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Abstract

Current environmental concerns and fuel scarcity are leading to the progressive introduction of Electric Vehicles (EV) in the
global fleet vehicle population. This requires significant design and research efforts from scientific community and industry to pro-
vide reliable automotive electric propulsion systems. The power modules used for automotive traction inverters can be considered
as central elements of such systems. As they are subject to high electro-thermal stress during operation, Design-for-Reliability
(DfR) approaches should be adopted. Thus, accurate models for electro-thermal simulations are relevant since the early design
stages. However, such simulations become highly time consuming and complex when accurate thermal characterization through
standardized or real driving conditions needs to be provided. In this context, this work proposes a simulation methodology that
combines real-time simulation for electro-thermal characterization of the whole EV propulsion system, using a 1D equivalent ther-
mal impedance circuit, in conjunction with 3D FEM thermal simulation. In this way, an accurate thermal characterization of the
power module under driving cycles with long duration (of hundreds of seconds) can be obtained without computing heavy 3D FEM
simulations. The proposed procedure allows to simplify and speed up the early design stages while maintaining high accuracy in
the results.

Keywords: Power electronics, EV, automotive power modules, Design-for-Reliability, FEM, real-time simulation, electro-thermal
simulation, driving cycle

1. Introduction

Due to current environmental concerns such as pollution and
climate change, Electric Vehicles (EV) are being considered
as an alternative to conventional Internal Combustion Engine
(ICE) based vehicles [1, 2]. The main technologies that must
be developed in order to make the EV technology a compet-
itive transport solution are the battery packs [3], electric ma-
chines [4, 5], power electronics [6, 7], electronic control units
(ECU) [8] with their corresponding control algorithms [9], and
the cooling systems [10, 11].

The power system can be considered as the core element of
the EV powertrain, as it is responsible of transferring a signifi-
cant amount of energy from the battery to the electric machine
during motoring operation, and from the machine to the battery
during regenerative braking. The two-level three-phase inverter
is the most common automotive propulsive power conversion
topology where, in general, two approaches are followed to im-
plement the power switches of an automotive converter [7]: (a)
discrete semiconductor devices (Tesla) and (b) power modules
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in half-bridge or six-pack configuration with single sided (Nis-
san, BMW, Audi) or double side (Toyota, Chevrolet) cooling.
Thus, it can be said that the major manufacturers rely on power
module technology. All these industrial solutions are based on
silicon IGBTs. However, a gradual transition to silicon carbide
(SiC) technologies can be expected for next generation automo-
tive power converters [12–14].

Regardless of power semiconductor technology, a power
module is a multilayer structure consisting of various mate-
rials (silicon, copper, ceramic materials, etc.), each with its
particular Coefficient of Thermal Expansion (CTE) [15]. Dur-
ing thermal or power cycling, these CTE mismatches produce
thermo-mechanical fatigue, introducing possible mechanical
failures over time and compromising the long term reliability
of such critical elements [16]. This issue is specially relevant in
both solder layers and interconnection components (i.e, bond
wires) [17]. In this scenario, electro-thermal simulation can
be considered a powerful tool to analyse, determine hot spots,
(re)design and determine life-cycles of automotive power mod-
ules during early development stages [16, 18–21] following a
DfR approach [16]. In this way, design errors and reliability
problems can be found and solved before the expensive proto-
typing stage, accelerating the whole R&D process and meet-
ing the life-cycle requirements of the automotive industry (i.e.,
about 10 to 15 years of failure-free operation [16]).

When performing electro-thermal simulations of an EV
power module within a complete drive system, it is of great in-
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terest to study its dynamic performance (electrical and thermal)
under real or standardized driving conditions [22], as this will
provide valuable information regarding system performance,
reliability and life-cycle estimation [21]. In this context, a num-
ber of standardized driving cycles have been proposed in the
last decades to evaluate the system behaviour under real oper-
ation conditions. For example, the New European Driving Cy-
cle (NEDC) [23] has been used in Europe, although it is being
substituted by the Worldwide Harmonized Light-Duty Vehicles
Test Procedure (WLTP) [24]. Such cycles are suitable for gaso-
line and diesel vehicles; however, various specific cycles are
being defined in order to characterize the driving conditions of
EVs, as the way of driving such vehicles is heavily conditioned
by the range anxiety phenomena [25].

Finite Element Method (FEM) simulation is commonly
used for the realization of accurate 3D electro-thermal sim-
ulations [26, 27], allowing full layout characterization (Table
1). However, there are significantly different time-constants in-
volved in the model (ranging from microseconds to character-
ize the electric machine, power system behaviour and instan-
taneous power losses, to hundreds of seconds to characterize
the vehicular model and the driving cycle itself), and also vari-
ous physics to be simulated; thus, the complexity and computa-
tional burden becomes excessive to exclusively rely on 3D FEM
for long driving cycle simulation [28, 29]. On the other hand,
simplified thermal simulation approaches based on equivalent
1D Foster and Cauer (RC) networks [20, 30] can be conducted,
as the computational burden is significantly lower (Table 1).
However, if only this simulation method is used, the designer
is not able to characterize the thermal distribution of the whole
power module.

In order to simplify, speed up the whole electro-thermal sim-
ulation stage and achieve highly accurate and representative full
layout results, a complete methodology that combines the us-
age of 3D FEM, simplified 1D modelling and real-time (RT)
simulation is proposed in this paper. In this way, the accuracy
of physical simulation (for power module thermal characteri-
zation) and fastness of real-time simulation (for vehicular and
drive system simulation) are mixed, obtaining the best features
of both worlds. In order to show the benefits of the proposal,
such methodology has been implemented during the electro-
thermal simulation stage of a SiC based half-bridge power mod-
ule (composed by four SiC MOSFETs with their correspond-
ing anti-parallel freewheeling SiC JBS diodes). In particular,
COMSOL Multiphysics software has been used to solve 3D
thermal FEM simulations, while an OPAL-RT OP4510 digital
platform has been used to conduct real-time simulations with
1D thermal characterization over the standardized driving cy-
cles. The obtained results show the convenience of the proposed
work-flow, as accuracy for thermal characterization is guaran-
teed while reducing the time required to carry out all the simu-
lations.

In the following, the work-flow of the proposed modelling
and simulation procedure and its associated tools are described.

Table 1: Qualitative comparison between 3D FEM, 1D Cauer/Foster and the
proposed hybrid simulation procedures.

Features 3D FEM 1D Cauer/Foster Proposed hybrid
methodology

Computational load 7 33 3
Simulation complexity 7 33 3
Integration of thermal

33 7 33properties(1)

Integration of electrical
7 3 3properties(2)

Number of evaluation
333 7 333points(3)

(1) The 3D FEM uses thermal physics, the 1D procedure uses equivalent
Cauer/Foster networks (simplification and loss of information).
(2) The 3D FEM uses electrical physics, the 1D Cauer/Foster procedure uses
the power semiconductor loss models.
(3) The 3D FEM evaluates the complete layout, while the 1D Cauer/Foster
procedure only evaluates only some points of it.

2. Proposed hybrid 1D/3D electro-thermal modelling and
simulation procedure

Figure 1 shows the general diagram of the proposed hybrid
1D/3D electro-thermal simulation procedure. The block of the
left hand of Figure 1 (in blue) represents the steps to be carried
out by 1D RT simulation, while the block of the right hand (in
green) shows the steps to be carried out using 3D FEM analysis.
Between both blocks, a number of steps that must be carried
out in order to process data from 1D to 3D, and vice versa, are
represented.

As a first step, a preliminary estimation of the power losses
is conducted using the RT electro-thermal model. This model
must consider the driving profiles of the vehicle, together with
the controller, power electronics and electric machine model
to estimate such losses under realistic driving conditions. As
the virtual junction temperature of the devices Tv, j has a sig-
nificant influence on the instantaneous transistor (Ploss,M) and
diode (Ploss,D) power losses, its influence must be modelled
to achieve sufficiently accurate results. In this step, the 1D
equivalent network is not yet available; thus, constant nomi-
nal temperatures are considered as a first approximation. Once
the power loss profiles of all semiconductors during the whole
driving cycle have been obtained, the average power loss dis-
tribution between the elements is determined (%loss). Thanks
to this, adequate power steps are defined as inputs for the 3D
FEM heat source characterization stage. From the thermal re-
sponse results (Tdie,M , Tdie,D) of such power loss steps obtained
by FEM, the equivalent thermal impedances of the power semi-
conductors are extracted by their post-processing. Being this
point of particular importance for the accuracy of the results,
the post-processing procedure is thoroughly explained in sec-
tion 4. Once the equivalent Foster networks (RCM , RCD) are
calculated, they are implemented in the 1D RT model and the
power loss profiles (PM , PD) are re-calculated, also obtaining
the temperature profiles (TM , TD) corresponding to the Tv, j of
all the semiconductors (and the ones corresponding to the inter-
mediate points that are represented by the simplified 1D Foster
network).
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Figure 1: General diagram of the proposed methodology to characterize the electro-thermal behaviour of an automotive power module through driving cycles.

In the following step, the power dissipation profiles are av-
eraged (< PM , PD >) (by post-processing), and they are intro-
duced for the complete driving cycle simulation in the FEM
model, significantly reducing the required computational bur-
den. As a result, a complete figure of the power module thermal
distribution through the driving cycle is obtained, which allows
the detection of hot points and incorrect thermal distributions
through the designed layout. This information will be used to
detect reliability problems and support the design process of the
module.

As a final step, the matching between the temperature profiles
(TM , TD) obtained by means of the 1D and 3D methods over the
driving cycles is carried out, as this can be used to confirm the
correct characterization of the heat sources and power module.
The details of the 1D RT and 3D FEM modelling and simulation
are explained in sections 3 and 4, respectively.

3. Real-time 1D electro-thermal simulation platform

In order to accurately determine the power losses and power
semiconductor junction temperatures over standardized driving
cycles, a complete EV propulsion system model is required, in-
cluding a vehicular model, digital controller, power electronics
model (with the corresponding loss and 1D thermal models per
device) and electric machine model. Details regarding such im-
plementation can be found in [9]. Considering the duration of

the driving cycles and the complexity and computational load
of such model, conventional simulation procedures become al-
most infeasible. However, the usage of high performance real-
time digital simulation can overcome such problems.

In this work, an RT-Lab OP4510 digital real-time simula-
tion platform [31] consisting on four CPUs (3.5 GHz) and a
Xilinx Kintex7 FPGA has been used to conduct the real-time
simulations. The elements that constitute the model have been
distributed as shown in Figure 2(a) between the computational
nodes available in the OP4510 device. The vehicular digi-
tal controller (Figure 2(a) 1 ) and 1D thermal and loss mod-
els (including temperature dependency) have the slowest time-
constants (Figure 2(a) 2 ); thus, such models have been dis-
tributed between the two available CPUs for their computation
in parallel. On the other hand, the power converter and the elec-
tric machine models with short simulation step requirements
have been implemented in the FPGA ((Figure 2(a) 3 )) using
the eHS solver [32]. In this way, real-time execution has been
guaranteed, greatly reducing the time required to perform such
simulations.

4. Equivalent RC network extraction procedure

The equivalent thermal network extraction is capital to obtain
accurate results. This requires a number of steps, as shown in
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Figure 3: Flowchart of the procedure applied to extract the Foster networks.

Figure 2(b). As a starting point, the power module must be rep-
resented in 3D (Figure 2(b) 1 ), implementing the layout ge-
ometry, the layer material assignment (taking into account the
surface contact characteristics) and the mesh generation (deter-
mining the number of elements) [18]. Additionally, the input
signals for the characterization must be defined, so that bound-
ary conditions, cooling and heat sources have to be imple-
mented (Figure 2(b) 2 ). After that, the preliminary weighted
power dissipation steps obtained by real-time simulation (Fig-
ure 2(b) 3 ) must be applied over the heat sources, and the tran-
sient responses (Figure 2(b) 4 ) must be analysed to extract the
equivalent 1D Foster networks (Figure 2(b) 5 ). In this context,
the power device time-dependant thermal impedance Z j−c(t)
can be expressed by a finite sum of exponential terms [33]:

Z j−c(t) =

n∑
i=1

Ri

(
1 − e−

t
τi

)
, (1)

where Ri and τi are the thermal resistance and the time constant
of the i-th stage of the thermal network. The time constant is
given by τi = Ri ·Ci, where Ci is the thermal capacitance of the
i-th stage. Typically, the thermal impedance can be well fitted
considering an equivalent thermal network composed by 3 to 5
stages [34].

The Foster network Ri and Ci couples can be evaluated
by using a variety of methods, such as the perturb and ob-
serve approach combined with a least square minimization [35],
the Levenberg-Marquardt nonlinear fit-routine [36], the iden-
tification by deconvolution [33], and the particle swarm op-
timization [37]. However, in this particular case, the proce-
dure described in [38] and depicted in Figure 3 has been se-
lected, where the degrees of freedom are reduced by choosing
a logarithmically-spaced set of time constants (τi) in a reason-
able interval. The procedure can be automated with a Matlab
or Python script in order to reduce the computational load. The
steps of the recursive procedure are the following:

Table 2: Main parameters of the simulated system for SiC half-bridge electro-
thermal characterization.

Parameter Symbol Value Units

Vehicle model parameters
Vehicle total mass Mcar 1030 kg
Rotating mass Mrot 5 %
Vehicle cross section A f 2.42 m2

Wheel radius rwheel 0.29 m
Gravity acceleration ag 9.81 m/s2

Rolling friction coefficient µ 0.008 -
Air density ρ 1.225 kg/m3

Drag coefficient Cd 0.367 -

Transmission model parameters
Gear ratio GR 6.2 -
Efficiency ηGR 97 %
Idling losses PIdling 300 W

Electric machine parameters: AF130
Maximum speed ωmax 8000 rpm
Nominal torque TN 145 Nm
Peak torque (20 s) Tp 350 Nm
Nominal power PN 64 kW
Peak power (20 s) Pp 140 kW

Power converter nominal parameters
DC link capacitance CDC 700 µF
Switching frequency fS W 10 kHz
Battery voltage Vbatt 360 V
Gate resistance (ON/OFF) RG 5 Ω

SiC MOSFET parameters: CPM2-1700-0045B (Cree)
Nominal current per switch ID,nom 48 A
Maximum blocking voltage VDS ,max 1700 V
Operating junction temperature Tv j -40 to +150 oC

SiC diode parameters: CPW5-1700-Z050B (Cree)
Maximum current per switch IF,max 50 A
Repetitive peak reverse voltage VRRM 1700 V
Typical DC forward voltage VF 1.6 V
Operating junction temperature Tv j -55 to +175 oC

1. Set as input data the simulated (or measured) time depen-
dant thermal impedance between the points of interest and
the reference temperature, applying a power step to the
module devices.

2. Choose a number (e.g. 10 or more) of logarithmically
spaced time constants τ between a very small instant (e.g.
1 ps or 1 ns) and an instant when the transient can be con-
sidered terminated (steady state reached).

3. Set positive reasonable values (e.g. values whose sum
gives a fitting steady state temperature near the one ob-
tained by simulations) of Ri as a starting point for the next
optimization step.

4. Use the Ri set as variable for a least square minimization
using the Generalized Reduced Gradient (GRG) method
[39] in a non-linear optimization tool (e.g. in Matlab).

5. Decimate the time constants, erasing those with the
smaller thermal resistances obtained at step 3. At this step,
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Figure 4: SiC half-bridge with four SiC MOSFETs and SiC diodes in parallel
incorporating a symmetrical design.

the non-zero time constants, which do not change signifi-
cantly the sum of squared residuals (obtained as result of
optimization step), are neglected.

6. Introduce the decimated τi set as variable for a least square
minimization using the GRG method in a non-linear opti-
mization tool.

7. Run step 4 again.

Once the most relevant aspects of the proposed methodology
have been presented, an application example is provided, where
a SiC half-bridge is electro-thermally simulated following the
proposal.

5. Results obtained from the application of the proposed
methodology for an automotive SiC half-bridge module

With the aim of applying the proposed methodology and
demonstrate its effectiveness, a hybrid electro-thermal simu-
lation of an automotive power converter has been carried out.
The converter of the simulated EV propulsion system is a two-
level three-phase Voltage Source Inverter (VSI) that feeds a
64 kW automotive axial flux Surface Mounted Permanent Mag-
net Synchronous Machine (SM-PMSM). This inverter consists
of three SiC half-bridge modules, each one composed by four
paralleled SiC MOSFETs and SiC diodes per level (Figure 4).
The electro-thermal data has been extracted from the SiC half-
bridge layout, which is the unit to be studied in this example.

Regarding the vehicle, a baseline A segment EV has been
implemented in the model. The most significant mechanical
parameters of the vehicle and the electrical and mechanical
parameters of its particular propulsion system are shown in
Table 2. A driving cycle specifically created for EV driving
characterization, named Flet-BEV-cycle, has been applied [40].
Such speed-versus-time driving profile has been processed con-
sidering the vehicular model in order to determine the instan-
taneous electric machine electromagnetic torque Tem (Figure
5(a)) and mechanical speed ωmech (Figure 5(b)).

0 100 200 300 400 500 600 700

T
em

(N
m

)

-150

-100

time (s)

-50

0

50

100

150

800

(a) Torque profile obtained when applying the Fleet-BEV driving cycle.

0 100 200 300 400 500 600 700

m
ec

h
(r

p
m

)

800
0

1000

2000

3000

4000

5000

6000

time (s)
ω

(b) Speed profile obtained when applying the Fleet-BEV driving cycle.

Figure 5: Torque and speed profiles applied during the simulations.
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Figure 6: Power layout and power losses distribution.

5.1. Definition of power layout and initial approximation

In addition to the propulsion system set-up, the layout of the
power module also has to be defined. The geometry, the materi-
als and the power semiconductors (heat sources) are the funda-
mental elements to be specified in the 3D model for the extrac-
tion of accurate Foster networks. For this case study, the SiC
half-bridge layout shown in Figure 6(a), which incorporates a
symmetrical design, has been implemented. Such symmetry re-
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duces the amount of Foster networks to be determined, because
devices in symmetric positions will show equivalent thermal be-
haviours, as indicated in the following:

M1t ≡ M4t; M2t ≡ M3t; M1b ≡ M4b; M2b ≡ M3b;
D1t ≡ D3t; D2t ≡ D4t; D1b ≡ D3b; D2b ≡ D4b,

(2)

where Mit and Mib represent the top and bottom SiC MOS-
FETs, respectively, and Dit and Dib represent the top and bot-
tom SiC diodes, respectively, being i = {1...4}.

As detailed in section 2, a preliminary estimation of power
losses is required prior equivalent Foster network extraction. In
this context, the power loss distribution shown in Figure 6(b)
has been obtained for this particular case study.

5.2. Determination of the equivalent Foster networks
The power semiconductors are the points of interest to extract

the equivalent Foster networks, as they are the heat sources of
the power module. In order to obtain the RC networks of the
SiC half-bridge, a power step (proportional to the previously
determined power loss distribution) has been applied to each
semiconductor in the 3D FEM model. As a result, the ther-
mal transient responses of the devices have been obtained (Fig-
ures 7(a) and 7(c)).

These results verify the layout symmetry (2). In addition and
according to these results, the Foster representation of the de-
vices can be simplified using a unique Foster representation for
all the SiC MOSFETs of the half-bridge, and another unique
representation for all SiC diodes:

M1t ≡ M2t ≡ M3t ≡ M4t ≡ M1b ≡ M2b ≡ M3b ≡ M4b;
D1t ≡ D2t ≡ D3t ≡ D4t ≡ D1b ≡ D2b ≡ D3b ≡ D4b.

(3)

Finally, applying the RC network extraction procedure de-
scribed in section 4, an equivalent 3 stages Foster network

has been calculated for SiC MOSFETs (Figures 7(b)) and SiC
diodes (Figure 7(d)). The relative error of these RC networks is
lower than 2%. Then, a quite good matching between the ther-
mal responses and the fitted Foster network curves (Figures 7(a)
and 7(c)) has been obtained.

5.3. Determination of power dissipation profiles by means of
real-time simulation

The power dissipation profiles of the semiconductors have
been later calculated using the 1D RT simulation platform, by
introducing the equivalent Foster network extracted from the
3D FEM. Such power dissipation profiles for a Fleet-BEV-cycle
are shown in Figure 8, where no significant differences between
paralleled devices are found, as they are thermally modeled by
the same equal Foster networks.

After obtaining such profiles, they have been imported into
the 3D FEM in order to characterize the physical heat sources
during the complete driving cycle. As the FEM simulation has
a much higher computational burden than a 1D model, an ad-
equate averaging of the simulation inputs (power loss profiles)
is fundamental to reduce the number of computed samples over
the time without losing accuracy. The 1D RT simulation calcu-
lates power loss data with a high resolution (sampling time of
100 µs). Such data has been averaged applying a moving mean
over a period of 50 ms.

5.4. Power module 3D temperature characterization over the
entire driving cycle

Considering the high computational resources requested by
of FEM transient simulations, simplifications based on the sym-
metry of the layout can be applied to significantly reduce the
workload. In this case and considering the symmetry of the SiC
half-bridge, it is possible to reduce the number of elements to be
evaluated. For this reason, only one half of the power module
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(a) Top SiC MOSFET power losses over time.
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(b) Top SiC diode power losses over time.
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(c) Bottom SiC MOSFET power losses over time.
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(d) Bottom SiC diode power losses over time.

Figure 8: Power dissipation profiles of power semiconductors: heat sources of the electro-thermal model.

needs to be simulated (using the symmetry axis, figure 6(a)),
extrapolating the result to the other half.

From the application of the previously calculated power loss
profiles over the 3D model, Figures 9(a)-9(d) show the thermal
distribution of the half-bridge power module in four relevant
operation points during the application of the Fleet-BEV driv-
ing cycle. Such results show that the power module has a good
thermal distribution without significant asymmetries or exces-
sive hot points.

As a final step and in order to validate the obtained results,
the instantaneous temperature profiles calculated at each semi-
conductor junction by means of 1D and 3D simulation have
been compared. A good matching between the temperature
variations obtained by both methods can be observed in Fig-
ures 9(e)-9(h).

6. Conclusions

Considering the results obtained in this work, the proposed
hybrid methodology can be considered as an useful tool for the
thermal characterization of power automotive power converters,
and also for the detection of reliability problems and design
errors. The following benefits can be concluded:

1. The usage of a unique physical domain (thermal) in the
3D FEM reduces the computational burden and the num-
ber of convergence problems, being it feasible to simulate
long EV driving profiles with a duration of hundreds of
seconds.

2. Accurate equivalent RC networks can be obtained accord-
ing to the specific layout and layer materials. This is of
great interest when studying novel power modules under
design, or also when analysing commercial power mod-
ules where no thermal data are provided.

3. The usage of a 1D RT platform significantly reduces the
required time to carry out simulation without any signifi-
cant accuracy loss.

4. The matching between the semiconductor temperature
profiles obtained by 1D RT and 3D FEM simulations guar-
antees the confidence on the obtained results.

5. Critical differences between thermal impedances between
the semiconductors can be detected through the power de-
vices thermal responses. Thus, correction actions to get
more reliable systems can be taken since the early design
stages, reducing development time and costs.

6. In the 3D thermal characterization, the application of some
simplifications is possible considering the particular ge-
ometry without a loss of accuracy, further reducing the re-
quired computational time.
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(a) 3D Temperature distribution (◦C) of the module at t = 60 s. (b) 3D Temperature distribution (◦C) of the module at t = 244.8 s.

(c) 3D Temperature distribution (◦C) of the module at t = 428 s. (d) 3D Temperature distribution (◦C) of the module at t = 773 s.
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(e) Top SiC MOSFET temperature profiles.
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(f) Top SiC diode temperature profiles.
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(g) Bottom SiC MOSFET temperature profiles.
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(h) Bottom SiC diode temperature profiles.

Figure 9: 3D thermal results obtained on the power module and junction temperature profiles of power semiconductors during the complete driving cycle .
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