableau(Σ0)
3: while T has at least one expandable node do
4: � Invariant: Any expandable node of T is labelled by an uniform set
5: Choose any node � in T such that τ(�) is expandable
6: Let Σ = τ(�) � Σ is uniform
7: if there are not selectable formulae in � then T := T [� ←Uniform_Tableau(Σ)]
8: else
9: Eventuality_Selection(Σ)

10: Apply_β+-rule(Σ)
11: Let k be the number of new leaves, �1, . . . , �k the new leaves and Σ1, . . . ,Σk their labels
12: for i = 1 .. k do
13: if �i is expandable and Σi is not uniform then
14: T := T [�i ←Uniform_Tableau(Σi)]
15: return T

4.1. The Algorithm
The algorithm Asys constructs an expanded tableau (see Definition 37) for the given input. Asys applied to the

input Σ0, denoted as Asys(Σ0), returns a systematic tableau Asys
Σ0

. Intuitively, ‘expanded’ means ‘complete’ in the285

sense that any possible rule has been already applied at every node. Though the best way to implement this algorithm
is a depth-first construction, for clarity, we formulate it as a breadth-first construction of a collection of subtrees.
The procedure Uniform_Tableau, in the above Algorithm 1, was introduced in Definition 17 along with the notion
of a uniform set of state formulae. The notation T1[� ← T2] stands for the tableau T1 where the expandable � is
substituted by the tableau T2. In particular, T [� ←Uniform_Tableau(Σ)] is the tableau T where the expandable � is290

substituted by the Uniform_Tableau(Σ). Next, we define the other two auxiliary procedures: Eventuality_Selection
and Apply_β+-rule, as well as the related concepts of selectable formula, non-expandable node and eventuality-
covered branch. From now on any basic path formula that is either σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2 or �(σ1 U σ2) is
called an eventuality. It is worth noting that ◦π is not called an eventuality in this setting.

Definition 22 (Selectable Formula). A formula is selectable if it is a QΠ and Π contains at least one eventuality.295

Procedure Eventuality_Selection chooses formula QΠ and if Q = A then the procedure also marks one eventu-
ality, according to the priorities of selection and marking in Definition 24. We denote by πU the marked eventuality
in the selected formula AΠ.

Procedure Apply_β+-rule(Σ) applies the corresponding rules depending on the selected formula QΠ and on the
marked eventuality in the case Q = A:300

• If Q = A and σ1 U (σ2 ∧ ♦σ3) ∈ Π is the marked eventuality, then apply (AU σ)+

• If Q = A and σ1 U �σ2 ∈ Π is the marked eventuality, then apply (AU �)+

• If Q = A and �(σ1 U σ2) ∈ Π is the marked eventuality, then first apply the rule (A�U ) and then the rule
(AU σ)+ with the marked eventuality σ1 U σ2.

• If Q = E and Π contains at least one σ1 U (σ2 ∧ ♦σ3) or one σ1 U �σ2 then apply (EU σ�)+305

• If Q = E and Π contains at least one �(σ1 U σ2) (but none σ1 U (σ2 ∧ ♦σ3) and none σ1 U �σ2), then first
apply the rule (E�U ) to every �(σ1 U σ2) and then the rule (EU σ�)+.

Each application of a β+-rule on the selected AΠ introduces a next-step variant of the marked eventuality and each
application of a β+-rule on the selected EΠ introduces a next-step variant for each σ1 U (σ2∧♦σ3) and each σ1 U �σ2.

The call Eventuality_Selection(Σ) keeps the selection of the formula EΠ such that Π contains at least one310

σ U (σ ∧ ♦σ) or σ U �σ, or keeps the selection of the formula AΠ ∈ Σ which contains the next-step variant of
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the marked eventuality, or selects a new formula AΠ ∈ Σ that contains an eventuality. The latter can happen for
three reasons. When formulae EΠ do not contain any σ U (σ ∧ ♦σ) nor σ U �σ, or there is no marked eventuality
in formulae AΠ, or when there is one, the node �, (Σ = τ(�)) is a loop-node (see Definition 25), and the branch
from the root-node to � is not eventuality-covered (see Definition 26). In this case, a new selection should be made315

because there are eventualities that have never been marked but they should be. This way we introduce the term
eventuality-covered. When a branch is eventuality-covered, its leaf is a loop-node and we are sure that, along the loop,
at least some eventuality in each A-disjunctive formula and all eventualities in each E-conjunctive formula have been
fulfilled. Consequently, the branch is an expanded open branch (see Definition 37) and represents a path in a possible
model. It is worth mentioning that the only requirement for a branch to be eventuality-covered is to mark all necessary320

eventualities. The fact that formulae EΠ are kept selected whereas they contain some eventuality and formulae AΠ
are kept selected where the next-step variant of the marked eventuality is kept marked ensures that every eventuality
in EΠ and at least one in each AΠ is fulfilled.

When making the selection, priorities are used as stated in Definition 24. The idea behind priorities is that a
tableau branch represents a path in a cyclic Kripke structure that is a possible model for the input formula. Therefore,325

it consists of a (possibly empty) initial sequence of states followed by a looping-sequence. Selectable formulae are
classified into two sets - those of the highest priority and those of the lowest priority. The non-looping initial sequence
is the first part of the model, hence we firstly select formulae AΠ where Π is exclusively formed by formulae of the
form σ1 U (σ2 ∧ ♦σ3) and formulae EΠ where Π contains at least one eventuality of the form σ1 U (σ2 ∧ ♦σ3) or
σ1 U �σ2. These are the highest priority formulae, which cannot produce a loop. When one of the former formulae330

AΠ is selected, one of the σ1 U (σ2 ∧ ♦σ3) is marked, namely π. By means of the rule (AU σ)+, in a finite number
of steps, either the branch close or π is either fulfilled (note that in the first branch A(♦σ3,Π) is also of the highest
priority) or deleted (the third branch of (AU σ)+). In any case the original formulae AΠ disappears. When one of the
latter formulae EΠ is selected, the successive applications of the rule (EU σ�)+ ensure (excluding the case when the
branch closes) the fulfillment of all σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2 in a finite number of states. Note that E(♦σ3,Π) is335

also of the highest priority. Once such formulae are fulfilled, all formulae σ1 U (σ2 ∧♦σ3) have disappeared from the
E-conjunctive formula, whereas �σ2 remains in the conjunction for all σ1 U �σ2 ∈ Π. Hence, the residual EΠ� is of
the lowest-priority. On the contrary, the lowest priority formulae could produce a loop. They are formulae AΠ where
Π contains at least one σ1 U �σ2 or �(σ1 U σ2) and formulae EΠ where Π contains at least one �(σ1 U σ2) (but are
not of the highest priority). They could produces a loop in a finite number of steps, since the subformulae starting340

by � remains forever in the E-disjunctive formulae, whereas in the A-disjunctive formulae they can either remain or
disappear. In the latter case, the residual A-disjunctive formulae could become non-selectable. It is easy to see that
non-selectable formulae necessarily produce a loop.

Example 23. Consider Σ0 = {A(aU b, bU c),E(pU q,�(r U s)),A�(cU d),¬b,A�e}. The first two formulae have
the highest-priority, the third has the lowest priority, and the the last two are non-selectable. Suppose that we select345

A(aU b, bU c) and mark aU b, since ¬b ∈ Σ0, the left-most open branch of rule (AU σ)+ contains a,A(◦((a ∧
¬Σ�

0)U b), bU c) where Σ�
0 = Σ0\{A(aU b, bU c)}. After applying the corresponding α and β rules to the remaining

formulae, the first stage s0 (the first state of the model) contains the atoms {a, q, s, d, e}. Then, by the next-step rule
(Q◦), the first node of the second stage s1 is Σ1 = {A((a ∧ ¬Σ�

0)U b, bU c),E�(r U s),A�(cU d),A�e} where the
first formula is kept selected and the first eventuality is kept marked. Note that the second formula has now the lowest350

priority. Then we apply (AU σ)+ to the first formulae and the corresponding α and β rules to the remaining formulae
in Σ1, generating the set of atoms in the left-most branch are {b, s, d, e}. Then, by the next-step rule (Q◦), the first
node of the third stage s2 is Σ2 = {E�(r U s),A�(cU d),A�e} where the first two formulas are of the lowest priority
and the third is non-selectable. By selecting the first formula, the atoms in the stages s2 (of the left-most branch) are
{s, d, e} and the new uniform set at the first node of the following stage is Σ3 = Σ2. However, A�(cU d) has not355

been selected inside the loop, hence we produce one stage more, s3, with atoms {s, d, e}. Then, by (Q◦), we obtain
Σ4 = Σ2 and the branch is eventuality-covered. Therefore, we have a model for Σ0 is s0, s1�s2, s3�ω .

Definition 24 (Priorities for Eventuality Selection). The selectable formulae of the highest priority for Eventual-
ity_Selection are the formulae of the following two forms:

• AΠ where Π is exclusively formed by formulae of the form σ1 U (σ2 ∧ ♦σ3).360

• EΠ where Π contains at least one eventuality of the form σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2.
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Consequently, the (selectable) formulae of the lowest priority are the formulae of the following two forms:
• AΠ where Π contains at least one σ1 U �σ2 or �(σ1 U σ2).
• EΠ where Π does not contain any σ1 U (σ2 ∧ ♦σ3) nor σ1 U �σ2, and Π contains at least one �(σ1 U σ2).

Once all the highest priority formulae have been selected in a branch, the only selectable formulae are the lowest365

priority formulae. At this point, the objective is to get a loop-node that makes the branch eventuality-covered.

Definition 25 (Loop-node). Let b be a tableau branch and ni ∈ b (0 ≤ i). Then ni is a loop-node if there exists
nj ∈ b (0 ≤ j < i) and τ(ni) = τ(nj). We say that nj is a companion node of ni.

Definition 26 (Eventuality-covered Branch). A tableau branch b = n0, n1, ..., ni is eventuality-covered if ni is a
loop-node, with a companion node nj (0 ≤ j < i), both labelled by a uniform set Σ of non-selectable and the lowest370

priority formulae such that every selectable formula QΠ ∈ τ(ni) is selected in some node nk (j ≤ k < i) and for
every selected AΠ exactly one eventuality in Π is marked in some node nk such that j ≤ k < i.

The procedure Eventuality_Selection performs in some fair way that ensures that any open branch will ever be
eventuality-covered.

Definition 27 (Non-expandable Node). A node n is non-expandable, if τ(n) = Σ⊥ or n is a loop-node of branch b375

which is eventuality-covered. Otherwise, n is expandable.

Consequently, an expandable node is either a node that is not a loop-node or a loop-node whose branch is not
eventuality-covered. It is worth noting that a formula of the lowest priority could be selected more than once in a
branch because the loop-node could change along the branch. In the following Example 28, we illustrate this issue.

τ(n1) : A( pU ¬p ,�p),A�(aU E�c)

τ(n2) : p, a,A(◦( pU ¬p ),◦�p),A◦(aU E�c),A◦�(aU E�c)

τ(n3) : A( pU ¬p ,�p),A�(aU E�c)

τ(n4) A(pU ¬p,�p),A�( aU E�c )

τ(n5) : E�c,A(pU ¬p,�p),A◦�(aU E�c)

τ(n6) : E�c,A( pU ¬p ,�p),A�(aU E�c)

τ(n7) : p,E�c,A(◦( pU ¬p ),�p),A�(aU E�c)

τ(n8) : p, c,E◦�c,A(◦( pU ¬p ),◦�p),A◦�(aU E�c)

τ(n9) : E�c,A( pU ¬p ,�p),A�(aU E�c)

τ(n10) : E�c,A(pU ¬p,�p),A�( aU E�c )

τ(n11) : p, c,E◦�c,A(◦(pU ¬p),◦�p),A◦�(aU E�c)

τ(n12) : E�c,A(pU ¬p,�p),A�(aU E�c)

(AU σ)+ + (A�σ) + (A�U ) + (AU σ)

(Q◦) + (�A�U )

(not eventuality covered)

(A�U ) + (AU σ)+

(AU σ) + (A�σ) + (E�σ) + (Q◦)

(AU σ)+

(A�σ) + (A�U ) + (AU σ) + (E�σ)

(Q◦)

(not eventuality covered)

(A�U ) + (AU σ)+ + (AU σ) + (A�σ) + (E�σ)

(Q◦)

Figure 10: A branch in the systematic tableau for A(pU ¬p,�p),A�(aU E�c)
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Example 28. Figure 10 shows a branch in the systematic tableau for Σ0 = {A(pU ¬p,�p),A�(aU E�c)} where,380

for readability, the marked eventualities are in gray boxes. The call Eventuality_Selection(Σ0) selects the formula
A(pU ¬p,�p) in n1. Generating n2, when we apply the (AU σ)+ rule to A(pU ¬p,�p), the inner context is p and the
outer context is A�(aU E�c). Hence, in the S+

Σ,β2
branch, the next-step variant of pU ¬p is p ∧ (¬(A�(aU E�c) ∨

p))U ¬p. By classical subsumption (included in our simplification rules), p∧(¬(A�(aU E�c)∨p) −→ p, hence the
next-step variant is pU ¬p, and the formula A(◦(pU ¬p),�p) is added to the current stage. Then, applying (A�σ) to385

A(◦(pU ¬p),�p), (A�U ) to (A�(aU E�c), and (AU σ) to A(aU E�c), the node n2 is obtained. After the applica-
tion of (Q◦) and (�A�U ), n3 is obtained. Node n3 is a loop-node whose companion node is n1 (τ(n3) = τ(n1)).
However, the branch is not eventually-covered since the eventuality aU E�c is not selected inside the loop. Therefore,
we obtain n4 by the call Eventuality_ Selection((τ(n3)) which selects A(aU E�c). After applying the (AU σ)+ rule
to A(aU E�c) (once the (A�U ) rule is applied), the branch S+

Σ,β1
expands to n5. After that, Uniform_Tableau gets390

one expandable node labelled by the uniform set {E�c,A(pU ¬p,�p),A�(aU E�c)} as represented in n6. The call
Eventuality_Selection((τ(n6)) selects again the formula A(pU ¬p,�p). Now, the inner context is p and the outer
context is {E�c,A�(aU E�c)}. Hence, by subsumption, p∧(¬(E�c)∨¬(A�(aU E�c))∨p) −→ p. Hence, the S+

Σ,β2

branch contains again the next-step variant pU ¬p in n7. Then, expanding the Uniform_Tableau we obtain n8 which
is an expandable loop-node because τ(n8) = τ(n6). However, the branch is not yet eventually-covered since aU E�c395

has not been marked inside the loop. Then, the selected formula in n9 is A(aU E�c). Finally, Uniform_Tableau
obtains a non-expandable loop-node, thus the given branch is eventually-covered - depicted in Figure 10 it represents
{p, a}({p, c})w, which is a model of Σ0. However, considering all the nodes in the branch, one would realize that the
model represented is {p, a}{p, c}({p, a, c}{p, c})w.

Definition 29 (Bunch in a Tableau, Closed Bunch and Tableau). A bunch b is a collection of branches that is max-400

imal with respect to (Q◦)-successor, i.e. every (Q◦)-successor of any node in b is also in b. A bunch is closed iff at
least one of its branches is closed, otherwise it is open. A tableau is closed iff all its bunches are closed.

Therefore, any open tableau has at least one open bunch, formed by one or more open branches. To complete, this
section we provide two examples: a closed tableau and an open tableau. We mark eventualities in gray boxes and use
large circles to represent the generation of AND-nodes or bunches.405

Figure 11: A closed tableau for A(TU p),E�¬p.

Example 30. Figure 11 shows a closed tableau for A(TU p),E�¬p. Note that, in the two applications of the rule
(AU σ)+, the inner context is empty and the outer context is E�¬p whose negation in nnf is A♦p. Hence, the label of
the rightmost node, A◦((A♦p)U p), is the simplification of the selected formula A◦(((A♦p) ∧ (A♦p))U p).

Example 31. On the left of Figure 12 we depict a representative open bunch of a tableau for the set of formulae:
p,A�(E◦p∧E◦¬p),A(♦¬p,�p). For saving space, we apply at once the Uniform_Tableau procedure subsequently410

choosing one of the leaves produced. Note that, for each node, we draw only one of the OR-children, but all the
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Figure 12: Open bunch in the tableau for p,A�(E◦p ∧ E◦¬p),A(♦¬p,�p) and represented model.

AND-children. In the marked eventuality, ¬p ∨ E♦(A◦¬p ∨ A◦p) comes from the negation of the outer context, and
the disjunct p from the inner context. By ‘Simplification’ ¬p∨ E♦(A◦¬p∨A◦p)∨ p is reduced to T (in the left-hand
child). In the label of the right-hand node, ¬p subsumes A((. . . )U ¬p,�p). This open bunch represents a model (of
the input set of formulae) that we depict on the right of Figure 12.415

5. Soundness

To prove the soundness of our tableau method (Theorem 34) we show that every tableau rule preserves satisfiability
(Lemma 33). To prove the latter we essentially use the limit closure property, ensuring that the satisfiability of the
negated inner context is preserved from segments of a limit path to the limit path itself (Proposition 32). The use of
ϕΠ (Definition 19) is crucial here.420

Proposition 32 (Preservation of the Negated Inner Context ). Let Π be any set of basic path formulae and let
ϕΠ be as in Definition 19. Let K be a Kripke structure, x1 ∈ fullpaths(K) such that K, x1, 0 |= ¬Π. Let
y = x≤i1

1 x≤i2
2 · · ·x≤ik

k · · · be a limit path in fullpaths(K), for some i1 > 0 and some x≤i2
2 · · ·x≤ik

k · · · . Then
K, y, 0 |= ¬π holds for all π ∈ Π, provided that the following two conditions hold for all n ≥ 1:

(a) K, x≤i1
1 x≤i2

2 · · ·xn, j |= ¬σ2 for all σ1 U (σ2 ∧ ♦σ3) ∈ Π and all j ∈ {0..in}, and425

(b) K, x≤i1
1 x≤i2

2 · · ·x≤in
n , in |= ¬ϕΠ.

PROOF. We check the four cases of a basic path formula π ∈ Π. If π is of the form ◦σ, then K, y, 0 |= ¬◦σ because
K, y, 0 |= ¬π and i1 > 0. If π is of the form σ1 U (σ2 ∧ ♦σ3), then property (a) ensures that every state in y satisfies
¬σ2. Therefore, ¬(σ1 U (σ2 ∧ ♦σ3)) is satisfied along the limit path y. For the remaining three cases, on the basis of
(b) and Definition 19, we can prove the following three facts: (1) If π = �(σ1∨�σ2), then K, x≤i1

1 x≤i2
2 · · ·x≤in

n , in |=430

¬σ1 ∧ ¬σ2 for all n. (2) If π = �(σ1 U σ2), then we have that K, x≤i1
1 x≤i2

2 · · ·x≤in
n , in |= ¬E(♦σ2) for all n. (3)

If π = σ1 U �σ2, then K, x≤i1
1 x≤i2

2 · · ·x≤in
n , in |= ¬σ2 for all n. Therefore, in any of the three cases, we can ensure

that K, y, 0 |= π.

Lemma 33 (Soundness of the Tableau Rules). For any set of state formulae Σ:
(i) For any α-formula α : Sat(Σ,α) iff Sat(Σ, Sα).435

(ii) For any β-formula β of range k: Sat(Σ, β) iff Sat(Σ, Sβi
) for some 1 ≤ i ≤ k.

(iii) For any β+-formula β of range k: Sat(Σ,β) iff Sat(Σ, S+
Σ,βi

) for some 1 ≤ i ≤ k.
(iv) If Σ is a set of consistent literals: Sat(Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm) iff for all 0 ≤ i ≤ m:

Sat(AΦ1, . . . ,AΦn,EΨi).
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PROOF. Noting that (i), (ii) and (iv) can be easily proved by the ‘systematic’ application of the semantic definitions of440

temporal operators, we prove (iii). The ‘only if’ direction‘ for each of the cases of β+-rules is trivial. We will prove
the ‘if’ direction of the three rules (EU σ�)+, (AU σ)+ and (AU �)+, in this order.
For the ‘if’ direction of rule (EU σ�)+, let us suppose that K |= Σ,EΠ, where Π contains at least one eventuality.
There exists x ∈ fullpaths(K) such that K, x, 0 |= Σ,Π. We are going to prove that there exists K� such that one of
the following properties holds:445

(a) K� |= Σ,σ2,E(♦σ3,Π
−i) for some πi = σ1 U (σ2 ∧ ♦σ3) in ΠU

(b) K� |= Σ,E(�σ2,Π
−i) for some πi = σ1 U �σ2 in ΠU

(c) K� |= Σ,σ1,E(◦((σ1 ∧ ¬Σ)U (σ2 ∧ ♦σ3)),Π
−i) for some πi = σ1 U (σ2 ∧ ♦σ3) in ΠU

(d) K� |= Σ,σ1,E(◦((σ1 ∧ ¬Σ)U �σ2),Π
−i) for some πi = σ1 U �σ2 in ΠU .

Since K, x, 0 |= πi for all π ∈ ΠU , we define j to be the least i ≥ 0 such that K, x, i |= ϕ for some σ1 U ϕ ∈ ΠU . If450

j = 0, then (a) and (b) (depending on the form of ϕ) are trivially satisfied for K� = K. Otherwise, if j > 0, it holds
that K, x, j |= ϕ and for all i < j: K, x, i |= σ1. Moreover, as j is the minimal index, for all 0 ≤ i < j: K, x, i |= σ�

1

for all σ�
1 U ϕ� ∈ ΠU . Consider k to be the greatest index i such that 0 ≤ i < j and K, x, i |= Σ. Henceforth, we have

that K, x, k |= Σ and K, x, h |= ¬Σ, for all h such that k+ 1 ≤ h < j. Therefore, (c) and (d) hold for K� = K �x(k).
For the ‘if’ direction of the rule (AU σ)+, let us suppose that the three sets Σ ∪ SΣ,β1

, Σ ∪ SΣ,β2
, and Σ ∪ SΣ,β3

455

of the rule (AU σ)+ are unsatisfiable. We will show that the set Σ,A(σ1 U (σ2 ∧♦σ3),Π) must be also unsatisfiable.
By the hypothesis, we know that any model of Σ is not a model of SΣ,βi for all i ∈ {1, 2, 3}. In other words, for any
K such that K |= Σ, the followings three facts holds:

(a) K �|= σ2 ∧ A(♦σ3,Π)
(b) K �|= σ1 ∧ A(◦((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)),Π)460

(c) K �|= AΠ
To show that Σ,A(σ1 U (σ2 ∧ ♦σ3),Π) is unsatisfiable, we consider an arbitrary K such that K |= Σ and prove that
K �|= A(σ1 U (σ2 ∧♦σ3),Π). Since K |= Σ, then (a), (b) and (c) hold. According to (b), there are two possible cases:
(Case 1): If K �|= σ1 then, by (a), either K |= ¬σ1 ∧ ¬σ2 or K |= ¬σ1 ∧ E(�¬σ3,¬Π). In both cases, it is easy to see
that K �|= A(σ1 U (σ2 ∧ ♦σ3),Π).465

(Case 2): Otherwise, if K �|= A(◦((σ1 ∧ (¬Σ∨ϕΠ))U (σ2 ∧♦σ3)),Π), then there exists x1 ∈ fullpaths(K) such that
K, x1, 0 |= ◦¬((σ1 ∧ (¬Σ ∨ ϕΠ))U (σ2 ∧ ♦σ3)) ∧ ¬Π. This yields two possible cases:
(Case 2.1): If K, x1, 0 |= ◦�(¬σ2 ∨ �¬σ3) ∧ ¬Π, then it is trivial that K �|= A(σ1 U (σ2 ∧ ♦σ3),Π).
(Case 2.2): Otherwise, there should exist i1 > 0 that satisfies the following three properties:

(i) K, x1, j |= (¬σ2) ∨ �¬σ3 for all j such that 0 ≤ j ≤ i1, and470

(ii) K, x1, i1 |= ¬σ1 ∨ (Σ ∧ ¬ϕΠ), and
(iii) K, x1, 0 |= ¬Π

If (i) is satisfied because K, x1, j |= �¬σ3 (for some j such that 0 ≤ j ≤ i1) then trivially K, x1, 0 �|= σ1 U (σ2∧♦σ3).
This, along with the fact (iii), not only ensures that K �|= A(σ1 U (σ2 ∧♦σ3),Π) but also applies to any other formula
σ�
1 U (σ�

2∧♦σ�
3) in Π. Henceforth, in what follows, we can suppose that for all j such that 0 ≤ j ≤ i1: K, x1, j |= ¬σ2475

and also that K, x1, j |= ¬σ�
2 for all σ�

1 U (σ�
2 ∧ ♦σ�

3) ∈ Π.
If (ii) is satisfied because K, x1, i1 |= ¬σ1 then it is clear that K, x1, 0 �|= σ1 U (σ2 ∧♦σ3). Therefore, by (i) and (iii),
K �|= A(σ1 U (σ2 ∧ ♦σ3),Π).
Otherwise, if (ii) is satisfied because K, x1, i1 |= Σ ∧ ¬ϕΠ, then (a), (b) and (c) hold for K � x1(i1) (instead of K)
because K, x1, i1 |= Σ. Hence, applying the same reasoning for K �x1(i1) as we did above for K, we conclude that480

there should be a path x2 ∈ fullpaths(K �x1(i1)) such that one of the following two facts holds:
(Case 2.2.1): K �x1(i1), x2 |= �¬(σ2 ∧ ♦σ3) ∧ ¬Π, and therefore K �|= A(σ1 U (σ2 ∧ ♦σ3),Π).
(Case 2.2.2): there should exist i2 > 0 such that K �x1(i1), x2, i2 |= Σ ∧ ¬ϕΠ and for all j ∈ {0..i2}:

• K �x1(i1), x2, j |= ¬σ2, and
• K �x1(i1), x2, j |= ¬σ�

2 for all σ�
1 U (σ�

2 ∧ ♦σ�
3) ∈ Π485

Now, (a), (b) and (c) apply to K � x2(i2). Hence, the infinite iteration of the second case yields a path y =

x≤i1
1 x≤i2

2 · · ·x≤ik
k · · · (that exists by the limit closure property) for which the Proposition 32 ensures that K, y, 0 �|=

A(σ1 U (σ2 ∧ ♦σ3),Π).
The proof for the (AU �)+ rule follows the same scheme.
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Theorem 34 (Soundness of the Tableau Method). Given any set of state formulae Σ, if there exists a closed tableau490

for Σ then UnSat(Σ).

PROOF. Let TΣ be a closed tableau for Σ. The set of formulae labelling at least one leaf in each bunch is inconsistent
and therefore unsatisfiable. Then, by Lemma 33, the labelling of the root node, Σ, is unsatisfiable.

6. Completeness

In this section, we prove the completeness of the introduced tableau method. First, we define the notions of stage,495

expanded bunch, and expanded tableau. Then we prove the refutational completeness: every unsatisfiable set of state
formulae has a closed tableau. In fact, we are going to prove that, for any set Σ0, if the systematic tableau Asys

Σ0
, given

by Algorithm 1, is open, then Σ0 is satisfiable. That is, Asys
Σ0

has at least one open bunch that allows us to construct a
model of Σ0. The final step of proving the completeness of the tableau method is establishing its termination.

6.1. Open Bunch Model Construction500

In this subsection, we define a method to associate a Kripke structure to any open bunch of the systematic tableau
Asys

Σ0
. Later, we prove that this Kripke structure is a model of Σ0.

Definition 35 (Stage). Given a branch, b of a tableaux T , a stage in T is every maximal subsequence of successive
nodes ni, ni+1, . . . , nj in b such that τ(nk) is not a (Q◦)-child of τ(nk−1), for all k such that i < k ≤ j. We denote
by stages(b) the sequence of all stages of b. The successor relation on stages(b) is induced by the successor relation505

on b. The labelling function τ is extended to stages as the union of the original τ applied to every node in a stage.

We prove that any open bunch of the systematic tableau Asys
Σ0

represents a model of the initial set of formulae Σ0.

Definition 36 (αβ+-saturated Stage). A set of state formulae Ψ is αβ+-saturated iff for all σ ∈ Ψ:
1. If σ is an α-formula then Sσ ⊆ Ψ
2. If σ is a β-formula of range k , but it is not a β+-formula, then Sβi

⊆ Ψ for some 1 ≤ i ≤ k.510

3. If σ is a β-formula and also a β+-formula of range k then either Sβi
⊆ Ψ or S+

Σ,βi
⊆ Ψ for some 1 ≤ i ≤ k

and Σ = τ(n) \ {σ} for some n ∈ s.
We say that a stage s in Asys

Σ0
is αβ+-saturated iff τ(s) is αβ+-saturated. For a given set Σ of state-formulae, we

denote by Comp(Σ) the union of all the minimal sets that contains Σ and are αβ+-saturated.

Definition 37 (Expanded Bunch and Tableau). An open branch b is expanded if each stage s ∈ stages(b) is αβ+-515

saturated and b is eventuality-covered. A bunch is expanded if all its open branches are expanded. A tableau is
expanded if all its open bunches are expanded.

Proposition 38. Given any set of state formulae Σ0, the systematic tableau Asys
Σ0

is expanded.

PROOF. Trivial, by construction.

Definition 39 (Open Bunch Model Construction). For any expanded bunch H of Asys
Σ0

, we define the Kripke-structure520

KH = (S,R, L) such that S =
�

b∈H stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ(n) ∩ Prop for some node n ∈
s}; and R is the relation induced in stages(b) for each b ∈ H .

6.2. Properties of the Open Branches of Asys
Σ0

In order to prove that KH , as defined in Definition 39, is a model for the label of the root of H , we first prove
the required auxiliary properties of the systematic construction of the tableau Asys

Σ0
. The systematic construction of525

Algorithm 1 produces uniform sets as expandable nodes. The selection is always made in uniform sets and loop-nodes
are also labelled by uniform sets.
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Remark 40 (Notation for Eventualities and Tableau Rule Application). In what follows, we use χ to represent a
formula of one of the two following forms: (σ2 ∧ ♦σ3) or �σ2. Then, σ1 U χ stands for one of the two possible
eventualities. We say that the corresponding β+ rule is applied to a selected AΠ with some marked eventuality530

π ∈ Π, meaning that (AU σ)+ is applied when π is σ1 U (σ2 ∧ ♦σ3), (AU �)+ is applied when π is σ1 U �σ2, and
(A�U ) followed by (AU σ)+ is applied when π is �(σ1 U σ2). We say that the corresponding β+ rule is applied to a
selected EΠ meaning that (EU σ�)+ is applied when Π contains at least one σ1 U (σ2∧♦σ3) or at lest one σ1 U �σ2,
and otherwise when Π contains at least one �(σ1 U σ2), then (EU σ�)+ is applied just after (E�U ) has been applied
to every �(σ1 U σ2) in Π. For clarity, we consider sets SΣ,βi

and S+
Σ,βi

used in the tableau rules creating child nodes535

from left (i = 1) to right, where i is the rank of the rule.

Definition 41 (Variants). For a given set Π of basic path formulae, we denote by Variants(Π) the collection of all
subsets of the sets Π� that are obtained from Π by one simultaneous application of any number (including zero) of
individual substitutions of some π ∈ Π by π� that satisfies the following rules:

• π is an eventuality σ1 U (σ2 ∧ ♦σ3) and π� is either ♦σ3 or a next-step variant of π.540

• π is an eventuality σ1 U �σ2 and π� is either �σ2 or a next-step variant of π.
• π is �(σ1 ∨ �σ2) and π� is �σ2.

The following two propositions establish general properties of the rule-based decomposition of E-conjunctive and
A-disjunctive formulae (respectively) along open branches.

Proposition 42. Let b be an open branch of Asys
Σ0

, let si, sj (i < j) be any pair of consecutive stages in stages(b) and545

let Σ∪ {EΠ} be the uniform set labelling the first node of si. There exists a (possibly empty and minimal) uniform set
Π� ∈ Variants(Π) such that EΠ� ∈ τ(sj) and for all π ∈ Π:

(a) if π = σ1 U (σ2 ∧ ♦σ3) then there exists k ≥ i such that σ1 ∈ τ(sh) for all h ∈ i..k − 1 and
(a1) k < j and σ2 ∈ τ(sk) and σ3 ∈ τ(sk�) for some k� such that k ≤ k� ≤ j, or
(a2) k < j and σ2 ∈ τ(sk) and ♦σ3 ∈ Π�, or550

(a3) k = j and π or some next-step variant of it is in Π�.
(b) if π = σ1 U �σ2 then there exists k ≥ i such that σ1 ∈ τ(sh) for all h ∈ i..k − 1 and

(b1) k < j and σ2 ∈ τ(sh) for some h such that i ≤ h ≤ k and �σ2 ∈ Π�, or
(b2) k = j and σ1 U �σ2 or some next-step variant of it is in Π�.

(c) if π = �(σ1 U σ2) then �(σ1 U σ2) ∈ Π� and for all h ∈ i..j − 1: σ2 ∈ τ(sh) or σ1 ∈ τ(sh).555

(d) if π = �(σ1 ∨ �σ2) then there exists k ≥ i such that σ1 ∈ τ(sh) for all h ∈ i..k − 1
(d1) k = j and �(σ1 ∨ �σ2) ∈ Π�, or
(d2) k < j and there exists k� ∈ k..j − 1 such that σ2 ∈ τ(sh) for all h ∈ k�..j − 1 and �σ2 ∈ Π�

PROOF. By simultaneous induction on Π, using the rules for the E-conjunctive formulae. Note that any stage in b is
αβ+-saturated and the procedure Uniform_Tableau applies exactly once between the last state of si and the first state560

of si+1. More specifically, in (a) we use (EU σ) and (EU σ�)+, and (a1) and (a2) come from the second application of
(EU σ) to E(♦σ3, . . . ) where ♦σ3 abbreviates TU σ3. Similarly, item (b) comes from rules (EU �) and (EU σ�)+;
Items (c) and (d) are respectively obtained from the rules (E�U ), (EU σ), and (EU σ�)+; and (E�σ). It is worth
noting that Π� is empty if all the formulae in Π satisfy the case (a1).

Proposition 43. Let b be an open branch of Asys
Σ0

, let si, sj (j > i) be any pair of consecutive stages in stages(b) and565

let Σ∪{AΠ} be the uniform set labelling the first node of si. If there exists a non-empty uniform set Π� ∈ Variants(Π)
such that AΠ� ∈ τ(sj), then the following four facts hold:

(a) For all σ1 U (σ2 ∧ ♦σ3) ∈ Π:
(a1) if σ1 U (σ2 ∧ ♦σ3) or a next-step variant of it is in Π�, then σ1 ∈ τ(sh) for all h ∈ i..j − 1,
(a2) if ♦σ3 ∈ Π� then σ2 ∈ τ(sk) for some k ∈ i..j − 1 and σ1 ∈ τ(sh) for all h ∈ i..k − 1.570

(b) For all σ1 U �σ2 ∈ Π: if �σ2 ∈ Π� or σ1 U �σ2 or a next-step variant of σ1 U �σ2 is in Π�, then {σ1,σ2} ⊆
τ(sh) for all h ∈ i..j − 1.

(c) For all �(σ1 U σ2) ∈ Π ∩Π�: σ1 ∈ τ(sh) or σ2 ∈ τ(sh) for all h ∈ i..j − 1.
(d) For all �(σ1 ∨ �σ2) ∈ Π,

(d1) if �(σ1 ∨ �σ2) ∈ Π then σ1 ∈ τ(sh) for all h ∈ i..j − 1.575
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(d2) if �σ2 ∈ Π� then for some k ∈ i..j − 1 {¬σ1,σ2} ⊆ τ(sk) and σ1 ∈ τ(sh) for all h ∈ i..k − 1 and
σ2 ∈ τ(sh) for all h ∈ k..j − 1.

Moreover, if there exists no AΠ� ∈ τ(sj) such that Π� ∈ Variants(Π), then there exists some σ1 U (σ2 ∧ ♦σ3) ∈ Π
and some k, k� ∈ i..j − 1 such that k ≤ k� and σ2 ∈ τ(sk) and σ3 ∈ τ(sk�) .

PROOF. By simultaneous induction on Π. For the proof we note that any stage in b is αβ+-saturated, and the following580

rules for A-disjunctive formulae hold: (AU σ) and (AU σ)+in (a); (AU �) and (AU �)+ in (b); (A�U ), (AU σ),
and (AU σ)+ in (c); and (A�σ) in (d). It is worth noting that the rules (AU σ) and (A�σ) generate a child where the
A-disjunctive formula that comes from AΠ is of the form AΠ� with Π� ⊂ Π (one formula is lost).

From the previous two propositions it is easy to conclude that, for a given initial node (of stage si) labelled by a
uniform set Σ ∪ {QΠ}, the mentioned sets Π� such that QΠ� ∈ τ(si+1) exclusively consist of path subformulae and585

next-step variants of the formulas in Π. It also follows that τ(si+1) exclusively contains Boolean combinations of state
subformulae in Σ ∪ {QΠ} and the formula QΠ�. The next proposition shows that the selection of an E-conjunctive
formula in any open branch of Asys

Σ0
can only be kept along finitely many stages.

Proposition 44. Let b be an open branch of Asys
Σ0

, let si ∈ stages(b) and let Σ ∪ {EΠ} be the uniform set labelling
the first node of si where the selectable formula EΠ is selected. If EΠ has the highest priority, then590

(a) For all π = σ1 U (σ2 ∧♦σ3) ∈ Π: {σ2,E(♦σ3,Π
�)} ⊆ τ(sk) for some stage sk ∈ stages(b) (k ≥ i) and some

Π� ∈ Variants(Π \ {π}).
(b) For all π = σ1 U �σ2 ∈ Π: E(�σ2,Π

�) ∈ τ(sk) for some stage sk ∈ stages(b) (k ≥ i) and some Π� ∈
Variants(Π \ {π}).

and if EΠ has the lowest priority, then595

(c) For all π = �(σ1 U σ2) ∈ Π: σ2 ∈ τ(sk) for some stage sk ∈ stages(b) (k ≥ i).

PROOF. Suppose that EΠ has the highest priority, then Π contains at least one σ1 U (σ2 ∧ ♦σ3) or σ1 U �σ2, then
the β+-rule (EU σ�)+ is applied in the first node of stage si where EΠ is selected and the resulting EΠ� of the
highest priority in its children are kept selected, hence (EU σ�)+ is again applied to them, and so on. We proceed by
contradiction, supposing that (a) and (b) does not hold. We get a contradiction from the hypothesis that (a) does not
hold, i.e. for some σ1 U (σ2 ∧ ♦σ3) ∈ Π: {σ2,E(♦σ3,Π

�)} �⊆ τ(sk) for every stage sk ∈ stages(b) such that k ≥ i
and all Π� ∈ Variants(Π \{πi}). The proof for the case where (b) does not hold is identical. The fact that (a) does not
hold means that at the first node of every stage sj ∈ stages(b) such that j ≥ i there is a selected formula EΠsj which
satisfies that σ1 U (σ2 ∧ ♦σ3) or some step-variant of it is in Πsj . Hence, except for a finite number of applications
of (EU σ�)+ that extends the branch b with some set S+

Σsj
,βi

(where Σsj is the context of the selected formula at the
first node of each stage sj , in particular Σsi = Σ) such that 1 ≤ i ≤ n, the branch b is repeatedly extended with some
set S+

Σsj
,βi

such that n + 1 ≤ i ≤ 2n, which includes a next-step variant of at least one formula in Πsj . Note that

this next-step variant could be of σ1 U (σ2 ∧ ♦σ3) or some other formula of the form σ U (σ ∧ ♦σ) or σ U �σ. In
any case, the uniform set labelling the first node of each stage sj (i ≤ j) has the form Σsj ,EΠsj where Πsj contains
at least one next-step variant of σ1 U (σ2 ∧ ♦σ3), EΠsj is the selected formula and for every (except a finite number
of) Σsk where i ≤ k ≤ j, Πsj contains a formula of the form σ ∧ (¬Φ1 ∧ · · · ∧ ¬Φr))U χ such that Φh = Σsk for
some 1 ≤ h ≤ r. Since no other β+-rule is applied each Σsj is a subset of the finite set formed by all state formulae
that are subformulae of some formula in Σsi ∪ Π and their negations. Hence, there exists a finite number of different
Σsj . Therefore, after finitely many applications of the β+-rule (EU σ�)+, for some k >= i, Σsk = Σsh for some
h ∈ {i, ..k − 1}, and ¬Σsk ∈ τ(sk), hence, Σsk must be inconsistent. Since b is open, this is a contradiction. It
means that for some k ≥ i, the application of the corresponding β+-rule (EU σ�)+ should produce a node whose
label contains S+

Σsj
,βi

where 1 ≤ i ≤ n. Henceforth, the open branch b must satisfy (a).

If EΠ has the lowest priority, then Π contains at least one �(σ U σ) (and none σ U (σ∧♦σ) and none σ U �σ). Let us
suppose there are n ≥ 1 formulae, i.e. EΠ = E(�(σ1

1 U σ1
2), . . . ,�(σ

n
1 U σn

2 ),Π
�) for some Π� that does not contain

any eventuality. Then, the α-rule (E�U ) is applied n times transforming the selected EΠ into

E(σ1
1 U σ1

2 , . . . ,σ
n
1 U σn

2 ,◦�(σ1
1 U σ1

2), . . . ,◦�(σn
1 U σn

2 ),Π
�)

which has the highest priority. Hence, by a particular application of the case (a), for all 1 ≤ j ≤ n: σj
2 ∈ τ(sk) for

some stage sk ∈ stages(b) (k ≥ i).
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For A-disjunctive formulae, not only the outer context, but also the inner context, plays an important role. The
next propositions explain the role of both kinds of contexts.600

Proposition 45. Let b be an open branch of Asys
Σ0

, let si ∈ stages(b) and let Σsi ∪ {AΠ} be the uniform set labelling
the first node of si where AΠ is selected and some eventuality πU ∈ Π is marked. Let b be any branch where the
next-steps variants of πU are successively marked and Πsi = Π \ {πU } is the initial inner context. Then, one of the
following two facts hold:

(a) There exists k ≥ i and some Π� ∈ Variants(Π \ {πU }) such that:605

(a1) {σ2,A(♦σ3,Π
�)} ⊆ τ(sk) if πU = σ1 U (σ2 ∧ ♦σ3).

(a2) A(�σ2,Π
�) ∈ τ(sk) if πU = σ1 U �σ2 ∈ Π�.

(a3) σ2 ∈ τ(sk) if πU = �(σ1 U σ2) ∈ Π�.
(b) There exists k ≥ i such that the first node of sk is a loop-node whose companion node is in sh, for some h ∈

{i..k−1}, some Π� ∈ Variants(Π\{πU }) and some next-step variant πv
U of πU such that A(πv

U ,Π�) ∈ τ(sj)610

for all j ∈ {h..k}, and ϕΠ� ∈ τ(sk)
Moreover, in both cases,for all j ∈ {i..k − 1}:

1. σ1 ∈ τ(sj) for all σ1 U (σ2 ∧ ♦σ3) ∈ Π� ∪ {πU },
2. {σ1,σ2} ⊆ τ(sj) for all σ1 U �σ2 ∈ Π� ∪ {πU },
3. σ1 ∈ τ(sj) or σ2 ∈ τ(sj) for all �(σ1 U σ2) ∈ Π� ∪ {πU }, and615

4. σ1 ∈ τ(sj) for all �(σ1 ∨ �σ2) ∈ Π�.

PROOF. If ϕπsi
= F , the uniform set labelling the first node at each stage sj (j ≥ i) of b has the form

Σsj ,A((σ1 ∧ (¬Σsi ∧ · · · ∧ ¬Σsj−1
))U χ,Πsj )

where each Σsj is the outer (resp. inner) context of the selected formula containing the marked next-step variant of
πU ) at the first node of each stage sj . In particular, Σsi = Σ. Since no other β+-rule is applied each Σsj is a subset of
the finite set formed by all state formulae that are subformulae of some formula in Σsi ∪Π and their negations. Hence,
there are a finite number of different Σsj . Therefore, after finitely many applications of the β+-rule, Σsh = Σsj , for620

some h >= i, for some j ∈ {i, ..h−1}, and σ1∧(¬Σsi ∧ · · ·∧¬Σsh−1
) ∈ τ(sh). In particular, ¬Σsh ∈ τ(sh), hence,

Σsh must be inconsistent. Since b is open, this is a contradiction. This means that, for some k ≥ i the application
of the corresponding β+-rule should produce a node generated by the corresponding set S+

β1
. Henceforth, the open

branch b must satisfy (a1) or (a2) or (a3), depending on the case of πU .
If ϕπsi

�= F, then, the uniform set labelling the first node at each stage sj (j ≥ i) has the form

Σsj ,A((σ1 ∧ (¬Σsi ∨ ϕΠsi
) ∧ · · · ∧ (¬Σsj−1

∨ ϕΠsj−1
))U χ,Πsj )

where each Πsh is the inner context at the first node of each stage sh. In particular, Πsi = Π \ {πU }. Since no other625

β+-rule is applied, then
• each Σsj is a subset of the following finite set LC(Σ,Π): LC(Σ,Π) is formed by all state formulae that are

subformulae of some formula in Σ ∪ Π, their negations, and a formula E♦σ2 for each subformula �(σ1 U σ2)
in Π (see Definition 19), and

• each Πsj is a subset of the finite set of all state formulae that are subformulae of some formula in Π. Indeed,630

each Πsj+1 ∈ Variants(Πsj ) for all j ≥ i.
In particular, there are a finite number of different outer and inner contexts. Henceforth, there are two possibilities.
First, for some h, k such that k > h ≥ i, both Σsk = Σsh and Πsk = Πsh ; and second for some h ≥ i, the formula
ϕπsh

is F. In the latter case, the item (a) must be satisfied for some k ≥ h. In the former case, by Definition 41
and Proposition 43, for all j ∈ {h..k}: Πsj = Πsk . Let Π� = Πsk , then the first nodes at the sequence of stages635

sh, sh+1, . . . , sk are respectively labelled by

Σsh ∪ {A((σ1 ∧ δ)U χ,Π�)}, Σsh+1
∪ {A((σ1 ∧ δ)U χ,Π�)}, . . . , Σsk ∪ {A((σ1 ∧ δ)U χ,Π�)}

where δ = (¬Σsi ∨ ϕΠsi
) ∧ · · · ∧ (¬Σsh ∨ ϕΠ�) ∧ · · · ∧ (¬Σsk−1

∨ ϕΠ�) or equivalently δ = (¬Σsi ∨ ϕΠsi
) ∧ · · · ∧

((¬Σsh ∧ · · ·∧¬Σsz−1)∨ϕΠ�). Hence, in node sk, the application of the β+-rule to the marked eventuality produces
a right-hand child that contains Σsk and σ1 ∧ δ. Therefore, by rules (∧) and (∨), it also contains ¬Σsh = ¬Σsk .640
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Therefore, since b is open, τ(sk) must contain ϕΠ� , which completes the proof of item (b). Moreover, in both cases
(a) and (b), for all j ∈ {i..k−1}, each inner context Πsj+1 satisfies the properties of Π� in Proposition 42 with respect
to Πsj as Π. Consequently, the last four items of the proposition hold.

The next two propositions provide a detailed description of how the highest priority formulae evolve in open
branches.645

Proposition 46. Let b be an open branch of Asys
Σ0

, and let EΠ be of the highest priority that is selected at some stage
si ∈ stages(b). Then there exists a state sk ∈ stages(b) (for some k ≥ i) and some (possibly empty and minimal) set
Π� ∈ Variants(Π) such that EΠ� ∈ τ(sk), EΠ� is of the lowest priority and for all π ∈ Π the following facts hold:

(a) If π = σ1 U (σ2 ∧♦σ3) then there exists j, j� such that i ≤ j ≤ j� ≤ k, for all h ∈ {i, . . . , j − 1}: σ1 ∈ τ(sh),
σ2 ∈ τ(sj), and σ3 ∈ τ(sj�).650

(b) If π = σ1 U �σ2 then there exists j such that i ≤ j ≤ k and for all h ∈ {i, . . . , j − 1}: σ1 ∈ τ(sh), and for all
h ∈ {j, . . . , k}: σ2 ∈ τ(sh) and �σ2 ∈ Π�.

(c) if π = �(σ1 U σ2) then �(σ1 U σ2) ∈ Π�, and for all j ∈ {i, . . . , k}: either σ1 ∈ τ(sj) or σ2 ∈ τ(sj).
(d) if π = �(σ1 ∨ �σ2) then one of the following two facts holds:

(d1) For all j ∈ {i, . . . , k}: σ1 ∈ τ(sj) and �(σ1 ∨ �σ2) ∈ Π�.655

(d2) There exists j such that i ≤ j ≤ k and for all h ∈ {i, . . . , j− 1}: σ1 ∈ τ(sh), and for all h ∈ {j, . . . , k}:
σ2 ∈ τ(sh) and �σ2 ∈ Π�.

PROOF. By simultaneous induction on the structures of formulae in Π and Propositions 44 and 42((a) and (b)), the
above items (a) and (b) hold for some k ≥ i. Note that in case (a), E(♦σ3,Π

�) (for some Π� such that {♦σ3} ∪ Π� ∈
Variants(Π)) is kept selected at stage sj . Hence, the eventuality σ3 ∈ τ(sj�) for some j� ≥ j. Therefore, by660

Proposition 44, the existence of such j� is ensured. In case (b) E(�σ2,Π
�) ∈ τ(sj) for some j ≥ i, hence, by

Proposition 42(d), for all h ∈ {j, . . . , k}: σ2 ∈ τ(sh) and �σ2 ∈ Π�. Items (c) and (d) are ensured by Propositions 42
(c) and (d). Additionally, by minimality, Π� only contains formulae of the forms �(σ1 U σ2) and �(σ1 ∨ �σ2), hence
EΠ� is of the priority.

The other kind of the highest-priority formulae are AΠ such that Π is exclusively formed by formulae of the form665

σ1 U (σ2 ∧ ♦σ3).

Proposition 47. Let b be an open branch of Asys
Σ0

, and let AΠ be a formula of the highest priority that is selected at
some stage si ∈ stages(b). Then there exists π = σ1 U (σ2 ∧ ♦σ3) ∈ Π and some stage sk ∈ stages(b) (for some
k ≥ i) such that for all j ∈ {i, . . . , k−1}: σ1 ∈ τ(sj), {σ2,A(♦σ3,Π

�)} ⊆ τ(sk) for some Π� ∈ Variants(Π\{π}).
Moreover, A(♦σ3,Π

�) is also a formula of the highest priority.670

PROOF. According to Definitions 24 and 26, one eventuality in Π must be marked at the stage si of b. Hence, there
exists σ1 U (σ2 ∧ ♦σ3) ∈ Π that is the marked eventuality at stage si. Since ϕΠ is F when Π is exclusively formed
by formulae of the form σ1 U (σ2 ∧ ♦σ3), the item (a) of Proposition 45 holds. Hence, by Proposition 45 (a1), there
exists k ≥ i and Π� such that {σ2,A(♦σ3,Π

�)} ∈ τ(sk). Since Π� ∈ Variants(Π \ {π}), every formula in Π� is
of the form σ1 U (σ2 ∧ ♦σ3) (in particular, ♦σ which abbreviates TU (σ ∧ ♦T)). Hence, A(♦σ3,Π

�) is also of the675

highest-priority.
Next, we show that any open branch of Asys

Σ0
is eventuality-covered. In the sequel, we deal with uniform sets

formed by non-selectable and the lowest priority formulae (i.e, without the highest-priority formulae), we call them
cycle-uniform sets.

Proposition 48. Any open branch b of Asys
Σ0

is eventuality-covered.680

PROOF. Let b be any open branch of Asys
Σ0

, we are going to show that there must exist some stage s� in b with the first
node n� labelled by a cycle-uniform set Σ� such that any selection of a formula of the lowest priority in Σ� produces
a loop-node whose companion node is n�.

Let Σ and Σ� be any two cycle-uniform sets of state formulae, we say that Σ� � Σ iff every formula in Σ� is either
a proper subformula of some formula QΠ ∈ Σ or its negation, or a formula QΠ� such that there exists QΠ ∈ Σ such685

that Π� ∈ Variants(Π). It is worth noting that the formulae E♦σ2 that can be introduced by ϕΠ (see Definition 19) are
of the highest priority, then they cannot belong to any cycle-uniform set. Let b = s0, . . . , si, . . . , sj , . . . (0 ≥ i > j)
be any open branch of Asys

Σ0
, and let Σ and Σ� respectively be the cycle-uniform sets labelling the first node of si and
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sj . By Propositions 42, 43, 44 and 45, Σ� � Σ. Moreover, for any cycle-uniform set Σ, � is a well-founded order on
the collection of all cycle-uniform sets Σ� such that Σ� � Σ.690

Let b = s0, . . . , si, . . . , sj , . . . , sk, . . . (0 ≥ i > j ≥ k) be any open branch of Asys
Σ0

. Suppose that every
highest priority formula in the initial uniform set has been selected before the stage si. Let Σ be the cycle-uniform set
labelling the first node of sj which is a loop-node whose companion is the first node of si. Suppose that Σ contains
at least one lowest priority formula AΠ that was selected at si. If b is not already eventuality-covered, this means that
there exists AΠ� ∈ Σ of the lowest priority that has not been selected. Suppose that AΠ� is selected at sj and there695

exists a loop-node at sk labelled by Σ� then, Σ� � Σ. If Σ = Σ� and there are no more selectable formula in Σ, b
is already eventuality covered and the first node of si is n�. Otherwise, Σ� ≺ Σ, so that the companion node of the
first node of sk is the first node of some stage sh such that h > i. In general, for any number of the lowest priority
formulae in Σ, by well-foundness of ≺ there should exist a minimal node n� labelled by a cycle-uniform set Σ� such
that any selection of the lowest priority formula in Σ� produces a loop-node whose companion node is n�. Hence, the700

branch b ends by a subsequence of n ≥ 2 (possibly non-consecutive) stages si1 , . . . , sin whose first node is labelled
by Σ�, where n� is the first node of si1 , and each selectable (lowest priority) formula in Σ� is selected at some stage
in si1 , . . . , sin . In particular, Σ� could be empty, then n = 2 and b is trivially eventuality-covered.

6.3. Refutational Completeness

In this subsection we prove that our tableau method is refutationally complete, that is if a set of state formulae is705

unsatisfiable then there exists a closed tableau for it. For that, we first ensure the existence of a model for any open
bunch of Asys

Σ0
.

Lemma 49 (Model Existence). Let H be an expanded bunch of Asys
Σ0

and KH = (S,R, L) be as in Definition 39.
For every state s ∈ S, if σ ∈ L(s) then KH , s, 0 |= σ. Therefore, KH |= Σ.

PROOF. Let H be any expanded bunch of Asys
Σ0

and let b be any open branch in H . The construction of any branch of710

Asys
Σ0

starts by selecting a formula of the highest-priority (if any) and marking eventualities as explained in Definition
24. At most one eventuality is marked inside the unique selected QΠ and the rules of Figure 7 are applied to this
formula and to no one else. When a β+-rule is applied to a formula of the highest priority (independently of the
marked eventuality), then only the outer context (but no the inner context) is used to construct the new-step variant.
Therefore, while some highest priority formulae is selected, previous labels cannot be repeated. Consequently, the715

initial segment of any open branch has no loop-nodes. This initial segment can be empty or not. According to
Proposition 48, the branch b is eventuality covered. Hence, there exists a (possibly empty) cycle-uniform set Σ� such
that for some i ≥ 0: b = s0, s1, . . . , si−1, si, si+1, . . . , sj , n�, where each sh stands for a stage and n� is a non-
expandable loop-node labelled by Σ� whose companion node is the first node at stage si. Let si1 , si2 , . . . , siz be a the
subsequence formed by all the stages in si, si+1, . . . , sj whose first node is labelled by Σ� (in particular, si1 = si).720

Then, each lowest priority formula in Σ� has been selected at some node nh (h ∈ i..j + 1). The tableau branch b
represents a cyclic branch (of a model) such that path(b) = s0, s1, . . . , si−1�si, si+1, . . . , sj�ω where each state sh
(h ∈ 0..j) is labelled by the set of all atoms occurring in the label τ(sh) of the tableau stage sh (in the label of some
tableau node at stage sh).

We are going to prove that KH , sa, 0 |= σ for any a ∈ 0...j and any formula σ in τ(sa), by structural induction725

on the formula σ. The base of the induction σ = p ∈ Prop is ensured by Definition 39: KH , sa, 0 |= p.
The bunch H allows us to ensure that whenever a tableau node in stage sa is labelled by an elementary set

{Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm} ⊆ L(s) then, by rule (Q◦), the bunch H contains one successor stage
sia+1, for each i ∈ 1..m, that contains {AΦ1, . . . ,AΦn,EΨi}. Since by induction hypothesis, we can assume that
KH , sia+1, 0 |= AΦ1, . . . ,AΦn,EΨi for all i ∈ 1..m, and Σ is a consistent set of literals, then we can infer that730

KH , sa, 0 |= {Σ,A◦Φ1, . . . ,A◦Φn,E◦Ψ1, . . . ,E◦Ψm}.
To complete the proof, we prove different cases for σ being a formula of the form QΠ, depending on whether σ is

selectable or not and, in the selectable case, depending on the σ priority for the selection strategy.
Let σ = EΠ ∈ τ(sa) be non-selectable. Then every π ∈ Π is of the form �(σ1 ∨ �σ2). Hence, by Proposition 42

(d) and the induction hypothesis, there exists a state sk (for some k ≥ a) and some non-empty set Π� ∈ Variants(Π)735

such that KH , sk, 0 |= EΠ�, �(σ1 ∨ �σ2) ∈ Π�, and for all π ∈ Π:
• KH , sj , 0 |= σ1 for all a ≤ j ≤ k, and
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• there exists j such that a ≤ j ≤ k and for all h ∈ a..j−1: KH , sh, 0 |= σ1, and for all h ∈ j..k: KH , sh, 0 |= σ2

and �σ2 ∈ Π�.
Therefore, KH , sa, 0 |= EΠ.740

Let σ = AΠ ∈ τ(sa) be non-selectable. Then every π ∈ Π is of the form �(σ1 ∨�σ2). By Proposition 43 (d) and
the induction hypothesis, there exists a state sk (for some k ≥ a) and some non-empty set Π� ∈ Variants(Π) such that
KH , sk, 0 |= AΠ� and for all π = �(σ1 ∨ �σ2) ∈ Π:

• If �(σ1 ∨ �σ2) ∈ Π� then KH , sj , 0 |= σ1 for all j ∈ a..k, and
• if �σ2 ∈ Π� then there exists j such that a ≤ j ≤ k and for all h ∈ a..j − 1: KH , sh, 0 |= σ1, and for all745

h ∈ j..k: KH , sh, 0 |= σ2.
Therefore, KH , sa, 0 |= AΠ.

Let σ = EΠ ∈ τ(sa) be a (selectable) formula of the highest priority. According to Proposition 46 and the
induction hypothesis, there exists a state sk (for some k ≥ a) and some (possibly empty and minimal) set Π� ∈
Variants(Π) such that KH , sk, 0 |= EΠ� and for all π ∈ Π the following facts hold:750

• If π = σ1 U (σ2 ∧ ♦σ3) then there exists j, j� such that a ≤ j ≤ j� ≤ k, for all h ∈ i..j − 1: KH , sh, 0 |= σ1,
KH , sj , 0 |= σ2, and KH , sj� , 0 |= σ3.

• If π = σ1 U �σ2 then there exists j such that a ≤ j ≤ k and for all h ∈ a..j − 1: KH , sh, 0 |= σ1, and for all
h ∈ j..k: KH , sh, 0 |= σ2 and �σ2 ∈ Π�.

• If π = �(σ1 U σ2) then �(σ1 U σ2) ∈ Π�, and for all j ∈ a..k: either KH , sj , 0 |= σ1 or KH , sa, 0 |= σ2.755

• If π = �(σ1 ∨ �σ2) then one of the following two facts holds:
– For all j ∈ a..k: KH , sj , 0 |= σ1 and �(σ1 ∨ �σ2) ∈ Π�.
– There exists j such that a ≤ j ≤ k and for all h ∈ a..j − 1: KH , sh, 0 |= σ1, and for all h ∈ j.., k:
KH , sh, 0 |= σ2 and �σ2 ∈ Π�.

Therefore, KH , sa, 0 |= EΠ.760

Let σ = AΠ ∈ τ(sa) be a formula of the highest-priority where σ1 U (σ2 ∧ ♦σ3) ∈ Π is marked. By Proposition
47 and the induction hypothesis, we have that KH , sv, 0 |= σ2 for some v ≥ a, KH , sz, 0 |= σ1 for all z ∈ a..v −
1. In addition, A(♦σ3,Π

�) ∈ τ(sv) (which is also the highest priority formula). Hence, by induction hypothesis,
KH , sv, 0 |= A(♦σ3,Π

�). Additionally, by Proposition 43 and the induction hypothesis:
(a) For all σ�

1 U (σ�
2 ∧ ♦σ�

3) ∈ Π:765

• If σ�
1 U (σ�

2 ∧ ♦σ�
3) is also in Π�, then KH , sz, 0 |= σ�

1 for all z ∈ a..v − 1.
• If ♦σ�

3 ∈ Π� then KH , sz, 0 |= σ�
2 for some z ∈ a..v − 1.

(b) For all σ�
1 U �σ�

2 ∈ Π:
• If σ�

1 U �σ�
2 ’is also in Π�, then KH , sz, 0 |= σ�

1 for all z ∈ a..v − 1
• if �σ�

2 ∈ Π� then there exists j ∈ a..v−1 such that KH , sj , 0 |= σ�
1 for all z ∈ a..j−1 and KH , sz, 0 |= σ�

2770

for all z ∈ j..v.
Therefore, KH , sa, 0 |= AΠ.

Let σ = EΠ ∈ τ(sa) be a (selectable) formula of the lowest priority. If a < i then, by Proposition 42 ((c) and
(d)), there exists non-empty Π� ∈ Variants(Π) such that EΠ� ∈ τ(ni) ⊆ τ(si) and

• For all �(σ1 U σ2) ∈ Π: �(σ1 U σ2) ∈ Π� and for all z ∈ a..i− 1: σ1 ∈ τ(sz) or σ2 ∈ τ(sz).775

• For all �(σ1 ∨ �σ2) ∈ Π: either �(σ1 ∨ �σ2) ∈ Π� and σ1 ∈ τ(sz) for all z ∈ a..i− 1; or �σ2 ∈ Π� and there
exists j such that a ≤ j ≤ i, so that for all h ∈ a..j − 1: σ1 ∈ τ(sh) and for all h ∈ j..i: σ2 ∈ τ(sh).

Since EΠ� ∈ τ(n1) is selected at some node nh for some i ≤ h ≤ j, then by Proposition 44(c), σ2 ∈ τ(sw) for some
w ∈ i..j. Moreover, by Proposition 42(c), for all z ∈ i..j: σ1 ∈ τ(sz) or σ2 ∈ τ(sz). In addition τ(nh) = Σ� for all
h ∈ i..j + 1, henceforth by Proposition 42(d), for all �(σ1 ∨ �σ2) ∈ Π�: σ1 ∈ τ(sz) for all z ∈ i..j. Therefore, the780

application of the induction hypothesis to every σ1 and every σ2, allows us to ensure that KH , sa, 0 |= EΠ. The case
a ≥ i can be seen as the particular case where Π� = Π and EΠ ∈ τ(nh) for all h ∈ i..j + 1.

Let σ = AΠ ∈ τ(sa) be a (selectable) formula of the lowest priority. Then, Π contains at least one σ1 U �σ2

or �(σ1 U σ2). We study two cases depending on whether there exists Π� ∈ Variants(Π) such that AΠ� ∈ Σ� or
not. In the negative case, by Proposition 43 and the induction hypothesis, there exists σ1 U (σ2 ∧ ♦σ3) ∈ Π and785

some j, j� such that a ≤ j ≤ j� ≤ k, for all h ∈ i..j − 1: KH , sh, 0 |= σ1, KH , sj , 0 |= σ2, and KH , sj� , 0 |=
σ3. Therefore, KH , sa, 0 |= AΠ. Otherwise, let AΠ� ∈ Σ� ⊆ τ(si) such that Π� ∈ Variants(Π). By induction
hypothesis and Proposition 43, KH , si, 0 |= AΠ� suffices to ensure that KH , sa, 0 |= AΠ. Hence, we are going to
prove that KH , si, 0 |= AΠ�. If AΠ� is non-selectable, then KH , si, 0 |= AΠ� holds because KH , sh, 0 |= σ1 for all
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�(σ1 ∨ �σ2) ∈ Π� and all h ∈ i..j. Otherwise, AΠ� is the lowest priority formula that is in the label of all the stages790

si, si+1, . . . , sj , hence for all h ∈ i..j:
• σ1 ∈ τ(sh) for all σ1 U (σ2 ∧ ♦σ3) ∈ Π�. • {σ1,σ2} ⊆ τ(sh) for all σ1 U �σ2 ∈ Π�.

• σ1 ∈ τ(sh) or σ2 ∈ τ(sh) for all �(σ1 U σ2) ∈ Π�. • σ1 ∈ τ(sh) for all �(σ1 ∨ �σ2) ∈ Π�.
Moreover, AΠ� contains at least one σ1 U �σ2 or �(σ1 U σ2), and one of its eventualities (that could be also of the form
σ1 U (σ2 ∧ ♦σ3)) is selected at some of the stages si1 , si2 , . . . , siz . Hence, Proposition 45, along with the induction
hypothesis, ensure that KH , si, 0 |= AΠ�.795

Corollary 50. For any expanded bunch H of Asys
Σ0

, KH |= Σ0

PROOF. Immediate consequence of Lemma 49.
Now, we prove the refutational completeness of the tableau method.

Theorem 51 (Refutational Completeness). For any set of state formulae Σ0, if UnSat(Σ0) then there exists a closed
tableau for Σ0.800

PROOF. Suppose the contrary, that there exists no closed tableau for Σ0. Then the systematic tableau Asys
Σ0

would
be open and there would be at least one expanded bunch H in Asys

Σ0
. By Corollary 50, KB |= Σ0. Consequently Σ0

would be satisfiable.

6.4. Termination

Most tableau systems for modal and temporal logics, satisfy the analytic super-formula property (ASP): for every805

finite set of formulae Σ, there exists a finite set that contains all the formulae that may occur in any tableau for Σ.
Such a set is usually called the closure of Σ. The ASP also ensures the non-existence of infinite branches where all
the nodes have different labels. Hence, by controlling loops, the finiteness of proof search can be ensured. In our case,
as a consequence of the β+-rules, the tableau system fails to satisfy the ASP, but it satisfies a slightly weaker variant
which ensures completeness and that we call the weak analytic superformula property (WASP): for every finite set of810

state formulae Σ0 there exists a finite set (usually called the local closure of Σ) that contains all the formulae that may
occur in any (systematic) tableau for Σ constructed by Algorithm Asys. For this purpose, the eventuality selection
policy used in the Asys is crucial.

Theorem 52 (Termination of the Tableau Method). For any set of state formulae Σ0 , the construction of the ex-
panded tableau Asys

Σ0
terminates.815

PROOF. Tableau rules produce a finite branching, hence König’s Lemma, applies. The subsumption-based simplifi-
cation rules (Subsection 3.5) do prevent the generation of formulae containing the original eventuality when a “new
variant" has been generated. By Propositions 44 and 45, the application of a β+-rule to a selected formula stops after
a finite number of steps. Finally, Proposition 48 ensures that any open branch is eventually-covered.

Theorem 53 (Completeness of the Tableau Method). For any set of state formulae Σ0, if Σ0 is satisfiable then there820

exists a (finite) open expanded tableau for Σ0.

PROOF. The existence of the systematic tableau Asys
Σ0

suffices to prove this fact, by Theorem 52.

7. Conclusion

We introduced a new logic, ECTL#, in the family of BTL and its tree-style one pass tableau. This extends the
expressiveness of fairness by a new class of fairness constraints with the U operator. The tableau method handles825

inputs in an ‘analytic" way, due to the new, crucial for branching structures, concept of ‘inner context’, in which
eventualities are to be fulfilled. The tableau rules that invoke the inner context, are essential to handle A-disjunctive
formulae. Our analysis of A-disjunctive and E-conjunctive formulae and of the prioritisation of eventualities, based
on their structure and the context for their fulfillment, are important from the methodological point of view.
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Our tableau technique is not directly extensible to CTL�. Without any significant modifications, β+-rules become830

unsound for inputs that are beyond ECTL# syntax due to nested path subformulae as in A♦(◦p ∧ E◦¬p) mentioned
in Figure 1. However, for the proof of correctness of β+-rules, we developed the technique to identify relevant state-
formulae inside the specific path-modalities. This technique will be useful in studying more expressive logics (e.g.
CTL�), as it allows to identify those subformulae that do not affect the ‘context’, thus enabling the simplification of
the structures.835

We note that the size of the systematic tableau for the input of size m is bounded by 22
O(m2)

(see technical report
at http://www.sc.ehu.es/jiwlucap/TechReport18.pdf). However, the method aims at the ‘shortest’
way to fulfil the eventualities and, for many examples, finds the first open bunch, giving us a model for the tableau
input. This significantly reduces the complexity. Finally, the presented technique is amenable for implementation –
and this will be another stream of our future work. In the refinement and implementation of the algorithm we will be840

able to rely on similar techniques used in the implementation of its linear-time analogue.
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