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“We tend to overestimate the effect of a technology in the short run and
underestimate the effect in the long run.”

Roy Amara

“Most people overestimate what they can achieve in a year and underesti-
mate what they can achieve in ten years”

Bill Gates

“The complex line that delimits the short-sighted and long-term decisions
for happiness. The 𝛾 parameter that governs and rules our lives. The
motivations behind each decision. The uncertainty of the environment that
surrounds us. There is no “optimal” path to follow; the answer for a worth
living life is unique and subjective for each human being.”

Alain Andres, myself.
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Driven by the quest to create intelligent systems that can autonomously
learn to make optimal decisions, Reinforcement Learning has emerged as
a powerful branch of Machine Learning. Reinforcement Learning agents
interact with their environment, learning from trial and error, guided by
feedback signals shaped in the form of rewards. However, the application
of Reinforcement Learning is often hampered by the complexity associated
with the design of such rewards. Creating a dense reward function, where
the agent receives immediate and frequent feedback from its actions, is
often a challenging task. This challenge arises from the difficulty of speci-
fying the correct behavior for every possible state-action pair. This issue
parallels the challenges faced in human learning where educators often
grapple with identifying the best way to teach a certain skill or subject,
given that learning styles can vary dramatically among individuals. As a
consequence, it is common to formulate the problems with sparse rewards,
where the agent is only rewarded when it accomplishes a significant task
or achieves the final goal, thus aligning more directly with the objective
of the problem. The sparse reward formulation does not require the an-
ticipation of every possible scenario or state, making it more tractable for
complex environments and real-world scenarios, where feedback is often
delayed and not immediately available.

However, sparse reward settings also introduce their own challenges,
most notably, the issue of exploration. In the absence of frequent rewards,
an agent can struggle to identify beneficial actions, making learning slow
and inefficient. This is where mechanisms such as Intrinsic Motivation
come into play, encouraging more effective exploration and improving sam-
ple efficiency, despite the sparsity of extrinsic rewards.

In this context, the overall contribution of this Thesis is to delve into
how Intrinsic Motivation can boost the performance of Deep Reinforce-
ment Learning approaches in environments with sparse rewards, aiming
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to enhance their sample efficiency. To this end, we first stress on its
application with concurrent heterogeneous agents, aiming to establish a
collaborative framework to make them explore more efficiently and accel-
erate their learning process. Furthermore, an entire chapter is devoted to
analyzing and discussing the impact of certain design choices and param-
eter settings on the generation of the Intrinsic Motivation bonuses. Last
but not least, the Thesis proposes to combine these explorative techniques
with Self-Imitation Learning, demonstrating that they can be used jointly
towards achieving faster convergence and optimal policies.

All the analyzed scenarios suggest that Intrinsic Motivation can signif-
icantly speed up learning, reducing the number of interactions an agent
needs to perform, and ultimately, leading to more rapid and efficient
problem-solving in complex environments characterized by sparse rewards.
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Chapter 1

Introduction

Artificial Intelligence (AI) is one of those topics in everyone’s lips in these
days. Although multiple definitions can be found in the literature laid
out by how a system should think and act taking into account both the
rational and human aspects, a wide and more generalist definition was set
in (Russell & Norvig, 2022), which characterized AI as:

“The study of agents that receive percepts from the environment and
perform actions”.

AI’s popularity has raised with the irruption of Industry 4.0 (and the up-
coming and more sustainable Industry 5.0) where it has been considered
one of the main Key Enabling Technologies, being in the own words of
the European Commission a game-changer due to its potential to increase
the efficiency and productivity across multiple sectors1. More concretely,
Machine Learning (ML) has drawn the attention due its potential to make
a computer-system learn from examples (data) without explicit supervi-
sion of a human-being, getting the necessary information by analyzing
patterns. By resorting to ML to automate tasks, people can spend time
carrying out other duties (productivity) and also rely on the solutions pro-
vided by systems with better performance that overcome natural human
limitations (efficiency/optimality), ultimately improving overall people’s
welfare. Regarding ML, three subgroups can be distinguished:

• Supervised learning (SL): learns from labeled data in order to
generalize the knowledge to upcoming new inputs.

• Unsupervised learning (UL): learns from unlabeled data so that
the information can be compressed and accordingly segmented into
classes.

• Reinforcement learning (RL): learns through the interaction
(trial and error) with an environment where the aim is to solve a
defined task.

This thesis gravitates around RL and, although its fundamentals are going
to be more deeply explained in Chapter 2, it is important to notice the

1https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-d
ata/publications/all-publications/ai-research-and-innovation-europe-paving-its-own
-way_en.

https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/ai-research-and-innovation-europe-paving-its-own-way_en.
https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/ai-research-and-innovation-europe-paving-its-own-way_en.
https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/ai-research-and-innovation-europe-paving-its-own-way_en.
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differences with respect to the other two categories, specially between RL
and SL, which are similar and often confused with each other. On the one
hand, SL assumes the data to be independent and identically distributed
(i.i.d) and requires a priori knowledge about the ground truth (also referred
to as true label or annotation) of the training data. Contrarily, in RL
previous decisions influence future inputs (i.e., data are not independent,
it is a sequential paradigm) whereas the ground truth answer is not known
(correct actions/labels are not provided). Instead, the reward is used as
an estimator to guide the learning.

Although the RL field has been under study since the 20th century, it
did not come to the fore until the last decade due to advances in Deep
Learning (DL) and computational capabilities that ease their application.
DL involves using non-linear function approximators – typically Artificial
Neural Networks (ANN) – so that ML algorithms can ingest unstructured
data and automate the feature extraction process. Regarding computa-
tional capabilities, the processing units have experienced significant ad-
vances in efficiency enabling the deployment of larger and more complex
models while exponentially decreasing the time devoted to train them. By
the virtue of this progress, RL can leverage ANNs to handle more compli-
cate and diverse problems unapproachable in the past, which gives name
to the field where this dissertation is contextualized, Deep Reinforcement
Learning (DRL), Figure 1.1.

UL

SL

RL

Artificial
Intelligence

Machine
Learning

Deep
Learning

: Pure Deep RL

: Deep RL + SL

Figure 1.1: Artificial Intelligence taxonomy: Supervised Learning (SL), Unsu-
pervised Learning (UL) and Reinforcement Learning (RL). This dissertation is

focused on the areas highlighted in orange, Pure DRL, and pink, DRL+SL.

1.1 Motivation
Despite the premises stated above, state-of-the-art (SOTA) ML methods
are not mature enough to solve the vast majority of the problems without
human presence. Behind the very basic idea of learning from a reward,
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RL has to deal with multiple challenges derived from its demanding setup
requirements (Dulac-Arnold et al., 2021) (e.g., lack of an available-good
simulator, delayed feedback signals, learning from poorly specified reward
functions) as well as other difficulties inherent to these techniques(Osband
et al., 2020) (e.g., exploration-exploitation dilemma, credit assignment
problem, generalization to unseen experiences). However, this has not
been an obstacle to begin applying RL to real-world problems when pos-
sible(Li, 2019) and see outstanding results in fields like:

• Industry/robotics (supply chain, manufacturing)(Ibarz et al., 2021;
Nian et al., 2020)

• Healthcare (treatment recommendation)(Gottesman et al., 2019)

• Energy (power consumption)(Fu et al., 2022)

• Finance (portfolio management)(Filos, 2019)

• Communications and Networking Systems (network access and se-
curity, adaptive rate control)(Luong et al., 2019)

Motivated by the exciting journey of RL in those fields, the research-
driven interest have been oriented towards narrowing the gap between real-
world problem requirements and experimental RL setups, so that more
problems become tractable. With all this in mind, multiple high level
challenges can be identified (Dulac-Arnold et al., 2021):

• Sparse rewards: in RL a feedback signal (reward) is needed to
guide the learning so that the agent can distinguish whether the de-
cisions made were actually good/bad. Informative rewards are not
necessary right after every single interaction as long as the credit of
each action can be deduced. Nevertheless, determining if a decision
is better/worse than another, without considering a whole sequence
of events, is complex – even when having access to the whole state
information and the objective to attain – as there are a large amount
of possible sequential combinations that exponentially grow with the
extension of the action space and the required number of steps up to
the goal, which can lead to very different outcomes. Thus, sparse re-
wards can be used to evaluate a sequence of decisions. In fact, sparse
feedback signals are one of the main challenges present in real-world
setups: system delays and difficulties in modeling reward functions
in complex problems. However, the more sparse the rewards, the
more arduous becomes to determine which actions are useful. Fur-
thermore, the exploration becomes more troublesome. Therefore,
sparsity remains as one of the main concerns to be solved in real-
world RL problems.

• Partial observability: the RL-framework is commonly formalised
as a Markov Decision Process (MDP), where a state must contain
all the necessary information to make a decision. In practice, this
rarely holds true due to the lack of critical information needed in each
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time step. Hence, it is common that the agent gets an observation
rather than a state, which obviously limits the comprehension of the
environment that surrounds it. That context is formally referred to
as a Partially Observable Markov Decision Process (POMDP) and
exposes difficulties regarding generalization, credit assignment and
long-term consequences2, being a challenge present in large number
of real-world scenarios.

• High dimensional continuous states spaces: among the differ-
ent possibilities to model a problem, one of the big issues is how to
represent the state (or observation) in such a way that the agent can
learn. This implies selecting the type of data and the dimensions
to be used as input, where an inappropriate criteria can downgrade
dramatically the expected results. This may cause that the agent
is unable to model the correlation between the input features, the
selected action and their utility. Thank to advances in DL and as-
suming an agent can understand/infer the world similarly to how
humans do, it has become popular to model problems taking into
account, for example, images, as input. Therefore, high dimensional
inputs are related to generalization issues which are also present in
real-world problems.

• Evolution-Adaptation to action space modifications: the mod-
ification and the consequence adaptation of the agent to either state
and/or action spaces can bring new behaviors. Instead of re-training
from scratch, the previous knowledge can be reused with techniques
like Transfer Learning or by the virtue of using Expert Demonstra-
tions. In such context, how heterogeneous agents should be trained
is not clear, as they are supposed to learn different policies. The
challenge resides in how to exploit the knowledge gained by other
agents.

• Real-time inference: in order to deploy any ML-based solution
into a production system, the algorithm has to be designed accord-
ing to the system’s capabilities and constraints. While large and
complex artificial neural network (ANN) architectures have achieved
remarkably good results in various applications, their high computa-
tional costs often hinder their adoption in real-world systems. There-
fore, striking a balance between performance and costs becomes a
practical criterion. Sometimes, achieving high performance can be
accomplished by reducing the complexity of the network while in-
troducing complementary, yet lighter, procedures from algorithmic
development into an extended ML pipeline.

2As the agent only manages to understand the impact of the decisions that modify
parts of state that are measurable in its observation, the credit of each action is usually
hard to determine (credit assignment). This problem can be minored if such effects can
be correlated within a narrow sequence of interactions (long-term consequences), which
could ultimately affect the capacity to act in new or similar observations (generalization
capacity).
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The Thesis aims to develop novel strategies to cope proficiently with all
these aspects, which are the facets that most faithfully reproduce realistic
scenarios.

1.2 Outline and Contributions of the Thesis
In light of the aforementioned objectives, the core problem to be addressed
can be entitled as sample-efficiency in POMDPs with sparse re-
wards, covering exploration-exploitation dilemma in multiple scenarios
while attempting to use the minimum samples to get an optimal policy.
Therefore, the Thesis is structured in chapters with different use-cases. A
brief summary of each chapter is introduced below.

Chapter 2
This chapter – Background – aims to introduce and condense all the
needed information to understand the technical contributions. Besides
the fundamentals of RL and the benchmarks/environments that can be
found into the literature, the reasons why sparse reward problems have
become popular are highlighted. At the same time, the incoming chal-
lenges of adopting such sparse paradigm are explained altogether with the
most popular techniques adopted to face the major drawbacks. Along
this section a wide review of related research works are presented in order
to provide the reader with the fundamental concepts, which are indeed
transversal for the following chapters.

Chapter 3
In this chapter – Collaborative training between hetereogeneously
skilled agents in environments with sparse rewards – we focus on
how to carry out a collaborative learning framework between heteroge-
neous agents with different action spaces yielding different optimal policies.
Unlike multi-agent systems, in which agents operate in the same scenario
and are typically evaluated based on a team-reward function, we analyze
how to learn more efficiently when agents’ rewards are independent and
each of them interact with distinct instances of the environment. This
is also known as the concurrent learning paradigm, which lies somewhere
between single- and multi- agent problems. Besides the heterogeneity, this
chapter also delves into the challenges of POMPDs, sparse rewards
and high-dimensional state spaces by learning how to navigate di-
rectly from pixels.

Chapter 4
Motivated by the great success and advances of Intrinsic Motivation (IM)
techniques, Chapter 4 – An Evaluation Study of Intrinsic Motiva-
tion Techniques applied to Reinforcement Learning over Hard
Exploration Environments – presents an empirical study to assess and
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compare the most popular methods for generating intrinsic rewards to gain
a better intuition about what actually matters when implementing IM ap-
proaches. For that purpose, we establish 3 types of criteria intended to
shed light on which scenarios these methods are advantageous. In addition,
we conduct our research on procedurally-generated (PCG) environments,
which as it is going to be seen in Chapter 2, they impose generalization
properties into the learning. These scenarios exhibit previously mentioned
challenges in the form of POMDPs and sparse rewards. What is more,
we analyze the impact of using different ANN architectures regarding real-
time inference challenges.

Chapter 5
This chapter – Towards Improving Exploration in Self-Imitation
Learning using Intrinsic Motivation – combines the aforementioned
IM ideas with Self-Imitation Learning in order to augment the sample-
efficiency in PCG environments. Imitation Learning (IL) has been shown
to be effective to tackle hard exploration problems, but requires to have an
expert (or at least expert demonstrations) to learn from. Contrarily, Self-
Imitation Learning does not demand any expertise and is the agent itself
who collects and ranks the experiences in a buffer for a posterior replay.
In that context, how to gather good trajectories in first instance is critical.
This chapter analyzes how IM can be useful in overcoming that exploration
barrier in PCG environments where a good decision (and learning) in an
episode may not be transferable to subsequent episodes. To that end,
a novel ranking system is adopted in order to replay those samples that
enhance the agent’s exploration(and ultimately, its performance). Akin to
chapter 4, within this chapter the agent partially perceives the environment
that surrounds it (POMPD) and only gets a non-zero reward when the
task is successfully accomplished (sparse rewards).

Chapter 6
Last but not least, Chapter 6 – Concluding Remarks – summarizes the
insights obtained after these years of research. The results in terms of
contributions to conferences and journals are listed here too. Moreover,
future research lines aligned with the interests of this Thesis are men-
tioned, which are at the moment being addressed despite the fact that
their corresponding publications are out of the scope of this manuscript.

1.3 Reading this Thesis
The contents of this Thesis can be read in a non sequential fashion. Even
though the structure follows a logical order, a reader familiar with the
background can jump to the experimental chapters (3,4,5) and refer to the
background chapter (2) when the related work included in the chapters
is insufficient to fully understand the contribution. Having said this, it is
strongly recommended to skim the information about environments and
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exploration strategies in chapter 2, both cornerstone of main design-related
choices along the rest of the chapters.

Chapter 1

Introduction

Chapter 2: Background

RL
fundamentals

Exploration
strategiesEnvironments

Chapter 3

Heterogeneous
agents

Chapter 4
Intrinsic

Motivation
Study

Chapter 5
Self-imitation
with Intrinsic
Motivation

Chapter 6: Concluding Remarks

Future Research Lines

: sequential

: non-consecutive

: summarizing

Figure 1.2: Block diagram of the structure and reading flow of the Thesis.

Finally, chapter 6 remarks the obtained conclusions in combination
with the possible extensions based on the outcomes of each chapter. Be-
sides, future research lines are also elicited. This last chapter summarizes
the results in layman’s terms, so that no specific technical knowledge is
required.
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Chapter 2

Background

DRL has been object of research in the last decade (2010-) due to the
advances in both DL and RL (Abbeel & Ng, 2004; Goodfellow et al.,
2014; He et al., 2015; Hochreiter & Schmidhuber, 1997; Vaswani et al.,
2017), which has catapulted the number of problems in which DRL can be
adopted. Among the works that have made the field take off, two notable
examples are: Bellemare et al., 2013 and Mnih et al., 2015. These stud-
ies introduced an approach that successfully used ANNs in an end-to-end
framework with RL to play Atari games. The approach achieved compa-
rable superhuman performance levels by using Deep Q-networks (DQN)
trained directly from raw input pixels. Right after, policy gradient meth-
ods were formulated to embrace deterministic settings (Silver et al., 2014)
whereas (Lillicrap et al., 2015) extended DRL to continuous control tasks
using an actor-critic framework combining the concepts of both policy
gradients(for the actor) and the previously obtained ideas of value based
methods (for the critic). In addition to these works, others have had an
even larger impact since they developed algorithms capable of beating any
human being in classic and highly complex board games, such as chess,
shogi, and go (Schrittwieser et al., 2020; Silver et al., 2018; Silver et al.,
2017). These algorithms also demonstrated their superiority in e-sports
games, such as Starcraft (Vinyals et al., 2019) and Dota II (OpenAI et al.,
2019), where they defeated the respective professional champions. More
recently, two studies have had an outstanding impact on the RL research
community: (Team et al., 2021) and (Reed et al., 2022). These works
introduced agents capable of demonstrating good generalization proper-
ties across different domains and tasks, even when using the same ANN
weights and biases. This represents a significant breakthrough in the field,
as it addresses one of the big challenges concerning the application and
potential of DRL.

In the previous paragraph the most exceptional works that have paved
the way for research in DRL have been mentioned. However, in order
to contextualize such advances and this dissertation content, this chap-
ter elaborates on the main and necessary concepts related to the field of
DRL, together with exploration related approaches. First of all, RL funda-
mentals are addressed. Next, some benchmarks/environments that can be
found in the literature to evaluate the approaches are highlighted. Finally,
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the most popular and adopted exploration techniques related to this Thesis
are explained, with special emphasis on Intrinsic Motivation methods.

2.1 Fundamentals of Reinforcement Learning
The main goal of any reinforcement learning algorithm is to select the
actions that optimize a given objective. Typically, the problems tackled
with RL are modelled via states, actions and rewards in a Markov Decision
Process (Section 2.1.1) according to the sequence boundaries in charge of
defining how data is processed for training purposes (Section 2.1.2). The
design of proper feedback signals to achieve the goals is a crucial factor
(Section 2.1.3) in order to learn the functions that govern the decision-
making and parameterize the agent’s behavior, which subsequently, influ-
ences the performance of the agent (Section 2.1.4). The learning process
of such functions hinges on the use of the collected data in the training
stage (Section 2.1.5). What is more, these functions can play the role of
decision-makers or support elements instead, which leads to a broad family
of algorithms that can be used to make the magic happen (Section 2.1.6).
Last but not least, the irruption of DL into RL has had big consequences
to extend all these concepts to a wide range of problems that previously
were intractable (Section 2.1.7). These concepts are explained in detail
below.

2.1.1 Markov Decision Process
Commonly, RL problems are formalized as Markov Decision Processes
(MDP), which is used to represent sequential decision making problems
in which an agent interacts with a stochastic environment. This frame-
work is subject to the Markov property where the probability of an event
occurring depends only on the current and previous event. That is, the
future is independent of the past given the present.

P[𝑠𝑡+1 |𝑠𝑡 ] = P[𝑠𝑡+1 |𝑠0, 𝑠1, 𝑠2, ..., 𝑠𝑡 ] (2.1)

Formally, a Markov Decision Process is defined by a tuple of 4 elements:
{S,A,P,R}, where S represents the state space, A is the action space,
P : S × A × S −→ [0, 1] is the state-transition probability function and
R : S × A × S −→ R stands for the reward function.

Within the RL formulation two main components can be distinguished:
the agent and the environment. The first (agent), also known as the
learner or decision maker, is in charge of collecting experiences and op-
timizing the sequence of decisions (actions) that maximize/minimize the
objective, whereas the latter (environment), can be seen as the world with
which the agent interacts to build up its knowledge1.

1The terms agent,environment and action are also analogous/can be also interpreted
as controller, plant and control signal respectively at engineering control systems.
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Figure 2.1: Reinforcement Learning framework.

The learning process is performed on a trial-and-error basis so that the
agent selects an action and the environment provides a feedback signal and
a new situation to be faced. More specifically, the agent in each time step,
𝑡 = 0, 1, 2, 3, ... observes a state 𝑠𝑡 ∈ S and selects an action, 𝑎𝑡 ∈ A. As
a consequence, the environment transitions to a new state 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡 )
and the agent receives a reward 𝑟𝑡+1 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), that determines how
good/bad that decision was (see Figure 2.1). Eventually, all the interac-
tions are summarized in a sequence of states, actions and rewards named
experiences, which can also be referred as tuples, < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 >, con-
taining the information of a complete interaction.

Partially Observable Markov Decision Process

In the case of MDPs, the state of the entire system is always observable,
which allows for optimal decisions to be made at each point. The state
encompasses all the necessary information to represent the problem at each
time step, thus satisfying the Markov Property, Equation (2.1).

Partially Observable Markov Decision Process (POMDP) is a more
general framework where instead of states the agent has access only to a re-
stricted part of the environment’s information, also known as observations.
In this setting, the agent has to make decisions that may cause changes in
the whole environment that might remain unnoticed for the agent, which
makes the learning process more challenging. Thus, the Markov Prop-
erty is not fulfilled. Formally, a POMDP updates the previously described
MDP to a 6 element tuple: {S,A,P,R,O,Ω} where Ω represents the ob-
servation space and O : S × A × Ω −→ [0, 1] the observation function that
maps a state and action to a distribution over observations. Consequently,
at each time step 𝑡 the agent only receives an observation 𝑜𝑡 ∼ O(𝑠𝑡 , 𝑎𝑡 )
based on the actual state representation 𝑠𝑡 ∈ S and the selected action
𝑎𝑡 ∈ A, and conditions its policy on the episodic history of observations.
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2.1.2 Sequence Boundaries: Episode & Rollout
The sequence or number of interactions between the agent and the environ-
ment can be broken into subsequences which can be referred as trajectory,
rollout and/or episode, being their meaning slightly different depending on
the boundaries. In this Thesis, we adopt the following taxonomy which is
widely used in the literature:

• Trajectory is the less restrictive concept and can be used to refer to
any of the next two terms.

• An episode ends when a maximum number of steps are taken or when
the agents achieves the goal (the number of steps required to finish
an episode in any of those cases is parameterized by T ). As a result,
the environment is reset and the agent is brought back to a initial
state2 in order to solve the environment again. Despite the fact that
the large majority of problems are of this nature, commonly referred
as episodic tasks, others are categorized as continuous tasks when
the goal is never achieved (𝑇 = ∞) because the task is endless.

• On the contrary, a rollout (𝜏) is not subject to the termination of the
episode and is composed by a predetermined number of steps. Con-
sequently, a rollout could contain less experiences than an episode,
or even a multiple amount of them, being the number of such expe-
riences (T ) a parameter defined by the user (independently of the
environment).

For the sake of clarity, we provide an example in Figure 2.2 where
interactions of two different complete episodes can be distinguished. If we
considered a rollout of size 15 (𝑇 = 15), then the rollout would fence the
two different episode’s information in; on the opposite, if it was set to 5
(𝑇 = 5), then the rollout will cover less information (e.g., half of an episode
in the first example).

Note that an episode’s length (number of experiences) depends not
only on the environment, but also on the quality of the policy that selects
the actions, since an expert agent will be able to accomplish the task with
the optimal, i.e. smallest, number of steps3. Thus, the defined rollout size
(𝑇) ends up containing a variable number of episodes during the training
process, which is important in order to balance the bias and variance of
the updates generated upon those experiences.

2.1.3 Rewards and Returns
In RL, a reward is a scalar value that an agent receives from the environ-
ment after taking an action to guide its learning. The reward indicates
how well the agent performed relative to the objective. More importantly,

2The agent can be reset either in a fixed starting state (𝑠0) or within a distribution
of possible states (𝜌0). Thus, 𝑠0 ∼ 𝜌0 with a variable number of initial states.

3In the interactions of the two episodes presented in Figure 2.2 the optimal trajec-
tories are considered.
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Figure 2.2: Example of two different episodes’ interactions. The agent is the
red arrow and the environment the maze and all the objects that surround it.
The state is the visual perception of the environment, the actions are the set of
permitted navigation movements and the set of object manipulation operations,
and, the reward, is always zero except when arriving to the green square (the
goal). The above two rows represent a single episode, while the remaining rows

represent a different episode.

the agent’s primary goal is to make decisions that maximize the rewards
obtained from the environment, which is referred to as the return. There-
fore, designing a reward function that provides adequate feedback signals
is of utmost importance. In the following, extended definitions of rewards
and returns are provide.

Rewards

The reward has to reinforce good decisions and discourage useless or wrong
actions in order to make the agent achieve what we desire from it. This
means that the agent´s success pivots on how well the feedback signals
are coherent with the goal of the task. Some conceptualizations of re-
ward functions, and subsequently, the rewards in each interaction, can be
exemplified as follows:

Example 1, Robot. Goal: make a robot run as fast as possible not falling.
The reward could be inversely proportional to the required number of steps
to arrive to a given destination without falling.
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Example 2, Chess. Goal: make an agent learn how to play chess. The
intuitively rewards could be +1 for winning, -1 for losing and 0 for drawing.

In such examples, the agent is guided to complete the task with sparse
signals that evaluate the whole sequence of actions that leads to a given
outcome. Nevertheless, a reward function’s success is also subject to how
the progress in reaching the objective is evaluated. For instance, sparsity
can be circumvented by means of establishing easier subgoals or providing
intermediate rewards (i.e., dense) that ease the credit assignment problem:

Example 1, Robot. The reward function can be designed to promote the
forward motion at each step.

Example 2, Chess. Intermediate rewards can be considered when taking
opponent’s pieces out.

Nonetheless, this strategy could mislead the agent into a greedy search of
subgoals achievement instead of focusing on the main goal.
Example 2, Chess. The agent could find difficulties to beat the opponent
becoming greedy into taking the others pieces out rather than developing a
winning strategy.

It is important to remark that, even by designing a good reward function,
the success and quality of the results might not be as expected due to
other important aspects (e.g., model weights initialization, algorithmic
limitations, bias-variance trade-off)4. Thus, opting for a naive and easy
reward function (over a more complex one) is sometimes suggested.

For these reasons, its design is not trivial and sparse formulations are
preferable at the expense of exploration challenges. We will refer later
on this Chapter (Section 2.3) to methods to address the exploration-
exploitation dilemma more efficiently although this is tangential to the
main subject of this dissertation.

Return

Note that the main goal of the agent is to maximize the sum of rewards,
which can be formalized with the return, 𝐺𝑡 :

𝐺𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + ... + 𝑟𝑇 (2.2)

where 𝑡 and 𝑇 stand for the current and final time steps in an episode, re-
spectively. This calculation gives the same importance to all the decisions
regardless of their temporal component. What is more, this formulation
complicates the calculation of the return in continuous tasks, when there is
no episodic boundaries and the return becomes a sum of infinite series. In
light of this limitation, the discount concept was introduced by 𝛾 ∈ [0, 1],

4This can be seen in humans clearly: for the same stimuli, environment, and ob-
jective, people require different time to converge to a solution. Moreover, multiple
behaviors could lead to what is considered an optimal policy (even for the same reward
function).
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turning such operation in a finite calculation5. This discount factor allows
also modulating the importance of immediate and distant rewards. This
new return formulation is commonly referred to as discounted return:

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ... =
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 (2.3)

This implies that a reward to be received after 𝑘 steps in the future will
be worth 𝛾𝑘−1 times less than one obtained immediately. Accordingly,

• 𝛾 < 1 is used to adjust the weights of future rewards.

• 𝛾 = 0 is known as "myopic-view" and only maximizes immediate
rewards, 𝐺𝑡 = 𝑟𝑡+1 + 0 · 𝑟𝑡+2 + 0 · 𝑟𝑡+3 + ... = 𝑟𝑡+1.

• 𝛾 = 1 corresponds to the formal definition of return without discount,
homogenizing the value of future and immediate rewards, 𝐺𝑡 = 𝑟𝑡+1 +
1 · 𝑟𝑡+2 + 1 · 𝑟𝑡+3 + ... = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3...

In summary, the 𝛾 value regulates the effect of maximizing short-term or
long-term behaviors, being 0.9 < 𝛾 < 1 mostly selected to give credit to
future actions and avoid the reward importance vanishing. As a conse-
quence, a fifth (and seventh) element must be attached to the previously
introduced MDP (POMDP) tuple: {S,A,P,R, 𝛾} ({S,A,P,R, 𝛾,O,Ω}).

2.1.4 Policy and Value Function
Previously, it has been explained how the agent interacts with the envi-
ronment through actions. A policy, 𝜋 : S −→ A, is a function that maps
the current state of an agent to an action to be taken, 𝑎 ∼ 𝜋(𝑠) and it can
be either deterministic or stochastic. A deterministic policy maps each
state to a single action, whereas a stochastic policy maps each state to a
probability distribution over the possible actions that the agent can take.

The value function is a function that estimates the long-term reward
that an agent can expect to receive in a given state or state-action pair,
under a specific policy 𝜋. The state value function, 𝑉𝜋 (𝑠), is responsible
for estimating the expected return starting from a state 𝑠 and following
the policy 𝜋 thereafter, i.e.,

𝑉𝜋 (𝑠𝑡 ) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠] = E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠
]

(2.4)

where E[·] denotes expected value. Similarly, the action value function,
𝑄 𝜋 (𝑠, 𝑎), estimates the expected return starting from not only a state 𝑠,

5After a big number of steps, any future reward’s effect can be considered insignifi-
cant. Furthermore, this only holds true as long as 𝛾 ∈ [0, 1) because when 𝛾 = 1 all the
rewards are considered equally important.
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but also executing an action 𝑎, and following the policy 𝜋 thereafter, i.e.,

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = E𝜋

[ ∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]
. (2.5)

Interestingly, one property that applies over value functions is the re-
cursive relationship involving the calculation of returns:

𝐺𝑡 = 𝑟𝑡+1 + 𝛾(𝑟𝑡+2 + 𝛾𝑟𝑡+3 + 𝛾2𝑟𝑡+4 + ...)
= 𝑟𝑡+1 + 𝛾𝐺𝑡+1

(2.6)

with the consequent reformulation of Equation (2.4):

𝑉𝜋 (𝑠𝑡 ) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠]
= E𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ...|𝑠𝑡 = 𝑠]
= E𝜋 [𝑟𝑡+1 + 𝛾𝐺𝑡+1 |𝑠𝑡 = 𝑠]

(2.7)

being the rewards those that are obtained by following 𝜋 actions in each
of the encountered states from 𝑠 onwards. Note that both 𝑉𝜋 and 𝑄 𝜋 are
connected through the next equations:

𝑉𝜋 (𝑠𝑡 ) = E𝜋 [𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ∼ 𝜋(𝑠)] (2.8)

𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E𝜋 [𝑟𝑡+1 + 𝛾𝑉𝜋 (𝑠𝑡+1) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (2.9)

where the key difference lies in the fact that 𝑄 𝜋 calculates the expected
return assuming that the immediate action will be 𝑎𝑡 , determining the
next state 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡 ) and the associated reward 𝑟𝑡+1 = R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1);
whereas 𝑉𝜋 does not presume any action in its return estimation, being
this selection dependent on the current behavior of the policy 𝜋.

In addition to these two value estimators, a new function can be con-
sidered: the advantage function, 𝐴𝜋 (𝑠, 𝑎). This function quantifies how
much is a certain action 𝑎 taken in state 𝑠 a good or bad decision in relation
to the expected value 𝑉𝜋 (𝑠) in that state, i.e.,

𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 ) = 𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) −𝑉𝜋 (𝑠𝑡 |𝑠𝑡 = 𝑠) (2.10)

Last but not least, a policy 𝜋 is considered to be better than another
policy 𝜋′ if the expected return is greater, that is, 𝜋 ≥ 𝜋′ iff (if and only
if ) 𝑉𝜋 (𝑠) ≥ 𝑉𝜋′ (𝑠). In this regard, there is always going to be a policy
that is equal or better to the rest of policies, named the optimal policy 𝜋∗.
Analogously, there will be optimal value functions representing the actual
best returns that would be expected from each state 𝑠 when following the
optimal policy 𝜋∗ thereafter, i.e.,

𝑉∗ (𝑠𝑡 ) = 𝑚𝑎𝑥𝜋𝑉𝜋 (𝑠𝑡 |𝑠𝑡 = 𝑠)
𝑄∗ (𝑠𝑡 , 𝑎𝑡 ) = 𝑚𝑎𝑥𝜋𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

(2.11)
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2.1.5 On-policy VS Off-policy
In RL, a wide range of algorithms can be found. One of the criteria to opt
for one schema is the strategy about how to use the data in the training,
commonly categorised as on-policy or off-policy strategies.

On-policy techniques attempt to improve the policy that is being
used to interact with the environment. Because of that, they can only
use data that are representative of the current policy, 𝜋𝑡 , which precludes
the use of any data gathered with a different policy, including any pre-
vious policy state 𝜋𝑡−1, 𝜋𝑡−2, ... Hence, they are prone to be less sample
efficient yet more stable in the learning process. Within this group we can
find SARSA(Rummery & Niranjan, 1994), REINFORCE and Trust Re-
gion Policy Optimization (TRPO) (Schulman, Levine, et al., 2017), among
others.

On the other hand, off-policy methods learn a target policy with data
generated by a different policy, known as behavior policy. In that case,
the learning is said to be carried out from experiences "off" the target
policy. Consequently, these algorithms exhibit better sample-efficiency,
but are prone to overestimation and instabilities during training time.
The most common off-policy algorithms are Q-learning (Watkins & Dayan,
1992) and its extended DL approach, DQN(Mnih et al., 2015); and other
approaches that were built on top of DQN like Double DQN (van Hasselt
et al., 2015), Dueling DQN(Z. Wang et al., 2016) and C51(Bellemare et
al., 2017). Nevertheless, other popular and effective algorithms unrelated
to DQN have also been proposed, such as Deterministic Policy Gradients
(DPG)(Silver et al., 2014), Deep Deterministic Policy Gradient (DDPG)
(Lillicrap et al., 2015), Twin Delayed DDPG (TD3)(Fujimoto et al., 2018)
and Soft Actor-Critic (SAC) (Haarnoja et al., 2018).

2.1.6 Value-based VS Policy-based
Regarding the procedure to obtain the policy, RL algorithms can be di-
vided into value-based or policy-based methods.

The first group, i.e. value-based methods, aims to learn a value
function that evaluates the utility of each state (i.e., 𝑉𝜋 (𝑠)) and/or state-
action pairs (i.e., 𝑄 𝜋 (𝑠, 𝑎)). For this purpose, the objective is to mini-
mize the difference between the predicted return of each state (𝑉𝜋 (𝑠𝑡 ) or
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 )) and the actual target return (𝐺𝑡). Note that the actual re-
turn calculation is subject to the experiences gathered by the agent (e.g.,
𝜏 = {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+2, ...}), which might well not represent the op-
timal return and will result in the learning of value functions according
to these suboptimal target values. More importantly, the trajectories col-
lected for this purpose will be very diverse due to the 𝜋’s evolution de-
pendence during training. Thus, the target return calculation will exhibit
large variance and induce instabilities in the respective estimator function
learning. To mitigate the possible variance (and bias)-related issues, any
of the following proposed estimators can be adopted:
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• Monte Carlo. All the rewards from the current state to the terminal
state are included, 𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + .... It has no bias but
exhibits variance problems.

• Temporal Difference error (TD-error). Only the current reward
is considered and then the rest is bootstrapped by using the value
of the next state as an estimate of all the rewards to go, 𝐺𝑡 = 𝑟𝑡+1 +
𝛾𝑉 (𝑠𝑡+1). It copes well with the variance problem, but introduces a
higher bias.

• n-step. It is the generalization of the TD-error (𝑛 = 1) for greater
values of 𝑛. This means bootstrapping from a specific time step (𝑛)
to the terminal state: 𝐺𝑡:𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + .. + 𝛾𝑛−1𝑟𝑡+𝑛 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛).
The larger the 𝑛, the less bias and more variance; the lower the value
of 𝑛, the higher bias but the less variance.

• TD(_) can be explained as a way to average over the above men-
tioned n-step updates. Therefore, it requires the calculation of all
the 𝑛-step returns to, afterwards, assign them more/less weight:
𝐺_𝑡 = (1 − _)∑∞

𝑛=1 _
𝑛−1𝐺𝑡:𝑡+𝑛. The TD-error is also known as TD(0)

as it equals the case _ = 0 with just 1-step return.

For the sake of clarity, Figure 2.3 summarizes the strategies of 𝑛-step and
TD(_).

Once the value function has been obtained, value-based methods distill
their knowledge with some defined rules to build a policy. One approach is
to learn an action-value function 𝑄(𝑠, 𝑎) that closely approximates, if not
exactly, the optimal action-value function 𝑄∗ (𝑠, 𝑎). Then, the agent can
greedily choose the action that maximizes the return in each state:

𝑎𝑡 = argmax
𝑎

𝑄∗ (𝑠𝑡 , 𝑎) (2.12)

This methodology is known as greedy and is used to exploit and evaluate
the knowledge. However, using such strategy during the training (prior
to obtaining 𝑄∗ (𝑠, 𝑎)) could lead to policies with suboptimal behaviors
due to insufficient exploration. This is the reason why other mechanisms
that influence in the action selection are adopted (e.g., 𝜖-greedy6). Here
we can find algorithms like Q-learning (Watkins & Dayan, 1992), SARSA
(Rummery & Niranjan, 1994) and DQN-family among others (Bellemare
et al., 2017; Mnih et al., 2015; van Hasselt et al., 2015; Z. Wang et al.,
2016).

On the opposite, policy-based methods parameterize and optimize the
policy directly without the necessity of having a value function. Policies
can be learnt by either derivative free methods such as genetic algorithms
(Mirjalili, 2019) (recently compared with RL solutions (Martinez et al.,
2021)) or policy gradient schemes. In all these methods, the objective is

6Refers to a strategy where the agent selects with probability 𝜖 −→ [0, 1] a random
action and with 1 − 𝜖 the greedy action, balancing exploration-exploitation through 𝜖

parameter.
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Figure 2.3: (Left) Spectrum of possible TD estimators from 1-step up to Monte
Carlo (until termination of episode); in between, n-step calculation are placed.
The return estimator is calculated with the real n rewards and then the estimated
value of the nth next state. (Right) TD(_) diagram used to weight the n-step
returns (when being adopted). _ = 0 corresponds to just using the 1-step TD,

whereas _ = 1 considers only the Monte Carlo update.

to maximize the performance via a fitness score (used for evaluation) or by
maximizing directly the return, 𝐽 (\) = E𝜋 [𝐺𝑡 ]7. Additionally, policy gra-
dient algorithms can handle both discrete and continuous actions spaces.
Continuous actions can be more difficult to work with because it is not
feasible to explicitly represent every possible action’s value, as there are
an infinite number of them. As a consequence, they are parameterized by
either discretizing the range of possible action values in a discrete number
of values, or using statistical distributions (e.g., Gaussian) from which the
agent can sample specific values.

Overall, any value-based or policy-based method can result in de-
terministic or stochastic policies. Indeed, in value-based methods the
agent learns the value of each action. Then, it usually selects the action
with higher outcome leading to a deterministic policy. However, this can
be bypassed by means of methods that perturb the action selection pro-
cess (e.g., 𝜖-greedy strategy) or by parameterizing the output values with

7 \ is used to refer to the parameters that compose the policy 𝜋.
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a soft-max function to generate a distribution, resulting in a stochastic
policy8:

𝜋(𝑎 |𝑠) = exp(𝑠,𝑎)∑
𝑘 exp

(𝑠,𝑘 ) (2.13)

being 𝑘 the total number of possible actions in A𝑘 where the total sum
of probabilities of selecting an action is equal to 1,

∑
𝑘 𝜋(𝑎𝑘 |𝑠) = 1. On

the other hand, in policy-based methods the agent learns a probability
distribution over the actions composing a discrete action space (or a dis-
tribution per action in continuous action spaces), and then samples from
that distribution to select an action.

2.1.6.1 Policy Gradient methods

Policy gradient methods maximize the expected total reward by estimat-
ing the gradient, which can be obtained by differentiating the following
objective:

𝐿𝑃𝐺 (\) = Ê𝑡 [𝜓𝑡 log 𝜋\ (𝑎𝑡 |𝑠𝑡 )] (2.14)

that results in the popular formalization of the gradient as:

�̂� = Ê𝑡

[ ∞∑︁
𝑡=0

𝜓𝑡∇\ 𝑙𝑜𝑔𝜋\ (𝑎𝑡 |𝑠𝑡 )
]

(2.15)

where 𝜓 can be estimated in various ways (Schulman et al., 2015) –see
Table 2.1– similar to the estimators previously mentioned for value-based
methods.
Table 2.1: Different 𝜓 estimators (Schulman et al., 2015) that can be used to
compute the gradient in policy gradient methods as exposed in Equation (2.15).

𝜓 Description∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡+1 Total reward of the trajectory from the initial state (𝑠𝑡 |𝑡 = 0), Equation (2.3)∑𝑇
𝑡=𝑡𝑖

𝛾𝑡𝑟𝑡+1 The total reward from a time step (𝑡𝑖) onward, "reward-to-go", Equation (2.3)∑𝑇
𝑡=𝑡𝑖

𝛾𝑡𝑟𝑡+1 − 𝑏(𝑠𝑡𝑖 ) A baseline (i.e. an average return over trajectories or a parallel 𝑉𝜋)
𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) State-action value function, Equation (2.5)
𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 ) Advantage function, Equation (2.10)
𝑟𝑡+1 +𝑉𝜋 (𝑠𝑡+1) −𝑉𝜋 (𝑠𝑡 ) TD-residual

At this point it is important to highlight that �̂� is calculated based on
experiences belonging to a trajectory, whose probability depends not only
on the initial state (𝑠0) and the transition probability function (P), but

8Note that by the virtue of generating a distribution, an agent will sample different
values even for the same state due to the randomness in the sampling distribution.
Nonetheless, the outcome can be set to be deterministic by selecting the action with
the highest selection probability (Sutton & Barto, 2018).
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also on the current policy (𝜋𝑡) and the subsequent action probabilities:

𝑝(𝜏 |𝜋𝑡 ) =𝑝(𝑠0) · 𝜋𝑡 (𝑎0 |𝑠0)
· P(𝑠1 |𝑠0, 𝑎0) · 𝜋𝑡 (𝑎1 |𝑠1)
· P(𝑠2 |𝑠1, 𝑎1) · 𝜋𝑡 (𝑎2 |𝑠2)
...

· P(𝑠𝑇 |𝑠𝑇−1, 𝑎𝑇−1) · 𝜋𝑡 (𝑎𝑇 |𝑠𝑇 )

(2.16)

Therefore, once the policy is updated (𝜋𝑡 ≠ 𝜋𝑡+1) the probability of sam-
pling the same 𝜏 also changes, which leads to very different experiences,
and consequently, to highly variant returns. In fact, some approaches
(Espeholt et al., 2018; Horgan et al., 2018; Mnih et al., 2016; Stooke &
Abbeel, 2019) use multiple parallel agents to calculate expectations on
more diverse batches of experiences that end up stabilizing the variance
over the gradient updates:

�̂� = Ê𝑡

[ ∑︁
𝜏∈D𝑤

∞∑︁
𝑡=0

𝜓𝑡∇\ 𝑙𝑜𝑔𝜋\ (𝑎𝑡 |𝑠𝑡 )
]

(2.17)

being 𝑤 the number of parallel agents and D𝑤 the set of all the trajectories
collected by all these agents.

The most basic approach is called REINFORCE (Williams, 1992) and
resorts to 𝜓 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡+1 for the policy update. Posterior works, coined
REINFORCE with baseline or Vanilla Policy Gradient (VPG), introduced
𝜓 =

∑𝑇
𝑡=𝑡𝑖

𝛾𝑡𝑟𝑡+1 − 𝑏(𝑠𝑡𝑖 ), where a baseline 𝑏𝑡 (𝑠𝑡 ) ≈ 𝑉𝜋 (𝑠𝑡 ) was used in or-
der to mitigate high variance gradient updates. Nevertheless, the most
adopted 𝜓 since its publication has been the Generalized Advantage Es-
timation (GAE) (Schulman et al., 2015), being also the one employed in
this Thesis.

Generalized Advantage Estimation

Analogously to TD(_), GAE is defined as an exponentially-weighted es-
timator of the advantage function (instead of the value function in
TD(_)). In that context, the TD-residual of the value-function is defined
as 𝛿𝑉𝑡 = 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡 ), which can be considered as an estimate of
the advantage when executing an action 𝑎𝑡 that provides a reward 𝑟𝑡 and
a new state 𝑠𝑡+1.

Similarly to the n-step target estimator, now we can calculate multiple
advantage estimators by taking into account k -steps of the returns minus
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the baseline 𝑉 (𝑠𝑡 ) term:

𝐴
(1)
𝑡 :=𝛿𝑉𝑡 = −𝑉 (𝑠𝑡 ) + 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1)

𝐴
(2)
𝑡 :=𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 = −𝑉 (𝑠𝑡 ) + 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑉 (𝑠𝑡+2)

𝐴
(3)
𝑡 :=𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 + 𝛾2𝛿𝑉𝑡+2 = −𝑉 (𝑠𝑡 ) + 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + 𝛾3𝑉 (𝑠𝑡+3)

𝐴
(𝑘 )
𝑡 :=𝛿𝑉𝑡 + 𝛾𝛿𝑉𝑡+1 + 𝛾2𝛿𝑉𝑡+2 + . . . =

𝑘−1∑︁
𝑙=0

𝛾𝑙𝛿𝑉𝑡+𝑙

being 𝑘 the total number of experiences in the selected trajectory (and
consequently, the number of advantages estimators to be calculated) and
𝑙 the index of those advantages.

Once the k advantage estimators are obtained, GAE calculates the
exponentially weighted average over all of those 𝐴(𝑘 )

𝑡 , i.e.,

𝐴
𝐺𝐴𝐸 (𝛾,_)
𝑡 := (1 − _) (𝐴(1)

𝑡 + _𝐴(2)
𝑡 + _2𝐴(3)

𝑡 + ...)

𝐴
𝐺𝐴𝐸 (𝛾,_)
𝑡 :=

∞∑︁
𝑙=0

(𝛾_)𝑙𝛿𝑉𝑡+𝑙
(2.18)

Consequently, when choosing 𝜓 −→GAE(𝛾,_) the gradient will depend not
only on the discount factor but also on _ −→ [0, 1] (similar to when using
TD(_)). This new parameter is in charge of modulating the desired bias-
variance trade-off, where:

• _ = 1 has high variance due to the sum off all terms being homo-
geneously weighted, 𝐴𝑡 :=

∑∞
𝑙=0 𝛾

𝑙𝛿𝑉
𝑡+𝑙 =

∑∞
𝑙=0 𝛾

𝑙𝑟𝑡+1+𝑙 − 𝑉 (𝑠𝑡 ). Notice
that it is almost equivalent to the Monte Carlo return (where you
would still have to subtract the baseline term, 𝑉 (𝑠𝑡 )).

• _ = 0 exhibits low variance at the cost of a higher bias, 𝐴𝑡 := 𝛿𝑉𝑡 =

𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) − 𝑉 (𝑠𝑡 ). It is equal to the TD-residual term, that is,
the TD(0) minus the baseline.

In practice, _ tends to be enclosed between 0.9 < _ < 1. For more details
please refer to the original paper (Schulman et al., 2015).

Actor-Critic

Actor-critic refers to the methods that learn both a policy and a value
function. This framework is set when using a decision-maker (the ac-
tor) that makes use of an additional module to estimate the return (the
critic), and both functions are optimized jointly9. The mechanisms of this
framework (illustrated in Figure 2.4) can be explained as follows:

The actor receives feedback from the critic in the form of a numeric
value that represents how good/bad the current action was, and uses this

9For this reason, previously mentioned VPG can be considered within this framework
when the baseline is calculated through a parameterized function (i.e. ANN).
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feedback to adjust its decision-making strategy. The critic, on the other
hand, learns from the actor’s behavior by adjusting the return expectation,
improving the agent’s performance over time.

ACTOR
(policy) π

CRITIC
(value function)

Vπ

AGENT

ENVIRONMENT

st

rt

rt+1

st+1

Vπ

at

Figure 2.4: Actor Critic framework.

This framework can be seen as a combination of value-based and policy-
based (i.e., policy gradients) methods, where the strengths of one method
can be used to mitigate the weakness of the other. For instance, value-
based methods manifest poor convergence properties because minor changes
into the value estimate can have big consequences into the distilled policy,
whereas policy gradient updates (generally on-policy) are more stable and
result in a smoother training. On the contrary, policy gradients suffer from
high variance and sample inefficiency while value-based methods exhibit
less variance and are more sample-efficient. What is more, policy gradient
methods can handle both discrete and continuous action spaces, being the
latter not possible for value-based ones.

In summary, actor-critic RL can be seen as a hybrid approach that
combines the strengths of value-based (critic) and policy gradient (actor)
methods to achieve efficient and effective learning in complex environ-
ments. Within this group of methods are Deep Deterministic Policy Gradi-
ent (DDPG) (Lillicrap et al., 2015), Twin Delayed DDPG (TD3)(Fujimoto
et al., 2018), Soft Actor-Critic (SAC) (Haarnoja et al., 2018), Advantage
actor-critic (A3C and A2C) (Mnih et al., 2016), Importance Weighted
Actor-Learner (IMPALA), Proximal Policy Optimization (PPO) (Schul-
man, Wolski, et al., 2017), etc. Next, PPO is explained in detail as it is
the algorithm that is going to be used throughout this dissertation.
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Proximal Policy Optimization

PPO is an actor-critic method that collects data on-policy and benefits
from some concepts present in TRPO (Schulman, Levine, et al., 2017)
yet being even simpler, more general and with a better sample-efficiency.
Among its distinctions, PPO performs multiple epochs with the sampled
data before discarding them (as opposed to other policy gradient methods
– typically on-policy – that generate just one gradient update per collected
data). It also uses a new formulation of its objective based on the TRPO’s
proposal:

𝐿𝐶𝑃𝐼 (\) = Ê𝑡
[
𝜋\ (𝑎𝑡 |𝑠𝑡 )
𝜋\𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )

𝜓

]
= Ê𝑡 [Γ𝑡 (\)𝜓] (2.19)

where CPI denotes conservative policy iteration, and Γ𝑡 (\) =
𝜋 (𝑎𝑡 |𝑠𝑡 )
𝜋𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )

represents the ratio between the new/updated and old policies. Unfortu-
nately, without any constraints, that loss function can cause excessively
large updates between two consecutive policy instances (e.g., 𝜋𝑡 , 𝜋𝑡+1). To
fix this, PPO prevents the policy from being very different after each opti-
mization step by characterizing a clipped surrogate function. The penalty
that prevents such changes can be expressed in two ways:

• Adaptive KL Penalty Coefficient.

𝐿𝐾𝐿𝑃𝐸𝑁 (\) = Ê𝑡
[
𝜋\ (𝑎𝑡 |𝑠𝑡 )
𝜋\𝑜𝑙𝑑 (𝑎𝑡 |𝑠𝑡 )

𝜓 − 𝛽𝐾𝐿
[
𝜋\𝑜𝑙𝑑 (·|𝑠𝑡 ), 𝜋\ (·|𝑠𝑡 )

] ]
(2.20)

Akin to TRPO but, instead of using a fixed 𝛽 parameter, it employs
a dynamic value that depends on 𝑑 = Ê𝑡 [𝐾𝐿 [𝜋\𝑜𝑙𝑑 (·|𝑠𝑡 ), 𝜋\ (·|𝑠𝑡 )]], so
that:

– if 𝑑 < (𝑑𝑡𝑎𝑟𝑔/1.5) −→ 𝛽 = 𝛽/2
– if 𝑑 > (𝑑𝑡𝑎𝑟𝑔𝑥1.5) −→ 𝛽 = 𝛽𝑥2

• Clipped Surrogate Objective.

𝐿𝐶𝐿𝐼𝑃 (\)=E[min{Γ𝑡 (\)𝜓, clip(Γ𝑡 (\), 1-𝜖, 1+𝜖)𝜓}] (2.21)

Motivated by the results of the original paper (Schulman, Wolski, et al.,
2017), in this Thesis the clipped option (Equation (2.21)) is set as the
default PPO method.

In addition, the objective is usually augmented by adding an entropy
term (𝑆[𝜋\ ]) to ensure sufficient exploration into the policy (Mnih et al.,
2016). Regarding the value function, it can be learned either as an inde-
pendent module or by sharing the parameters with the policy too, which
will require to take into account the 𝑉\ ’s head objective into the update.
Overall, the global objective of the algorithm is expressed through the
maximization of the next loss function:

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆 (\)=E
[
𝐿𝐶𝐿𝐼𝑃𝑡 (\) − 𝑐1𝐿𝑉𝐹𝑡 (\) + 𝑐2𝑆[𝜋\ ] (𝑠𝑡 )

]
(2.22)
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being 𝑐1 and 𝑐2 components that determine the weight of the value loss and
the entropy respectively, 𝑆[𝜋\ ] the entropy bonus and 𝐿𝑉𝐹𝑡 the squared-
error loss for the critic (𝑉\ (𝑠𝑡 ) −𝑉 𝑡𝑎𝑟𝑔𝑡 )2.

Last but not least, PPO usually adopts the previously mentioned GAE
as 𝜓 estimator to calculate the advantage estimator for the policy, 𝐿𝐶𝐿𝐼𝑃 (\),
and also the return targets for the critic’s loss, 𝑉 𝑡𝑎𝑟𝑔𝑡 .

2.1.7 Deep Reinforcement Learning
In many tabular RL algorithms10 (not covered in this dissertation) some
assumption as having "infinite data" or being able to "sample every state-
action pair infinitely" are reasonable due to the considered finite state
and action spaces. Nevertheless, the dimensionality requirements can
exponentially grow if the state space is either continuous (e.g., floats)
or composed of high dimensional inputs (e.g., images). For instance,
when having perception of the environment in the form of an image cap-
tured from a camera, the state space can be constituted by (2563) 𝑝𝑖𝑥𝑒𝑙𝑠 =
(16777216) 𝑝𝑖𝑥𝑒𝑙𝑠 number of different states, which is intractable in a tab-
ular RL setting. Same situation emerges when having large and/or con-
tinuous actions spaces. Consequently, tabular approaches are effective for
small or simple environments, where the state and action spaces are small
enough to be represented in a table.

In addition to the foregoing, one of the main limitations of tabular
RL methods is that they are not well-suited for generalization (i.e., the
ability of the agent to apply what it has learned in one context to new
and/or similar contexts). Because they rely on storing the values for each
individual state or state-action pair separately, they can not infer the out-
come for similar but slightly different states due to the limitations of the
tabular approach itself. The solution? Function approximations.

All the aforementioned policy and value functions can be approximated
with a function parameterized by \, where the goal consist of maximize
an objective function. In fact, ANNs have been widely used in SL to
automatically extract and preprocess the features of the input and bring
the capability of generalizing to unseen data. In DRL the idea is to use
ANNs as nonlinear function approximators to scale up the capabilities,
capacity and use cases of tabular RL algorithms. One of the first successful
works is (Mnih et al., 2015) where they extended Q-learning to be used with
ANNs; more concretely, they used Convolutional Layers (O’Shea & Nash,
2015) to process image observations and make an agent play consistently
in Atari games. Henceforth, DRL has been widely applied to address
multiple problems.

10Approaches where the resulting solution can be represented as a look-up table.
Each row or entry would correspond to a state, where the associated value for each
action at that given state (or the optimal action) will be presented in columns; or vice
versa (actions as rows and states as columns). The fact is that the final policy can be
obtained by looking into a table of finite dimensions directly (e.g., Q-learning (Watkins
& Dayan, 1992) and SARSA (Rummery & Niranjan, 1994)).
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Figure 2.5: Tabular versus Deep Reinforcement Learning. (Left) Two problems
with different state space dimensions: 𝑆𝑙𝑜𝑤 where discretization is straightfor-
ward and 𝑆ℎ𝑖𝑔ℎ with a huge state space size. (Right) How the different states
can be tackled from the perspective of Tabular RL (e.g., with value-based meth-
ods) or with Neural Networks; the first approach is suitable for 𝑆𝑙𝑜𝑤 problems
whereas the second option scales better, a property that makes it preferable

when dealing with 𝑆ℎ𝑖𝑔ℎ problems.

2.2 Environments
As it has been explained before, a RL agent learns through the interaction
with an environment. One of RL’s main drawbacks is to build or have
access to one environment that models the problem to be addressed; which
is not always possible. In the meantime and with the purpose of making
progress into the intrinsic challenges of RL methods themselves, multiple
environments have been constructed in a game-style fashion and used as
benchmarks to evaluate new technical approaches. In that context, each
benchmark has different scopes:

• Arcade Learning Environment (Bellemare et al., 2013) for solv-
ing hundreds of Atari 2600 games with multiple challenges.

• Unity Machine Learning Agents (Juliani et al., 2020) for en-
riched virtual game environments.

• MuJoCo (Todorov et al., 2012) & DeepMind Control Suite
(Tunyasuvunakool et al., 2020) for the development of robotics and
biomechanics problems that use physics based simulations.

• VizDooM (Kempka et al., 2016) & DeepMind Lab(Beattie et
al., 2016) for 3D navigation problems using first-person viewpoint
observations.

• Meta-world (Yu et al., 2019) for multi-tasking and meta-RL to
learn robotic manipulation tasks.
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Although the diversity between environments is actually one of the
strengths of those benchmarks, they do not target the generalization re-
quirements inside the same environment, what is critical in real-world
problems where the scenario is mutable. In fact, the large majority of
benchmarks use singleton environments (the scenario instance does not
change through training and/or evaluation) where the agent has been
shown prone to overfitting (Nichol et al., 2018; C. Zhang et al., 2018).
As a consequence, new benchmarks have been designed to test the gen-
eralization to new/unseen instances of the same environment, being the
procedurally-generated the ones that have gained momentum.

2.2.1 Procedurally-Generated Environments
As the name suggests, Procedurally Content Generator (PCG) refers to
environments (generators) designed to construct distinct set of instances
for the same task in a procedural manner. These environments provide
access to a large and diverse amount of episodes – also referred as levels
– where their generation is subject to specified attributes (or seeds) that
govern their characteristics and dynamics, see Figure 2.6.

Figure 2.6: Two images from the PCG CoinRun environment. (Up) Multiple
levels with different colors and obstacles. (Down) Two different levels with no-
torious complexity differences. Both images legitimacy correspond to OpenAI
and can be found in https://openai.com/blog/procgen-benchmark/ or (Cobbe

et al., 2019).

Consequently, the agent is forced to learn relevant skills rather than
memorize specific trajectories, promoting the desired generalization be-
havior. Nevertheless, in order to be able to get that knowledge, the agent
needs to be provided with a large diversity of levels of the same task, be-
ing necessary in the particular case of the Procgen environments (Cobbe,
Hesse, et al., 2020) around 500-1000 levels of training to be able to gener-
alize to new/unseen levels. Recently, a bunch of PCG environments have

https://openai.com/blog/procgen-benchmark/
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been released such as Sonic (Nichol et al., 2018), MiniGrid (Chevalier-
Boisvert et al., 2018), Obstacle Tower Challenge(Juliani et al., 2019),
NetHack (Küttler et al., 2020), Procgen(Cobbe, Hesse, et al., 2020) and
XLand (Team et al., 2021) among others. Besides generalization, in the
same way as singleton benchmarks, each PCG environment poses its own
particular challenges too, such as sparse rewards to analyze the sample-
efficiency mentioned in the previous chapter.

Throughout this Thesis some hard-exploration mazes from MiniGrid
(Chevalier-Boisvert et al., 2018) are employed, where the agent has a par-
tial egocentric view (POMDP) of the environment and its objective is to
reach a given destination, being each level’s configuration different despite
the task is kept fixed. See some examples in Figure 2.7. The employed
tasks in this Thesis are deemed sparse rewards problems because the agent
only gets a non-zero reward when accomplishing the goal, i.e.,

R(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) =
{
1 − 0.9 · 𝑡

𝑡𝑚𝑎𝑥
, if 𝑡 < 𝑡𝑚𝑎𝑥 and 𝑠𝑡+1 is terminal

0, otherwise
(2.23)

being 𝑡𝑚𝑎𝑥 the maximum number of steps per episode in each problem/task.
Remark that the probability of achieving the goal by randomness is too
small to learn a valid policy with any state-of-the-art (SOTA) RL-algorithm.
Further details can be found later in this manuscript when those environ-
ments are employed as benchmark.

2.3 Exploration Strategies
When should the agents explore? It is a relevant question still unsolved and
apparently highly problem dependant (Pîslar et al., 2022). The exploration-
exploitation dilemma becomes fundamental in sparse reward formulations
where the probability of getting a valuable feedback from the environment
is close to zero in almost all the cases, 𝑝(𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + ... ≠ 0) ≈ 0,
which leads to a huge amount of uninformative interactions. In this con-
text, acting greedily – exploiting the information that the agent already
knows – is synonym of failure or very poor performance. Hence, the ex-
ploration becomes essential. Along the literature two main exploration
strategies can be listed(Thrun, 1992): Undirected exploration and Directed
Exploration.

The undirected exploration strategies focus on injecting randomness
into the action selection to promote the discovery of new states with-
out taking into account the information of the environment. Typically,
they tend to be simple and have good results in small state spaces and
dense reward formulations, albeit struggle and inefficient in the opposite
situations. In this category, algorithms random-walks (Anderson, 1986;
Nguyen & Widrow, 1989), 𝜖-greedy (Sutton, 1995; Watkins & Dayan,
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Figure 2.7: Rendering of PCG MiniGrid’s MultiRoom-N7-S8 ≡ MN7S8 (top
row), KeyCorridor-S3-R3 ≡ KS3R3 (middle row) and ObstructedMaze-2Dl ≡ O2Dl
(bottom row) environments across three different levels. Each episode is gener-
ated with a different seed so that the configuration of objects and the initial
spawn position (and orientation) of the agent are different. As a consequence, a

huge number of diverse levels for the same tasks can be generated.

1992; Whitehead & Ballard, 1991) and Boltzmann distribution strategies
(Cesa-Bianchi et al., 2017; L.-J. Lin, 1992; Sutton, 1990) are included11.

Contrarily, directed exploration techniques memorize exploration spe-
cific knowledge to guide the future agent’s behavior. The Upper Confi-
dence Bound (UCB) (Auer et al., 2002) was one of the first approaches to
implement this by estimating the expected return along with a measure of

11These methods always use some kind of parameter – 𝜖 (in 𝜖 -greedy) or 𝜏 (Boltz-
mann) to define the probability/frequency of selecting the greedy action or a ran-
dom one. Just to clarify, the Boltzmann (or Gibs) distribution can be seen as a
soft-max distribution (Equation (2.13)) over the possible 𝑄 (𝑠𝑡 , · )-values/probabilities
given by 𝜋 ( · |𝑠𝑡 ) where the distribution is subject to a energy/temperature factor,𝜏:

exp
𝑄 (𝑠,𝑎)

𝜏 /∑𝑘 exp
𝑄 (𝑠,𝑘)

𝜏 .
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the uncertainty for each action:

𝑎𝑡 = argmax
𝑎

[
𝑄(𝑠𝑡 , 𝑎𝑡 ) + 𝑐

√︄
ln(𝑡)
𝑁𝑡 (𝑎)

]
(2.24)

where the first term, 𝑄(𝑠𝑡 , 𝑎𝑡 ), stands for the expected return, whereas

the second term,
√︃

𝑙𝑛(𝑡 )
𝑁𝑡 (𝑎) , specifies the uncertainty of selecting an action

(𝑎) considering the number of times (𝑁𝑡) that action was taken until that
time step (𝑡). That is, the first component aims to select the action that
leads to the highest return (exploitation), whereas the second promotes the
selection of actions inversely proportional to the number of times that they
have been selected (exploration). Such exploration-exploitation trade-off
is ultimately controlled by the hyperparameter 𝑐 ≥ 0. This idea fostered
the proposal of Intrinsic Motivation (IM) methods, recently centered on
generating intrinsic rewards to explore and discover new behaviors more
efficiently, which is of utmost importance in sparse rewards settings to
learn the optimal policy with the minimum amount of agent-environment
interactions.

Below some of the most popular IM approaches that are going to be
discussed in the following Chapters are detailed. Thereafter, Imitation
Learning (IL) is also explained, and further discussed in Chapter 5, as an
alternative approach when counting on expert demonstrations.

2.3.1 Intrinsic Motivation
By letting the agent explore the environment for its inherent satisfaction
rather than for other exogenous stimuli, new behaviors emerge. In fact,
this is related to psychology and how the babies can learn different skills
in the early stages of their human life without additional feedback from
the world (Grigorescu, 2020; Oudeyer et al., 2016; Ryan & Deci, 2000).
IM methods, also referred to as curiosity or novelty, endow the agent with
the ability of learning behaviors that are separate from their main task
(Aubret et al., 2019) (task-agnostic exploration/behavior). This property
becomes particularly interesting in the absence of explicit feedback from
the primary task, as the agent is encouraged to learn a secondary goal
(intrinsic-goal) that will eventually drive it to achieve the main objective
(extrinsic-goal). This idea is formalized in an intrinsic reward (𝑟 𝑖𝑡) that is
combined with the extrinsic reward provided by the environment (𝑟𝑒𝑡 ) at
each time step 𝑡 through a weighting factor 𝛽:

𝑟𝑡 = 𝑟
𝑒
𝑡 + 𝛽𝑟 𝑖𝑡 . (2.25)

In this context, several approaches can be found in the literature to gen-
erate the exploration bonuses.
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Count-based methods

One mechanism to generate the aforementioned intrinsic rewards is by
adopting a visitation count strategy, also known as count-based methods.
Similar to UCB’s exploration component (Equation (2.24)), the rationale
is that the agent should be less curious in those states with less novelty.
That is, the exploration bonus is inversely proportional to the number
of times (𝑁 (𝑠𝑡 )) a given state (𝑠) has been visited. The most common
approach is to define 𝑟 𝑡𝑐𝑜𝑢𝑛𝑡𝑠 = 1/𝑁 (𝑠𝑡 )1/2 = 1/

√︁
𝑁 (𝑠𝑡 ) (Strehl & Littman,

2008), although other alternatives without the square root (Kolter & Ng,
2009) or other exponential magnitudes to get the desired bonus decay (i.e.,
how smoothly the magnitude decreases, see Figure 2.8) can also be utilized.

Figure 2.8: Visitation count bonus decay for different square values
𝛽

𝑁 (𝑠𝑡 )𝑒𝑥𝑝_𝑣𝑎𝑙𝑢𝑒 for 1000 consecutive visits. The magnitude parameter is pro-
portional to the selected numerator value, usually weighted with a parameter 𝛽.

The particular case of 𝛽 = 1 is illustrated.

This is a simple, yet effective, solution to quantify the degree to which
a state is unknown for the agent. However, this is only possible when
dealing with discrete state spaces. Contrarily, when having more complex
domains with continuous state spaces other solutions are needed. One
option is to discretize it by creating tiles/bins to embed multiple values at
once. Other alternatives have been fruitfully: density models to measure
the uncertainty and henceforth compute the bonus (Bellemare et al., 2016;
Ostrovski et al., 2017), hashes to encode the states in a discrete manner
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(Tang et al., 2017) or successor representations to leverage similarities for
the exploration bonus generation (Machado et al., 2019).

Prediction-error methods

On the other hand, the intrinsic reward can be computed as the prediction-
error when predicting the consequence of an agent’s action in the environ-
ment; that is, measuring the predictability of the changes in the environ-
ment. The intuition in these methods is clear: the better the prediction,
the more often might that situation has been encountered and the lower
the novelty bonus should be.

Intrinsic Curiosity Module (ICM) (Pathak et al., 2017) was a game
changer and distinct itself from other previous prediction approaches
(Houthooft et al., 2017; Stadie et al., 2015) because it focuses on a smaller
feature space to compute the expected changes that affect the prediction.
Such a feature space is built to model the transitions between consecutive
steps that were controlled by the agent or that directly affect it; while
ignoring the rest. This was accomplished by using an inverse dynamics
model in a self-supervised manner to predict the agent’s action (�̂�𝑡) given
the current (𝜙(𝑠𝑡 )) and next state (𝜙(𝑠𝑡+1)) embeddings, so that only things
affecting to the agent were modeled to obtain the desired feature space.
At the same time, that embedding space (𝜙(𝑠𝑡 )) altogether with the ac-
tual action (𝑎𝑡) is used to train a forward dynamic model (Stadie et al.,
2015) that predicts the feature representation in the next state (𝜙(𝑠𝑡+1)),
which in last instance is compared against the latent representation of the
next state in the previously modeled feature space (𝜙(𝑠𝑡+1)) to compute
the intrinsic reward (𝑟 𝑖𝑡), see Figure 2.9.
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Figure 2.9: Intrinsic Curiosity Module (ICM)(Pathak et al., 2017), where the
generation of the intrinsic reward 𝑟𝑖𝑡 is illustrated. The intrinsic reward is com-
puted as the prediction error in the feature space of the next state, that is, the

difference between 𝜙(𝑠𝑡+1) and 𝜙(𝑠𝑡+1) given 𝑠𝑡 , 𝑠𝑡+1 and 𝑎𝑡 .
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Later on, (Burda, Edwards, Pathak, et al., 2018) conducted a large-
scale study based on these prediction errors over 54 environments with-
out any extrinsic reward –purely guided by intrinsic behaviors– in which
they analyzed the efficacy of using various feature learning methods. In
other words, they investigated the effect of using different feature spaces –
𝜙(·)– such as relying on pixels, random features, variational audoencoders
(Kingma & Welling, 2014) and the previously introduced inverse model
(Pathak et al., 2017). One important remark is that they brought up
the noisy-TV problem on this kind of algorithms: the agents tend to be
attracted by stochastic dynamics of the environment which was clearly
exemplified by introducing a TV into the environment that changed the
channels randomly independently of the agent’s actions. In order to solve
this issue, (Pathak et al., 2019) proposed the use of an ensemble of forward
dynamics models so that the reward was computed taking into account the
variance with respect to their next state prediction; hence, they are not
sensitive to agent’s impact on the environment changes but to the parts
of the environment that have been largely/shortly explored (the more a
state has been visited, the less the disagreement between the outcome of
all the forward models and the less variance even in a stochastic situation).
Another idea is to use an episodic memory so that the distance/proximity
–referred to as reachability in the paper– of past instances in reference to
the current state can be measured (Savinov et al., 2019); in other words,
how many steps away is the agent from experiencing those situations again.
The episodic novelty module idea was extended and combined with a life-
long novelty module so that curiosity across the episode and the whole
training was modulated yielding new SOTA results in some benchmarks
(Badia, Sprechmann, et al., 2020).

Special mention deserves Random Network Distillation (RND) (Burda,
Edwards, Storkey, et al., 2018), which became popular due to its simplic-
ity and good performance. Thi is the reason why it was picked over other
prediction-error methods for this Thesis. In this strategy, two neural net-
works are required: a target 𝜙(·), and a predictor 𝜙(·). Both of them
are initialized randomly and the target ’s parameters are frozen thereafter.
The predictor ’s goal is to mimic the target network’s output, so that the
outcomes are as close as possible. Therefore, the intrinsic reward measures
the closeness through: | |𝜙(𝑠𝑡+1) −𝜙(𝑠𝑡+1) | |. As the predictor keeps learning
to imitate the target, the intrinsic reward is supposed to be smaller and
smaller as a reflection of the number of cumulative state visits, so that the
curiosity concept about exploring novel states is satisfied. The authors
identify three main factors to be relevant source of prediction errors:

• Factor 1. Prediction error is high when the predictor fails to gener-
alize from previously seen data.

• Factor 2. Prediction error is high because the target is stochastic.

• Factor 3. Prediction error is high because necessary information for
the predictor is not given (or the model capacity is too limited to
accurately predict the target).



34 Chapter 2. Background

The last 2 factors can induce the aforementioned noisy-TV problem. Hence,
RND was designed to overcome those undesired properties by fixing the
prediction problem with a deterministic target and having two replicates
of the same ANN architecture, so that the prediction error is not limited
by the model capacity or architecture.

Last but not least, it is important to emphasize that when using intrin-
sic rewards the problem becomes bi-objective and the agent is accordingly
going to optimize both goals12. Nevertheless, unexpected behaviors can
arise in these settings due to an excessive exploration that hinders the
exploitation of the main task (Badia, Sprechmann, et al., 2020; Rosser &
Abed, 2021; Taïga et al., 2020). Most of the approaches neither control nor
balance the importance of the extrinsic and intrinsic components during
training. This is based on the following assumptions:

• The scale of both rewards is very different: very low intrinsic values in
comparison to the extrinsic ones. As a result, possible goal-deviation
occurs mainly in the absence of extrinsic rewards.

• Intrinsic rewards are non-stationary in nature. Their magnitude,
regardless of 𝛽, decreases on average throughout the training as the
state space is explored, resulting in an even larger difference between
the two types of rewards/goals.

However, these assumptions sometimes are not enough and other solutions
are required. Among those examples, there are meta-learning approaches
where the functions that parameterize the intrinsic rewards are influenced
by the direction of the extrinsic gradient(Dai et al., 2022; Du et al., 2019;
Z. Zheng et al., 2018) (ensuring that the main extrinsic objective is aligned
with the exploration component too), while other frameworks propose to
directly decouple the two goals into different agents (E. Z. Liu et al., 2021;
Schäfer et al., 2022).

2.3.2 Imitation Learning
Another solution to overcome exploration problems is the use of expert
demonstrations, which is also known as Imitation Learning (IL) and/or
Learning from Demonstrations (LfD)(Hester et al., 2017; Vecerik et al.,
2018). Within this framework, good (optimal or suboptimal) trajectories
are assumed to be provided, 𝜏∗ = {(𝑠0, 𝑎0, 𝑟0, 𝑠1), (𝑠1, 𝑎1, 𝑟1, 𝑠2), ...}, so that
the agent can use those tuples to pre-train or even master a policy in
an online fashion that prevents the agent from getting stuck in the early
phases of the training (where no expertise is still developed). Nevertheless,
key aspects such as different embodiment and observability between the
expert and the learner make challenging its success application (Osa et
al., 2018). Depending on how the demonstrations are used to distill the
knowledge, two ways of learning can be found: Behaviour Cloning (BC)
and Inverse Reinforcement Learning (IRL).

12Recall that the agent maximizes the return (Equation (2.3)) in which the considered
reward has now a new explorative component (Equation (2.25)).
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On the one hand BC (Bain & Sammut, 2001; Pomerleau, 1988; Torabi
et al., 2018) seeks to learn a policy through a mapping strategy where
a given input is associated to an action; this is, it just requires state-
action tuples, 𝜏∗ = {(𝑠0, 𝑎0), (𝑠1, 𝑎1, ), ...}. Standard supervised learning
methods such as the log loss function (which can be embedded within
a Cross Entropy loss (Gneiting & Raftery, 2007)) are used to map the
probability of selecting an action to the specified input, which augments
its future probability preference:

𝐿𝐵𝐶 = − 1

|𝐷 |
∑︁

(𝑠,𝑎) ∈𝐷
ln(𝜋(𝑎 |𝑠)) (2.26)

where 𝐷 refers to a pool of data where the demonstrations are contained
and from the tuples are sampled. Nevertheless, these approaches suffer
from compounding errors (Ross & Bagnell, 2010) derived from the fact
that the policy to be updated exhibits different probabilities of collecting
experiences with the assumed expert policy that provides samples. This
is, a distribution shift exists in the sampling probability of trajectories (re-
call Equation (2.16)) between the policy that gathered the demonstrations
and the policy that is being learned. Consequently, the future test data
are influenced by the policy that is being learned, breaking the main as-
sumption of most SL methods that assume the data to be independent and
identically distributed (recall Chapter 1 when we explained the differences
between RL and SL). Therefore, one of the most popular BC algorithms up
to date – Dataset Aggregation (DAGGER) (Ross et al., 2011)– proposed
to aggregate additional online data to the dataset used for training (D),
with the particularity that the visited states are subject to the learned
policy distributions (𝜋(𝑎𝑡 |𝑠𝑡 ) −→ 𝑠𝑡+1) but the stored action in each state is
the expert’s (𝑎∗𝑡+1 ∼ 𝜋∗ (𝑠𝑡+1)), so that 𝐷 ∪ {𝑠𝑡+1, 𝑎∗𝑡+1}.

Alternatively, IRL(Finn et al., 2016) aims to learn the hidden reward
function from the provided experiences under the assumption of being
optimal (or very close to optimal) demonstrations. To do so, it uses
that function to obtain rewards from which the agent’s policy is learned,
𝜏0, 𝜏1, ... −→ Rℎ ≈ R; �̂�𝑡 ∼ Rℎ (𝑠, 𝑎)13. These methods are highly sensitive to
how good the reward function represents the desired (optimal) behavior.
Within this taxonomy, adversarial IL methods can be taken into account
too (Ho & Ermon, 2016; Ho et al., 2016), where the policy parameterizes
a generative model that "creates" new experiences and the cost function
(i.e., reward function) serves as an adversary.

In summary, the selection of one or another approach will depend on
whether the BC’s learned policy represents a valid mapping from states
to actions or if IRL’s distilled reward function is valid to learn a suitable
policy for the desired behavior. Furthermore, the criteria is also subject
to the availability of a model that makes possible the use of dynamics
information of the environment (Osa et al., 2018).

13For simplicity, the calculated reward function is shown to be dependant on the state
and action, although it can also be subject to the next state.
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Chapter 3

Collaborative training
between Heterogeneously
skilled Agents in
Environments with Sparse
Rewards

Designing a reward function is one of the most challenging steps when for-
mulating a problem that is meant to be solved with RL. As we have pre-
viously highlighted in Section 1.1, one way to overcome this cumbersome
design is by using a single (sparse) reward signal that determines whether
a RL task has been solved. In this context, the problem becomes more
complex due to the lack of dense feedback signals that guide the learning
process, ultimately hindering the correlation between successfully solving
the task and the successive actions that lead to that outcome. To address
this issue, a solution is to generate an exploration bonus (intrinsic reward)
that promotes the novelty (motivate the agent) within the environment.
This approach encourages diverse behaviors and enables the discovery of
valid solutions through exploration, thereby fostering goal achievement.
The family of algorithms that can generate these bonuses are known as
Intrinsic Motivation (IM) techniques, which have been introduced previ-
ously in Section 2.3.1 of Chapter 2. Their utility can be better understood
from the intuition gained from the following real-world example:

A bike rider wants to descend a given mountain across the shortest path
and as fast as possible. However, the rider does not know the mountain,
and the unique feedback signal will be received at the end of the route. Thus,
the rider does not know whether the decision in a bifurcation is right, if
they get stacked close to the final line, or even if they spend too much
time when compared to other bikers. Due to so much uncertainty without
feedback signals, the agent (bike rider) should drive their decisions based
on their own motivation and curiosity.

A first question arises when examining this real-world example: what
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happens when considering more than one agent? Multi-agent problems
have been broadly addressed, assuming that the agents interact with the
same environment1. Following the above example:

Instead of one bike rider, we consider two riders going downhill in the
same mountain at the same time. Both of their actions could change the
state of the mountain. In addition, knowledge gathered by any of them
could improve the other rider’s learning if shared (when to slow down, how
to take a curve, which path to follow, etc).

Furthermore, agents can also be deployed at different instances of the
same environment. For instance, this context is usually framed as a con-
current learning paradigm (Dimakopoulou et al., 2018). The example can
be expanded accordingly to yield:

Both riders will learn independently from each other over the same moun-
tain and paths (environment) and with the same opportunities, but they
do not run during the same hours (namely, actions taken by one do not
interfere into the decisions of the other)..

In this regard, research has been focused on improving the exploratory
effort and minimize the required time by increasing the number of par-
allel (homogeneous) agents, and using posterior sampling (Silver et al.,
2013), seed sampling (Dimakopoulou & Roy, 2018) and also sophisticated
distributed approaches (Espeholt et al., 2018; Kapturowski et al., 2019;
Mnih et al., 2016). In those cases the goal is to draw a larger amount of
samples by deploying several experience collectors in parallel. However,
another case emerges when the agents are heterogeneous in either their
observation or their action space, which could make them have different
optimal solutions and, in consequence, different action distributions:

Now both riders are assumed to have different bikes. One of such bikes
allows making jumps over obstacles such as tree branches or rocks, whereas
the other bike can not perform any jump. Consequently, some tracks of
the mountain are only accessible for one agent. The optimal solution (the
shortest path) is reachable only through a track blocked by obstacles.

As illustrated in the example, the problem can not be strictly classi-
fied as single-agent or multi-agent problem. In the targeted case, multiple
agents with different skills interact with their own copy of the environment.
Due to the agents having different action spaces, they can access specific
subsets of the state space that may yield different optimal solutions, ul-
timately resulting in a diversification of the optimal solution space. Such
problems are also present in real-life scenarios, e.g.:

• Exploration missions with robots of different skills (e.g., wheels ver-
sus legs introducing an increase in overall height).

• Robotic arms with different numbers of joints aiming to learn a task.
1We refer as multi-agent problems to those in which the involved agents interact

between them within the same environment instance in a cooperative or competitive
manner, so that the state transitions are the result of the joint action of all agents
(Buşoniu et al., 2010).
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• Autonomous vehicles with different steering wheel angles and/or re-
action times.

These variations can cause the agents to perceive the environment differ-
ently, even if the overall state space is the same, resulting in the agents
potentially converging to different optimal policies.

In this chapter we analyze this kind of problem, which cannot be ad-
dressed strictly from either the single-agent perspective (completely inde-
pendent fashion) or the multi-agent perspective (under a fully collaborative
framework). Instead, we aim to explore a hybrid strategy that is capable
of deciding what to share and when to do it. We approach the prob-
lem from the perspective of a collaborative learning framework (Gokhale,
1995; Johnson & Others, 1994)2. Our goal is to study which modules
can be shared to obtain a more efficient exploration strategy compared to
sharing no information whatsoever. Accompanied by theoretical insights,
the empirical results provide evidence that the collaborative strategy does
not always yield benefits for the agent’s learning process. However, if
appropriately chosen, it may lead to performance improvements.

3.1 Related Work
The success of IM techniques has catalyzed their adoption in a wide range
of RL problems (Charoenpitaks & Limpiyakorn, 2019; Taïga et al., 2020)
beyond the single-agent domain. Indeed, these techniques have also been
adopted in multi-agent RL (MARL) domains, which is an even more chal-
lenging setup as the actions executed by an agent could influence the ob-
servation/state space of other agents. In fact, influence was introduced
in (Jaques et al., 2019) by proposing the generation of a causal influence
reward through the KL divergence between policies influenced and not in-
fluenced by the actions selected by other agents. This causal influence is
used to increase the reward signal obtained from the environment. Like-
wise, the influence can also be calculated as the impact on other agents’
transition function and rewarding structure (T. Wang et al., 2019). In
addition, the agents can be stimulated to take (jointly) actions whose ef-
fects are difficult to model through a composition of the predicted effects
of each agent’s actions taken independently (Chitnis et al., 2020) (i.e., by
encouraging the selection of actions that have a greater impact when taken
jointly rather than asynchronously within the environment state).

On the contrary, little research has been done on the application of
curiosity in MARL assuming that the scenario does not change due to the
agents’ decisions (without measuring the influence). In this context, (Iqbal
& Sha, 2019) analyzed the effect of using decentralized curiosity modules
and then combining them with different methods. In that work an ablation

2For the sake of clarity, here we refer as Collaborative Learning to the challenge of
being able to reuse, combine or even adapt knowledge transferred from one source to
another.
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study was conducted for different tasks and scenarios, and proposed a non-
linear method that combines multiple novel ideas. In (Böhmer et al., 2019)
an intrinsically rewarded centralized agent was proposed, which is linked
to other decentralized agents through a shared replay buffer responsible for
collecting training experiences. With that setup, although decentralized
agents are not rewarded with intrinsic bonuses directly, they improve their
exploration. Moreover, it was shown that if the decentralized agents were
encouraged with IM rewards directly, their results got worse. Ultimately,
the impact of individual and joint curiosity was examined in (Schafer,
2019), concluding that the latter has more stability with similar results.

All the prior examined works considered single and multiple agents
(Espeholt et al., 2018; Kapturowski et al., 2019; Mnih et al., 2016) of the
same nature. Nevertheless, very scarce works have considered heteroge-
neous agents. Oddly enough, the term heterogeneous can lead to confusion
as it has been used in the literature with different meanings:

• In (H. Zheng et al., 2020), heterogeneous is used to refer to agents
that were trained by means of different optimization algorithms (namely,
TD3, SAC, EA), where the idea is to explore more efficiently by over-
coming possible issues of each algorithmic solution that may yield a
degradation of the learning convergence (e.g. the agent getting stuck
in local optima).

• In (Kurek & Jaśkowski, 2016), it is used to differentiate between
the type of team learning used to accomplish the task (i.e., learn
independent policies for each agent).

• In (Wakilpoor et al., 2020), it denotes agents with different sensors
that perceive the environment (i.e., observations) differently. Het-
erogeneity understood as such is addressed by using a new state
encoding structure.

• In (Calvo & Dusparic, 2018), it implies agents with different capa-
bilities in their action domains, which is a natural way to model
junctions (or traffic lights) that lead to a variable number of possible
paths. Similarly, (Zolna et al., 2019) used the heterogeneous term
to refer to agents with modified actions, which potentially lead to
different optimal solutions.

A potential solution to effectively realize information sharing (e.g., nov-
elty) between agents is the adoption of knowledge distillation (Parisotto
et al., 2016; Rusu et al., 2016), transfer (Rusu et al., 2022), and collab-
orative learning techniques (K. Lin et al., 2017). These methods permit
the export of the knowledge of an already trained agent to a new one, so
that the training can be accomplished more efficiently through knowledge
re-usability. To this end, it is mandatory to have a connection between the
two learning activities (Zhuang et al., 2020), where the success will strongly
depend on selecting what, when, and how to manage the knowledge from
a source to a target. The transferred knowledge does not always have the
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desired impact, and may lead to a negative transfer, and subsequently,
results in performance degradation (Z. Wang et al., 2019). More impor-
tantly, knowledge is governed under a teacher-student framework, wherein
the teacher (expert) is an agent that has previously gained knowledge and
gives instructions to the student (Da Silva et al., 2019). Thus, it is also
required to have such a teacher, which can be an unrealistic assumption
in real-world scenarios.

One way to circumvent the need for expert support is online knowl-
edge transfer, by which various agents learn concurrently and transfer
knowledge during training time. Feature representations (Zhu, Lin, Jain,
et al., 2020) can be adopted to reuse feature extraction methods even if
the reward function changes. Another option is to share parameters of
the same ANN for better generalization and robustness against pertur-
bations, while also leveraging an improved sample efficiency (Christianos
et al., 2021; Song & Chai, 2018; Terry et al., 2022). This can be com-
bined with attention mechanisms that enable a smarter feature selection
(D. Chen et al., 2020). Ensembles of students that learn collaboratively
and teach each other during the training process have also been proven to
effectively model training experience in the form of posterior distributions
(Y. Zhang et al., 2017). Furthermore, dual policy distillation has also been
studied to prioritize distilling disadvantageous states from the peer policy,
so that other aspects of the environment can be explored more efficiently
(Lai et al., 2020). However, these studies were carried out by taking into
account homogeneous students. Consequently, applying these advances to
heterogeneous agents remains uncharted to date.

3.1.1 Contribution Beyond the State of the Art
One of the most distinctive characteristics of the work presented in this
chapter with respect to the current literature is that we assume heteroge-
neous agents deployed in identical sparse reward scenarios with different
action domains, where the dynamics of the environment change according
to action effects that might not be available to all the agents. Concretely,
we rely on IM to deal with exploration issues when having multiple agents.
It differs from other studies because we focus on a concurrent paradigm
rather than a MARL problem (Böhmer et al., 2019; Iqbal & Sha, 2019;
Schafer, 2019). Regarding heterogeneity, herein it is used to refer to dis-
crepancy in the action space between agents. In this sense, the most related
works to handle such action heterogeneity are (Calvo & Dusparic, 2018)
and (Zolna et al., 2019). However, none use IM to deal with exploration
issues. The first, (Calvo & Dusparic, 2018), addresses the heterogeneity
dilemma by training all agents independently of each other, whereas in
the latter, (Zolna et al., 2019), the state space is not influenced by ac-
tion space differences, and the advantage of using some actions or others
hinges on the fact that, in nature, some actions available in one of the
agents help achieve the goal faster, but do not imprint changes in the en-
vironment (e.g., an agent which can move two times faster forward than
another agent).
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3.2 Problem Statement
The exploration-exploitation dilemma is not new in RL. Using IM as a
signal to encourage exploration unleashes new challenges:

• How to generate the intrinsic reward and,

• How to correctly balance between extrinsic and intrinsic rewards

As already seen in Section 2.3.1 and Section 3.1, there are many options to
generate such exploration bonuses, each with their advantages and draw-
backs. Moreover, establishing a proper balance between the intrinsic bonus
and the extrinsic rewards returned by the environment is not easy to ac-
complish, being a central matter of research (Badia, Piot, et al., 2020;
Badia, Sprechmann, et al., 2020). These problems are even more difficult
to be tackled when multiple agents are considered, where the exploration
of a given state can be subject to the behavior of other agents. Conse-
quently, an important issue in these problems is how and when one agent’s
exploration information should be combined with that collected by other
agents working in the same environment.

The problem tackled in this chapter is neither single-agent nor multi-
agent, it is a concurrent paradigm: agents learn how to interact with the
environment simultaneously, and share knowledge in an online fashion.
More importantly, agents are heterogeneous because they have slightly
different action spaces that make them diverge in their optimal solution
space. Hence, how to share the knowledge is not straightforward, as this
exchange can lead to absolutely no advantages, or at worst, to negative
transfer. In summary, the problem can be formulated as follows:

How can information be shared between heterogeneous agents, avoiding
negative transfer and achieving a better convergence in comparison to the
case where no knowledge is shared?

In order to illustrate the issues arising from the problem under study,
we pause at an example defined over a modified version of the ViZDooM’s
My Way Home scenario, which is depicted in Figure 3.1.a. In this scenario,
a door is placed at a point in which, if open, the entrance to a corridor
is enabled, making the path to the target point 20% shorter than going
through elsewhere in the environment. We assume two different agents:

• Skilled : can open the door and access the corridor thanks to a certain
action it can perform exclusively.

• Non-skilled : lacks the capacity to open the door and hence, it can
not access and traverse the corridor.

Due to the different action spaces, their optimal path solutions diverge.
However, a unique reward is only provided when reaching the final goal.
Therefore, there is no extrinsic signal that provides the agents with infor-
mation to ascertain whether they should share information, when to do
it and how. By training those agents independently, they can achieve the
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Figure 3.1: (a) Modified ViZDooM’s My Way Home scenario where the goal
is to arrive at a target point (highlighted in green) departing from an start point
(marked in orange). At the bottom row, the state-value estimates for a skilled
agent (c) that can open a door that gives way to a corridor and (d) for a non-
skilled agent that is not capable of opening it are shown. The value estimate
differences between such agents are plotted in a divergence map (b). Locations
where the skilled agent has better value estimates are highlighted in red, whereas
in the spots colored in blue the non-skilled agent has better estimates. In those
locations where the policy distributions are supposed to be similar, the value
estimates are almost equal (white), while differences increase when their optimal

paths diverge.

goal through their respective optimal paths (see the heatmaps drawn in
Figure 3.1.c and Figure 3.1.d from the respective trained agents). Nev-
ertheless, when learning in a collaborative way, and as a consequence of
those different optima and state spaces, the agent reaching the target will
encourage the other to follow its steps. Both agents can achieve the goal
by chance, although the non-skilled agent may get easier due its reduced
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search space. This implies a two-sided competition where the non-skilled
agent drives the skilled one into a longer path solution, whereas the skilled-
agent pushes the former to take the shortcut that is not reproducible for
it. Consequently, negative transfer problems may well arise. This situa-
tion can be observed from their value estimate difference which, as shown
in Figure 3.1.b, differ remarkably from each other at critical points (near
the corridor). These issues can be understood even clearer if the problem
is represented as a MDP tree (Figure 3.2), in which the agents will have
a share-view of the environment as long as they can reproduce the same
trajectories. Nonetheless, some states will only be visited by one agent due
to special capacities of its action space, generating an independent view of
the problem for that particular agent.

S0
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a0
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a0
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a2

a0
a1 a1

S3

S4 ≡ S7 (terminal state)

: Independent view (skilled agent)
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{a0, a1, a2} ∈ Askilled

{a0, a1} ∈ Anon−skilled

Figure 3.2: Example of a MDP as a tree where states are represented with
nodes and the edges denote actions. Some states (e.g., 𝑆3) can be reached by
being in a specific state and executing a certain action (e.g., 𝑆1

𝑎2−−→ 𝑆3). This
results in parts accessible and shared between agents (shared-view) and others

that are restricted to the capacities of the agents (independent-view).

These problems are not limited to the example shown in the above plot,
but also to any scenario with heterogeneous agents. The contribution of
this chapter is to expose this problem, and to sketch effective collaborative
learning strategies under such circumstances.

3.3 Proposed Collaborative Framework
The design of the framework proposed in this chapter roots in the fact
that there can be observations where the policy distributions of heteroge-
neous agents can be very similar to each other. In some cases, both agents
can push each other towards the same direction, i.e., 𝜋𝑠𝑘𝑖𝑙𝑙𝑒𝑑 ≡ 𝜋𝑛𝑜𝑛𝑠𝑘𝑖𝑙𝑙𝑒𝑑.
However, in other cases those distributions can differ from each other be-
cause each agent pushes in a different direction based on their optimal
solution learned at that time. In this situation, we aim to strengthen the
shared knowledge between both of them, yet at the same time, to avoid
negative transfer in places where the optimal solutions of each agents are
in conflict. Consequently, the goal of the framework is to learn a shared-
knowledge view while respecting those subspaces in the environment where
the interest of the agents are not the same.
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As already explained in previous sections, in problems characterized
by sparse rewards the main issue to deal with is an efficient exploration of
the environment. The application of IM and on-policy techniques does not
permit to interfere in the action-sampling process directly, as the training
experiences have to be representative of the current policy, i.e., 𝑎 ∼ 𝜋(𝑠).
Hence, the use of past experiences or even samples collected by other
policies is not tractable3. In this case, the policy is optimized as per
Expression 2.14 where, aside from the inherent mechanism of the algorithm
itself, the advantage estimator 𝐴𝑡 is the main factor that eases and pushes
the learning process4. The latter advantage estimator can be estimated
in different ways, but almost all of them are correlated to the reward 𝑟𝑡+1
and the value function 𝑉 (𝑠𝑡 ) through the TD-error:

𝛿 = 𝑟𝑡+1 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 ) (3.1)

whose value changes iteratively as soon as 𝑉 (𝑠𝑡 ) gets updated. This process
can be said to converge when 𝑉 (𝑠𝑡 ) = 𝑉∗ (𝑠𝑡 ).

The framework described in what follows aims at accelerating the learn-
ing process focusing on the exploration part, more concretely in how to
generate better advantages. For that purpose, we propose a framework
driven by two different design objectives (DO):

• DO1: How to generate more accurate and faster state value estimates
𝑉 (𝑠).

• DO2: How to modify the intrinsic reward generation process to
be tackled more efficiently when dealing with heterogeneous action
spaces.

Next, multiple methods are proposed to address these objectives within
a collaborative framework (see Figure 3.3), so that the ongoing ablation
studies in Section 3.5 can inform about the best options among the postu-
lated methods. For simplicity, hereinafter we consider only 2 heterogeneous
agents, skilled and non-skilled, although the approaches could be extended
to work with more agents.

3.3.1 Centralized Learning with Decentralized Execu-
tion

Our framework adopts an actor-critic policy gradient architecture with two
separated networks:

• An actor whose policy (one for each agent) is fed just with its local
observations.

• A critic with two output heads related to the extrinsic (𝑉𝑒) and
intrinsic (𝑉 𝑖) signals that is trained with the observations gathered
by all the agents.

3Not tractable at least theoretically without any type of correction, such as impor-
tance sampling (Christianos et al., 2020; Schäfer et al., 2022).

4We assume 𝜓 = 𝐴𝑡 .
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Figure 3.3: Flowchart of the collaborative framework, where we highlight in
blue those modules that are usually performed independently for each agent, and

that can be shared in our framework.

The core idea is to have a unique and centralized critic, so that its
capabilities can be augmented with additional information corresponding
to the different agents solely during the training phase. This strategy is
also known in the literature as the centralized learning with decentralized
execution (CLDE) paradigm (Foerster et al., 2017; Lowe et al., 2017).
With this design, we aim to expedite the critic’s learning process so as to
generate more accurate and faster value estimates, contributing to DO1.
Moreover, it gives rise to a scalable architecture which can easily take into
account more agents with little additional complexity.

3.3.1.1 Decentralized Actors

In spite of using centralized learning strategy, the behavior of each agent
can be very similar yet not equal. As a consequence, each agent is param-
eterized by an independent actor5.

As above explained, the benefit of CLDE relies on learning faster and
more accurate 𝑉 (𝑠), which subsequently has a positive effect on 𝐴(𝑠, 𝑎),
ultimately leading to an improved overall learning. However, the speed at
which this is achieved depends on multiple factors. All this coupled with
the fact of transient intrinsic rewards (𝑟 𝑖𝑡) and sparse extrinsic feedback
(𝑟𝑒𝑡 ), increased the importance of introducing Monte Carlo updates to latch
on to these signals rapidly (Bellemare et al., 2016; Ostrovski et al., 2017).
In our framework, this is instead circumvented by using GAE (Schulman
et al., 2015) and calculating two independent advantages for the extrinsic
and intrinsic streams, 𝐴𝑒 (𝑠, 𝑎) and 𝐴𝑖 (𝑠, 𝑎), which are then blended as

5For practical purposes, their learning works in the same way as when being done
independently. That is, the actor is trained only with data captured by itself as it would
do in a single agent scheme.
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follows:
𝐴(𝑠, 𝑎) = 𝐴𝑒 (𝑠, 𝑎) + 𝛽𝐴𝑖 (𝑠, 𝑎) (3.2)

This implies having extrinsic (𝑉𝑒) and intrinsic (𝑉 𝑖) streams with their
respective independent returns, which allows for a higher flexibility to com-
bine episodic and non-episodic returns. It also enables the use of different
discount factors (i.e., 𝛾𝑒 and 𝛾𝑖). Moreover, it is intuitively more suit-
able to separate both streams that are indeed stationary (𝑉𝑒) and non-
stationary (𝑉 𝑖) in nature. The extrinsic reward in a singleton environ-
ment has an associated 𝑉𝑒∗ because the extrinsic reward function does not
change throughout the learning process6. On the contrary, 𝑉 𝑖∗ will vary
as the training evolves because the generated intrinsic rewards depend on
a novelty measure that changes right after every interaction. Note that
combining in this way the extrinsic and intrinsic streams is just another
strategy (Burda, Edwards, Storkey, et al., 2018) that substitutes the naive
idea of mixing both objectives in a weighted reward as in Equation (2.25).

3.3.1.2 Centralized Critic Module

When conceived within collaborative learning, a problem that requires
attention is that the value function estimates, 𝑉 (𝑠), can be different among
agents for the same state, although it might be equal or very similar at
many other states of the same scenario (recall Figure 3.1). Based on this
intuition, the value of a state should depend not only on the state itself, but
also on the possible actions of the agents. Henceforth, we propose to use
a centralized action-value function, 𝑄(𝑠, 𝑎) which, as shown in Figure 3.4,
is fed with the observations of all agents, producing the value estimate of
selecting an action 𝑎𝑡 when being at state 𝑠𝑡 . This is, instead of producing
an estimation for the state value 𝑉 (𝑠), the centralized module elicits all
𝑄(𝑠, 𝑎) possible values for 𝑎 ∈ A𝑠𝑘𝑖𝑙𝑙𝑒𝑑 ∪ A𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑, regardless of the
agent collecting the observation.

Centralized Critic Module
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Figure 3.4: Centralized critic module based on 𝑄(𝑠, 𝑎) (instead of 𝑉 (𝑠)) for 2
agents with different action spaces (A𝑠𝑘𝑖𝑙𝑙𝑒𝑑 , A𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑). In the image, how

𝑉𝑡 (𝑠) is calculated for each case is shown.

This architectural change of the critic module implies several consid-
erations. To begin with, 𝐴(𝑠, 𝑎), which is one of the key components for

6We are not considering environment with stochastic transitions.
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the calculation of the the actor’s loss, commonly requires a value estimate
–𝑉 (𝑠) (not 𝑄(𝑠, 𝑎))– to reduce its variance (Schulman et al., 2015). There-
fore, we calculate different state values 𝑉𝑥 (𝑠) for each agent by taking into
account their action spaces, as follows:

𝑉𝑥 (𝑠) =
∑︁
𝑎∈A𝑥

𝜋𝑥 (𝑎 |𝑠) · 𝑄(𝑠, 𝑎) (3.3)

where 𝑥 ∈ {𝑠𝑘𝑖𝑙𝑙𝑒𝑑, 𝑛𝑜𝑛 − 𝑠𝑘𝑖𝑙𝑙𝑒𝑑} and 𝜋𝑥 (𝑎 |𝑠) denotes the probability of
each agent 𝑥 performing action 𝑎 ∈ A𝑥 in state 𝑠. Thus, an agent not
capable of executing a given action will have a zero probability for that
given option. This can be also regarded as a way of masking possible
outcomes.

Additionally, the critic loss is slightly modified to accommodate the
multiple action-wise outputs as opposed to the unique output neuron usu-
ally set when critic estimates directly the value of the state itself. Namely:

L𝑐𝑟𝑖𝑡𝑖𝑐 =
1

𝑇

𝑇∑︁
𝑡=0

(
𝑄(𝑠𝑡 , 𝑎𝑡 ) −𝑄𝑡

)2
, (3.4)

where 𝑎𝑡 is the action taken by the agent at time step 𝑡, and 𝑄𝑡 is a dis-
counted return estimate of the 𝑇-length rollout over which the optimization
step is performed.

Last but not least, the critic is updated with the tuples gathered by
each agent individually, and executes an optimization step per collected
batch of experiences:

B𝑠𝑘𝑖𝑙𝑙𝑒𝑑 ={(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ), (𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1) . . . , (𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1)} ∼ 𝜋𝑠𝑘𝑖𝑙𝑙𝑒𝑑
B𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑 ={(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ), (𝑠𝑡+1, 𝑎𝑡+1, 𝑟𝑡+1) . . . , (𝑠𝑇-1, 𝑎𝑇-1, 𝑟𝑇-1)} ∼ 𝜋𝑛𝑜𝑛-𝑠𝑘𝑖𝑙𝑙𝑒𝑑

As a consequence, the critic will take as many optimization steps in every
training step as the number of agents at hand (in the considered case, 2
updates with B𝑠𝑘𝑖𝑙𝑙𝑒𝑑 and B𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑).

Universal Value Function Approximator

An alternative to the previous proposed centralized critic is to adopt a
so-called Universal Value Function Approximator (UVFA) design (Schaul
et al., 2015), where the ANN will be conditioned to additional parameters
(i.e., to a determined goal 𝑉 (𝑠, 𝑔)). Actually, in the proposed framework
the value estimation is subject to the agent’s capabilities:

𝑉 (𝑠) −→ 𝑉 (𝑠, 𝑎𝑐𝑡𝑜𝑟𝑖𝑑) (3.5)

Indeed, with the previously mentioned action-value architecture modifi-
cation, it will be 𝑄(𝑠, 𝑎, 𝑎𝑐𝑡𝑜𝑟𝑖𝑑) as shown in Figure 3.5. Analogously to
the procedure followed for the other critic architecture, advantages will be
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calculated with value estimates that will be obtained as in Expression 3.3.
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Figure 3.5: UVFA based centralized critic, where the convolutional (and the
following FC) layers extract common features to both type of agents. The rest

of the network is parameterized subject to the skills of each agent.

The design is inspired by the idea that the feature extraction of an
observation can be linked to an agent but not to the additional informa-
tion that can be inferred from a sequence. In this latter case, it could
be inconsistent due to the agent’s different capabilities to generate their
own divergent trajectories that might well not be reproducible by other
agents. In order to address this inconsistency during the training stage,
and to aid the network in gaining insights about what knowledge must be
shared and what must be preserved for individual use, information about
the skills is provided to the network as an input (𝑎𝑐𝑡𝑜𝑟𝑖𝑑)7. In addition,
the action in every time step 𝑎𝑡 is also fed as an input, which can be
useful to learn better temporal representations within the recurrent mod-
ule. Other parameters such as the trade-off between intrinsic-extrinsic
streams (i.e., 𝛽 coefficient) or the collected rewards (i.e., 𝑟𝑒𝑡 and 𝑟 𝑖𝑡) could
also be advantageous (Badia, Sprechmann, et al., 2020). Nevertheless,
the study is limited to the aforementioned parameters in order to avoid
over-parameterized critic architectures.

Overall, with the design of a centralized critic we aim to have a more
robust and stable learning, where the shared-view value estimates of the
environment should be easier to obtain, while not hindering the calculation
and learning of the independent-view value estimates when the optimal
solutions of the agents diverge. This closely aligns with the design objective
DO1 established previously.

3.3.2 Centralized Intrinsic Curiosity Module
The most straightforward strategy to make the exploration of one agent
depend on the exploration performed by others is to combine them by
using a centralized module, which is directly related to the intrinsic reward
generation (DO2). This idea relies on the principle of divide and conquer,
where an observation should be discouraged to be visited if the other agent

7The information is encoded as a one-hot vector distinguishing between agents with

different action domains, i.e., 𝑎𝑐𝑡𝑜𝑟𝑖𝑑
𝑠𝑘𝑖𝑙𝑙𝑒𝑑−−−−−−→ [1, 0] or 𝑎𝑐𝑡𝑜𝑟𝑖𝑑

𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑−−−−−−−−−−→ [0, 1].
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Start Door
Goal

(a) (b)

(c) (d) (e)

Figure 3.6: Evolution of the intrinsic rewards in a simplistic RL environment
after 10 executions according to the number of visits (i.e. 𝑟𝑖 = 1/

√︁
𝑁 (𝑠)). The

agent is initialized at the bottom-left corner and its goal is to arrive to the
destination located at the bottom right. Going straight, in the middle is a door
that obstructs the path, which can be only be opened by a skilled agent. (a)
Intrinsic rewards heatmap of a skilled agent able to traverse the corridor through
the door and go straight. (b) Intrinsic reward heatmap of a non-skilled agent not
capable of opening the door, hence arriving at the target through the larger path.
(c) Resulting intrinsic reward heatmap when combining both type of agents’
visits for a total of 10 executions per agent (20 in total). (d) Relative difference
of rewards using the centralized novelty (as in subfigure (c)) with respect to using
two skilled agents (subfigure a) for the same amount of interactions. (e) Relative
difference of rewards using the centralized novelty (subfigure (c)) with respect to
using two non-skilled agents (subfigure b) for the same amount of interactions.
In (a,b,c) darker colors mean higher reward; brighter the opposite. In (d,e)
red means that the centralization with heterogeneous agents encourages visiting
those locations more often with respect to using homogeneous agents, yielding
higher intrinsic rewards in that location by virtue of having heterogeneous actions

(blue the opposite).

has already been there, promoting the exploration of uncharted areas.
The problem of this assumption is that if agents have different knowledge
and/or capabilities, one agent may get discouraged to explore areas that
are indeed crucial for finding its own optimal solution and enforced to visit
unpromising areas instead.

In practice, by using a centralized curiosity approach with multiple
heterogeneous agents, the experienced novelty is affected. Let’s see the
expected modifications following the example illustrated in Figure 3.6.

Firstly, the intrinsic bonuses for those states that can be reached by
both agents will be smaller(Figure 3.6.c, yellow areas). By the same token,
intrinsic returns should be higher along those trajectories in which the
agent visits more novel states. This behavior is exacerbated in those states
that are only accessible by one of the agents (i.e., skilled agent, Figure
3.6.a, corridor colored in purple), as they can only be visited by them
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and its novelty decreases at a slower pace when compared to the rest of
possible states (Figure 3.6.d, red). Therefore, the skilled agent will end up
becoming more encouraged to visit restricted areas – namely, states that
are only possible to be accessed by the use of the action that make them to
be different – when compared to the behavior in the decentralized intrinsic
module approach.

In regard to the non-skilled agent, using a centralized curiosity with
an additional more skilled agent has little impact in its exploration pro-
cedure, as the novelty distribution will undergo no changes for it. Indeed,
the parts that are critical for the skilled agent –the door and the corridor–
do not influence the exploration of the non-skilled (Figure 3.6.e, corridor).
The remaining state space will be similarly visited for both agents. How-
ever, if we assume that the skilled agent will be encouraged to visit more
times those experiences leading the corridor, inversely the non-skilled agent
will be discouraged to go over those same locations. Eventually, the non-
skilled agent will be pushed towards exploring other alternatives. This can
be observed in Figure 3.6.e, in which the non-skilled agent will be more
encouraged to explore through the larger path (as told by the higher re-
wards colored in red) when combining its rewards with a skilled-agent with
respect to doing it independently.

In conclusion, adopting a centralized curiosity module can be beneficial
when heterogeneous agents are involved. On the one hand, actions yielding
observations that can only be achieved by the one of the agents (i.e., open
the door and access the corridor) will have larger intrinsic rewards, and
hence, higher returns, fostering the exploration of that state space. At
the same time, it discourages the agent who is not capable of executing
such actions of exploring the state space that guides such non-reproducible
situations (i.e., corridor), being advantageous to focus on exploring other
promising zones.

3.3.2.1 Action-based Curiosity Module

Manifold means of calculating the novelty of a given state have been pro-
posed in the literature. Mechanisms to deal with novelty are based on
using either 𝑠𝑡 (Bellemare et al., 2016), 𝑠𝑡+1 (Burda, Edwards, Storkey,
et al., 2018) or even the information related to the transition between suc-
cessive states {𝑠𝑡 , 𝑠𝑡+1} (Pathak et al., 2017)8. In this vein, when having
multiple agents using this module in a centralized manner, they update
it more frequently with the experiences sampled by their own indepen-
dent action distributions, leading to different visitation strategies as those
depicted in Figure 3.6. Notice that the agent will be discouraged to
visit states already inspected regardless the actions taken before.
This implies that the agent will have the same curiosity to visit a state
and execute an action frequently selected (at that state) as selecting an-
other action that has been barely chosen. Previous works have reported

8The intrinsic reward is generated just with 𝑠𝑡+1, but the update of the whole ICM
framework requires 𝑎𝑡 , 𝑠𝑡 and 𝑠𝑡+1.
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that no difference arises from considering the action (Tang et al., 2017),
speculating that the policy itself was sufficiently random (i.e., had suffi-
cient entropy) to entrust the exploration at each state. This hypothesis,
however, was validated over RL environments with single agents whose
individual exploration does not interfere with the interaction and learning
of other agents. By contrast, when heterogeneous agents are involved, the
action selection and its consequent exploration becomes more sensitive.

Therefore, we modify those intrinsic related approaches in order to ac-
count for the action as well, so that the generated intrinsic rewards become
more informative for the critic (DO2). In fact, a strategy that takes into
account both the action and the state when computing the novelty will
encourage a more homogeneous action selection and a deeper exploration
(Raileanu & Rocktäschel, 2020). This difference may not hinder conver-
gence in single-agent RL problems, but can be problematic when having
agents with different action spaces. In this latter case, actions that can
only be executed by just one agent will become more affected, as shown
previously in Figure 3.6.

3.3.2.2 Tree Filtering

Previous exploration strategies aim at sharing as much information as
possible between the agents. Nevertheless, there might be states embedded
in a trajectory that are not accessible by some agents where specific chunks
of the trajectory might, in turn, be reproducible.

On the one hand, a trajectory can be thought to be shareable for
both agents if the actions taken by the agent responsible for gathering the
experiences belong to the mutual action space9.

On the other hand, let us consider a trajectory gathered by the skilled
agent that is not fully reproducible by the non-skilled agent. Can that
information be used in some way by the non-skilled agent (rather than
being discarded)? This is what tree-filtering is all about. In order to
explain it and for the sake of clarity, consider the trajectory shown in
Figure 3.7, where we can distinguish two main chunks of experiences:

• {(𝑠49, 𝑎2), (𝑠50, 𝑎3), . . .}:

From 𝑠49 onward, the whole trajectory is assumed to be reproducible
by the non-skilled agent too. In spite of the non-skilled not being re-
sponsible of collecting such experiences, the curiosity of both agents
at them is updated (i.e., decreased). As a consequence, future re-
turns, and subsequently, their critic estimates, will reflect it10.

9This also applies when selecting an action out of that mutual action space which
has no effect on the environment, or which is interchangeable by one of the actions of
the mutual action space.

10If the non-skilled agent is not capable of reproducing some of those states, the
novelty update, from the perspective of that agent, will be insignificant, as it would
never be able to explore that situation; on the contrary, it would assume that an agent
with at least the same capabilities would have previously explored them (pretending
that the non-skilled agent itself gathered them).
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• {. . . (𝑠45, 𝑎1), (𝑠46, 𝑎1), (𝑠47, 𝑎2), (𝑠48, 𝑎4)}:

At state 𝑠48, the skilled agent executed an action that does not belong
to the mutual action space, 𝑎4, which is not reproducible by the other
agent.

Should we then decrease the novelty of the non-skilled agent for all
those {𝑠, 𝑎} tuples?

If so, that novelty reduction will be noticed when the non-skilled
agent collects a trajectory containing any of those experiences and
updates the critic. Let us examine the consequences:

– Regarding (𝑠48, 𝑎4), no impact will be caused, since this tuple is
indeed impossible to be experienced in any trajectory performed
by the non-skilled agent.

– Nonetheless, for the rest of feasible tuples:

{. . . (𝑠45, 𝑎1), (𝑠46, 𝑎1), (𝑠47, 𝑎2)},

the intrinsic reward signal will be lowered, discouraging the non-
skilled agent from developing its own exploration strategy on
account of an external update of the skilled-agent not playing
the role of an equally skilled agent.

In order to encourage the non-skilled agent to create its own personal
experience, the novelty update of the tuples from 𝑠48 back to the
initial state are not performed on the non-skilled agent, allowing it
to keep on working on its independent individual view.

As a result of this filtering process, we propose to consider novelty
along sequences rather than novelty as attractiveness on isolated step-on
states11. This is, we aim to minimize the error between the globally gener-
ated novelty estimation of paths taking into account the intrinsic rewards
generated at each experience and also their reproducibility, thus polishing
the intrinsic reward recollection by allowing room for independent views
on the environment (DO2). Ideally, the novelty through a path would be
handled by a intrinsic curiosity module that takes into account sequences
rather than single experiences. However, as we will further elaborate in
Section 3.7, the design of such a novelty reward function is not trivial at
all.

3.3.3 Summary of the Proposed Modules
To sum up, the proposed collaborative framework is composed of a cen-
tralized critic and modified intelligent exploration strategies, where:

• The use of a centralized critic enhances the learning process by ensur-
ing more diverse experiences. At the same time, a robust knowledge

11In practice, the novelty of a sequence is calculated as the discounted intrinsic return
for each the experiences belonging to that trajectory, which is a sum of independent
intrinsic bonus as in Expression (2.3).
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Figure 3.7: Tree-filtering process exampled with a trajectory collected by the
skilled-agent (the nodes represent the states collected at time step t and the
edges all the possible actions). From a state onward, the non-skilled is not able
to reproduce the experience {(𝑠48, 𝑎4)}. Because of that, all the experienced
state-actions up to that point (grey shaded tree) are not taken into account for

updating the non-skilled agent’s curiosity.

view is constructed, capable of distinguishing between different types
of agents and their respective action-solution domains. That is, it
helps generate better and faster value estimates (DO1).

• The use of a centralized exploration strategy helps generate more
suitable intrinsic rewards, taking into account the diversity between
agents (DO2). When dealing with heterogeneous agents, the con-
sideration of the action should be taken into account to generate
the rewards so as to harness interesting albeit diverging behaviors
throughout the experience of the agents with the environment.

We have defined multiple centralized critic and exploration strategies
that can be combined in different ways to set the collaborative framework.
Next, in Section 3.4 we specify two particular frameworks and analyze
their results over various experimental setups.

3.4 Experimental Setup
In order to analyze the benefits of the previously introduced collaborative
framework, we resort to the so-called ViZDooM’s My Way Home environ-
ment (Kempka et al., 2016), recently adopted as the environment of choice
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for studies related to sparse rewards problems and curiosity mechanisms
(Iqbal & Sha, 2019; Pathak et al., 2017; Savinov et al., 2019). The goal
is to learn how to reach a target position taking into account that the
agent may spawn at different starting points. The modified versions of the
original environment introduce corridors that modify the shortest path to
the target goal yet require an action only available for one of the agents.
Hence, we can gauge the impact of having heterogeneous agents with differ-
ent action spaces and optimal solutions. We consider the following actions
transversal to both agents:

• 𝑎0 −→ move forward

• 𝑎1 −→ turn right

• 𝑎2 −→ turn left

• 𝑎3 −→ no-action

These actions constitute the action space of the non-skilled agent, i.e.,
|A𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑 | = 4. Note that none of these actions prepare the agent to go
through the corridor.

Next, we present two study cases in which the environment modifica-
tions have no impact at all in the case of the non-skilled agent, but they
do make a difference for the skilled one.

3.4.1 Case Study 1
Environment and A Modifications

In Figure 3.8 we present two setups (named as Setup 1 and Setup 2) where
the corridor is displayed at different locations. The corridor exhibits a
height constraint that limits the access only while the agent is crouched. To
pass through the corridor, the skilled agent is endowed with the capability
to perform an additional action:

• 𝑎4 −→ crouch and move forward,

which as the name suggests, allows the agent to crouch while moving
straight. Therefore, its action space expands to A𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = A𝑛𝑜𝑛−𝑠𝑘𝑖𝑙𝑙𝑒𝑑 ∪
{𝑎4}, i.e., |A𝑠𝑘𝑖𝑙𝑙𝑒𝑑 | = 5. This ability has no advantage in any other parts
of the environment, since the rest of rooms and corridors are high enough
to be traversed without crouching. However, it can be still performed to
move forward at the cost of modifying the observation of the agent when
compared to moving forward without crouching (𝑎0).

Following the methodological procedure in (Pathak et al., 2017), we
consider three different settings based on the location where the agents
are initially deployed:

• Dense setting: agents are randomly located in any of the 16 available
rooms/corridors.

• Sparse setting: agents always spawn at room 10.
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(a) (b)

(c) (d)

Figure 3.8: Modifications of the ViZDooM’s My Way Home environment: a)
Setup 1, in which a height-constrained corridor connects rooms 17 and 26; c)
Setup 2, with a long similar corridor connects room 13 with the target goal.
(b) and (d) views in Setup’s 1 room 17 and Setup’s 2 room 13, respectively. In
both setups, the agent can be initially spawned in any room (dense setting), at
room 10 (sparse setting, red square) or at room 15 (very sparse setting, brown

square), being the goal to arrive to the target (green square).

• Very sparse setting: agents are always deployed at room 15.

None of these settings renders any type of feedback signal in any step
but the final one. However, the probability of arriving at the final des-
tination following a random policy varies depending on the proximity of
the position where the agent is deployed. Accordingly, the dense setting
can be claimed to be the easiest one to be solved, with approximately
23% of chances that a random agent reaches the destination. By contrast,
the sparse and very sparse settings are more complex, with the aforemen-
tioned chances of success lowered down to 6% and 5%, respectively. These
random-policy success rates vary depending on the specific setup and skills
of the agent. They can be used as baselines for each simulated case.



3.4. Experimental Setup 57

Methodological Details

We adopt a simple centralized critic (Figure 3.4) in which RND is used to
generate the intrinsic rewards (Figure 3.9). The action-value 𝑄(𝑠, 𝑎) esti-
mator updates its parameters in a sequential manner; this is, it executes
an optimization step per agent12. On the contrary, the curiosity module,
when being used jointly by both agents, is updated with a single opti-
mization step by concatenating the observations collected by both agents.
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Figure 3.9: Random Network Distillation (RND) setup to generate intrinsic
rewards.

In this first case study no multiple parallel environments are used, even
though it might introduce some instability in the calculus of the gradients.
The main reason is that when using multiple parallel environments, the
agent has a higher probability of reaching the goal by mere chance, which
is the only time the agent receives an extrinsic reward. Thus, the anal-
ysis of the benefits of a collaborative learning strategy might be severely
influenced by rewards issued by sampling rather than by the developed
strategy itself.

3.4.2 Case Study 2
Environment and A Modifications

Akin to the Setup 1 shown in Figure 3.8, we set an alternative layout,
namely Setup 3, in which the corridor can still be accessed from the same
rooms. However, its access is constrained by an actionable door as shown
in Figure 3.10. Therefore, the skilled agent is granted an additional action
to be able to open this door:

12Every time an agent finishes the collection of a rollout, a backpropation update
is carried out with the gradients corresponding to the experiences within the collected
trajectory.
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• 𝑎4 −→ open

This ability is useless (i.e., open ≡ no-action) in any place except in front
of the door. Note that in this setup the agent does not posses crouch
and move forward action.
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Figure 3.10: Modification of the ViZDooM’s My Way Home environment:
a) corresponds to Setup 3, in which an actionable door hinders a corridor that
connects rooms 17 and 26; (b) shows the modified view at room 17. In this setup
only the very sparse spawn location (orange) is considered, which is farther than
the one shown in Figure 3.8. We also note that now the view at room 17 differs

from the one exemplified in Figure 3.8(b).

In Setup 3 we have increased the complexity of the most difficult known
setting (very sparse), where the estimated number of steps to achieve the
goal is around 350 by following an optimal policy (Pathak et al., 2017). In
our modified environment, this number increases to around 430 steps for
the extended very sparse setting. Moreover, the probability of a random
agent to arrive at the goal is 4.6% for the skilled agent. Within this
percentage of successful episodes, 60% of the time the agent manages to
achieve the target through the corridor, this is, a random skilled agent is
able to reach the goal through the corridor with a 2.8% of chance, and
by the other alternative path with a 1.8%. In the case of not having
the ability to open the door (non-skilled agent), its probability decreases
slightly down to 3.6%.

Methodological Details

As opposed to the other case study, here an UVFA centralized critic de-
sign is adopted (Figure 3.5). Aside from the architecture itself, the UVFA
critic also incorporates a recurrent neural network in order to assess its
actual impact over the considered POMDP problem. Besides, a count-
based strategy as in (Iqbal & Sha, 2019) is considered, so that the ex-
ploration bonus is made inversely proportional to the number of counts
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for every state, i.e., 1/
√︁
𝑁 (𝑠) (Bellemare et al., 2016). To realize this, we

discretize the environment space in square bins, giving rise to a total of
30 and 26 bins along the horizontal and vertical axis, respectively. When
using action-based approaches, the count is made subject also to the ac-
tion (namely, 1/

√︁
𝑁 (𝑠, 𝑎)), hence increasing the total number of bins. It is

important to note that these bins are only used to compute the intrinsic
reward, but are not fed to the policy nor to the critic as an additional
source of information.

Due to the additional complexity induced by Setup 3, in this case
study we use parallel agents to augment the probability of sampling valid
approaches. Nevertheless, we minimize the number of parallel agents in
use to just 3, which we found out experimentally to be the minimum to
yield consistently successful results (i.e., low variance in the task success
rate).

3.4.3 Training Details
Data Collection and Processing

When turning the focus on the specifics of the training process, agents are
trained using images as inputs. In the same way as other works adopting
ViZDooM as benchmark (Pathak et al., 2017), we use normalized gray
scale images resized to 42 × 42 pixels. Moreover, in order to deal with
temporal dependencies, the observation representation is constructed by
concatenating the current frame with the three previous frames (Mnih et
al., 2015). In addition, we use an action repeat factor of 4 (i.e., actions are
repeated 4 times between state transitions). Finally, we have empirically
chosen a rollout size equal to 50 steps, aiming to attain a good balance
between bias and variance. All the experiments are run for 6000 episodes,
each with a maximum of either 2100 or 2600 steps (subject to the setup).

Algorithmic Details

When it comes to the PPO implementation, we employ GAE with _ = 0.95
to calculate the advantages of both extrinsic and intrinsic streams, which
are balanced with a relation of 3 to 1, i.e., 𝛽 = 1/3 in Expression (3.2).
Moreover, we use a discount factor 𝛾 equal to 0.99 for both discounted
returns, an epsilon value of 0.2 for clipping, an entropy coefficient of 0.01,
a learning rate of 10−4, and 4 epochs per training step.

Neural Network Architectures

Finally, network architectures of the actor and critic modules are summa-
rized in Table 3.1.

Intrinsic Rewards Processing

With regard to intrinsic reward generation, we normalize the rewards by
dividing them by a running estimate of the the standard deviations of the
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Table 3.1: Conv2D(A1,A2,B,C,D,E): Convolutional layer with A1 input chan-
nels and A2 output channels, B kernel size B, stride C, padding D and activation

function E (ELU: Exponential Linear Unit)

Network Architecture Training Parameters

Actor

Conv2D(4,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Dense(256,ELU)+
Dense(# actions, softmax)

Orthogonal initialization
Adam optimizer
PPO loss

Critic

Conv2D(4,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Conv2D(32,32,3,2,1,ELU)+
Dense(256,ELU)+LSTM(128)+
Dense(256,ELU)+. . .+
Dense(5) [extrinsic] &
Dense(5) [intrinsic]

Orthogonal initialization
Adam optimizer
MSE loss in both
critic heads

intrinsic returns in order to mitigate issues derive from the reward scale
(Burda, Edwards, Storkey, et al., 2018), i.e., :

𝑟 𝑖𝑡 =
𝑟 𝑖𝑡

𝜎(𝐺𝑖𝑡 (𝜏))
(3.6)

Moreover, a crucial matter when using ANN is normalizing the input to
prevent several problems. Therefore, it also happens with IM methods
that use ANN for the reward generation, but it becomes crucial when
using RND13. Hence, the input to the RND modules is standardized and
clipped within values between -5 and 5 as follows:

𝑜𝑐𝑙𝑖 𝑝𝑝𝑒𝑑 = max
[
−5,min

[ 𝑜 − `
𝜎

, 5
] ]

(3.7)

Recall that the latter is only applied when using RND, i.e., only at Setups
1 and 2. More information regarding how RND performs in ViZDooM and
why we decided not to use it at Setup 3 can be found at Appendix A).

3.4.4 Evaluation Metrics
In general, the main goal of knowledge reuse in RL is to accelerate the
learning process. In order to analyze the benefits of using knowledge
transfer, different metrics can be used (Taylor & Stone, 2009). However, a

13The target network has its parameters fixed (frozen) and cannot adjust its values
according to the train data. Consequently, the obtained embeddings might not convey
enough meaningful information and could result in high variance outcomes.
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framework could report similar performance metrics to other possible op-
tions, but could still remain of interest due to other factors related to the
training procedure, such as the number of required samples, the training
time for a given computational power, and model complexity/size, among
other factors. Consequently, discussions on the experimental results later
held in this chapter consider two performance scores:

• Average extrinsic result (also referred to as Success Rate, SR), which
is calculated as the average extrinsic score obtained through a win-
dow of the last 100 episodes.

• Number of steps to achieve the goal, measured from the starting point
of the scenario until the agent reaches the target.

The reason for considering these two scores is that, by only inspecting
the SR metric, the discussion only regards whether agents have reached
the goal, disregarding the required number of steps (which represent the
quality of the learned policy). Other works using this environment assume
that no rewards are given except when arriving to the goal, when they
actually give a small penalization referred to as living reward, equal to
−0.0001 for each step. This small modification yields an optimal average
extrinsic return of 0.97 approximately for 270 steps; this is, they have a
reward function that parameterizes the optimality of the results subject
to the number of steps. We instead fix a null living reward, and give a
reward equal to 1 when achieving the goal (independent of the number of
steps). In this way, we stand strict in regards to the sparse reward problem
formulation.

Moreover, the environment itself is slightly different depending on the
action space of each agent. Hence, in this case the skilled agent has differ-
ent possibilities to achieve the target, being optimal the one that involves
going through the corridor (labeled in what follows as _OPT). Therefore,
we trace not only whether every agent reaches the target, but also if they
navigate through their optimal paths.

Summary
On the one hand, Case Study 1 analyzes the impact of a standard cen-
tralized critic approach while using either an independent or a centralized
RND-based curiosity module. Setup 1 and Setup 2 establish a corridor
in different places (Figure 3.8) while allowing the agent to spawn at vari-
ous locations based on the selected setting. More importantly, the agents’
policies differ due to the presence of a crouch and move forward action
in the policy of the skilled agent.

On the other hand, Case Study 2 examines a more sophisticated cen-
tralized critic design (with an UVFA architecture and LSTM layers). In-
stead of using RND, visitation counts are used to compute the curiosity
and to assess the impact of making the latter independent, centralized and
subject to the action space. In addition, it adopts a more challenging setup



62 Chapter 3. Collaborative Training of Heterogeneous Agents

(Setup 3, Figure 3.10), where agents differ due to the existence of an open
action for the skilled agent to open a gate and access the corridor.

As a result of the above case studies, different algorithmic configura-
tions are considered (summarized in Table 3.2):

• Full Independent PPO (PPO): the baseline PPO algorithm.

• Independent Curiosity (IC_IC): the PPO algorithm with indepen-
dent curiosity (IC) and independent critics (IC).

– Independent Curiosity (IC_IC_3r): Uses 3 parallel environ-
ments/runners to collect experiences.

– Independent Curiosity (IC_IC_6r): Uses 6 parallel environ-
ments/runners to collect experiences.

• Independent Critic + Centralized Curiosity (IC_CC): both agents
share a unique/centralized curiosity module yet they have indepen-
dent critics.

• Centralized Critic + Independent Curiosity (CC_IC): both agents
share a unique/centralized critic, but they remain independent in
what refers to the generation of their intrinsic rewards.

• Centralized Critic + Centralized Curiosity (CC_CC ≡ CC_CC_sh): both
agents share all parameters of both the critic and the curiosity mod-
ules to generate the intrinsic rewards. By default, solely the state is
considered as input.

– Centralized Critic + Centralized-Action-based Curiosity
(CC_CC_sh_ action): In this case, the intrinsic bonus is made
dependent on the state and the action, instead of just uniquely
on the state.

– Centralized Critic + Centralized-Action Curiosity + Tree Fil-
tering (CC_CC_sh_action_filter): this scheme is equal to the
previous one, but during the generation of the rewards it prunes
those rollouts whose experiences are not reproducible by the
non-skilled agent (see Section 3.3.2.2)14.

3.5 Results and Analysis
Results produced after the experiments held over the aforementioned setup
are discussed in this section. For the sake of clarity in the discussion, results
are commented based on the following research questions (RQ):

• RQ1: Does a centralized critic provide any gain when compared to
completely independent agents?

14We assume an oracle that informs whether the action executed by the skilled-agent
is is reproducible by the non-skilled agent.



3.5. Results and Analysis 63

Table 3.2: Summary of algorithmic configurations of critic and curiosity mod-
ules. Besides the setups, the case studies also differ in the use of a (1) standard
or UVFA centralized critic and (2) a RND or visitation counts based curiosity
module as explained in Sections 3.4.1 and 3.4.2. *: sh and sh_action are used

to distinguish the input for the centralized curiosity module.

Critic Curiosity Module

Case
Study Configuration Independent Centralized Independent

(state)
Centralized

(state)
Centralized

(state-action)

1

PPO ✓
IC_IC ✓ ✓
IC_CC ✓ ✓
CC_CC ✓ ✓

2

IC_IC_3r ✓ ✓
IC_IC_6r ✓ ✓
CC_IC ✓ ✓

CC_CC_sh* ✓ ✓
CC_CC_sh_action* ✓ Naive

CC_CC_sh_action_filter ✓ Filter

• RQ2: Does a centralized curiosity yield better performance levels than
maintaining the curiosity locally at every agent?

• RQ3: Should we compute curiosity incentives based on the (state,action)
pair rather than only the state itself?

• RQ4: Should agents have their intrinsic rewards updated only by
experiences that are reproducible as per their action spaces?

We now analyze experimental results aiming to obtain informed re-
sponses to the above questions, using to this end the different configura-
tions of the proposed collaborative framework that are represented in Ta-
ble 3.2. Results are reported over 3 independent runs in order to account
for their statistical variability. Unless otherwise stated, curves shown in
the plots correspond to the average extrinsic return/success ratio (y-axis)
obtained after a given number of train episodes (x-axis).

RQ1: Does a centralized critic provide any gain when
compared to completely independent agents?

We begin our discussion by examining whether a centralized critic per-
forms better than completely independent agents in the RL scenario un-
der consideration. Responses to this question can be found in Figure 3.11,
Figure 3.12 and Figure 3.13, which evince that a centralized critic (CC_XC)
reaches better performance levels with respect to using independent critics
(IC_XC).

With a centralized critic, both agents manage to solve the task consis-
tently in all the considered setups and settings, while reaching the target
through their optimal path in most of the attempts (as shown in the previ-
ously referred Figures with _OPT). By contrast, agents featuring individual
critic modules (IC_XC) are more unstable and require a larger amount of
episodes than those considered during training.
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PPO IC IC IC CC CC CC

Non-skilled agent Skilled agent Skilled agent (_OPT)

Episodes

Figure 3.11: Average extrinsic return achieved in Setup 1 for different settings
(i.e., agent’s spawn initialization, each represented in a different row). The last
column represents the score obtained by the skilled agent when going through

its shortest path (i.e., corridor).

PPO IC IC IC CC CC CC

Non-skilled agent Skilled agent Skilled agent (_OPT)

Episodes

Figure 3.12: Same interpretation as in Figure 3.11, but for Setup 2.

Intuitively one can postulate that the advantage of using a central-
ized critic is that, for the same/unique ANN, more number of experiences
are collected (and used). Thus, as we compute the gradients with larger
amount of data (gathered by two agents instead of just one), benefits in
terms of variance are expected. If this is the case, we can just increase the
number of collected experiences by each worker by doubling the number of
runners, which ensures each agent to have the same amount of experiences
as they would have had when using a centralized critic. This hypothesis
can be answered from Figure 3.13, where we observe that IC_IC_6r is not
only unable to perform as CC_IC, but also performs worse than IC_IC_3r.
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Additionally to less variance, another key difference relies on the fact that
CC_IC is updated almost twice faster, as it executes an optimization step
per trajectories collected by each worker. On the contrary, in IC_IC_3r
and IC_IC_6r each worker has its own critic module, which is updated
once for the experiences collected by their respective actor. Nevertheless,
if the number of optimization steps was the key factor to perform bet-
ter, then with twice as many number of episodes, any individual approach
should achieve similar performance levels than those by a centralized critic.
However, this is not the case either, thereby arriving at the conclusion that
a centralized critic performs better than individual critic modules.

IC IC 3r IC IC 6r CC CC
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Figure 3.13: Average extrinsic return achieved in Setup 3 using independent
curiosity for encouraging the exploration when using independent critics (IC_CC)
and a single centralized critic for both agents (CC_CC). We show the curves when
using either 3 (upper row) or 6 (bottom row) parallel agent runners for the
independent critic case; whereas the centralized critic approach uses 3 parallel
agents. Dashed lines with markers are used to plot skilled agent’s _OPT curves.

RQ2: Does a centralized curiosity yield better perfor-
mance levels than maintaining the curiosity locally at
every agent?

Before delving into this second RQ, it is important to highlight that the
addition of a curiosity module is undeniably necessary with respect to not
using it, as PPO on its own is not able to outperform the behavior of a
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random agent (included as a dashed horizontal line in each plot of Figures
3.11 and 3.12).

By using independent critics, results obtained by using either an in-
dividual (IC_IC) or a centralized (IC_CC) curiosity module elicit a better
performance when using everything in an independent fashion. This state-
ment is supported by the differences observed in Figures 3.11 and 3.12 for
Setups 1 and 2, where IC_IC (green) exhibits higher success rates with
a better sample efficiency. Besides, these differences are more notorious
for the skilled agent, which undergoes more difficulties to go through the
corridor when sharing the curiosity module, CC_CC (red), as seen in the
_OPT curves.

On the other hand, when using a centralized critic, the adoption of
a centralized curiosity strategy (CC_CC_sh) is slightly better with respect
to the independent curiosity counterpart (CC_IC), which can be confirmed
by the results obtained in Figure 3.1415. By zooming into these results,
for the skilled agent the CC_CC_sh approach achieves a 90% of SR with
1309 episodes on average, whereas CC_IC requires 1522 (an improvement
of 14%). This can be also observed when the skilled agent achieves the
destination through the corridor over 80% of the total episodes. At this
point of the learning process, the fully centralized approach requires 6%
less episodes. In the case of a non-skilled agent, differences are visually
negligible, but they represent an improvement of 8%. Furthermore, CC_IC
finishes with a slightly better policy that requires less steps to achieve the
goal.

Interestingly, the results obtained in Setups 1 and 2 with independent
critics go against the intuition explained in Section 3.3.2 about centralizing
the curiosity module (IC_IC > IC_CC), although the outcomes in Setups
1, 2 and 3 when using a centralized critic enforces this idea (CC_CC >
IC_IC). We hypothesize that this occurs because the curiosity decreases
for both agents when being shared, yet that knowledge is not persisted
into their critic modules (when they have independent critics), estimating
wrongly the intrinsic value of the state 𝑉 𝑖 (𝑠𝑡 ). This is effectively avoided
when using a centralized critic. Therefore, results suggest that sharing
the curiosity without sharing the critic as well is not actually beneficial.
However, sharing both modules give rise to consistently better results.

RQ3: Should we compute curiosity incentives based on
the (state,action) pair rather than only the state itself?

Previously, we have concluded that sharing curiosity information between
agents yields advantages in terms of success rate and number of steps to
reach the target as long as the critic is also shared.

15Indeed, the need for having a large number of episodes to actually see that the
skilled agent is capable of traversing the corridor conceals any improvements that could
arise from the experiments.
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Figure 3.14: Average extrinsic return (top row) and number of steps (bottom
rom) achieved in Setup 3 using a centralized critic while using either an indepen-
dent curiosity(CC_IC) or a centralized approach (CC_CC_sh). Dashed lines with

markers are used to plot skilled agent’s _OPT curves.

Now we turn the focus on evaluating whether the intrinsic reward
should be made dependent on both the state and action rather than just
the state. In the past, the work in (Tang et al., 2017) showed no empirical
differences between both approaches. However, in the cases under study
they were not dealing with heterogeneous agents, where the novelty may
be influenced by the actions available at each agent. Thus, as foretold
in Section 3.3.2, our hypothesis is that by making the curiosity subject
to the {𝑠, 𝑎} tuple, CC_CC_sh_action, different exploration behaviors can
be induced into the agents, making it easier for the skilled agent to go
through the corridor (as a consequence of inducing a larger curiosity for
that special action).

In light of the results depicted in Figure 3.15, it is fair to claim that
our hypothesis holds, where the skilled agent exhibits a convergence im-
provement of its success rate of almost 1000 episodes when considering
success as traversing the corridor to reach the target. This enhancement
can be attributed to a smoother exploration bonus, which is representative
on how the required steps decay more abruptly after finding out that path.
On the other side, once that the path is discovered, it gets stacked with a
policy that is slightly worse than the two approaches analyzed previously.
That is, it requires greater number of steps to achieve the goal. We hy-
pothesize that the reason for this effect is the same that leads the agent to
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find the path faster: the exploration component (intrinsic reward) is high
when compared to the extrinsic bonuses, which makes the agent undergo
noise in its learning process (higher entropy). The same behavior is also
distilled into the policy learned by the non-skilled agent, whose scores are
worse despite converging faster.
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Figure 3.15: Average extrinsic return (top row) and number of steps (bottom
rom) achieved in Setup 3 using a centralized and curiosity approach, yet making
the curiosity to be subject to only the state (CC_CC_sh) or the state-action pair
(CC_CC_sh_action). Dashed lines with markers are used to plot skilled agent’s

_OPT curves.

RQ4: Should agents have their intrinsic rewards up-
dated rewards only by experiences that are reproducible
as per their action spaces?

Finally, we evaluate the proposed collaborative framework configured with
a centralized critic and a centralized action-based curiosity, but filtering ac-
cording to the idea explained in Section 3.3.2.2, CC_CC_sh_action_filter.
Differences should appear mainly for the non-skilled agent, so that its
learning process changes by deleting those experiences that modify its cu-
riosity inappropriately.

Plots nested in Figure 3.16 validate this hypothesis. A narrow perfor-
mance gap arises between the two compared approaches CC_CC_sh_action
_filter and CC_CC_sh_action. Both workers converge to a SR of 90%
faster when compared to any of the previously analyzed configurations of
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the framework, attaining an improvement of 7.7% (skilled agent) and 15%
(non-skilled agent) in comparison to the second-best solution.
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Figure 3.16: Average extrinsic return (top row) and number of steps (bottom
rom) achieved in Setup 3 using a centralized critic and a centralized curiosity
subject to both the state-action, and with (CC_CC_sh_action_filter) and with-
out (CC_CC_sh_action) filtering the episodes in which the special action has been
used (e.g., open). Dashed lines with markers are used to plot skilled agent’s _OPT

curves.

3.5.1 Exploration versus Exploitation: When?
One of the major issues arising from the analysis of the results is that the
number of steps of the optimal policy is far from the number of steps taken
by executing the minimum number of actions16. The reason is that, even at
the final stages of the training process, the learned policy is too stochastic
and still features significant variability. Depending on the problem, this
might be a good result as it allows the agent to adapt to changes more
easily (Haarnoja et al., 2017). However, if the aim is to learn to perform
the task as efficiently as possible, the optimal policy should be the one
that converges with the minimum required steps towards the target.

The challenge lies in the absence of a specific objective incorporated
into the reward function that guides the problem-solving process with the
fewest possible steps. In fact, the policy’s enhancement relies on pre-
cise value estimates, denoted as 𝑉 (𝑠), based on the discounted return.

16Experiments have considered a frame skip equal to 4, hence the optimal solution
with 1 frame per step should require less interactions of the agent with the environment.
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These value estimates are then utilized to calculate the advantages, 𝐴(𝑠, 𝑎),
within the loss function of the actor. As a result, if these advantages are
not appropriately balanced, meaning they fail to accurately represent the
true values, the agent may explore when it should be exploiting information
and vice versa. This issue becomes even more complex when considering
the precision of the extrinsic-intrinsic streams outlined in Equation (3.2).

The aforementioned problem can be better understood by examining
what occurs in Setup 3 with a skilled agent trained following CC_CC_sh
_action. Figure 3.17 depicts a heatmap showing the balance between
the extrinsic and intrinsic parts in the computation of the total advantage
at different stages of the training process. We observe that, in Figures
3.17.a and 3.17.b, the agent rarely updates its policy by following the main
extrinsic goal (red), although it becomes more influential as the training
process evolves.

Interestingly, in Figure 3.17.c –which corresponds to what the agent
experiences between episodes 1000 and 1500– it can be observed that the
agent successfully navigates through the corridor. Nonetheless, according
to Figure 3.15, it is not until 1500 to 2500 episode range when the skilled
agent consistently learns to go through the corridor (i.e., _OPT curve). In
fact, there is a noticeable disparity between the heatmaps in Figure 3.17.c
and Figure 3.17.d, particularly in room 17 (the one that provides access to
the corridor). In Figure 3.17.d, the heatmap appears more red, indicating
that the agent is predominantly influenced by the extrinsic stream. Con-
versely, in states where white-blue advantages are more prevalent (e.g., in
Figure 3.17.c in room 17), the agent’s decisions are more influenced by the
intrinsic stream, which may not necessarily align with the overall task goal.
This suggests that the agent is still exploring and its value estimates are
not accurate enough with respect to the extrinsic feedback. As the train-
ing process progresses, the agent’s decisions undergo consistent updates to
align with the recommendations of the extrinsic stream. This exploitation-
driven phase, observed from approximately 2000 training episodes onward,
focuses on enhancing the policy to achieve the goal of traversing the cor-
ridor with the fewest number of steps. The predominance of red-colored
decisions in Figure 3.17.e reflects the agent’s prioritization of following
the extrinsic stream, demonstrating its dedication to efficiently navigating
through the corridor. This improvement is further evident in Figure 3.15,
where the number of required steps decreases when the agent takes the
corridor.

One way to overcome this problem is by properly balancing the com-
position of the total advantage through 𝛽, as using a fixed value of this
parameter seems not to be the best choice in view of the results. This un-
expected behavior has already been noted in other works (Badia, Sprech-
mann, et al., 2020; Rosser & Abed, 2021) and still lacks a clear solution
in the literature. To further delve into this matter, we compare the per-
formance over one of the previously analyzed experiments, IC_IC_3r, for
different 𝛽 values, so as to ascertain whether different beta values yield
any differences in the exploration and exploitation phases of the training
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Figure 3.17: Divergence maps of the skilled agent in Setup 3, showing when the
total advantage estimator is guided by either the extrinsic (red) or intrinsic (blue)
advantage term, at different stages of the training process: (a) 0-500 episodes; (b)
500-1000 episodes; (c) 1000-1500 episodes; (d) 1500-2000 episodes; (e) 5500-6000
episodes. Results correspond to one of the CC_CC_sh_action simulations/seeds.
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Figure 3.18: Performance of agents when using different 𝛽 values to weight the
intrinsic rewards importance in Setup 3.

process. Results of these side experiments are reported in Figure 3.18,
where it can be noted that, under the basic 𝛽-weighted implementation of
the total advantage, the instability of the learning process is not solved by
considering different values of the 𝛽 parameter.

Further along this line, we have carried out two additional experiments
by switching off the curiosity for a given number of episodes (i.e., 𝛽 = 0).
With the purpose of just gauging its impact, we have manually tailored
the learning process so that two simulations are run, one in which curiosity
is deactivated after 1000 episodes, and another in which the deactivation
is triggered after 3000 episodes. The values have been empirically selected
as they have proved suitable to ensure the agents have chances to reach
the destination through their optimal paths. We will refer to these tailored
approaches as CC_CC_sh_action_1000 and CC_CC_sh_action_3000.

As can be seen in Figure 3.19, one of the main consequences of an early
curiosity stopping criterion (specifically, the one imposed in CC_CC_sh_
action_1000, highlighted in brown) is that the skilled agent is unable to
discover its optimal path, which is the corridor. Consequently, the policy’s
quality improves at a faster rate because the agent focuses on exploiting
the known suboptimal path. However, the optimal policy requires travers-
ing the corridor. Hence, the IM should be switched off when the agent has
an intuition that it is the best option, after sufficiently exploring the envi-
ronment, as demonstrated in CC_CC_sh_action_3000, represented in gray.
This is reflected in Figure 3.19 where, despite prematurely turning off the
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Figure 3.19: Performance comparison when switching off the intrinsic motiva-
tion stream at different stages of the training process (1000 and 3000 episodes)
in Setup 3. Both the extrinsic return (top row) and the respective number of
steps (bottom row) are shown. Dashed lines with markers are used to plot skilled

agent’s _OPT curves.

curiosity (i.e., CC_CC_sh_action_1000), resulting in a higher-quality pol-
icy at a faster rate, the policy obtained when going through the corridor
(i.e., CC_CC_sh_action_3000) is ultimately better. As for the non-skilled
agent, switching off the curiosity is less detrimental at any of those points
because it has already discovered its optimal or near-optimal paths. There-
fore, this agent simply needs to be encouraged to exploit the information
and refine its policy to achieve slightly shorter routes.

3.5.2 Overall Comparison
To summarize the main outcomes from the aforementioned results, Table
3.3 provides an overall summary. For the sake of simplicity and clarity, it
focus only on the results for Setup 3.

One intriguing observation is that the non-skilled agent consistently
converges faster, which is expected due to its smaller action and solution
space. Consequently, state value estimates – 𝑉 (𝑠) – along the non-skilled
agent’s path receive more frequent updates and provide better estimates
compared to states along the skilled agent’s optimal path. Surprisingly,
despite the low probability of successfully navigating the corridor once the
skilled agent has discovered the optimal path (probability ≤ 10% when SR
≈ 100%, as shown in Figure 3.14 and Figure 3.15), IM plays a significant
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Table 3.3: Number of required episodes needed by each evaluated configuration
in Setup 3 to achieve a SR equal to 90% (first column) and a SR equal to 80%
when success is counted as such when the trajectory includes traversing the
corridor (second column); quality of the trained policies in terms of the required
number of steps to achieve the goal (statistics computed over the last 100 training
episodes, removing those episodes in which the agent does not reach the target).

Number of required episodes

Algorithm 90% SR 80% SR (corridor) Number of steps to goal

skilled non-skilled skilled non-skilled skilled non-skilled

IC_IC_3r ≥ 6000 ≥ 6000 ≥ 6000 - - -
IC_IC_6r ≥ 6000 ≥ 6000 ≥ 6000 - - -
CC_IC 1522 1110 3668 - 410.72 ± 12.15 470.98 ± 19.15
CC_CC_sh 1309 1026 3445 - 403.07 ± 9.25 455.88 ± 5.05
CC_CC_sh_action 1412 1007 2389 - 456.81 ± 6.24 530.27 ± 8.47
CC_CC_sh_action_filter 1208 858 2378 - 418.47 ± 7.91 492.2 ± 21.06
CC_CC_sh_action_1000 1213 937 ≥ 6000 - 314.45 ± 7.17 267 ± 3.17
CC_CC_sh_action_3000 1722 886 2472 - 267.9 ± 7.57 294.64 ± 3.44

role in maintaining exploration until the agent discovers an even better
solution. This increases the chances of successfully navigating the corridor,
highlighting the importance of maintaining a certain level of exploration
to adequately explore all possible alternative paths. This finding is further
supported by the analysis of CC_CC_sh_action_1000 in Figure 3.19, where
disabling the curiosity reward results in the skilled agent only learning the
suboptimal path to the goal.

Analyzing the agents’ ability to consistently reach the goal, the intro-
duction of a centralized critic emerges as a significant differentiating factor.
Additionally, employing an IM strategy that considers both state and ac-
tion leads to better convergence along the optimal path through the corri-
dor for the skilled agent. This results in a reduction of approximately 30%
in the number of training episodes required to achieve a 80% SR trough the
optimal path. In the same line, the performance of the non-skilled agent
also improves by introducing centralized curiosity and further improves
with action-based IM, reducing the total number of episodes needed for a
90% SR by almost 10%.

Once the agents are capable of reaching the destination consistently,
they begin to improve their learned policies, resulting in a decreasing num-
ber of required steps. Notably, experiments maintaining curiosity through-
out the entire training achieve a performance close to that of a human-
driven agent, even with a frameskip of 4. However, the skilled agent gen-
erally requires fewer steps to reach the target compared to the non-skilled
agent, as the skilled agent follows a shorter path. However, this is not
the case for CC_CC_sh_action_1000, where the non-skilled agent achieves
the goal faster due to the combined effect of achieving a 100% SR more
quickly (thus having more time to refine its learned policy) and having a
less diverse action space (i.e., lower entropy across the entire action space).

Overall, the results suggest the following key observations:

• The state, action and solution space strongly influence convergence
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speed. Combining agents with different space sizes can bias their
behavior, limiting their exploration.

• To mitigate the undesired impact of excessive exploration, the 𝛽

parameter should be adjusted during training.

– Curiosity enhances the exploration stage, which is crucial in the
analyzed scenarios so that the skilled agent finds out and learns
its optimal solution.

– Deactivating curiosity promotes the exploitation stage, poten-
tially leading to faster convergence.

3.6 Conclusions
In this chapter, we have analyzed different ways in which heterogeneous
RL agents can share information with each other about the same environ-
ment, taking into account that the achievement of their results is unique
and exclusive to each agent. The main goal for both agents is to learn faster
than they would independently on their own, without any kind of knowl-
edge sharing strategy. To address this problem and arrive at informed
conclusions, we have proposed multiple strategies to build a collaborative
learning framework and we have carried out an extensive experimentation
over a modified first-person-view environment (i.e., ViZDooM, with obser-
vation in shape of images) in order to asses which configuration is the best
in terms of what has to be shared between heterogeneous agents (critic,
curiosity) and when it has to be done. Several main conclusions have been
verified experimentally:

• First, a centralized critic yields better stability and quicker conver-
gence to an optimal solution compared to the case when critics are
not shared.

• Secondly, the exploration between agents can be affected depending
on whether the novelty is shared: centralizing it entails some mi-
nor advantages (even negative if the critic is not also shared), but
the differential impact was noted when the novelty is set dependent
not only on the state, but also on the action. This interesting re-
sult had gone unnoticed in past literature dealing with single-agent
environments (Tang et al., 2017), where it was reported that a depen-
dence on the action had no effect in the convergence of the learning
process. However, in environments with heterogeneous agents, our
results show the opposite: an action-dependent novelty computation
can have a significant impact when discovering the optimal solution,
achieving a reduction of up to 30% in terms of the number of training
episodes.

• Finally, the intrinsic bonus elicits a bi-objective problem that favors
exploration yet after a certain moment it induces too much noise into
the training, degrading the effectiveness of the exploitation phase and
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preventing from getting an optimal policy (remains too stochastic).
This aligns with other works where, once a certain degree of knowl-
edge has been obtained and the exploration is already considered
sufficient, the fact of continuing to use it results to be counterpro-
ductive for the learning process (Rosser & Abed, 2021; Taïga et al.,
2020).

3.7 Lessons Learned & Future Work
Grounded on the insights extracted from the experiments and the analysis
of the results, in this section we sketch learned lessons and interesting
directions for future research. Some of the reflections offered in what
follows relate to the heterogeneity between agents, whereas others relate
to issues that lie at the conjunction of both RL and IM.

3.7.1 When to Explore? Exploration-Exploitation
Dilemma with Heterogeneous Agents

A well-known challenge in RL is about deciding when to explore and when
to exploit in single agent scenarios. Besides the strong dependence on the
characteristics of the environment, there are different types of exploration
strategies that can be followed with diverse results (Pîslar et al., 2022).
Even in the simpler single-agent scenario, it is not clear how to make
the agent explore efficiently. In other words, when should a given agent
explore? This question, often regarded as the exploration-exploitation
dilemma, is yet unsolved, as it is not straightforward to determine when
the agent (or even a human) has explored enough when learning to solve a
task. This problem is exacerbated in settings with sparse rewards, specially
when the completion of the task can require long-term training horizons.

It has been seen in this chapter that one way to deal with exploration
is to use IM techniques, with which the agent can explore the environment
more smartly. However, this approach introduces a non-stationary nov-
elty bonus, yielding a bi-objective problem with conflicting objectives: the
main task’s extrinsic goal and the exploration-related intrinsic goal. As
consequence, a misalignment between these objectives can emerge, poten-
tially leading to worse results that not using the aforementioned intrinsic
streams whatsoever (Taïga et al., 2020).

In the considered concurrent learning problem the heterogeneous agents
do not share anything (by default) as opposed to the assumptions made
in multi-agent RL problems, where they share at least a team reward or
the environment where they are deployed.

Should we impose a collaborative strategy when none of the actions
executed by an agent influence in the other agents behavior?

It is complex to give an answer, and particularly if we do not know when an
agent (independently of other agents) has explored enough on a given task,
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as depicted in the previous paragraphs. Therefore, in the current chap-
ter, we have assumed some kind of latent knowledge between agents and
tasks17 that have been formalized in terms of sharing the critic and curios-
ity module. We further assumed that both agents understand and perceive
the environment in similar ways, which can be translated into developing
congruent representations and exploration patterns, which, ultimately, can
help bootstrapping the learning of the involved agents. Unfortunately, this
might not be realistic in other RL scenarios.

3.7.2 Detachment-Derailment Problem
Solutions that rely on IM techniques exhibit the so-called detachment-
derailment problem. This issue arises when an agent has explored the
environment correctly, becoming close to discovering an interesting state
space or to achieving the goal. At some point, however, the agent’s learning
gets stuck and the episode finishes. When the next episode is started,
all decisions that the agent made to reach those spots are now regarded
with less novelty (even being close to finding out promising locations).
Consequently, the agent will be stimulated to examine other alternatives,
even if it was in the right direction to discover novel states, degrading
the effectiveness of the exploration. In this chapter, we realized that the
detachment-derailment problem gets worse when the time horizon required
to achieve any meaningful feedback signal increases.

Recently, it has been shown that an effective way to address this issue
is by clustering representations, and by reinitializating the agent smartly
in the environment (Ecoffet et al., 2021; Ugadiarov et al., 2021). However,
these approaches require the environment to be reset-free18. In the sce-
nario with heterogeneous agents tackled in this chapter, a similarity-based
clustering of the state space might be suitable to identify promising states
where the agent can be reset (Ecoffet et al., 2021; Ugadiarov et al., 2021).
Unfortunately, it is difficult to make these techniques work in POMDPs
with first-person-view observations due to (1) the dimensionality reduction
of the state space, and (2) the generation of clusters and the determina-
tion on where (i.e., in which cluster of states) to reinitialize each agent
considering that they might have different stimuli and optimal paths for
the same goal.

In spite of the difficulty of implementing adequate mechanisms to deal
with this phenomena is high, analysing and developing procedures to keep
track of previous not-fully explored, albeit promising, routes, could comple-
ment IM techniques and make them efficient even in extraordinary complex
circumstances

17Akin to the hypothesis behind Transfer Learning approaches.
18An environment in which the agent position and/or state perception can be

manually selected without any constraints. This property grants flexibility to select
new/desired start positions arbitrarily.
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3.7.3 Potential of Recurrent Rewards
Another issue encountered during this research springs from the fact that
intrinsic bonuses are generated from a given experience tuple rather than
a sequence of tuples. This issue affects not only the scenario tackled in this
chapter, but also other RL environments that generate intrinsic rewards
based on single experiences. This mainly occurs when having a POMDP
as changes in the environment cannot be directly reflected even if those
changes have a clear impact in the environment. Next, we expose this
problem by briefly discussing on two hypothetical environments.

Button

Unlock when pressed

Door

Agent location
(observation)

Button

Unlock when pressed

Door2

1

State visited
twice

(a) (b)

Figure 3.20: Hypothesized case studies to discuss on how to deal with long-
term dependencies within sparse POMDP problems.

In the environments shown in Figure 3.20, the agent can unlock the
colored passage by pushing the button that is located at a different loca-
tion, relatively far from the entrance to the corridor. For this purpose,
an action namely open is available by the agent but is useless anywhere
else except in front of the door. In these environments a first-person-view
observation hinders the agent from understanding the correlation between
pushing the button and opening the door. What is more, the value of
reaching the location where the button is located (and all the subsequent
states to the destination) will differ depending whether:

• The button is pushed and the agent goes through the corridor.

• The button is pushed and the agent does not go through the corridor.

• The button is not pushed.

This issue, combined with long horizon returns and an agent that does
not know how to interact and solve the problem correctly, leads to noisy
updates and hampers the discovery of the correlation existing between the
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button and the door. This is even more complex in scenarios as the one in
Figure 3.20.b, where a given observation (e.g., the one marked with an X)
must be visited twice: 1 when searching for the button that opens the
passage, and another 2 to go through the passage itself19.

Due to these inconsistencies, we believe that novelty needs to be rede-
fined in one of the following two ways:

• As the intrinsic reward for a given experience tuple, aiming to quan-
tify how novel the experience is on its own.

• As the discounted expected return within a given trajectory,considering
the calculated intrinsic bonus or the experiences that make up that
specific trajectory, answering which degree of novelty this experience
injects into future steps of the episode.

The first definition relies solely on the experience itself to measure nov-
elty. It is more practical and widely adopted in the research community.
Nevertheless, this requires the temporal dependencies among the expe-
riences to be modeled manually (e.g., stacking multiple instance frames,
using memory mechanisms) or incorporating recurrent (and/or attention)
modules at the actor, the critic or both (Hausknecht & Stone, 2015; Oh et
al., 2016; Vaswani et al., 2017). In fact, in the architectures discussed in the
experiments of this chapter, one of the algorithmic configurations adopted
a LSTM-based neural architecture in the critic. However, there are no
guarantees that this type of architecture retains the gathered knowledge
at long-term horizons, nor is the novelty score used to compute the return
stationary (it decreases over time). This instability in the expectation
term over time ultimately hampers the long-term modeling capabilities of
the recurrent/attention modules within ANN.

Alternatively, a solution could be to generate intrinsic rewards based
not only on the current time step, but also on past experiences (i.e. a
sequence of experiences, second definition). This is, designing a reward
function that handles the temporal dependencies and provides a different
reward value, so that an experience is determined to be novel taking into
account a full episode or path with its inherent consequences. This problem
has also been recently showcased in relation to goals in (Colas et al., 2022),
opening a debate around how to address this problem in an online fashion
with no previous knowledge about the environment. This discussion finds
in the action heterogeneity of agents studied in this chapter another twist
of its screw.

19Recall the agent is only provided by a first-person-view input; therefore, the same
observation can receive different values estimates depending whether the button was
previously pushed or not.
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Chapter 4

An Evaluation Study of
Intrinsic Motivation
Techniques applied to
Reinforcement Learning
over Hard Exploration
Environments

The claimed effectiveness of IM techniques in environments with sparse
rewards has been proven in the previous chapter, when applied either col-
laboratively or independently in multi- and single- agent problems. Ex-
periments performed in the previous chapter, which considered RND and
count-based strategies to compute the intrinsic rewards, showcased the
large amount of IM approaches that can be adopted to foster the explo-
ration by combining the produced intrinsic signal with its extrinsic coun-
terpart (e.g. as in Expression (2.25) or Expression (3.2)).

In this context, modern IM solutions (Badia, Sprechmann, et al., 2020;
Raileanu & Rocktäschel, 2020; Seurin et al., 2021; T. Zhang et al., 2020)
solutions propose not only their own method to calculate the exploration
bonus, but also introduce other operations to weight and scale the mag-
nitude of their generated intrinsic rewards. Table 4.1 lists several of such
IM methods, building upon the early studies focused on the generation of
curiosity information (Bellemare et al., 2016; Burda, Edwards, Storkey, et
al., 2018; Pathak et al., 2017). Unfortunately, as per the current literature
it remains unclear whether the research race towards superior IM methods
is mainly driven by the proposed reward generation approach or instead,
biased by other design choices, such as different base RL algorithms, de-
cay of the exploration bonus, episodic scaling techniques adoption, neural
network architectures and benchmarks for the evaluation of results.

Analogously to other studies in the field of RL (Andrychowicz et al.,
2021a; Andrychowicz et al., 2021b; Henderson et al., 2019; Orsini et al.,
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Table 4.1: Classification of various IM methods based on different design
choices. We provide the parameters with which those approaches have been

evaluated in the MiniGrid benchmark, except for NGU (Atari).

Ref RL-algorithm Vary 𝛽𝑖 Scale 𝑟𝑖 ANN architecture

ICM (Pathak et al., 2017) IMPALA ✗ ✗ Shared AC [3CNN,256LSTM,FC]
RND (Burda, Edwards, Storkey, et al., 2018) IMPALA ✗ ✗ Shared AC, [3CNN,256LSTM,FC]
RIDE (Raileanu & Rocktäschel, 2020) IMPALA ✗ ✓ Shared AC, [3CNN,256LSTM,FC]
BeBold (T. Zhang et al., 2020) IMPALA ✗ ✓ Shared AC, [3CNN,256LSTM,FC]

DoWhaM (Seurin et al., 2021) IMPALA ✗ ✓ Shared AC, [3CNN,1024LSTM,1024FC]
RAPID (Zha, Ma, et al., 2021) PPO ✗ ✗ Independent AC, [2FC64]
AGAC (Flet-Berliac et al., 2021) PPO ✗ ✓ Independent AC, [3CNN,512FC]
D&E (Jing et al., 2021) PPO ✓ ✓ Independent AC, [3CNN,512FC]

NGU (Badia, Sprechmann, et al., 2020) R2D2 ✓ ✓ Single Q(s,a,𝛽), [4CNN,512LSTM,512FC]

2021), a fundamental matter is to distinguish which design criteria are ac-
tually important and their impact on the performance of the agent. This is
specially relevant in hard exploration environments, since it is known that
under such circumstances, the proficiency of the agent is very sensitive
w.r.t. the configuration of its compounding modules. For this reason, the
goal of this chapter is to perform a fair evaluation of IM-based solutions
present in the literature, aiming to decouple the contribution of the IM
approach to the overall performance of the agent from the impact of addi-
tional design choices. As a result, insights will be given about which design
choices matter when designing IM mechanisms, so that these approaches
can be adapted and used in new RL problems thoughtfully.

4.1 Related Work
Before digging into the contribution of this chapter chapter, we first briefly
review the concepts in which some IM solutions support their curiosity
mechanisms.

Intrinsic Motivation
As we have already explained in Section 2.3.1 of Chapter 2, two main
groups of IM algorithms can be found in the literature: count-based and
prediction-error methods. The firsts calculate the reward inversely pro-
portional to the number of times 𝑁 (𝑠𝑡 ) a given state (𝑠𝑡) has been visited:

𝑟𝑐𝑜𝑢𝑛𝑡𝑠𝑡 =
1√︁
𝑁 (𝑠𝑡 )

(4.1)

This idea can be also extended to other visitation count approaches
that are suitable for high-dimensional state domains (Bellemare et al.,
2016; Machado et al., 2019; Ostrovski et al., 2017; Tang et al., 2017).

On the other hand, prediction-error methods generate the exploration
bonus taking into account the ability of the method to reliably predict
changes in the environment. In order to accomplish it, ICM (Pathak et al.,
2017) proposed a framework to calculate the difference between the actual
next state (𝑠𝑡+1) and a prediction of the next state taking into account the
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current state and action, �̂�𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ), being 𝑓 the function that will
learn the dynamics of the environment. Even more importantly, instead
of calculating the error directly with the raw input state, in ICM a latent
representation 𝜙(·) is learned to capture only the information that affects
or is affected by the agent (preventing irrelevant features of the state space
from biasing the prediction):

𝑟 𝐼𝐶𝑀𝑡 = | |𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡+1) | |2 (4.2)

where | | · | |2 stands for the 𝐿2 (Euclidean) norm and 𝜙(𝑠𝑡+1) represents the
prediction of the 𝑠𝑡+1 taking into account 𝜙(𝑠𝑡 ) and the actual action 𝑎𝑡 as
input; that is, 𝜙(𝑠𝑡+1) = 𝑓 (𝜙(𝑠𝑡 ), 𝑎𝑡 ). Please refer to Figure 2.9 for better
clarity.

Upon the idea of how state embeddings are learned, RIDE (Raileanu
& Rocktäschel, 2020) proposed to calculate the exploration bonus by the
difference between two consecutive states in their latent space:

𝑟𝑅𝐼𝐷𝐸𝑡 = | |𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡 ) | |2 (4.3)

With this change, RIDE encourages the agent to perform actions that
have an impact on the environment. The modification with respect to ICM
can be seen in Figure 4.11.
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Figure 4.1: RIDE framework (Raileanu & Rocktäschel, 2020) to generate the
intrinsic reward.

What is more, to ensure that the agent does not go back and forth be-
tween a sequence of states in order to get intrinsic rewards, the reward is
discounted by the episodic state visitation counts:

𝑟𝑅𝐼𝐷𝐸𝑡 =
| |𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡 ) | |2√︁

𝑁𝑒𝑝 (𝑠𝑡+1)
(4.4)

1Note that the forward model is now just used to build a better approximation of
the feature space in the same way as the inverse model does.
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so that the bonus now is calculated by combining experiment- and episode-
level exploration (Pîslar et al., 2022; Stanton & Clune, 2018). Similar but
more aggressively, in BeBold/NovelD (T. Zhang et al., 2020, 2022) the
reward was restricted so that only the first time the agent visits a given
state in an episode was valid:

𝑟𝐵𝑒𝐵𝑜𝑙𝑑𝑡 = max

(
1

𝑁 (𝑠𝑡+1)
− 1

𝑁 (𝑠𝑡 )
, 0

)
· I[𝑁𝑒 (𝑠𝑡+1) = 1] (4.5)

where 𝑁𝑒 (·) stands for the episodic state count that is reset every episode,
and I[·] is an indicator function taking value 1 if its argument is true (0
otherwise).

Following the idea of combining various degrees of exploration, NGU
(Badia, Sprechmann, et al., 2020) calculated the intrinsic reward as the
combination of two sub-rewards:

𝑟 𝑖𝑡 = 𝑟
𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐𝑖
𝑡 ·min{max{𝑟 𝑙𝑖 𝑓 𝑒𝑙𝑜𝑛𝑔𝑖𝑡 , 1}, 5} (4.6)

being 𝑟
𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑐𝑖
𝑡 calculated through an episodic memory (Pritzel et al.,

2017) and 𝑟 𝑙𝑖 𝑓 𝑒𝑙𝑜𝑛𝑔𝑖𝑡 computed across the whole training. In addition, NGU
adopted an UVFA (Schaul et al., 2015) framework so that the employed
action-value function was subject to different 𝛽 coefficients, 𝑄(𝑠𝑡 , 𝑎𝑡 , 𝛽),
which allows learning policies with different explorative behaviors using a
single network. Last but not least, FaSo (Bougie & Ichise, 2021) combined
local and global exploration by generating two different intrinsic rewards,
depending on the quality of the reconstruction of two contexts built from
the same state.

Aside from the method to calculate the exploration bonus itself, new IM
solutions are shown to yield better results in their respective publications,
yet using additional components which were not used when compared to
the selected baselines. Thus, rather than proposing a new intrinsic genera-
tion module, in this chapter we carry out an evaluation study to gauge the
impact of such modifications (Table 4.1) and to ascertain the contribution
of the IM reward generation to the overall performance of the agent.

Reinforcement Learning Studies
Other benchmarks/studies have been done in recent times surrounding RL:
to begin with, (Taïga et al., 2020) evaluates the performance of different
exploration bonuses (pseudo-counts, ICM, RND and noisy networks) in the
whole Atari 2600 suite with Rainbow (Hessel et al., 2017). By contrast,
(Burda, Edwards, Pathak, et al., 2018) carried out a large-scale study
based exclusively on prediction error bonuses over 54 environments, where
they investigated the efficacy of using different feature learning methods
with PPO (Schulman, Wolski, et al., 2017). This chapter also connects
with (Andrychowicz et al., 2021a; Andrychowicz et al., 2021b; Henderson
et al., 2019; Orsini et al., 2021), a series of evaluation studies aimed to un-
derstand what choices among high- and low-level algorithmic options affect
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the learning process. As such, the studies in (Andrychowicz et al., 2021a;
Andrychowicz et al., 2021b) focus on on-policy deep actor-critic methods
(examining different policy losses, architectures and advantage estimators).
On the other hand, (Orsini et al., 2021) addresses adversarial IM related
decisions (multiple reward functions and observation normalization meth-
ods), whereas (Henderson et al., 2019) investigates reproducibility issues
using different random seeds, activation functions, codebases, and reward
scales, among other experimental choices.

Contribution
To the best of knowledge, there is no prior work that exhaustively evaluates
different choices for the implementation of intrinsic motivation strategies.
The study presented in this chapter of the Thesis takes a step further
by analyzing different weight and scale strategies for the combination of
intrinsic and extrinsic rewards, as well as the impact of adopting different
neural networks architectures and its dimensions. The design choices here
evaluated are applicable to any intrinsic curiosity generation module, so
that conclusions about which ones are the most suitable given a task and
an environment with sparse rewards can be drawn.

4.2 Methodology of the Study
After reviewing different solutions proposed in the literature to cope with
hard exploration issues with IM techniques, we now proceed by describing
the methodology adopted in this chapter to gauge the advantages and
drawbacks of design choices that are present in some of them, giving an
informed hint of their utility when extrapolated to the rest of IM solutions.
The methodology is driven by the pursuit of responses to three research
questions (RQ):

• RQ1: Does the use of a static, parametric or adaptive decaying in-
trinsic coefficient weight 𝛽 affect the agent’s training process?

• RQ2: Which is the impact of using episodic counts to scale the
intrinsic bonus? Is it better to use episodic counts than to just
consider the first time a given state is visited by the agent?

• RQ3: Is the choice of the neural network architecture crucial for the
agent’s performance and learning efficiency?

Departing from these questions, the following methodology has been de-
vised:

4.2.1 RQ1: Varying the Weight of the Intrinsic Re-
ward Coefficient 𝛽

In general, it is not advisable to combine raw extrinsic and intrinsic reward
signals directly due to their potentially diverging value scales. Moreover,
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even if taking values from comparable ranges, the agent could need to grant
more importance to exploration than to exploitation at specific periods.
In fact, in sparse rewards settings, the explorer role of the agent must
be strengthen and enlarged in comparison to the exploitative behaviour to
guide the agent by an artificial bonus in the absence of knowledge about the
target task. This balance between exploration and exploitation is usually
controlled by the intrinsic reward coefficient 𝛽, whose value is often tuned
manually depending on the environment and task to be accomplished.
A priory, this value might be fixed and kept unaltered, or dynamically
updated, as is further explained in what follows:

Static 𝜷: commonly, the 𝛽 coefficient is stationary along the whole train-
ing. In such cases, we refer to this fixed and default value as 𝛽𝑠 (static).
On this basis, diverse fixed intrinsic coefficient values can be used to learn
a family of policies with different exploration-exploitation balances, so as
to concentrate on maximizing the extrinsic reward (a policy with 𝛽 = 0)
while maintaining a degree of exploration (rest of policies with 𝛽 > 0)
(Badia, Sprechmann, et al., 2020). Contrarily to the rest of approaches,
when using multiple (fixed) intrinsic coefficients, training more than one
agent is required.

Dynamic 𝜷: to focus on the extrinsic signals provided by the environment,
it is interesting to modulate the weight given to the intrinsic rewards gen-
erated by the agent in a dynamic fashion. Without loss of generality, we
herein consider two options: parametric decay and adaptive decay. For the
parametric decay, the value of 𝛽 decreases by following a modified sigmoid
function that controls the smoothness of the decay:

𝛽𝑡 = 𝐴 + 𝐾 − 𝐴(
1 + exp

(
−16𝐵

(
1 − 𝑡

𝐹

) ) )20 (4.7)

where 𝐾 is a value proven to deliver a good performance and well-balanced
trade-off between exploration and exploitation (e.g., the fixed value 𝛽𝑠
that one could select under a fixed 𝛽 strategy); 𝐴 is the final value of
𝛽, which can be defined from 𝐾 (e.g. 𝐴 = 𝐾/100) to reflect that at the
end of the learning process, the agent should receive hardly any intrinsic
signal bonus; and 𝐹 denotes the number of frames (equivalently samples or
steps) we expect the whole train to take. Moreover, 𝐵 permits to control
the smoothness of the progression of 𝛽 throughout the training process
(Figure 4.2). We note that this parametric decay can also be used to
sample different 𝛽 values for each policy learned by means of the approach
with multiple static intrinsic coefficients 𝛽, by defining 𝐹 as the number
of agents.

In turn, we can vary the intrinsic coefficient by adopting an adaptive
decay strategy. Motivated by (Jing et al., 2021) for concurrent envi-
ronments, we propose to calculate a decay factor 𝑑𝜏 based on the ratio
between the agent’s intrinsic return at the current rollout, 𝐺𝑖𝜏 , and the
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Figure 4.2: Example of the parametric decay evolution of 𝛽𝑡 for multiple values
of the smoothness control parameter 𝐵, with 𝐾 = 0.05, 𝐴 = 0.0005 and 𝐹 = 2𝑒7.

averaged historical intrinsic return values in past rollouts 𝐻𝐽2:

𝛽𝑖𝜏 = 𝛽𝑠𝑑𝜏 = 𝛽𝑠min

[
𝐺𝑖𝜏

𝐻𝐽
, 1

]
= 𝛽𝑠min

[
𝐺𝑖𝜏

1
𝐽

∑𝐽
𝑗=0𝐺

𝑖
𝜏 𝑗

, 1

]
(4.8)

Consequently, under this rationale the agent is discouraged from exploring
those trajectories that are more familiar than the average and means less
novelty.

In fact, the intrinsic return during the training may vary due to the
non-stationary nature of the intrinsic reward generation process. Thereby,
to stabilize the training, instead of leveraging the whole historical data,
we also propose the use of a moving average with a sliding window, 𝐻𝜔

𝐽
,

which strictly considers just the latest returns (𝜔) and avoids the case of
discouraging the exploration due to previous intrinsic returns that may
well bias the decay factor calculation:

𝛽𝑖𝜏 = 𝛽𝑠𝑑𝜏 = 𝛽𝑠min

[
𝐺𝑖𝜏

𝐻𝜔
𝐽

, 1

]
= 𝛽𝑠min

[
𝐺𝑖𝜏

1
𝜔

∑𝐽
𝑗=𝐽−𝜔 𝐺

𝑖
𝜏 𝑗

, 1

]
(4.9)

2By default, 𝜏 is used to refer to the current rollout. Akin to 𝑡 that is used to refer
to time steps, here 𝑗 is adopted for the accountability of rollouts (i.e., an ensemble of
consecutive time steps, recall Section 2.1.2 in Chapter 2) gathered at different points of
the training. As such, 𝐽 is used to refer to the number of total rollouts gathered during
training so far, and 𝜏 𝑗 to those experiences collected at a specific checkpoint.
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4.2.2 RQ2: Scaling the Intrinsic Rewards Episodically
As defined in (Pîslar et al., 2022), there are different periods in which the
exploration mode can be carried out: step-level, experiment-level, episode-
level and intra-episodic.

Over the years the use of step-level exploration (i.e. 𝜖-greedy) has proven
to yield good results in a diversity of simple RL environments. However,
advances in learning algorithms have paved the way towards RL prob-
lems of higher complexity, requiring more sophisticated strategies such as
the IM mechanisms under target in this chapter. The intrinsic rewards
generated with IM methods are prone to suffer a quick vanishing of their
value/magnitude over the course of the training, reducing the attractive-
ness as the training evolves. This condition is exacerbated when facing
long-time horizon problems (Bougie & Ichise, 2021). Actually, by an-
alyzing the rewards obtained during a concrete episode, few differences
in terms of novelty are appreciated between similar/close states, even if
one has been already visited and the other remains unexplored. This is
due to the persistence of curiosity-related information from past episodes
(experiment-level), which is propagated forward during the agent’s train-
ing, leaving little novelty difference between similar (even identical) states
inside the scope of the same episode. Additionally, in environments where
state transitions are reversible, using intrinsic rewards to guide the explo-
ration can lead into an agent bouncing back and forth between sequences
of states that are more novel than others in the same episode (Raileanu &
Rocktäschel, 2020; T. Zhang et al., 2020).

As a solution to this issue, recent studies (Badia, Sprechmann, et al.,
2020; Bougie & Ichise, 2021; Raileanu & Rocktäschel, 2020; Seurin et al.,
2021; T. Zhang et al., 2020) combine two degrees of novelty rather than
just one: local (episode-level) and global (experiment-level). More con-
cretely, (Raileanu & Rocktäschel, 2020) introduced an episodic visitation
count term to encourage the agent to visit as many different states as pos-
sible within an episode. Similarly, (T. Zhang et al., 2020) incorporated
a more aggressive variation that rewards the agent only when it visits a
given state for the first time within an episode. However, approaches at
the forefront of the state of the art (e.g. ICM, RND) do not implement
these ideas to scale their rewards. In this context, it is unclear whether
new proposed IM modules outperform previous approaches due to episodic
state-count regularization or to conceptually new algorithmic schemes. If
such regularization contributed to improve the performance, already pro-
posed IM schemes that do not implement it (and also future IM methods)
could adopt this strategy to meliorate their designs.

4.2.3 RQ3: Sensitiveness of Neural Network Archi-
tectures

In the literature surrounding RL, plenty of network architecture proposals
have been used to solve any given problem. As an example, the work in
(Zha, Ma, et al., 2021) simplified the architectures previously proposed
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in (Raileanu & Rocktäschel, 2020) yet achieving similar results3 in the
same environment and task. Moreover, those approaches rely on different
base RL algorithms – PPO (Schulman, Wolski, et al., 2017) and IMPALA
(Espeholt et al., 2018) – thereby hindering a fair comparison, a proper
interpretability and attribution of the reported performance results.

In order to minimize possible misunderstandings, our specific experi-
mentation evaluates the effect of the network architecture on the perfor-
mance of the RL agent by considering a fixed RL algorithm and IM module,
and by assessing various network configurations. By reporting the dimen-
sions and characteristics of different neural network architectures and the
performance of RL agents using them, we can gain intuition about the per-
formance improvement (degradation) incurred when increasing (decreas-
ing) the complexity of the neural architectures in use. Our experiments
also measure the required amount of time when using those architectures,
so that latency implications can be examined. This third research ques-
tion is also aligned with practical concerns arising when deciding on which
implementation is more suitable for a real-world deployment, specially in
resource-constrained scenarios (e.g. embedded robotic devices).

4.3 Experimental Setup
We give answer to the research questions over procedurally generated RL
tasks from the Minimalistic Gridworld Environment (MiniGrid (Chevalier-
Boisvert et al., 2018)). As detailed in Section 2.2.1 of Chapter 2, this
framework allows creating tasks of varied levels of difficulty, allows the use
of either image or compact representations while selecting any MDP or
POMDP setup. Most importantly, it runs fast, thereby easing the imple-
mentation of massive RL benchmarks. Last but not least, we recall that
MiniGrid is a PCG benchmark, hence the agent will face, for the same task,
a different level in each episode as depicted in Figure 2.7. This requires
an agent capable of generalizing to newly produced unseen environment
realizations.

4.3.1 Environments
To design a representative benchmark for the study, among all the possible
RL environments that can be selected/generated in MiniGrid, we consider
1) those labeled as MultiRoomNXSY (shortened as MNXSY, with X denoting
the number of rooms and Y their size), 2) KeyCorridorS3R3 (KS3R3); and
3) ObstructedMaze2Dlh (O2Dlh). These scenarios belong to hard explo-
ration tasks (i.e., rewards are sparse), in which the agent fails to complete
the task without the help of any IM mechanism. We refer to Figure 4.3
for further information about each scenario and its associated goal.

By default, we adopt a POMDP setup where the observations are es-
sentially egocentric and partial views of the environment. A 7 × 7 tile set

3We note that the choice of the neural network architecture is not just for the actor-
critic modules, but also for IM approaches that hinge on neural computation.
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MN7S8 KS3R3 O2Dlh

Figure 4.3: Examples of MiniGrid scenarios. MN7S8: the agent has to open
multiple doors to reach the distant goal (green square); KS3R3: the agent has to
first collect the blue key in order to open the blocked door of the room leading
to the yellow ball that must be picked O2Dlh: the agent has to discover keys
hidden below some boxes, take the proper key and open the door to the blue

ball (target).

in the direction that the agent is facing composes the observation. Con-
cretely, an observation is featured by a 7×7×3 matrix, being the 3 features
of the last dimension information of interest such as type, colour and sta-
tus of the object (e.g., doors, keys, balls, or walls) placed in the specific
tile. The agent is incapable to see through walls or doors. Seven basic
actions are available to solve all scenarios: turn left, turn right, move
forward, pick up (an object, for instance keys or balls), drop the object
(if carried), toggle (open doors, interact with objects) and done. Never-
theless, some of these actions are only useful at specific locations, whereas
others become useless for certain tasks (for instance, pick/drop and done
in MNXSY environments).

Not all the environments require the same amount of steps to be solved.
For instance, in MNXSY environments, a maximum number of 20 · X steps
is set before resetting the episode to make it dependent on the number of
rooms X. Hence, the three considered environments that fall within this
set (MN7S4, MN7S8 and MN10S4) are assumed to take at most 140, 140 and
200 steps, respectively. For KS3R3 and O2Dlh, 270 and 576 steps are set as
maximum.

As formulated in Expression (2.23), the expected rewards depend on
the above maximum number of steps, resulting in a different return for each
task. In fact, since the environments are PCG, even within the same task,
each level’s optimal return can differ from each other, as their configuration
does not guarantee that all levels can be solved at an equal number of steps.
Hence, we set the following optimal average extrinsic returns by taking the
obtained median score when evaluating an optimal policy4: 0.77 (MN7S4),
0.76 (MN10S4), 0.65 (MN7S8), 0.9 (KS3R3), and 0.95 (O2Dlh). Moreover, we
also refer as suboptimal behavior to those policies that managed to reach
at least 95% of the optimal score corresponding to each task.

4Equal to other previously reported results (T. Zhang et al., 2020, 2022).
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Finally, in terms of complexity, MN7S4 and MN10S4 are assumed to be
the easiest ones to solve, followed by MN7S8 and KS3R3, which are harder,
and O2Dlh, which is the most difficult task in the present study.

4.3.2 Baselines
All the experiments employ PPO (Schulman, Wolski, et al., 2017) as the
RL algorithm in use. On top of it, state-of-the-art IM techniques are used
in order to obtain intrinsic rewards that augment the exploration efficiency
of the agent, considering that a naive PPO solution has been shown to be
insufficient for learning the task (Zha, Ma, et al., 2021). Hence, we analyze
COUNTS5, RND (Burda, Edwards, Storkey, et al., 2018), ICM (Pathak
et al., 2017), and RIDE (Raileanu & Rocktäschel, 2020).

Hyperparameters
Regarding PPO, we use a clipping factor 𝜖 = 0.2, 4 epochs per train step,
a discount factor 𝛾 equal to 0.99 and _ = 0.95 for GAE (as per Expression
(2.18)). We use 16 parallel environments to gather rollouts of size 128.
Hence, we set a total horizon of 2048 steps between updates. Moreover,
a batch size equal to 256 is considered. Unless otherwise specified, the
following values – selected from an offline grid search procedure over MN7S4
– will be used to configure the intrinsic coefficient and entropy: 𝛽 = 0.05
and 𝑐2 = 0.0005 for RND, ICM and RIDE; 𝛽 = 0.005 and 𝑐2 = 0.0005 for
COUNTS. In what refers to the dynamic update of the intrinsic coefficient
𝛽, we select 𝐵 = 0.5 in Expression (4.7) as it represents a balanced trade-off
for the agent to explore in the early stages of the training process, evolving
towards a behavior mainly driven by extrinsic signals.

Network Architectures
Finally, experiments devised to answer RQ3 are performed with two differ-
ent neural network architectural designs, which differ in terms of the type
of neural layers, their composition and the number of trainable parameters.

Following Figure 4.4, on one hand a lightweight neural architecture as in
RAPID (Zha, Ma, et al., 2021) is considered, in which both the actor and
the critic (independent) are made of 2 fully-connected layers (FC) with 64
neurons each. This dual FC-64 architecture also applies to the embedding
networks required for RND, ICM and RIDE.

Additionally, we include a more sophisticated neural design based on what
is proposed in RIDE (Raileanu & Rocktäschel, 2020), where both the ac-
tor and critic are combined into a two-headed (one for the policy, the
other for the critic) shared network with 3 convolutional neural layers (32

5In this case, we take advantage of the 2D grid (discrete state space) and map
each state directly to a dictionary when using COUNTS. Nevertheless, when facing
more complex state spaces pseudo-counts (Bellemare et al., 2016) can be applied as an
alternative as in (Taïga et al., 2020).
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filters with kernel 3 × 3, stride equal to 2, and padding 1) and a FC-
256 layer. Originally in (Raileanu & Rocktäschel, 2020) they used an
LSTM of 256 units instead of a FC-256. We analyze the results with
no recurrence despite being in an POMDP setting, which will also al-
low the comparison whether if it is actually necessary the use of recur-
rence modules in these environments. What is more, even if (Raileanu
& Rocktäschel, 2020) defined the previously mentioned architecture de-
sign, in their GitHub implementation they seem to use larger networks
(https://github.com/facebookresearch/impact-driven-exploration). This
is the reason why in Table 4.1 we do not specify the FC units. This last
architecture will be labeled as the default architecture to endow the agent
with more learning capabilities and to ensure that it is not limited by a
restricted network.
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Figure 4.4: (a) Sophisticated/default and (b) lightweight network architec-
tures.

4.4 Results and Analysis
In this section experimental results are presented and discussed towards
answering the research questions posed in Section 4.2. Scripts and results
have been made available in a public GitHub repository (https://github
.com/aklein1995/intrinsic_motivation_techniques_study) to foster
reproducibility and stimulate follow-up studies. For all the experiments
described in this section we provide the mean and standard deviation of
the average return computed over the past 100 episodes, performing 3
different runs (each with a different seed) to account for the statistical
variability of the results.

4.4.1 RQ1: Does the use of a static, parametric or
adaptive decaying intrinsic coefficient weight 𝛽

affect the agent’s training process?
Our first set of results compares the multiple weighting strategies intro-
duced in Section 4.2.1, which differently tune the importance granted to
the intrinsic rewards with respect to extrinsic signals coming from the
environment.

The results are shown in Table 4.2. It is straightforward to note that
RIDE outperforms COUNTS and RND. At this point we remind that

https://github.com/facebookresearch/impact-driven-exploration
https://github.com/aklein1995/intrinsic_motivation_techniques_study
https://github.com/aklein1995/intrinsic_motivation_techniques_study
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Table 4.2: Results of different IM strategies over several MiniGrid scenarios
with static (_𝑠), multiple static (_𝑛𝑔𝑢) (as in NGU Badia, Sprechmann, et
al., 2020), a parametric (_𝑝𝑑) or adaptive decay (_𝑎𝑑) weight 𝛽 to modulate
the importance of the intrinsic bonus in the computation of the reward. Cell
values denote the training steps/frames (1𝑒6 scale) at which the optimal average
extrinsic return is achieved; between parentheses, steps at which 95% of the
optimal average extrinsic return is reached. The best results for every (IM

strategy, scenario) combination are highlighted in bold.

MN7S4 MN10S4 MN7S8 KS3R3 O2Dlh

COUNTS_𝑠 0.93 (0.86) 1.87 (1.78) > 30 > 30 > 50
COUNTS_𝑛𝑔𝑢 1.17 (1.11) 2.67 (2.35) > 30 > 30 > 50
COUNTS_𝑝𝑑 0.96 (0.83) 2.27 (1.67) > 30 22.91 (22.49) > 50
COUNTS_𝑎𝑑 1.03 (0.92) 1.81 (1.65) 24.23 (24.10) > 30 > 50

COUNTS_𝑎𝑑1000 1.03 (0.92) 1.81 (1.65) 23.63 (23.56) > 30 > 50

RND_𝑠 3.83 (3.78) 7.84 (7.79) > 30 10.83 (9.72) > 50
RND_𝑛𝑔𝑢 2.69 (2.62) 5.78 (5.75) > 30 8.12 (7.50) > 50
RND_𝑝𝑑 4.04 (3.94) 6.02 (5.99) > 30 9.24 (8.07) > 50
RND_𝑎𝑑 2.02 (1.39) 3.21 (2.65) > 30 6.02 (5.43) > 50

RND_𝑎𝑑1000 3.62 (1.42) 3.59 (3.50) > 30 7.47 (6.66) > 50

RIDE_𝑠 2.49 (1.82) 2.27 (2.14) 4.00 (3.68) 6.63 (4.39) 30.88 (25.87)
RIDE_𝑛𝑔𝑢 3.85 (2.40) 2.59 (1.26) > 30 7.18 (3.91) 36.07 (29.96)
RIDE_𝑝𝑑 5.20 (2.14) 5.01 (1.96) 3.73 (3.49) 6.42 (3.87) 29.27 (20.84)
RIDE_𝑎𝑑 2.89 (0.91) 1.60 (0.99) > 30 5.93 (2.99) 27.65 (20.91)

RIDE_𝑎𝑑1000 2.54 (0.91) 1.60 (0.99) 3.88 (3.70) 4.70 (3.00) 28.00 (23.01)

RIDE is configured with episodic count scaling, in accordance with the
final solution proposed in (Raileanu & Rocktäschel, 2020). Count-based
generated rewards seem to be the best solution when facing easy explo-
ration scenarios (MN7S4 and MN10S4), but its performance degrades when
facing scenarios that require more sophisticated exploration strategies. A
similar pattern can be observed when analyzing the results of RND, which
is unable to solve MN7S8 and O2Dlh with any kind of weighting strategy.
Contrarily, RIDE manages to solve all the tasks by its naïve implemen-
tation, although it achieves better results when using more sophisticated
weighting exploration strategies.

We now focus the discussion on gaps arising from the use of different
weighting strategies. The static (default) weighting strategy (indicated
with a suffix _𝑠 appended to each approach) is surpassed by any of the
other proposed weighting approaches in the majority of the cases. When
using multiple static values (_𝑛𝑔𝑢), the only approach that takes advan-
tage of such a strategy is RND, yielding worse results for both COUNTS
and RIDE in all the cases. This might happen due to the slow pace at
which the intrinsic rewards values decay in RND in reference to the other
strategies6. On the other hand, the use of parametric decay (_𝑝𝑑), which

6The error output by RND has higher amplitude values than those of RIDE, thereby
RND is a better candidate to get benefit of applying the _𝑛𝑔𝑢 strategy by the use of
agents with smaller intrinsic coefficient weights (avoiding over-exploration issues in the
case of RND and oppositely having under-exploration issues with RIDE).
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decreases the weight of the intrinsic reward as the training evolves to fa-
vor exploration, provides significant gains in almost all simulated scenar-
ios. This approach is similar to _𝑛𝑔𝑢. However, instead of using multi-
ple agents with different static intrinsic coefficients, the parametric decay
strategy modulates a single value during the course of training. When
employing the _𝑝𝑑 strategy, COUNTS is able to get a valid solution in
KS3R3, RND improves all its scores and RIDE improves its behavior in the
most challenging scenarios MN7S8, KS3R3 and O2Dlh. Nevertheless, _𝑛𝑔𝑢
and _𝑝𝑑 highly depend on the intrinsic coefficients given to each agent and
the evolution of a single intrinsic coefficient during training, respectively.
This strongly impacts on the agent’s performance for a given scenario and
dictates when those approaches might be better. Indeed, it can be seen as
a tuning parameter like 𝜖 in 𝜖-greedy strategies.

Finally, the use of adaptive decay (_𝑎𝑑) produces better results in
COUNTS and RND when compared to the static case (_𝑠). For RIDE,
however, this statement does not strictly hold true, as its performance
degrades in MN7S4 and MN7S8 (the agent does not even solve the task in
the latter case). We hypothesize that this is due to the fact that the initial
intrinsic returns are too high. Hence, calculating the historical average
intrinsic returns biases the computation of the decay factor. As outlined
in Section 4.2.1, a workaround to overcome this issue is to calculate returns
with a moving average over a window of 𝜔 steps/rollouts. We hence include
in the benchmark an adaptive decay with a window size of 𝜔 = 1000
rollouts (_𝑎𝑑1000). With this modification, RIDE improves its behavior in
all the complex scenarios. Nevertheless, _𝑎𝑑1000 performs slightly worse
than _𝑎𝑑 in RND, but never worse than its static counterpart _𝑠. In
general, _𝑎𝑑1000 promotes higher intrinsic coefficient values than _𝑎𝑑,
as the calculated average return is a better fit to the actual return values.
This leads to a lower decay value and a higher intrinsic coefficient, forcing
the agent to explore more intensely than with _𝑎𝑑 (but less than with
_𝑠).

4.4.2 RQ2: Which is the impact of using episodic
counts to scale the intrinsic bonus? Is it better
to use episodic counts than to just consider the
first time a given state is visited by the agent?

Answers to this second question can be drawn from the results of Table
4.3. A first glance at this table reveals that the use of episodic counts or
first-time visitation strategies for scaling the generated intrinsic rewards
leads to better results. In the most challenging environments (MNS78,
KS3R3 and O2Dlh), these differences are even wider, as they require a
more intense and efficient exploration by the agent. In fact, when the
training stage is extended to cope with a more complex task, intrinsic
rewards also decrease, inducing a lower explorative behaviour in the agent
the longer the training period is extended. Hence, the agent does not
seek as much novelty as it should, what might explain why the baseline
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implementation of intrinsic motivation (_𝑛𝑜𝑒𝑝) fails in those scenarios as
opposed to when using the scaling strategies (e.g., COUNTS and RND
in O2Dlh). By contrast, in environments requiring less exploration (MN7S4
and MN10S4), differences are narrower when using episode-level exploration
and may be even counterproductive in some cases (i.e. COUNTS at MN10S4
with _1𝑠𝑡).

Table 4.3: Comparison of different IM strategies when using no scaling
(_𝑛𝑜𝑒𝑝), episodic (_𝑒𝑝) or first-time visit (_1𝑠𝑡) to scale the generated in-
trinsic reward and combine two types of exploration degrees. Interpretation as

in Table 4.2.

MN7S4 MN10S4 MN7S8 KS3R3 O2Dlh

COUNTS_𝑛𝑜𝑒𝑝 0.93 (0.86) 1.87 (1.78) > 30 > 30 > 50
COUNTS_𝑒𝑝 0.76 (0.56) 1.55 (1.47) 2.77 (2.56) 3.99 (2.00) 33.17 (29.79)
COUNTS_1𝑠𝑡 0.85 (0.48) > 20 1.64 (1.42) 1.97 (1.19) 45.26 (37.29)

RND_𝑛𝑜𝑒𝑝 3.83 (3.78) 7.84 (7.79) > 30 10.83 (9.72) > 50
RND_𝑒𝑝 1.41 (0.96) 1.72 (1.34) 3.60 (3.30) 4.31 (2.63) 18.54 (14.07)
RND_1𝑠𝑡 1.18 (0.59) 1.36 (0.78) 1.97 (1.72) 4.78 (2.29) 21.19 (9.88)

RIDE_𝑛𝑜𝑒𝑝 4.71 (4.54) 5.29 (5.20) > 30 11.44 (9.63) 39.68 (35.15)
RIDE_𝑒𝑝 2.49 (1.82) 2.27 (2.14) 4.00 (3.68) 6.63 (4.39) 30.88 (25.87)
RIDE_1𝑠𝑡 3.17 (1.34) 3.27 (2.33) 1.95 (1.83) 5.13 (2.26) 32.14 (28.03)

ICM_𝑛𝑜𝑒𝑝 2.67 (2.55) > 20 > 30 8.02 (6.75) 34.04 (26.78)
ICM_𝑒𝑝 3.25 (1.26) 1.68 (1.59) > 30 5.32 (3.14) 19.05 (13.87)
ICM_1𝑠𝑡 1.56 (0.87) 1.90 (1.07) 2.11 (1.77) 4.72 (4.23) 20.74 (10.09)

To better understand the superiority of RIDE over ICM as shown in
(Raileanu & Rocktäschel, 2020), we also evaluate the performance of both
approaches under equal conditions, with (_𝑒𝑝, _1𝑠𝑡) and without (_𝑛𝑜𝑒𝑝)
scaling strategies. In this way, we can examine the actual improvement
between the two types of exploration bonus strategies. Surprisingly, ICM
gives better results in almost all the cases for the analyzed scenarios, yet
exhibiting a larger variance in several environments that lead to failure
(MN10S4 and MN7S8). The reason might reside in how RIDE encourages
the agent to perform actions that affect the environment, forcing the agent
to assess all possible actions, so that the entropy in the policy distribution
decays slowly. This hypothesis is buttressed by the results obtained in
MN7S4 and MN10S4: we recall that there are 3 useless actions in these
scenarios (pick up, drop and done), and RIDE performs clearly worse
(except for the _𝑒𝑝 case in MN7S4). In more complex scenarios, when
those actions are relevant for the task, performance gaps between RIDE
and ICM become narrower.

For the sake of completeness of the results discussed for RQ1 and RQ2,
Figure 4.5 shows the training convergence plots of COUNTS, RND and
RIDE for different weighting and scaling strategies.
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Figure 4.5: Convergence plots of the schemes reported in Tables 4.2 and 4.3.
Each column represents a Intrinsic Motivation type (COUNTS, RND and RIDE
from left to right); each row represents the different scenarios (MN7S4, MN10S4,
MN7S8, KS3R3 and O2Dlh, from top to bottom). All figures depict the average
extrinsic return as a function of the number of training steps/frames (in a scale
of 1𝑒7). For each scenario, optimal and suboptimal scores are highlighted with

horizontal black and brown lines, respectively.

4.4.3 RQ3: Is the choice of the neural network archi-
tecture crucial for the agent’s performance and
learning efficiency?

One of the most tedious parts when implementing an algorithm is to de-
termine which network architectures to use. First of all, when using an
actor-critic RL framework it is necessary to establish whether a single but
two-headed network or two different (and independent) networks will be
adopted for the actor and the critic modules. In addition, some IM ap-
proaches are based on neural networks to generate the intrinsic rewards.
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Herein we evaluate two of those solutions: RND and RIDE, evaluating
the contribution of different neural network architectures to the overall
performance of the agent. We use similar architectures to the ones used
in RIDE and RAPID7: (a) a two-headed shared actor-critic network built
upon convolutional and dense layers and (b) two independent MLP net-
works for the actor and the critic, respectively (Figure 4.4). Moreover,
we fix the RL algorithm (PPO) and detail the number of parameters and
time taken for the forward and backward passes in each network for an
informed comparison.

Table 4.4: Comparison of number of parameters and required forward and
backward passes between the ANN architectures described in Section 4.2.3 when

being used with different IM modules.

Lightweight (lw) Default

Parameters Time (ms) Parameters Time (ms)

Actor 14,087 - -
Critic 13,697 - -

Actor+Critic 27,784 - 29,896 -

Dictionary - 83.66 - 95.11
Total COUNTS 27,784 724.25 29,896 937.37

Embedding 13,632 - 19,392 -
RND 27,264 336.39 38,784 721.64

Total RND 55,048 986.13 68,937 1,408.42
Inverse 12,871 - 18,439 -
Forward 12,928 - 18,464 -

Embedding 13,632 - 19,392 -
RIDE 39,431 388.84 56,295 844.43

Total RIDE 67,215 1,177.75 86,191 1,791.70

First of all, Table 4.4 informs about these details of the neural archi-
tectures in use for COUNTS, RND and RIDE. It reports the differences in
terms of the number of parameters of each network, and the latency taken
by the sum of both forward and backward passes through those IM mod-
ules (we note that COUNTS uses a dictionary and not a neural network
for the reward generation). In addition, we summarize the total number
of parameters depending on the implemented IM module, together with
the actor-critic parameters. Referred to the total elapsed time, we report
the total amount of time required for a rollout collection. This elapsed
time takes into account both the forward and backward passes in the IM
modules, and just the forward pass across the actor-critic, among other
operations executed when collecting samples. Times are calculated when
executing the experiments over an Intel(R) Xeon(R) CPU E3-1505M v6
processor running at 3.00GHz.

7Even with different neural architectures and base RL algorithms, they successfully
solve the same tasks in MiniGrid with different sample-efficiency.
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On the other hand, Table 4.5 shows the performance of the agent when
configured with such different network configurations. It can be seen that
when reducing the number of parameters in both the actor-critic and the
IM modules (_𝑙𝑤_𝑡𝑜𝑡), the agent’s behavior degrades critically. This oc-
curs even with COUNTS, where the modification should have had less
impact as the generation of intrinsic rewards does not depend on a neural
network, but on a dictionary. When inspecting the performance of RIDE,
its performance gets worse in all cases except for MN7S4, where the ex-
ploration requirements are the lowest among all the analyzed scenarios.
As for RND, the full lightweight configuration of the networks makes the
tasks not solvable by the agent.

Table 4.5: Performance obtained with COUNTS, RND and RIDE when 1)
using the default network configurations, 2) a lightweight architecture for the
IM modules and keeping actor-critic with a default configuration (_𝑙𝑤_𝑖𝑚),
and 3) when both the IM and the actor-critic modules are implemented with
the lightweight networks (_𝑙𝑤_𝑡𝑜𝑡). Values in the cells represent the training
steps/frames (in a scale of 1𝑒6) when the optimal average extrinsic return is
achieved. Within brackets, the training steps when a suboptimal behavior is

accomplished.

MN7S4 MN10S4 MN7S8 KS3R3 O2Dlh

COUNTS 0.93 (0.86) 1.87 (1.78) > 30 > 30 > 50
COUNTS_𝑙𝑤_𝑖𝑚 0.93 (0.86) 1.87 (1.78) > 30 > 30 > 50
COUNTS_𝑙𝑤_𝑡𝑜𝑡 1.64 (1.48) 2.52 (2.36) > 30 (29.96) > 30 > 50

RND 3.86 (3.79) 7.84 (7.79) > 30 10.84 (9.72) > 50
RND_𝑙𝑤_𝑖𝑚 5.66 (5.44) 6.68 (6.61) > 30 10.97 (9.45) > 50
RND_𝑙𝑤_𝑡𝑜𝑡 > 20 > 20 > 30 > 30 > 50

RIDE 2.49 (1.82) 2.27 (2.14) 4.01 (3.38) 6.63 (4.39) 30.88 (25.87)
RIDE_𝑙𝑤_𝑖𝑚 1.63 (1.31) 1.75 (1.53) > 30 9.44 (5.08) > 50
RIDE_𝑙𝑤_𝑡𝑜𝑡 1.42 (1.05) > 20 > 30 8.00 (5.69) > 50

Going back again to Table 4.4, it can be seen that the number of pa-
rameters to be learned is mostly dependent on the IM networks under con-
sideration, whereas joining the actor and the critic into a single two-headed
network barely increases the dimensionality requirements8. Nevertheless,
the time required to perform a forward pass increases in approximately
25% when an unique actor-critic network is employed. Moreover, by us-
ing a single network, part of the parameters of the network are shared
between the actor and the critic, which can induce more instabilities but
also a faster learning since the model may share features between the actor
and the critic and require less samples to learn a given task. With this
in mind, we carry out an additional ablation study considering only the
reduction of parameters at IM modules, and maintaining the actor-critic
as a single two-head network.

Such results are provided in the second row of every group of re-
sults in Table 4.5 (_𝑙𝑤_𝑖𝑚). These outcomes evince that when using

8We note that the number of parameters is slightly increased, but they also differ in
the type of layers that are used in each network (the two-headed network uses CNNs
while the independent actor-critic only uses dense layers.



4.5. Conclusions 99

RND_𝑙𝑤_𝑖𝑚, slightly worse results are achieved with respect to RND
with the default network setup. However, its performance does not de-
grade dramatically down to failure as with RND_𝑙𝑤_𝑡𝑜𝑡. Hence, using
parameter sharing in a single actor-critic network yields a faster learn-
ing process and positively contributes for this case, inferring also that
the dimensionality reduction in IM modules is not that critical in RND.
Regarding RIDE_𝑙𝑤_𝑖𝑚, in some cases (MN7S4 and MN10S4) it attains
better results, whereas in MN7S8 and KS3R3 it suffers from a notorious
performance degradation (MN7S8 is not solved). It can also be observed
that the use of the single actor-critic network might be beneficial when
reducing the complexity of the IM network (_𝑙𝑤_𝑖𝑚), as it mitigates the
performance degradation in 3 out of 5 scenarios (still, MN7S8 and O2Dlh
are not solved). This clashes with the results for separated actor-critic
networks (_𝑙𝑤_𝑡𝑜𝑡), which fail to solve MN7S8, O2Dlh and MN10S4).
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Figure 4.6: Convergence plots of COUNTS and RIDE for some
scenarios when using the default network (blue), _𝑙𝑤_𝑖𝑚(green) and
_𝑙𝑤_𝑡𝑜𝑡(red). All the figures depict the average extrinsic return as a

function of the number of training frames.

Finally, we include Figure 4.6 in order to help the reader extract further
conclusions and gain insight about the behavior of the learning process.
This figure reveals that, in the two cases in which RIDE_𝑙𝑤_𝑖𝑚 failed
(namely, MN7S8 and O2Dlh), the agent learned to solve the task in two
out of the three experiments that were run (seeds). This underscores
the impact of using different actor-critic architectures. Moreover, with
the default actor-critic architecture and using the COUNTS approach, the
agent is also capable of solving the MN7S8 task in 2 out of the 3 runs. When
using COUNTS_𝑙𝑤_𝑡𝑜𝑡, the agent reaches suboptimal performance and
almost the optimal one within the frame budget.

4.5 Conclusions
In this chapter we have studied the actual impact of different design choices
when implementing RL agents augmented with IM mechanisms. More con-
cretely, we have evaluated multiple weighting strategies to grant different
importance when combining the intrinsic and extrinsic rewards (i.e., the
𝛽 coefficient). Moreover, we have analyzed the effect of applying distinct
degrees of exploration (to scale generated intrinsic rewards, 𝑟𝑖) along with
the influence of the complexity of the network architectures on the perfor-
mance of both actor-critic and IM modules. To conduct the study we have
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utilized environments belonging to the MiniGrid benchmark, so as to test
the quality of the considered schemes in a variety of tasks characterized
by a hard to very-hard demand of an exploratory behavior of the agent.

On one hand, we have shown that using a static intrinsic coefficient
might not be the best strategy if focusing on sample efficiency. Adaptive
decay strategies have proven to be promising, although they require a good
parameterization of the sliding window. The parameter decay approach,
in turn, has performed competently. However, the parameter values of the
decay function are more dependent on the task at hand than the previous
scheme, making this strategy more sensitive to the environment and the
task. This resounds what occurs with 𝜖-greedy strategies in some value-
based algorithms. The use of multiple agents (as in NGU), each featuring
a different exploration-exploitation balance, also suffers from the need for
a good parameterization, but it reports worse results.

On the other hand, the use of episode-level exploration along with
experiment-level strategies seem to be preferable when having environ-
ments with hard exploration requirements. It is not a clear winner nor a
preference between episodic counts and first visitation strategies, as their
performance is subject to the environment and the selected IM strategy.
However, both achieve significant performance gains. The adoption of any
of these strategies can be advised in future IM-related studies.

We have also analyzed the impact of the neural network architecture on
both the actor-critic and IM modules. Results have shown that reducing
the number of parameters in the IM modules deteriorates the performance
of the agent, making it fail in some challenging scenarios which are fea-
sible for the complex neural configuration. What is more, when reducing
the dimensions of the IM network, it is preferable to use a shared two-
headed actor-critic as it provides better results, although it is not clear
whether those results are due to the use of a single neural network (and
the underlying parameter sharing and common feature space for the actor
and the critic), or instead to the adoption of different neural processing
architectures (e.g. CNNs). Further research is necessary in this direction.

All in all, the evaluation study presented in this chapter can serve as a
reference for the community in the implementation of intrinsic motivation
strategies to address (1) tasks with sparse rewards; or (2) hard exploration
scenarios where classic exploration techniques do not suffice.
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Chapter 5

Towards Improving
Exploration in
Self-Imitation Learning
using Intrinsic Motivation

The previous chapter has analyzed the impact of using different design
factors over rewards generated with IM techniques. We have evaluated
those algorithms not in singleton but in procedurally generated environ-
ments, where the generalization capabilities of the agent are essential for
it to exhibit an overall good performance. Continuing with the idea of
improving the sample efficiency over hard exploration PCG environments,
in this chapter we further examine the use of Imitation Learning (IL) for
this purpose.

Over years the use of IL and Transfer Learning has been widely adopted
to accelerate the learning process and to reduce the amount of required
training data (Hua et al., 2021; Nair et al., 2021; Wu et al., 2022). The
strategy of using expert demonstrations has been also adopted to tackle
exploration issues in hard exploration scenarios with sparse rewards, by
either initializing a buffer with good behavior trajectories (Hester et al.,
2017; Vecerik et al., 2018) or by generating a curriculum-style learning
and re-initializing the agent smartly (Aytar et al., 2018; Salimans & Chen,
2018).

Unfortunately, such expert demonstrations are not always available in
practice. This motivated the idea of storing trajectories – self-collected
by the agent– featuring good exploration properties for a later replay,
forging what is now known as self-Imitation Learning (self-IL1). Despite
its effectiveness to alleviate the need for expert demonstrations, self-IL
methods are highly sensitive to the early discovery of sufficiently good
trajectories, which can be challenging in hard exploration scenarios.

1There is an approach named directly as SIL. Thus, for the sake of clarity, in this
chapter we refer as self-IL to the family of algorithm in which the agent collects the
experiences by itself for augmenting its sample efficiency, whereas SIL will denote the
specific approach presented in (Oh et al., 2018).
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In contrast, the Thesis has so far proven that exploration problems can
be addressed with IM, so that the agent is encouraged to interact with
the environment based on its inner curiosity. Therefore, we propose to
use both methods together: IM to foster the exploration directly and ease
the probability of finding out good trajectories, and self-IL to effectively
replay and prioritize previously seen experiences. Our hypothesis is that,
by combining both approaches, we can boost generalizable knowledge by
reinforcing those trajectories that are attractive in terms of the main ob-
jective (i.e., task completion), as well as those experiences that induce
novelty and that potentially lead to optimal behaviors.

Although the idea of combining both methods is not new (Ning et al.,
2021; Oh et al., 2018; Sovrano, 2019), this chapter shows, for the first
time, how to use such methods effectively in PCG environments where the
need for generalization may not be easy to achieve by existing off-the-shelf
self-IL methods.

5.1 Related Work

Imitation Learning (IL)
Experience replay buffers have been employed to stabilize the learning in
RL when using ANN (Mnih et al., 2015). Instead of just focusing on the
whole history of experiences, different works have proposed to prioritize
those samples based on the TD-error (Schaul et al., 2016), taking into
account trajectories (as a whole) with large extrinsic returns (Zha, Lai,
et al., 2021), and even learning an additional policy to optimize the data
to be sampled (Zha et al., 2019). The intuition behind these approaches
is to sample the most promising experiences more frequently, potentially
enhancing and expediting the overall knowledge learned by the agent.

Similarly, IL methods have resorted to expert demonstrations to accel-
erate the learning stage by forcing the agent to learn the inherent decision
making embedded in those examples (Hester et al., 2017; Vecerik et al.,
2018). However, collecting expert demonstrations is not easy to achieve,
and most of the time the agent is fed with suboptimal demonstrations that
hinder the learning of an optimal policy. Several workarounds have been
explored to circumvent these weaknesses, such as resetting the states and
estimating the advantage (Nair et al., 2018; Ning & Huang, 2020), encour-
aging more exploration that subsequently updates the buffer content (Zhu,
Lin, Dai, et al., 2020), or adopting maximum entropy RL concepts (Gao
et al., 2019; Reddy et al., 2019) from soft-Q-learning (Haarnoja et al.,
2017).

When lacking an expert capable of providing examples, self-IL was
proposed so that an agent, without any kind of prior knowledge, is re-
sponsible for collecting and replay again those that can make the agent
learn faster by the virtue of exhibiting good behaviors (Abolafia et al.,
2018; Z. Chen & Lin, 2020; Guo et al., 2018; Oh et al., 2018; Zha, Lai, et
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al., 2021). Interestingly, self-IL approaches aim to deal with exploration-
exploitation dilemma by encouraging the agent to exploit the information
that has not been previously learned, so as to achieve a better exploration
strategy and ultimately, a near-optimal performance. Despite their proven
efficiency at hard exploration environments (Ecoffet et al., 2021; Guo et
al., 2021; Oh et al., 2018), these methods tend to struggle in tasks char-
acterized by very sparse rewards due to their reduced capability to find
good trajectories in the firsts stages of the training by naive exploration
(Pshikhachev et al., 2021). This can be the reason why self-IL solutions
have so far been evaluated mainly over non-procedurally-generated envi-
ronments, where the generalization capabilities of the agent are not tested
since the state/observation space does not change from episode to episode
(Ecoffet et al., 2021; Guo et al., 2021; Oh et al., 2018).

Alternatively, new approaches like Ranking the Episodes (RAPID)
(Zha, Ma, et al., 2021) have emerged to deal with procedurally-generated
environments by ranking the episodes not only in terms of their extrinsic re-
wards, but also by considering exploration scores related to the level/episode.
As a result of this multi-criteria ranking, the agent can effectively mimic
the suitable experiences and overcome the exploration needs of very sparse
rewards tasks. Other self-IL methods take into account only the extrinsic
scores for their prioritization (Gangwani et al., 2019; Guo et al., 2018; Oh
et al., 2018), which might lead to insufficient exploration in sparse reward
scenarios.

Intrinsic Motivation (IM)
As we have broadly discussed so far in the dissertation, IM is one of the
mechanisms that can be used to enhance the exploration and thereby
achieve a good overall performance when facing hard exploration sce-
narios. Some of the IM methods were not originally designed to tackle
procedurally-generated environments, such as COUNTS (Bellemare et al.,
2016), RND (Burda, Edwards, Storkey, et al., 2018) or ICM (Pathak et al.,
2017). More recently, new approaches have emerged with the aim to learn
more robust and generalized knowledge: this is the case of BeBold/NovelD
(T. Zhang et al., 2020, 2022), Exploration via Maximizing Deviation from
Explored Regions (MADE) (T. Zhang et al., 2021), RIDE (Raileanu &
Rocktäschel, 2020) or Adversarially Guided Actor-Critic (AGAC) (Flet-
Berliac et al., 2021). One of the common aspects to these methods is that
the produced rewards are commonly used with on-policy algorithms (i.e
A2C/A3C, PPO, IMPALA), which discard the collected experiences after
their respective optimization updates. This aspect reduces the potential
benefits of IM methods in what refers to sample-efficiency, even more so
when considering the disentanglement/derailment problem (Ecoffet et al.,
2021) explained in Section 3.7.2 and catastrophic forgetting due to the
decay of the intrinsic reward values (Huang & Tsai, 2022).
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Combined IL+IM approaches
The idea of combining IL and IM is not new. Previously some works have
analyzed if they are complimentary to each other. However, most previous
studies have considered singleton environments where the generalization
capabilities are not assessed.

In this vein, SIL (Oh et al., 2018) used count-based intrinsic rewards
to augment the exploration capabilities in singleton Apple-Gold mazes.
Similarly, Diverse Trajectory-conditioned Self-Imitation Learning (DTSIL)
(Guo et al., 2021) employed the same environment and evaluated its gener-
alization ability by training over 12 random mazes and testing the trained
agent over 6 unseen instances where it requires a hierarchical policy (no IM
technique is considered). Nevertheless, they combined DTSIL and IM to
analyze the exploration improvements over some Atari’s (non-procedurally-
generated) environments. However, they did not analyze the generalization
concerns targeted in this chapter. The approach presented in (Sovrano,
2019) was also tested in Atari – more concretely in Montezuma, Solaris
and Venture environments – in which different prioritizing strategies were
studied with Prioritized Experience Replay (PER) (Schaul et al., 2016)
and IM methods. More recently, (Ning et al., 2021) evaluated its solution
with the aforementioned SIL and BeBold approaches in relatively "easy"
sparse MiniGrid environments (so does it RAPID (Zha, Ma, et al., 2021)
too). Remarkably, such works were not tested in more challenging – hard
– environments as in other related IM works (Flet-Berliac et al., 2021; T.
Zhang et al., 2020). At this point, we note that hard exploration refers
to tasks that are more complicated to be solved than others within the
same benchmark. For instance, in MiniGrid (Chevalier-Boisvert et al.,
2018) hard exploration can refer to the use of more rooms in MultiRoom
environments; a larger room size in KeyCorridor levels; or more complex
ObstructedMaze scenarios with increasing complexity. In these tasks the
generalization and learning requirements are of utmost importance, and
call for better exploration strategies during the agent’s learning process.

Contribution
This chapter formally proposes the use of a self-IL strategy together with
IM, showing that this combination succeeds at solving hard exploration en-
vironments. The proposal herein presented builds upon RAPID (Zha, Ma,
et al., 2021), in which its ranking strategy for past stored episodes is com-
bined with intrinsic motivation mechanisms. We advance over the state
of the art by showing that previous self-IL approaches did not consider
(Ning et al., 2021) or failed to solve (Zha, Ma, et al., 2021) procedurally-
generated environments with hard exploration requirements. Our exper-
iments in PCG scenarios with different learning challenges validate this
claim, and prove that the combination of RAPID and IM methods can
meet the exploration requirements needed to solve hard exploration tasks
where generalization is mandatory for their successful completion.
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5.2 Synergistic Exploration with Self-Imitation
Learning and Intrinsic Motivation through
Ranked Episodes

Self-IL methods allow the agent to reproduce self-collected past experi-
ences towards inducing a better explorative behavior in its learning process
(Oh et al., 2018). The core idea is to replay experiences that potentially
improve the performance of the agent, even though that information was
not persisted in the agent because experiences were not exploited enough.
This makes the agent explore more effectively. This behavior is emphasized
when dealing with on-policy algorithms, where samples are discarded after
their optimization step. However, self-IL methods are highly sensitive to
the discovery of good samples, and depend on the capability of the agent
to find such experiences on their own (e.g. by using stochastic policies).
This might not be sufficient in settings with very sparse rewards, where
the probability of achieving a non-zero rewarded episode can be substan-
tially low. This is the reason why IM, combined with self-IL, can imprint
the explorative behavior needed for collecting good episodes and learning
therefrom.

In what follows we describe a self-IL and a IM approach, namely, RAPID
(Section 5.2.1) and BeBold (Section 5.2.2) respectively, which lie at the
heart of the framework presented in this chapter.

5.2.1 Ranking the Episodes
RAPID (Zha, Ma, et al., 2021) was proposed to endow an agent with a
general criterion to detect good exploration behaviors and reproduce them
with more frequency. To this end, RAPID treats episode’s experiences as
a whole, and assigns episodic scores – extrinsic reward (𝑆𝑒𝑥𝑡) and local
score (𝑆𝑙𝑜𝑐𝑎𝑙) – to each of those experiences. These scores are combined
with long-term views – global score (𝑆𝑔𝑙𝑜𝑏𝑎𝑙) – for their posterior ranking.
Figure 5.1 depicts schematically this ranking process.

Local score

Global score

Extrinsic reward

∑ Episodic
scores

...

Ranking
buffer

Agent

Interaction score=0.93

score=0.91

score=0.85

score=0.63

RL

Imitation learning

update

Environment Episodes

update

Figure 5.1: RAPID (Zha, Ma, et al., 2021) overview.
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The intuition behind this design arises from the way how humans judge
an agent’s performance: instead of focusing on how good/bad an agent per-
formed in a specific time step (state-level), we as humans tend to analyze
how it did in the whole problem/task (episode-level). With this purpose,
each episode has an overall score calculated as a weighted sum of three
distinct scores:

𝑆 = 𝑤0 · 𝑆𝑒𝑥𝑡 + 𝑤1 · 𝑆𝑙𝑜𝑐𝑎𝑙 + 𝑤2 · 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 (5.1)

where 𝑆𝑒𝑥𝑡 is the total extrinsic reward of the episode; 𝑆𝑙𝑜𝑐𝑎𝑙 encourages
the exploration inside the episode by maximizing the diversity across vis-
ited states; and 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 models a long-term exploration view by using the
average curiosity of the states inside the episode. The latter is computed
in practice by means of a visitation count strategy that considers not only
the current episode, but the whole training process. Based on these scores,
the most promising episodes are kept in the replay buffer, so that highly
ranked episodes are replayed and ultimately imitated by the agent to en-
hance its exploration.

5.2.2 Beyond the Boundary of Explored Regions
BeBold (Zha, Ma, et al., 2021) is an IM method that circumvents the
short-sightedness and detachment problems by issuing a reward signal (𝑟 𝑖𝑡 )
whenever the novelty of the next state (𝑠𝑡+1) is higher than that of the
current one (𝑠𝑡). As previously stated in Chapter 4, more concretely in
Section 4.1, it can be mathematically formalized according to:

𝑟 𝑖𝑡 = max

(
1

𝑁 (𝑠𝑡+1)
− 1

𝑁 (𝑠𝑡 )
, 0

)
(5.2)

where 𝑁 (𝑠𝑡 ) denotes the number of times the agent has visited state 𝑠𝑡
during the training phase. An interesting property of BeBold is that it
minimizes the undesired behavior of the agent going back and forth by
imposing the reception of a (intrinsic) reward only the first time a state is
encountered in an episode.

5.2.3 Proposed Framework
As stated in (Levine, 2021), IM-based exploration methods provide an
auxiliary objective to collect more diverse data rather than learning to
utilize it. Our proposed framework aims to exploit efficiently the diverse
data collected during the agent’s interaction (used in the on-policy RL
updates). In doing so, it goes one step further by bolstering its knowledge
with an off-policy/supervised loss, which replays and prioritizes the most
promising episodes from which to learn.

Bearing this in mind, our framework first generates an intrinsic reward
(𝑟 𝑖𝑡) at each step as in Expression (4.5). This intrinsic reward is weighted
by an intrinsic coefficient (𝛽) before being added to the extrinsic reward
(𝑟𝑒𝑡 ) given by the environment, yielding an overall reward 𝑟𝑡 = 𝑟𝑒𝑡 + 𝛽𝑟 𝑖𝑡 .
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Figure 5.2: Hypothetical RL environment demonstrating how exploration
would be carried out when using RND (or any other IM method) when compared
to BeBold. As shown in this plot, BeBold continuously encourages pushing to-
wards the frontier of exploration. Image belonging to (T. Zhang et al., 2020)

paper.

This overall reward is then used by the RL algorithm to maximize the
discounted return given in Expression (2.3). Then, the most promising
experience tuples –{𝑠, 𝑎}– are stored in a buffer of limited size. The crite-
rion to retain episodes is driven by (1) an extrinsic component (non-biased
Monte Carlo extrinsic return, 𝐺𝑡 =

∑𝑇
𝑡=0 𝑟

𝑒
𝑡 ) and also by (2) scores that

foster the exploration behavior, i.e., the local and global scores defined in
RAPID as per Expression (5.1). After a given number of steps, a batch of
experiences is sampled from the buffer and the policy is enforced to match
previously executed actions by Behavioral Cloning (BC) as in Expression
(2.26). We note that other IL techniques could be used instead.

With this proposal, the RL update will be fed with a intrinsic reward
that promotes exploration and augments the probability of sampling good
episodes for the ranking buffer. At the same time, the buffer stores pre-
vious highly-ranked episodes to keep improving the agent even when the
on-policy updates are not enough and when its intrinsic exploration bonus
vanishes. Likewise, both losses will foster exploration, while steadily main-
taining an exploitative learning focus on the given task.

5.3 Experimental Setup
This section describes the considered environments and the baselines for
comparison. The selected hyperparameter values and neural network ar-
chitectures are also described.
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As in previous chapters, we report the mean and standard deviation of
the average return computed over the past 100 episodes for each experi-
ment, performing 3 different runs (with different seeds) to account for the
statistical variability of the results. For transparency and reproducibility
of the experiments later discussed, the code is available in a public GitHub
repository: https://github.com/aklein1995/exploration_sil_im.

5.3.1 Environments
We evaluate our proposed approach over MiniGrid (Chevalier-Boisvert et
al., 2018), as explained in Chapter 4 (Section 4.3.1). Specifically, we eval-
uate the framework over the following scenarios (for further information
about the environments and their tasks, please refer to Chevalier-Boisvert
et al., 2018): MultiRoom (MN7S8 and MN12S10), KeyCorridor (KS4R3) and
ObstructedMaze (O2Dlh). The criterion to select these environments relies
on their difficulty as verified in (Zha, Ma, et al., 2021), where MN12S10 and
KS4R3 were identified as the most difficult scenarios under analysis: the
first was solved by RAPID and RIDE, while the latter remained unsolved
for the given train steps by any of the baselines under consideration. In the
case of (Ning et al., 2021), where the performance of SIL+BeBold was an-
alyzed in MiniGrid, the most difficult environments were KS3R3 and MN6S,
which are more easily solvable than KS4R3 and MN12S10 (they use smaller
rooms and less number of rooms respectively). Additionally, we include
another very hard exploration scenario, not considered in the aforemen-
tioned works, which possesses different characteristics and requirements
than the previous environments: O2Dlh.

5.3.2 Baselines and Hyperparameters
We select RAPID (Zha, Ma, et al., 2021) and SIL (Oh et al., 2018) as
self-IL baseline methods, and BeBold (T. Zhang et al., 2020) as the IM.
All strategies use PPO as their core RL algorithm, which uses a number
of steps equal to 128 and 4 minibatches of size 32 for training (one unique
agent). Each train step comprises 4 epochs, where optimization updates
are carried out with a learning rate of 10−4, a clipping factor of 𝜖 = 0.2,
𝛾 = 0.99 and _ = 0.95 for the advantages calculation with GAE as per Ex-
pression (2.18). Furthermore, the loss function (recall Expression (2.22))
is weighted by a entropy coefficient of 𝑐2 = 0.01 and a value coefficient of
𝑐1 = 0.5. Moreover, we employ 2 independent fully-connected layers for
the actor and the critic – each with 64 neurons – for all the experiments
and baselines.

Specific parameters of RAPID are configured as in its original imple-
mentation reported in the paper where it was first presented: a buffer size
of D = 104 experiences, batch size of 256 and 5 off-policy updates after
every episode completion. Moreover, the weights to rank the replay buffer
episodes – Expression (5.1) – are set to 𝑤0 = 1, 𝑤1 = 0.1 and 𝑤2 = 0.001
according to the sensitivity analysis shown in the original approach (Zha,
Ma, et al., 2021).

https://github.com/aklein1995/exploration_sil_im
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In the case of SIL, for the sake of fairness with respect to RAPID the
same replay buffer size (D = 104) and the same off-policy update ratio
(5) are used. Moreover, a SIL loss weight of 0.1 and a SIL value loss
weight of 𝛽𝑠𝑖𝑙 = 0.01 are set. Regarding PER (Schaul et al., 2016), we
select a prioritization exponent 𝛼𝑃𝐸𝑅 = 0.6 and a bias correction factor
𝛽𝑃𝐸𝑅 = 0.1. All these parameter values were chosen according to the
supplementary material provided in (Oh et al., 2018)2, and taking into
account that we aim to solve hard exploration environments. On the other
hand, the intrinsic reward when using BeBold is computed as described
in Section 5.2.2, calculating the novelty with visitations counts (taking
advantage of the discrete state space) and using an intrinsic coefficient of
𝛽 = 0.005. The value of this coefficient (together with that of the entropy
coefficient, 𝑐2) was tailored based on the results of a grid search carried
out over scenario MN7S8 – whose results are shown in Figure 5.3 – while
keeping the values for other parameters fixed (e.g. the RAPID weight
values above referred, namely, 𝑤0, 𝑤1 and 𝑤2).

Figure 5.3: Results of a grid search over the MN7S8 scenario to determine
𝛽 (intrinsic motivation coefficient) and 𝑐2 (entropy coefficient). (Left) Returns
obtained after 3 ·106 training steps; (Right) Number of steps (in scale of millions,
106) required for the agent to achieve an optimal average return (≈ 0.65) for the

first time.

5.4 Results and Analysis
This section presents the results of the proposed approach in PCG envi-
ronments, examining them in depth from different angles:

5.4.1 Performance of self-IL and IM Techniques:
Independent versus Combined

To begin with, Figure 5.4 analyzes the actual impact on the performance
of the agent when using IM and self-IL techniques, either independently or
jointly. We observe that BeBold (light blue curve) shows a good behavior
only in 2 out of the 4 environments under consideration (namely, MN7S8
and KS4R3). However, it completely fails when dealing with the challenging

2http://proceedings.mlr.press/v80/oh18b/oh18b-supp.pdf

http://proceedings.mlr.press/v80/oh18b/oh18b-supp.pdf
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scenarios of MultiRoom and ObstructedMaze series (i.e., MN12S10 and
O2Dlh). When using just SIL (green curve), it performs poorly in all
scenarios. We here recall what we stated at the beginning of this chapter:
other works (e.g., (Ning et al., 2021)) have analyzed the complementarity
of SIL and IM, but over problems with sparse rewards that are not so
complex as the ones considered in this chapter.

When it comes to RAPID, it is capable of solving MultiRoom environ-
ments, but struggles over KS4R3 and O2Dlh (as expected). This latter en-
vironments are assumed to have larger state spaces and an increasing diffi-
culty from the perspective of exploration. On top of the self-IL approaches,
BeBold fosters the exploration and, consequently, renders some actionable
learning when using SIL (pink curve). However, results are worse than
those obtained when using BeBold in isolation (light blue). This suggests
that the SIL prioritization mechanisms are not working properly. Con-
trarily, results are outstanding when combined with RAPID (light green
curve), reducing drastically the number of samples to achieve the same per-
formance level, and attaining a better overall learning when compared to
using RAPID in its naive version (blue plot). Besides these improvements,
it is interesting to notice that the benefits of using IM remain even when
the latter is not enough to learn in isolation: BeBold does not capture any
knowledge over MN12S10 and O2Dlh, but it augments the capabilities of
RAPID when used in those scenarios.

5.4.2 Evaluation of RAPID with Various IM Strate-
gies

A key aspect to study empirically is the capacity of IM to enhance the
agent’s exploration while learning. Therefore, it is of utmost importance to
assess the sensitivity of the proposed self-IL+IM combination with respect
to the selection of the IM approach. With that in mind, and considering
that the current implementation is based on BeBold’s tabular version (see
Section 5.2.2), we now evaluate the agent’s performance with other two
visitation counts strategies: counts (i.e. 𝑟 𝑖𝑡 = 1/

√︁
𝑁 (𝑠𝑡+1)) and counts1st,

which is the same as counts but with episodic restriction. This second
set of experiments allows comparing very similar IM strategies that have
proven to yield different results due to their intrinsic reward generation
scheme (Andres et al., 2022; T. Zhang et al., 2020).

The results provided in Figure 5.5 suggest that there is a high re-
lationship between what the agent can learn with IM (without self-IL)
and what it actually does by combining them altogether. This can be
regarded as a measure of the effectiveness of IM methods when imple-
mented in isolation, where their base functionality of exploring is not
wide-spread with the self-IL counterpart. At this point, by just inspect-
ing the results reported in (Andres et al., 2022; T. Zhang et al., 2020), it
is clear that counts is the worst method, followed by counts1st and Be-
Bold, 𝑐𝑜𝑢𝑛𝑡𝑠 < 𝑐𝑜𝑢𝑛𝑡𝑠1𝑠𝑡 < 𝐵𝑒𝐵𝑜𝑙𝑑. Differences between counts1st and
BeBold are unclear: most of the contribution seems to be related to the
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Figure 5.4: Results over multiple procedurally generated hard exploration en-
vironments in MiniGrid. Both RAPID and SIL always achieve better results

when combined with BeBold.

episodic restriction part. However, going beyond the boundaries of already
explored regions seems to be promising as well, as it yields better results
when compared to RND with episodic restriction (T. Zhang et al., 2020).

The same comparative performance between IM methods holds when
combining them with the ranking replay strategy, where RAPID+counts
(red curve) performs slightly better or equal to RAPID in isolation (blue
plot), yet being the worst out of the three IM options. Moreover, the choice
of one IM strategy over another can actually deteriorate the performance of
the agent, as observed in KS4R3. In this particular case, the aforementioned
RAPID+counts(red curve) is worse than using RAPID without IM (blue
curve). Nevertheless, when selecting demonstrably good IM strategies, the
agent combining self-IL+IM – both RAPID+counts1st (yellow curve) and
RAPID+BeBold (light green curve) – improves its performance even when
it was not able to do it with just the IM strategy.
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Figure 5.5: Performance comparison of RAPID when combined with different
IM methods, namely, counts, counts1st and BeBold.

5.4.3 Exploration-exploitation Parameters Evolution
in self-IL+IM

By introducing IM into the on-policy loss, the agent has to deal with multi-
ple objectives (exploration-exploitation) in various stages: 1) on-policy, by
balancing the extrinsic and intrinsic rewards; and 2) off-policy, by keep-
ing in the buffer the most promising experiences parameterized by the
extrinsic, local and global scores.

In this regard, Figure 5.6 depicts the evolution of some representative
values concerning how the exploration is carried out during an experiment.
Initially 𝐺𝑖 > 𝐺𝑒(i.e., the episodic discounted intrinsic and extrinsic re-
turns calculated as described in Expression 2.3), which evinces that the
agent learning process is guided by IM in the absence of extrinsic sig-
nals from the environment. Eventually, extrinsic feedback is obtained and
gains more importance for the agent’s ability to complete the task. Sim-
ilarly, the impact of the extrinsic score in Expression (5.1) – 𝑤0 · 𝑆𝑒𝑥𝑡 ,
which promotes the exploitation of highly extrinsic rewarded episodes –
quickly increases, so that those potential trajectories are more often re-
played. However, the selection criterion is also subject to the local score
– 𝑤1 · 𝑆𝑙𝑜𝑐𝑎𝑙, which aims to maximize the diversity of observations inside
the episode – that also increases until reaching its maximum value of 0.1
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Figure 5.6: Summary of the evolution of different critical values that impact
the learning for a given seed in all the scenarios, using RAPID+BeBold. Plots
in the first row denote the average extrinsic reward. Plots in the second row
depict the difference between the discounted extrinsic (𝐺𝑒𝑥𝑡 ≡ 𝐺𝑒) and intrinsic
(𝐺𝑖𝑛𝑡 ≡ 𝐺𝑖) returns used in the on-policy update (RL-loss). Figures in the third
row show the influence of each component/score of the ranking buffer (𝑤0, 𝑤1

and 𝑤2) when sampling from its collected experiences. Finally, plots in the last
row indicate the average number of off-policy updates per 10 on-policy updates
(ratio of updates, b). All depicted data correspond to the average value in the

given time slots.

(which is subject to 𝑚𝑎𝑥(𝑆𝑙𝑜𝑐𝑎𝑙) = 1 and 𝑤1 = 0.1). To a lower extent,
the global score (𝑤2 · 𝑆𝑔𝑙𝑜𝑏𝑎𝑙) also plays its role in the selection criterion,
which can be helpful during the initial learning stages, when there are no
success episodes to complete the task, and also to untie when two episodes
require the same amount of steps for the completion of the task. However,
its relative importance is lower in comparison to the other scores due to
the selected value of the 𝑤2 parameter (0.001)3.

Frequency of Updates

We now proceed by exposing how the ratio b between the number of on-
policy and off-policy updates changes over the curse of training. In what
follows b is represented as on-policy:off-policy ratio: a b value of 1:2 will
thus imply that the off-policy updates are executed 2 times more frequently
than the on-policy ones.

3Recall that the criteria to select such weight values (𝑤0, 𝑤1, 𝑤2) is due to reported
results in (Zha, Ma, et al., 2021).
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As was explained in Section 2.1.2, an episode can be larger or shorter
than a trajectory. On-policy optimization steps are executed once a tra-
jectory4 has been finished, and it remains fixed during the whole training.
By contrast, off-policy updates are applied once an episode finishes, which
varies depending on the maximum steps per episode configured for each
environment, and also on the optimality of the agent’s policy at that mo-
ment. The decision to execute off-policy updates at the end of the episode
was taken from the original paper where RAPID was proposed (Zha, Ma,
et al., 2021).

Such ratio b can change from 1:1 to 1:3 in MultiRoom environments,
and more dramatically in other scenarios like KS4R3, which initially implies
a ratio of 4:1 and can evolve up to a 4:13 relation. In words, the off-policy
loss can undergo a modification in its schedule that makes it update more
than 10× at its initial frequency (Table 5.1). Such a balance has a critical
importance in the agent’s learning process, as it would turn to optimize
what is stored in the buffer rather than what is actually experiencing (or
vice versa). This generates in turn a big difference between both meth-
ods. In fact, in IL this ratio is usually balanced by either using a weight
when combining both losses or by carefully tailoring the frequency update
(Hester et al., 2017; Sovrano, 2019).

Table 5.1: On-policy versus off-policy ratios that can be achieved in each
scenario when the supervised loss is backpropagated to when the episode finishes.
Each scenario has a different maximum number of steps (row 2) and also different
expected number of optimal steps (row 3) (we include an estimation of the
optimal steps as it differs from seed to seed). We show the expected initial ratios
(b) when the agent cannot solve the task (rows 4 & 6) and when it accomplishes
the task via an estimated optimal policy (rows 5 & 7). We also report those

values when the rollout size is 𝑇 = 128 (rows 4-5) and 𝑇 = 2048 (rows 6-7).

MN7S8 MN12S10 KS4R3 O2Dlh

Max steps per episode 140 240 480 576

Expected optimum steps 50 105 37 32

𝑇 = 128
Initial 1:1 2:1 4:1 5:1
Final 1:3 2:2 4:13 5:18

𝑇 = 2048
Initial 1:14 2:17 4:17 5:18
Final 1:40 2:40 4:216 5:320

5.4.4 Scheduling self-IL Updates
To shed further light on the importance of the aforementioned ratio b, we
now fix the off-policy loss to be constant and subject directly to the on-
policy updates. We then analyze how the performance varies under several

4Here we refer as a trajectory to the experiences collected on-policy with a fixed
amount of interactions, whereas an episode’s length might vary depending the environ-
ment and the learned policy.
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values for this ratio.

Figure 5.7 summarizes the results obtained for this study. In the fam-
ily of MultiRoom scenarios, the agent is very sensitive to a reduction of
the frequency of the off-policy updates, which can eventually make the
agent fail when increasing their complexity (e.g. 10:1 in MN12S10). Con-
trarily, in KS4R3 the original adopted schema (blue curve) with a ratio
of 4:1 performs much better than a more frequent update (green plot) of
the off-policy part (1:1). This fact is also observed when using a more
conservative ratio of 10:1 (red result), suggesting that, although a higher
off-policy update frequency can be beneficial at initial stages to bootstrap
the learning process in hard exploration tasks, it can eventually degrade
the learned knowledge in the long term. These conclusions can also be in-
ferred when using BeBold, but with a better sample-efficiency and optimal
solutions. Similar conclusions hold when analyzing O2Dlh.
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Figure 5.7: Results over multiple procedurally generated MiniGrid hard ex-
ploration environments using different ratios b between on-policy (PPO) and
off-policy (RAPID) updates. The default RAPID approach has a dynamic up-
date ratio, by which it executes an optimization step every time an episode

finishes (see Table 5.1).
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5.4.5 Addressing Inter-episode Variance
So far, the selected value of the ratio b seems to be decisive for the suc-
cess and sample efficiency of the training process. However, the obtained
outcomes are very noisy and barely close to optimal results.

We hypothesize that this can be due to one of the two losses being
unstable. While the seminal work presenting RAPID used PPO with a
rollout size5 of 𝑇 = 128, other similar works considering the same environ-
ment use a larger time horizon equal to 𝑇 = 2048, with better and more
stable results (Andres et al., 2022; Flet-Berliac et al., 2021). In PCG en-
vironments each level is configured differently depending on the selected
seed. Consequently, by training the agent with less episodes in a single
update, it might get biased to learn specific features present in that subset
of episodes, rather than getting the required high-level skills to solve the
desired task in the whole possible episode/level distribution. Hence, the
increase of the rollout size implies that the agent will be trained – in the
on-policy update – with a larger set of episodes (see Table 5.1 to check
episode lengths). This forces the algorithm to extract generalizable knowl-
edge in this wider set of slightly different environments, avoiding a by-heart
learning. Furthermore, this also reduces the variance of the on-policy up-
dates through the ANN, as the minibatch size will be larger. However, the
agent will perform less optimization steps during the training process for
the same amount of steps/frames. On this basis, the following question
arises:
How does the use of larger rollout size impact on the on-policy update
regarding the performance and the stabilization of the learned knowledge?

The answer can be found by analyzing Figure 5.8. The on-policy update
is substantially improved, as can be told from the performance of BeBold
(light blue) without being corrupted by off-policy updates. Indeed, this IM
approach is able to solve all the environments with the expected optimal
steps, obtaining the best result in both KS4R3 and O2Dlh. On the contrary,
RAPID (blue) performs worse, and its contribution when combined with
BeBold (light green) is also not as good as it has been observed in the
previous analysis. The reason for these bad results also connects to what
we have previously highlighted: the ratio b.

By increasing the rollout size (𝑇) and by making the off-policy up-
dates be subject to the episode completion, the relevance of the off-policy
loss in the agent’s learning process grows up to be 14×, 8×, 4× and 4×
more frequent than the on-policy counterpart in MN7S8, MN12S10, KS4R3
and O2Dlh, respectively, just at the start of the training process (Table
5.1). As we have already observed in Figure 5.7, these ratios do not nec-
essarily guarantee a better learning process. Thus, when adjusting the

5The rollout size is directly related with the number and minibatch size. The increase
of the first implies that the minibatch size is also augmented (for the same number of
minibatches). For instance, using 𝑇 = 1024 and 4 minibatches means to have 256-sized
minibatches, whereas with 𝑇 = 128 and using the same number of minibatches this size
decreases to 32 units.



5.4. Results and Analysis 117

BeBold (T=2048) RAPID (T=2048) RAPID+BeBold (T=2048)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps ×107

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

E
xt

ri
n

si
c

R
et

u
rn

MN7S8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Timesteps ×107

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

E
xt

ri
n

si
c

R
et

u
rn

MN12S10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Timesteps ×107

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

E
xt

ri
n

si
c

R
et

u
rn

KS4R3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Timesteps ×107

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

E
xt

ri
n

si
c

R
et

u
rn

O2Dlh

Figure 5.8: Results on multiple hard exploration procedurally-generated envi-
ronments in MiniGrid when increasing the time horizon up to 2048 in on-policy
(RL-loss) updates. Off-policy (supervised/imitation) updates remain with fixed

batch size of 256.

ratio again with the new rollout size, the performance of both RAPID and
RAPID+BeBold drastically changes, as informed in Figure 5.9. A better
sample-efficiency can be noted when using a more conservative ratio (1:1,
green and pink curves) in both KS4R3 and O2Dlh with respect to the de-
fault episode termination setting (blue and light green results). This also
occurs when decreasing the off-policy updates down to a 10:1 ratio (red
and yellow curves). In this case, the convergence speed can be affected,
although it manages to achieve the optimal policy in less steps (the 1:1
ratio struggles more to finally achieve it). In contrast, when applying those
updates at the end of the episode, which corresponds with approximately
a 1:4 ratio initially in KS4R3 and O2Dlh (Table 5.1), results get worse, just
surpassed by the BeBold approach. Concerning MultiRoom environments,
increasing the number of off-policy updates seems to be a good strategy,
which is difficult to be outperformed by any state-of-the-art solution. In
fact, decreasing the frequency of the replayed experiences has a negative
impact that can make the agent not learn in the absence of intrinsic re-
wards.

The above discussed behaviors strengthen the claim posed in this chapter:
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the off-policy loss can help improve the learning process, although using it
in excess can be counter-productive. This is related to what is actually
aiming to replay and if it is worth the value that update for the agent at
that moment.
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Figure 5.9: Ratios as in Fig 5.7, but when the rollout size is increased to
2048. Recall the default ratio is dynamically adjusted based on when the episode

finishes (see Table 5.1).

5.5 Discussion and Limitations
The agent will have an easier time learning certain levels due to their
difficulty, the way in which they are explored or even by how many times
some patterns are reproduced in subsequent episodes. What is more, the
agent knowledge changes over the curse of the training, modifying the
optimal strategy replay correspondingly. Therefore, what to replay and
when to do it is not straightforward. This section discusses three critical
aspects that directly affect the presented framework.

5.5.1 Environment Requirements
We have noticed outstanding results in either (Zha, Ma, et al., 2021) and
this chapter for MultiRoom. However, such benefits are not so clear when



5.5. Discussion and Limitations 119

tackling other scenarios. We hypothesize that this is due to the latent
knowledge needed to interact with the environment and to accomplish
the task. In other words: what the agent must actually learn in each
environment to accomplish the task.

On the one hand, in MultiRoom’s environments the agent, indepen-
dently of the destination, must always move forward until it discovers a
door of any color. At this moment, the agent opens the door and again
proceeds alike until reaching the goal. Hence, the agent must learn that
the way to solve the task is to find the next door as soon as possible, and
opens it with the consequent action. This behavior can be inferred and
faster learnt when exploiting past episodes, as all this information does
not change from one level to another. On the other hand, in KS4R3 and
O2Dlh the agent must learn how to interact with multiple objects (the door
can be closed or locked), the relationship between objects and their utility
(a key is used to open lock doors), and the information embedded in the
colors of such objects (the key of a given color only unlocks the door of
that same color). Furthermore, the location of doors, keys and the desti-
nation change from one level to another. Therefore, exploiting past good
episodes does not necessarily mean to be the best strategy, because the
stored episodes might be biased to certain patterns that can influence on
the agent’s learned knowledge (i.e. blue doors represent the best strategy
to achieve the goal), hindering what it actually has to learn.

5.5.2 Intra-inter Level Diversity
A degree of diversity in the buffer is desired when the environment evolves
during training, as it can maximize the chances of having useful informa-
tion in the buffer for the agent’s learning at the moment. In this context,
RAPID’s hyper-parameterization selection is decisive for the buffer config-
uration6, prioritizing the emulation of past levels with high intra-episodic
diversity of states through local bonus. On the other hand, a long-term
exploration is encouraged via the global bonus, which can be regarded as
a way to address the diversity across levels (inter-level). Nevertheless,
ensuring it may not be necessarily effective, as the observations of certain
levels can also be present in other levels due to similarities of the obser-
vation space. A representative example of this bonus not being enough
(either by conceptualization or hyper-parametrization) is depicted in Fig-
ure 5.10, where the inter-level diversity is nil after some point during the
training process.

These statically weighted, fixed scores, with no prior insights about
what the agent actually manages to solve at each moment, make it im-
possible to ensure that the buffer contents will be advantageous to learn
conveniently generalizable knowledge. As a consequence, the agent can be
forced to imitate levels that do not hold any guarantees of usefulness when
exploiting generalization.

6For the sake of comparison, in this chapter parameters are set to the same values
as in the original paper (Zha, Ma, et al., 2021).
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Figure 5.10: Experiences stored in the ranking buffer through the training
process in O2Dlh when fixing the number of training levels to 10. The y-axis
represents the percentage of experiences corresponding to each level stored in
the buffer. Across those levels we have an average optimal number of steps of
18, being the level with seed 7 the one with a configuration that requires the
minimum steps to solve the environment with just 13 steps. After 20,000 training
episodes, the agent just stores and imitates greedily the level corresponding to

seed 7.

5.5.3 Suboptimal Demonstration Replay
Another concerning issue with IL techniques is the replay of non-optimal
demonstrations, which can potentially make the agent learn a suboptimal
policy. In self-IL methods this is even more exacerbated, as the agent has
to deal with a large amount of suboptimal tuples throughout the training
process.

In fact the way the sparse extrinsic reward is calculated in PCG envi-
ronments is of utmost relevance, as it is used as a prioritizing measure.
The reward function is commonly designed taking into account the number
of steps until the goal is achieved. In MiniGrid, the reward is calculated
as in Expression (2.23). Nevertheless, the levels have a minimum number
of optimal steps based on the sorted configuration. Hence, the same re-
ward in different levels would not necessarily represent the same degree of
optimality.

The aforementioned issue also occurs in our framework (and other self-
IL solutions (Gangwani et al., 2019; Guo et al., 2018; Oh et al., 2018)) when
using the extrinsic reward for prioritizing some experiences over others.
Consequently, the agent will be more encouraged to learn from suboptimal
demonstrations of those easy configured levels just because solving them
in an suboptimal fashion requires less steps – higher return – than doing it
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optimally in other levels. Furthermore, the agent can behave greedily and
bias its learning to those easy levels that do not necessarily represent the
whole level distribution of the given task, and fail to provide actionable
knowledge for generalization. What is more, even in the case that the
stored episodes are optimal, there exists a risk that the agent just focuses
on those episodes that might not yield the required inter-level diversity
as explained above (see Figure 5.10). A valid solution to deal with the
extrinsic return can be to normalize each level’s score with respect to their
optimal number of steps. However, this will require knowing the optimal
number of steps for each level in advance, which can be far from being a
realistic assumption in practical settings.

In summary, the hyper-specialization of the buffer may degrade the
effectiveness of the off-policy learning process, no matter the amount of
levels processed. In this sense, off-policy updates could be dynamically
scheduled to maximize the contribution during the agent’s training phase.
Ideally, those updates should be selected from a buffer which fairly matches
the optimal trajectories across levels, while ensuring the diversity needs for
a better generalization.

5.6 Conclusions
This chapter has hypothesized that the use of Intrinsic Motivation can im-
prove the sample efficiency of self-IL approaches in PCG sparse reward sce-
narios where the exploration needs hinder the collection of good episodes
to be replayed.

Departing from this research hypothesis, a framework that combines
RAPID and BeBold has been proposed. This framework has been ex-
perimentally proven to expose an equal or better sample efficiency when
compared to RAPID, BeBold or SIL approaches on their own, when solv-
ing challenging tasks formulated over MiniGrid’s procedurally-generated
environments. We have shown that this advantage holds as long as the
selected IM method is efficient enough. Furthermore, we highlight the
necessity of scheduling correctly the on-policy and off-policy updates, as
well as the use of a rollout size that spans multiple episodes in the same
optimization step to reduce the variance and to achieve an optimal policy
in the context of PCG problems.

Finally, we have discussed the reasons why off-policy updates do not
necessarily contribute to the generalization of the agent’s knowledge due
to 1) the environment complexity and learning requirements; 2) the di-
versity between stored episodes in the buffer; and 3) the way in which
prioritization is applied, as the reward function may not distinguish be-
tween optimal solutions across levels due to the different steps required to
solve them to optimality.
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Chapter 6

Concluding Remarks

The main motivation behind this Thesis was to analyze and make valuable
contributions in the overcoming of some of the limitations currently hinder-
ing the application of RL solutions in real-world problems. As highlighted
in Chapter 2, RL algorithms face a lot of challenges, ranging from the
conceptualization (i.e., how to model the problem itself), learning (i.e., in-
herent algorithmic challenges), to their operationalization in a system (i.e.,
noisy/intermittent signals, memory and real-time inference constraints).
Indeed, the large majority of real-world problems present the following
characteristics:

• (1) difficulties to model problems as Markov Decision Problems; be-
ing Partially Observable Markov Decision Processes the most natural
substitute,

• (2) objectives are not straightforward translatable to RL environ-
ments, especially the reward function definition, i.e., guidance sig-
nals, whose design must endow the algorithm with appropriate feed-
backs for learning,

• and last but not least, (3) the implementation itself may alter the
original problem. In fact, embedding a real use case into an artificial
environment entails restricting it to the capabilities of the simulator.
In turn, the deployment of the knowledge into the nature causes
principally adaptability and safety concerns.

In this context, we have focused our research on POMDPs in sparse reward
settings with no prior assumption or information with a view to reflect the
most realistic scenario. More importantly, we aimed at decreasing the
required number of interactions with the environment in order to converge
faster to the optimal policy.

The Thesis contributions and conclusions are below outlined, along
with future work suggestions that, in our humble opinion, are more likely
to lead RL to an unprecedented performance:

• Chapter 3. How to set a collaborative framework between heterogeneous
agents with the aim of learning optimal policies faster (with less samples).
For this purpose, we proposed centralizing the critic, the curiosity module,
or both of them. The performance of these schemes were thoroughly and
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systematically evaluated by means of an ablation study. The conclusion
drawn from this work can be summarised as follows:

• A centralized critic has greater stability and also leads to faster con-
vergence of optimal policy. As long as the critic is centralized, cen-
tralizing also the curiosity module brings advantages that are most
noticeable when considering the action to generate the exploration
bonus.

• The use of IM converts the problem into a bi-objective function in
which the explorative side may induce noise into the attainment of
the main task objective, ultimately slowing down the learning.

One way to address these issues might be through decoupling the explo-
ration and the exploitation behaviours by two different agents (Schäfer
et al., 2022) or transforming the problem into a multi-objective approach
(Hayes et al., 2021). An interesting avenue would be also reformulate
our heterogeneous agent proposal into off-policy strategies (e.g., DQN)
where the agents could share their replay buffers and benefit directly from
episodes representing how others undertook the same task from different
perspectives (Christianos et al., 2020). Additionally, tailoring techniques
to leverage expert demonstrations so as to cope with the heterogeneity of
the action spaces would be interesting to analyze (e.g., using IL techniques
that only rely on observations and do not strictly depend on the actions
(Torabi et al., 2018)).

• Chapter 4. Analysing fairly the contribution to performance of the
state-of-the-art IM algorithms. IM techniques have been shown to be ef-
fective for promoting the exploration in RL. Nevertheless, it is not always
clear if the proposals are superior due to the presence of novel reward-
related procedures or to peripheral or additional design choices. On this
ground, we conducted a study to try to detach both components and the
conclusions were as follows:

• Using an adaptive intrinsic coefficient 𝛽 based on the return of pre-
vious rollouts outperforms strategies relying on a fixed parameter.

• The inclusion of episode-level (e.g., episodic visitation counts) for
the generation of intrinsic rewards are beneficial in comparison with
disregarding episode-level information.

• Adopting different neural network architectures is critical to guar-
antee the success. Indeed, when reducing the number of parameters
of the IM modules the performance is deteriorated, which gets even
worse if the actor-critic parameters are also decreased.

In future extensions, the study of more environments (e.g., Procgen, with
high-dimensional observations (Cobbe, Hesse, et al., 2020)) and more IM
algorithms to solve efficiently hard exploration environments would be of
great interest.

• Chapter 5. How to collect good trajectories to improve self-IM al-
gorithms performance Attracted by the idea of replaying not only good
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trajectories in terms of performance but also novel trajectories, we pro-
posed the use of IM to promote exploration and discover episodes with
interesting properties for the agent’s learning. We evinced that:

• As long as the selected IM approach and fitting is appropriate, the
benefits are clear.

• The method is sensitive to the diversity of the replayed trajectories
and the rollout size, i.e. when to execute the updates of the agent’s
policy. These are decisive to make the agent generalize well to the
whole level distribution of the task.

We firmly believe that the results can be improved even more if the diver-
sity of the trajectories is guaranteed; this is, if the demonstrations are not
biased and represent the whole level distribution. In addition, more effec-
tive ways to manage the scheduling of losses (or even the combination of
them in a single loss function (Rajeswaran et al., 2018)) should be studied
as well.

6.1 List of Publications
As a result of the research conducted during the development of this PhD
Thesis, several contributions were published in conferences and journals
related to the areas of reinforcement learning and neural networks:

• Journal publications:

– Alain Andres, Esther Villar-Rodriguez and Javier Del Ser, “Col-
laborative training of heterogeneous reinforcement learning agents
in environments with sparse rewards: what and when to share?”
Neural Computing & Applications, published on-line, 2022. https:
//doi.org/10.1007/s00521-022-07774-5 (IF: 5.102, Q2, 45/145 ARTI-
FICIAL INTELLIGENCE).

• Conference contributions:

– Alain Andres, Esther Villar-Rodriguez, Aritz D. Martinez and Javier
Del Ser, “Collaborative Exploration and Reinforcement Learning be-
tween Heterogeneously Skilled Agents in Environments with Sparse
Rewards,” 2021 International Joint Conference on Neural Networks
(IJCNN), Shenzhen, China, pp. 1-10, 2021. https://doi.org/10.110
9/IJCNN52387.2021.9534146.

– Alain Andres, Esther Villar-Rodriguez and Javier Del Ser, “An
Evaluation Study of Intrinsic Motivation Techniques Applied to Re-
inforcement Learning over Hard Exploration Environments,” in: A.
Holzinger, P. Kieseberg, A. M. Tjoa, E. Weippl (eds). Machine Learn-
ing and Knowledge Extraction (CD-MAKE 2022), Lecture Notes in
Computer Science, vol 13480, Springer, 2022. https://doi.org/10.100
7/978-3-031-14463-9_13

https://doi.org/10.1007/s00521-022-07774-5
https://doi.org/10.1007/s00521-022-07774-5
https://doi.org/10.1109/IJCNN52387.2021.9534146
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– Alain Andres, Esther Villar-Rodriguez and Javier Del Ser, “To-
wards Improving Exploration in Self-Imitation Learning using Intrin-
sic Motivation,” IEEE Symposium Series on Computational Intelli-
gence (SSCI), Singapore, pp. 890-899, 2022. https://doi.org/10.110
9/SSCI51031.2022.10022199

– Alain Andres, Lukas Schäfer, Esther Villar-Rodriguez, Stefano V.
Albrecht and Javier Del Ser, “Using Offline Data to Speed-up Rein-
forcement Learning in Procedurally Generated Environments,” Adap-
tive and Learning Agents (ALA) Workshop at the International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS),
accepted, London, UK, 2023.

6.2 Future Research Lines
This Thesis concludes by outlining future research lines that have been
identified as interesting directions during the PhD Thesis:

As we have highlighted during this document, sample-efficiency is cru-
cial in RL because despite simulators provide unlimited number of inter-
actions with a good throughput rate, in real-world the systems are ac-
tually slow, fragile and expensive to operate, preventing the adoption of
RL solutions. This is translated in having a high cost in terms of agent-
environment interactions.

One way to overcome it is using offline data to speed up the learning.
Imitation Learning approaches have shown an incredible potential as long
as demonstrations are available, although their success is usually highly
dependant to the quality, quantity and also the diversity of the trajecto-
ries. Indeed, we analyzed this issue in PCG environments in a paper that
is currently under review –"Using Offline Data to Speed-up Reinforcement
Learning in Procedurally Generated Environments"– where IL could over-
fit the model towards the provided examples. As explained in Section
2.3.2, the most broadly used IL technique is BC due its simplicity and
good results. However, better results can be expected when using more
advanced techniques such as adversarial IL (Ho & Ermon, 2016; Orsini et
al., 2021), curriculum strategies that prioritize demonstrations over oth-
ers (Bajaj et al., 2022) and even using approaches that take into account
temporal dependencies (Paine et al., 2019). Akin to Imitation Learning,
Offline RL focus on how to learn in the absence of online interactions.
This subfield of RL has shown promising results when having data that
do not resemble a demonstration but random data or when being trained
with suboptimal and noisy data (Kumar et al., 2022). However, this kind
of algorithms exhibit challenges regarding the distribution shift between
the offline data and the actual problem distribution, reason why some
approaches constrain the policy to not deviate too far from the behavior
policy (Kostrikov et al., 2021; Kumar et al., 2020); whereas others focus on
prioritizing the usage of experiences to maximize the data coverage or the
discovery of skills (H. Liu & Abbeel, 2021a, 2021b), ultimately learning
a good representation and a versatile policy (Yang & Nachum, 2021). In

https://doi.org/10.1109/SSCI51031.2022.10022199
https://doi.org/10.1109/SSCI51031.2022.10022199
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view of the necessities and potential of these techniques, using offline data
envisages an exciting path.

Another fascinating branch is the one related to Representation Learn-
ing and few-shot learning, which are closely related when generalization
is pursued. The ability to understand and discover automatically the key
features that govern a task is indeed a game-changer, as it brings the pol-
icy with the capacity to quickly adapt when changes in the environment
are made (e.g., goal modification, state domain variation), minimizing the
total number of online interactions with the environment within the RL do-
main (X. Chen et al., 2021). Nevertheless, how learn a valid representation
is not trivial, requiring sometimes to have different representations between
the actor’s policy and the critic (Cobbe, Hilton, et al., 2020; Raileanu &
Fergus, 2021). In fact, value-based methods might have some issues when
it becomes to generalization capabilities (Ehrenberg et al., 2022; Lyle et
al., 2022), which can explain why the large majority of off-policy solutions
(that tend to be more sample-efficient than their on-policy counterparts)
struggle in PCG environments (Ehrenberg et al., 2022; Mohanty et al.,
2021).

Last but not least, we feature world models (Ha & Schmidhuber, 2018;
Wu et al., 2022) and unsupervised environment design (Dennis et al., 2020;
Parker-Holder et al., 2022) as a proxy to avoid the large costs of real-world
environment interactions by the virtue of using techniques (e.g. generative
models) to generate new instances of the problem without the necessity of
explicitly having access to the environment itself.
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Appendix A

Random Network
Distillation - Limitations

One of the critical aspects when using any prediction error method is how
the scale of rewards can vary, not only between environments, but also at
points in time in the same scene, making it difficult the selection of hyper-
parameters. Additionally, if such IM approach uses DL, the normalization
of inputs is important for an appropriate prediction. Nonetheless, the lat-
ter, is crucial when using RND, as the target network’s parameters are
frozen and hence can not adjust the scale of the upcoming observations.

According to the recommendations (Burda, Edwards, Storkey, et al.,
2018), we normalized the observations as in Expression (3.7). Unexpect-
edly, we find out that the reward scale was biased towards the features of
each room in ViZDooM environment. In order to account for that issue,
we proceed as follows:

• First, we select observations gather by the agent at different points of
the Setup 3 shown in Figure 3.10, which results in the visualizations
shown in Figure A.1.

• Afterwards, we train the predictor network, 𝜙(·), during 100 con-
secutive randomly sampled episodes, and we store both the frozen
–𝜙(·)– and trained predictor networks parameters.

• Finally, we evaluate which would have been the the obtained intrinsic
reward at the selected checkpoints after each episode’s updates.

The evolution of the intrinsic rewards considering different changes are
shown in Figure A.2. Overall, it can be seen that there is a trend in all
the checkpoints to decrease the intrinsic reward over time. However, it is
not consistent with the novelty we are pursuing, as the points that rarely
might have been visited –the ones that are far from the start position and
are very difficult to be experienced without knowledge (e.g., 49 and 50) –
have lower bonus respect to others that are closer to the spawn location
and that are more often observed (e.g., 0 or 14). In fact, the largest values
are given always for observations at rooms 22 and 24. We also experiment
if the issue was related to how the input was processed by either providing
higher dimensions and using RGB images instead of the default grayscale
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configuration (Figure A.2, middle), or by the adopted ANN architecture
(Figure A.2, bottom). Nevertheless, there was no significant changes ex-
cept the amplitude of the novelty signal.

Therefore, we conclude that RND presents unforeseen difficulty to cap-
ture the actual curiosity and should be taken into account when being used
in ViZDooM.
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(0) Initial spawn position (14) At room 13
looking forward looking forward

(22) At corridor 16 (23) At room 17
oriented to the door in front of the door

(40) At room 22 (41) At room 22
oriented to the wall partially oriented to the next corridor

(46) At room 24 (47) At room 24
oriented to the wall partially oriented to the next corridor

(49) At corridor 25 (50) At room 26
oriented to goal/vest oriented to the goal/vest

Figure A.1: Observations (grayscale,120x160) at 10 different checkpoints of
VizDoom’s My way home environment.
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Figure A.2: Intrinsic rewards evolution throughout 100 randomly sampled
episodes at different checkpoints explained in Figure A.1. Cold colors represent
locations that are close to the spawn position and farther from the goal/vest.
At the top row the default performance with 42x42 grayscale images and the
adopted ANN architecture is shown; the middle row shows the impact when
varying the input image by either using 42x42 colored images (left) or 160x120
images; the bottom row results illustrate how changes in the ANN architecture
affect when using 100 output neurons (left) or just 10 output neurons (right).
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