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Abstract: Topologically non-trivial magnetization configurations in ferromagnetic materials on
the nanoscale, such as hopfions, skyrmions, and vortices, have attracted considerable attention of
researchers during the last few years. In this article, by applying the theory of micromagnetism, I
demonstrate that the toroidal hopfion magnetization configuration is a metastable state of a thick
cylindrical ferromagnetic nanodot or a nanowire of a finite radius. The existence of this state is
a result of the competition among exchange, magnetostatic, and magnetic anisotropy energies.
The Dzyaloshinskii–Moriya exchange interaction and surface magnetic anisotropy are of second
importance for the hopfion stabilization. The toroidal hopfion metastable magnetization configuration
may be reached in the process of remagnetizing the sample by applying an external magnetic field
along the cylindrical axis.

Keywords: ferromagnetic materials; nanodots; nanowires; magnetization textures; topological charge;
magnetic hopfion

1. Introduction

Topologically non-trivial two-dimensional (2D) and three-dimensional (3D) magne-
tization configurations in ferromagnetic materials, such as hopfions, skyrmions, vortices
and domain walls, have attracted considerable attention from researchers during the last
few years [1]. The stability of 3D magnetization configurations and the role of 3D (Hopf
index), 2D (skyrmion number) topological charges and gyrovector in their dynamics are
still far from complete understanding. Nowadays, 3D magnetization configurations in
ferromagnetic materials on the nanoscale can be observed experimentally using electron
holography or X-ray magnetic circular dichroism [2–4]. Very recently, the magnetic hopfions
forming coupled states with skyrmion strings in FeGe submicron plates were observed
using transmission electron microscopy [5].

The important question is the stability of the different 3D magnetization configura-
tions. The standard approach to consider the stability and dynamics of magnetization
configurations in magnetically ordered media is micromagnetism and the Landau–Lifshitz
equation of motion of the magnetization field. It was established in the field theory [6,7] that
any physical system with the second spatial derivatives in the Lagrange–Euler equation or
squared gradient field term in the Lagrangian has no stable, time-independent, localized
solutions in a 3D case for any form of the potential. Now, this statement is referred to
as the Hobart—Derrick theorem. However, stable localized solutions (localized solitons)
can exist if there are any energy contributions linear with respect to spatial derivatives
or with higher-order spatial derivatives of the field [8,9]. A prominent example of the
energy terms with the first derivatives is the so-called Lifshitz invariants, accounting for
Dzyaloshinskii–Moriya interactions (DMIs) in magnetic materials with broken inversion
symmetry. It was theoretically proved that such terms stabilize quasi-two-dimensional
localized structures in the form of magnetic skyrmions [10]. Another opportunity to get

Nanomaterials 2024, 14, 125. https://doi.org/10.3390/nano14010125 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14010125
https://doi.org/10.3390/nano14010125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://doi.org/10.3390/nano14010125
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14010125?type=check_update&version=1


Nanomaterials 2024, 14, 125 2 of 12

stable 3D field configurations is accounting for the higher-order spatial derivatives in the
Lagrangian. The terms quartic in spatial derivatives were suggested by Skyrme [11] and
Faddeev [12] within the classical field theory. It was shown that the Faddeev–Skyrme
Lagrangian has stable 3D localized soliton solutions in the form of toroidal hopfions [13,14].
The toroidal hopfions are some kinds of localized topological solitons and are characterized
by non-zero values of 3D topological charge (Hopf index) [15,16]. It was recently shown [17]
that the classical Heisenberg model with competing long-range exchange interactions can
result in quadratic terms in the second spatial derivatives of the magnetization field. Al-
though such a model is beyond the standard theory of micromagnetism, it may result
in the stabilization of toroidal magnetic hopfions. The question is whether it is possible
to stabilize magnetic hopfions in a ferromagnet within the standard exchange approach
(avoiding exotic exchange interactions) due to non-zero DMI terms and/or magnetostatic
energy. Such energy contributions are beyond the field theory, and the applicability of
the Hobart–Derrick theory to the evaluation of the stability of magnetic field configura-
tions should be reconsidered. A simple scaling analysis accounting for DMI terms was
conducted in Ref. [18]. However, this analysis ignored the magnetostatic interaction (which
is unavoidable in real ferromagnetic samples) and the finite sample sizes. The non-local
magnetostatic interaction is usually not considered in the theory of magnetic skyrmions
and hopfions or is accounted for in a simplified form. Skyrmions are considered either
in the bulk magnetic crystals without inversion symmetry or in ultrathin films. In both
cases, the magnetostatic interaction is reduced to a local form of some extra contribution to
the magnetic anisotropy energy. Accounting for the magnetostatic interaction in relatively
thick magnetic dots [19] allows for stabilizing quasi-2D skyrmions without the presence of
any DMI if a small out-of-plane magnetic anisotropy is included in the energy functional.
The magnetostatic interaction was not included in the energy functional in Refs. [20–22],
describing magnetic hopfions in thick cylindrical dots, without explanations of its impor-
tance. I note that the magnetostatic interaction can also lead to the stabilization of other
kinds of complicated magnetization textures: the Bloch point hopfions with non-zero Hopf
index or half-hedgehog (3D quasi-skyrmion) magnetization textures, even in soft magnetic
materials with no DMI [23,24].

It is expected that, in the process of the toroidal hopfion translation motion, the
gyroforce perpendicular to the hopfion velocity is absent due to the nullification of the
global hopfion gyrovector [22]. The hopfion motion induced by a spin-polarized current
should be along the driving force direction (avoiding the undesirable skyrmion Hall effect).
Therefore, toroidal hopfions would be used in racetrack data storage devices as information
carriers [4,22].

In this article, I consider the magnetic energy functional consisting of exchange,
magnetostatic, Dzyaloshinskii–Moriya and magnetic anisotropy energies. I show that
magnetostatic energy is crucial for toroidal hopfion stability (metastability) in cylindrical
ferromagnetic nanodots and nanowires. The DMI energy term also supports the stabiliza-
tion of magnetic toroidal hopfions. However, the DMI energy is of secondary importance
compared to the magnetostatic energy, and the hopfion can be stable in soft magnetic
materials with no DMI.

2. Materials and Methods

In this section, I provide a definition of the 3D topological charge (Hopf index) of
a magnetization texture and present explicit equations describing the magnetization of
the toroidal magnetic hopfion. Then, I analyze the energy and stability of the magnetic
hopfion in magnetic cylindrical nanodots and nanowires using the methods of the theory of
micromagnetism and determine the main magnetic and geometrical parameters necessary
for the existence of stable hopfion configurations in the restricted cylindrical geometry.

The Hopf index of a 3D magnetization configuration is calculated as a volume integral
from the dot product of the emergent magnetic field vector potential and the emergent
magnetic field A·B [16,25]. We define the unit magnetization vector m(r) = M(r)/Ms,
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where Ms is the material saturation magnetization. The Hopf invariant for the mapping of
the 3D coordinate space (r) to the unit sphere m(r)2 = 1 in the magnetization space is

QH =
1

(4π)2

∫
dVA·B. (1)

An inhomogeneous spin texture m(r) allows us to define the emergent electromagnetic
field tensor Fµν(m) = m·

(
∂µm × ∂νm

)
, where ∂µ = ∂/∂xµ denotes derivatives with respect

to the components of the 3D radius-vector r. Similar to classical electrodynamics, the
emergent field tensor and emergent magnetic field can be expressed via the vector potential
A as Fµν(m) = ∂µ Aν(m)− ∂ν Aµ(m) and B = ∇× A [26,27].

A given magnetization texture m(r) leads to an unambiguous expression for the
emergent magnetic field B components Bλ(m) = ελµνFµν(m)/2. However, to find the
Hopf index (1), one needs to construct the emergent field vector potential A, as shown
recently in Ref. [27]. There is another approach to calculate the Hopf index and explicitly
find the hopfion magnetization m(r) configuration in infinite media [27]. The approach
is immediately based on the Hopf mapping. The Hopf mapping of the 3D coordinate
space R3 to the unit sphere S2(m) in the magnetization space is m = Z+σZ [28], where
σ =

(
σx, σy, σz

)
are the Pauli matrices, and Z = (Z1, Z2)

T is a spinor composed of the
coordinates Xi (i = 1, 2, 3, 4) of the unit radius hypersphere S3(X) in 4D space. The spinor
components used in the definition of the Hopf mapping are Z2 = X1 + iX2, Z1 = X4 + iX3.
It was shown in Ref. [27] that there is a simple relation between the magnetization m and
spinor Z components. The Hopf index (3D topological charge) can then be represented as
the triple dot product of the gradients of the spinors Z:

QH =
1

(4π)2

∫
dVZ+∇Z·

(
∇Z+ ×∇Z

)
. (2)

This form is similar to the skyrmion number (2D topological charge).
The expressions for the hopfion magnetization m(r) components are simplest in

toroidal coordinates r(η, β, φ) [13,14]. Below, we calculate the magnetic hopfion energy
in ferromagnetic circular cylindrical samples. Therefore, it is convenient to use cylin-
drical coordinates r(ρ, φ, z) of the radius vector r. The cylindrical (ρ, φ, z) and toroidal
(η, β, φ) coordinates are related as follows: ρ = asinh(η)/τ, z = asin(β)/τ, φ = φ, and
τ = cosh(η) − cos(β), where the toroidal parameter η varies from 0 to ∞, the poloidal
angle β varies from −π to π, the azimuthal angle φ varies from 0 to 2π [29], and a is a
geometrical scale parameter having the sense of the hopfion radius. According to Ref. [27],
the out-of-plane z-component of the hopfion magnetization depends only on the toroidal
parameter η and can be explicitly expressed as

mz(η) = p
1 − cosh2m(η)tanh2n(η)

1 + cosh2m(η)tanh2n(η)
, (3)

where m and n are integer numbers, p = mz(η = 0) is the hopfion polarity, p = ±1.
The hopfion in-plane magnetization m(r) components in toroidal coordinates are

determined using the expression [27]

mx(r) + imy(r) =
√

1 − m2
z(η)exp[i(nφ + mβ)]. (4)

This involves the poloidal and azimuthal angles β and φ and the winding numbers (m and
n) in the poloidal and azimuthal directions, respectively.

By substituting the hopfion magnetization components given using Equations (3) and (4)
into the definition of the Hopf index in Equation (1) or Equation (2), we can find the Hopf
index of the hopfion magnetization texture. The calculated Hopf index for the toroidal
magnetic hopfion is QH = mnp, i.e., it is an integer for an infinite sample and is proportional
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to the product of the poloidal m and azimuthal n winding numbers. For our calculations
on the magnetic hopfion energy and stability, we consider the simplest hopfion with n = 1,
m = 1 and |QH | = 1, which is assumed to be the lowest energy toroidal hopfion in cylindrical
geometry. For this particular case, the z-component of the hopfion magnetization mz(η)
given using Equation (3) is essentially simplified to mz(η) = p

(
1 − 2tanh2(η)

)
.

The physical system under consideration is a thick cylindrical ferromagnetic dot
or cylindrical nanowire of radius R and thickness (length) L. The limit of an infinite
cylinder R → ∞ and L → ∞ is assumed because the hopfion magnetization given using
Equations (3) and (4) is derived for infinite space. Although the toroidal hopfion magneti-
zation field (3) and (4) has the simplest representation in toroidal coordinates, to calculate
the hopfion energy in a cylindrical sample, we need to change the toroidal coordinates to
the cylindrical ones. The energy functional consists of contributions from the exchange,
DMI, uniaxial anisotropy and magnetostatic energies:

E[m] =
∫

d3r
[

A ∑α
(∇mα)

2 + D(m·rotm) + K (1 − m2
z )−

1
2

Msm·Hm(r)
]
, (5)

where A is the exchange stiffness constant, D is the DMI parameter, and the magnetostatic
field Hm(r) is calculated within the magnetostatic Green function formalism [30], Hm(r) =
Ms

∫
d3r’Ĝ

(
r, r’)m

(
r’),

(
Ĝ
(
r, r’))

αβ
= −∂2/∂xα∂xβ

(
1/

∣∣r − r’
∣∣).

The idea is to calculate the magnetic energy functional E[m] given using Equation (5) as
a function of the hopfion radius E(a), substituting the toroidal hopfion magnetization given
using Equations (3) and (4) to E[m]. To calculate the different contributions to the magnetic
energy (5), we represent the hopfion magnetization m(r) components via the spherical
angles Θ and Φ: mz = cosΘ, mx + imy = sinΘexp(iΦ), and use the cylindrical coordinates
r(ρ, φ, z) for the radius-vector r. The magnetization spherical angles are functions of the
position within the sample r, Θ = Θ(r) and Φ = Φ(r). Following the theory of 2D magnetic
solitons (vortices and skyrmions) [31], we choose the hopfion magnetization spherical
angles in axially symmetric form: Θ(r) = Θ(ρ, z) and Φ(r) = nφ + γ(ρ, z). The angle
γ(ρ, z) = mβ(ρ, z) is the variable hopfion helicity. The in-plane hopfion magnetization
components are mρ = sin Θ cos γ and mφ = sin Θ sin γ. The explicit form of the functions
η(ρ, z) and β(ρ, z) is given by the expressions η(ρ, z) = atanh

(
2aρ/

(
ρ2 + z2 + a2)) and

β(ρ, z) = atan
(
2az/

(
ρ2 + z2 − a2)). These expressions allow us to rewrite the hopfion

magnetization (3) for p = +1 in the cylindrical coordinates (ρ, φ, z) as mz(ρ, z) = 1 −
8ρ2a2/

(
a2 + ρ2 + z2)2. The toroidal hopfions can be approximately interpreted as twisted

skyrmion strings with their centers located in the xOy plane (z = 0) and described using
the equation ρ = a. The poloidal angle β describes the twist angle around the ring ρ = a.
However, there is an important difference between the twisted skyrmion string and the
hopfion magnetization configuration. The string magnetization in its center is directed
along the unit vector of the cylindrical coordinate system ρ̂ (m = ±ρ̂) in the xOy plane,
whereas, for the toroidal hopfion, the magnetization m at the ring ρ = a (η = ∞) is directed
along the z-axis m = −pẑ, oppositely to the magnetization in the hopfion center ρ = 0. The
iso-surface mz(η) = const of the toroidal hopfion is schematically shown in Figure 1.

We express the spatial coordinates (ρ, z) in the units of the hopfion radius a, which has
the sense of the scale parameter. Then, by substituting the hopfion magnetization m(r) com-
ponents (3) and (4) into the energy (5) and accounting for the expression
(m·rotm) = −sin2Θ∂γ/∂z for the even on out-of-plane coordinate z part of the DMI
energy, one can find explicitly the local exchange and DMI energies for an infinite sample
in the following form:

Eex = 32π2 Aa, ED = −64πDIda2, (6)

where Id is some integral, which was evaluated numerically to be Id = 0.26 for the hopfion
angles Θ(ρ, z) and γ(ρ, z).
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Figure 1. The schematic image of the toroidal magnetic hopfion and the coordinate system. The
iso-surface of the hopfion magnetization component mz(η) = const or the toroidal parameter
η(x, y, z) = const is shown using red. The torus centers are located at the rings ρ = a coth(η) in
the xOy-plane. The scale parameter a is the hopfion radius.

The uniaxial magnetic anisotropy contribution Ea = 2πK
∫

dρρ
∫

dzsin2Θ and the
magnetostatic contribution diverge as the sample radius R increases, approximately as
∼ lnR (where R is the upper limit of the integration over the polar radius vector ρ).
Although the toroidal hopfion is a localized soliton, and the far-field magnetization is
asymptotically trivial m(r) → m0 (uniform magnetization background) at |r| → ∞ , the
degree of the soliton localization in the radial ρ-direction is not sufficient to obtain finite
anisotropy and magnetostatic energies at R → ∞ .

Therefore, we use a finite in-plane sample size R when calculating the energy con-
tributions defined through Equation (5) using the toroidal hopfion magnetization given
in Equations (3) and (4). Although these equations describe the hopfion in an infinite
sample, we use them below as trial functions to find the hopfion magnetic energy in a finite
cylindrical sample of radius R, assuming that R is large enough. The cylinder thickness
(wire length) L can be finite or infinite.

The magnetic anisotropy term can be written as

Ea = 4π2M2
s QIa

(
R
a

)
a3, (7)

where Q = K/2πM2
s , Ia(x) = 2

∫ x
0 dρρ

∫ zm
0 dzsin2Θ, zm = βx/2 and β = L/R.

To calculate the components of the Green’s function tensor, we use the Coulomb kernel
1/|r − r′| decomposition via the Bessel functions of the first kind Jµ(x):

1
|r − r′| =

∫ ∞

0
dkexp

(
−k

∣∣z − z′
∣∣)∑∞

µ=−∞ Jµ(kρ)Jµ

(
kρ′

)
exp

[
iµ
(

φ − φ′)].
The hopfion magnetization m(r) components in the cylindrical coordinates do not

depend on the azimuthal angle φ. Therefore, we can average the dipolar field Hm(r) over
φ. This leads to the axially symmetric field in the form Hm(r) =

(
Hρ

m(ρ, z), 0, Hz
m(ρ, z)

)
.

The magnetostatic field is related to the magnetization components via the averaged
Green’s functions gαβ(ρ, ρ′, z, z′) =

∫ 2π
0 dφ

∫ 2π
0 dφ′ (Ĝ(r, r′)

)
αβ

/2π. The components gαβ

are equal to zero if at least one of the indices α or β is equal to φ. Only the components
gρρ, gρz, gzρ and gzz are not equal to zero. The contribution of the components gρz and gzρ
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to the magnetostatic energy disappears due to the system cylindrical symmetry and the
hopfion's axial symmetry. Therefore, the nonlocal magnetostatic energy can be written as

Em = −πM2
s

∫
dρρ

∫
dz

∫
dρ′ρ′

∫
dz′

[
gρρmρ(ρ, z)mρ

(
ρ′, z′

)
+ gzzmz(ρ, z)mz

(
ρ′, z′

)]
. (8)

The hopfion magnetostatic energy (8) is the sum of two contributions, ρρ and zz,
which depend on the hopfion magnetization components mρ and mz, respectively. The first
contribution can be expressed as

Eρρ
m = 2π2M2

s Iρ
m

(
R
a

)
a3, (9)

where the integral Iρ
m(x) is defined as Iρ

m(x) =
∫

dz
∫

dz’Iρ(z, k, x) Iρ(z’, k, x), Iρ(z, k, x) =
−k

∫ x
0 dρρJ1(kρ)mρ(ρ, z), and mρ(ρ.z) = sin Θ(ρ, z)cos γ(ρ, z). Here, J1(x) is the Bessel

function of the first kind. The upper and lower limits in the integral over the thickness
coordinates z and z’ are ±∞ for magnetic wires. However, the limits are finite and equal
±βx/2 for the magnetic dots or finite length wires with the aspect ratio β = L/R.

The integral in Equation (8) cannot be calculated analytically/numerically and is too
complicated to operate with. We note that the function exp(−k|z − z′|) in the definition
of Iρ

m(x) has a sharp maximum at z = z′; therefore, we can substitute Iρ(z′, k, x) for
Iρ(z, k, x) under the integral sign. Then, the integral is essentially simplified to be Iρ

m(x) =
2
∫ zm
−zm

dz
∫ ∞

0 dkk−1[1 − exp(−kzm)cos h(kz)]
(
Iρ(z, k, x)

)2, zm = βx/2 It can be shown that
within the limit β ≫ 1 (cylindrical wire), the integral is reduced to the simple expression,
Iρ
m(x) = 4

∫ βx/2
0 dz

∫ x
0 dρρ

(
mρ(ρ, z)

)2. It has the form of an effective hard axis magnetic
anisotropy in the ρ-direction, normal to the cylinder side surface. This anisotropy is
analogous to the shape anisotropy of a uniformly magnetized wire along its length.

The second, zz contribution to the magnetostatic energy can be presented in a form
similar to Equation (9):

Ezz
m = 2π2M2

s Iz
m

(
R
a

)
a3, (10)

where, in the local approximation, the integral Iz
m(x) = 2

∫ zm
−zm

dz
∫ ∞

0 dkkexp(−kzm)cos h(kz)

(Iz(z, k, x))2 and Iz(z, k, x) =
∫ x

0 dρρJ0(kρ)mz(ρ, z).
Using the energy contributions described in Equations (6)–(10), we can write the

total dimensionless magnetic energy ε[m] = E[m]/
(
4πM2

s l3
e
)

of the toroidal hopfion in the
cylindrical dot/wire in the units of 4πM2

s l3
e ,

ε(a) = 16π2a − 16dIda2 + πQIa

(
R
a

)
a3 +

π

2
Iρ
m

(
R
a

)
a3 +

π

2
Iz
m

(
R
a

)
a3, (11)

where le =
√

A/2πM2
s is the material exchange length, d = D/M2

s le is the reduced DMI
parameter, and the hopfion radius a is presented in the units of le.

Although the exchange and DMI energies in Equation (11) have a finite limit at R → ∞ ,
we need to rewrite them for finite values of the ratio R/a, similar to the magnetic anisotropy
and magnetostatic energies. We use the expressions

εex(a) = πaIex

(
R
a

)
, εD(a) = −1

2
da2 ID

(
R
a

)
, (12)

where Iex(x) =
∫ x

0 dρρ
∫ zm
−zm

dz
[
(∇mz)

2/sin2Θ + sin2Θ
{
(∇γ)2 + 1/ρ2

}]
, and ID(x) =∫ x

0 dρρ
∫ zm
−zm

dzsin2Θ∂γ/∂z. The limiting values are Iex(x → ∞) = 16π and ID(x → ∞) =
32Id, in agreement with Equation (6).
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Generalizing Equation (11) for a finite value of the cylindrical dot/wire radius R and
arbitrary value L of the dot thickness (wire length), the total normalized magnetic energy
of the toroidal hopfion is given by

ε(a, R) = πaIex

(
R
a

)
− 1

2
da2 ID

(
R
a

)
+ πQIa

(
R
a

)
a3 +

π

2
Iρ
m

(
R
a

)
a3 +

π

2
Iz
m

(
R
a

)
a3. (13)

We note that the hopfion energy (13) is essentially more complicated than the simple
scaling polynomial equations with respect to the hopfion radius a used in Ref. [18] due
to the presence of the magnetostatic interaction and finite system size R. The magnetic
anisotropy and magnetostatic terms should be considered at a finite value of R due to
their divergence at R → ∞ . The hopfion energy depends not only on the scale parameter
(hopfion radius) a but also on the cylindrical sample radius R and the aspect ratio β = L/R.

3. Results and Discussion

The reduced hopfion magnetic energy (13) is valid for any ferromagnetic material
with uniaxial magnetic anisotropy (the parameter Q) and Dzyaloshinskii–Moria exchange
interaction (the parameter d) for the given cylindrical sample sizes, R and L. The material
exchange length le serves as a natural scale for the hopfion radius a and the dot/wire
radius R. The hopfion magnetic energy ε(a, R) (13) vs. the hopfion radius a is plotted in
Figures 2–4 for the cylinder radii R = 100 nm and 250 nm. To plot Figures 2 and 3, we used
a set of magnetic material parameters: le = 5 nm, d = 1 and K = 0. Such a value of le can
be obtained, in particular, using A = 11 pJ/m and Ms = 837 kA/m, which are typical for
soft magnetic materials such as Ni80Fe20 alloy (permalloy). However, we used finite values
of the magnetic anisotropy constant K to plot Figure 4. There is a pronounced minimum
of the magnetic energy at finite values of the hopfion radius a, which corresponds to the
hopfion stable state.
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Figure 2. The hopfion energy ε(a, R) vs. the hopfion radius, a (in units of the exchange length). The
dot radius R = 20le, the DMI parameter d = 1, and the exchange length le = 5 nm. (1) A cylindrical
dot with an aspect ratio of height/radius β = 2, and (2) a cylindrical wire with an aspect ratio of
length/radius β = 8.
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Figure 3. The hopfion energy ε(a, R) vs. the hopfion radius, a (in units of the exchange length). The
dot radius R = 50le, the DMI parameter d = 1, and the exchange length le = 5 nm. (1) A cylindrical
dot with an aspect ratio of height/radius β = 2, and (2)a cylindrical wire with an aspect ratio of
length/radius β = 10.
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Figure 4. The hopfion energy ε(a, R) vs. the hopfion radius, a (in units of the exchange length).
The dot radius R = 20le, the cylindrical dot with an aspect ratio of height/radius β = 2, the DMI
parameter d = 1, and the exchange length le = 5 nm. (1) “easy plane” magnetic anisotropy with
K/2πM2

s = −0.5; (2) “easy axis” magnetic anisotropy with K/2πM2
s = 1.

The magnetostatic terms in Equation (13) are mainly responsible for the appearance
of the minimum of the hopfion energy ε(a, R) at a0 ≈ (0.90 ÷ 0.92)R in soft magnetic
materials (K = 0). The reduced equilibrium hopfion radius a0/R is approximately equal
to 0.9 and weekly depends on the sample's magnetic and geometrical parameters. The
magnetostatic energy contributions given in Equations (9) and (10) are functions only of
x = R/a and β. Therefore, the reduced equilibrium value of a0/R depends only on β if
only the magnetostatic energy is accounted. The weak dependence a0/R = f (β, R, d) on
other sample parameters reflects small contributions of the exchange and DMI energies to
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the total magnetic energy of the toroidal hopfion. However, the equilibrium hopfion radius
a0 depends on the magnetic anisotropy constant, especially at high values of the cylinder
aspect ratio β.

The uniaxial magnetic anisotropy energy in Equation (13) strongly influences the
hopfion stability and the value of the equilibrium hopfion radius. It renormalizes, in
some sense, the magnetostatic contribution, which can be approximately treated as an
effective hard axis magnetic anisotropy in the in-plane ρ-direction. The magnetic anisotropy
destabilizes the hopfion state at K > 0 (“easy axis” anisotropy) or stabilizes it for K < 0
(“easy plane” anisotropy), as shown in Figure 4. The positive magnetic anisotropy energy
at K > 0 increases the influence of the positive magnetostatic energy contribution. The
energy minimum becomes a shadow and disappears at large values of K. The negative
“easy plane” anisotropy energy (K < 0) competes with the magnetostatic energy. This leads
to the negative magnetic hopfion energy and a deeper energy minimum at moderate values
of |K|, as depicted in Figure 4. The “easy axis” (“easy plane”) magnetic anisotropy leads to
a decrease (increase) in the equilibrium hopfion radius a0.

It is reasonable to use a cylinder aspect ratio β ≥ 2 in the calculations of the hopfion
energy due to the strong localization of the hopfion in the z-direction. The DMI term, at a
typical value of d ∼1 ( D ∼1 mJ/m2), is essentially smaller than the magnetostatic term and
results in a small modification of the hopfion magnetic energy. Thus, to stabilize the toroidal
hopfion in a cylindrical dot/wire, we can ignore DMI and focus on the hopfion stabilization
in strong ferromagnets. The hopfion energy value at the minimum ε(a0) in soft magnetic
materials (K = 0) and magnetic materials with an “easy axis” (K > 0) magnetic anisotropy
is typically higher than the energy ε(SD) of the out-of-plane single-domain (SD) state,
especially at large values of β. Therefore, the toroidal hopfion is not the ground state of the
cylindrical dot or wire with zero or positive uniaxial magnetic anisotropy constant. The
ground state is longitudinally magnetized dot/wire with an almost uniform magnetization
configuration (mz = ±1). In good approximation, the magnetic energy is given using
ε(SD) = (π/2)(R/le)

3β[Nzz(β)− Q], where Nzz(β) = 2β−1
∫ ∞

0 dkk−2 J2
1 (k)[1 − exp(−βk)]

is the cylinder demagnetizing factor along the axial z-direction [32], and Q = K/2πM2
s . The

SD state energy can be obtained from the hopfion energy given in Equation (13 de) within
the limit a → 0 . The situation is drastically changed for the “easy plane” anisotropy K < 0
(Figure 4). The hopfion energy ε(a0) can be negative at moderate values of |K| (the value
|K| = 0.22 MJ/m3 was used to plot Figure 4), and, therefore, ε(a0) < ε(SD). However, there
is no guarantee that the toroidal hopfion is the ground state of the cylindrical dot/wire
with the “easy plane” anisotropy K < 0 because other inhomogeneous 3D magnetic
configurations may have lower energy than the hopfion energy ε(a0). An example of such
an inhomogeneous configuration is the toron (consisting of two Bloch points) recently
calculated in cylindrical [33] and square magnetic dots [34].

We note that there is an energy barrier between the hopfion magnetization state
ε(a0) and the single-domain state as ε(SD), a → 0 . The hopfion energy ε(a) given in
Equation (13) asymptotically approaches the value of ε(SD) as the hopfion radius increases
a/R → ∞ . Apparently, this limit also describes the cylindrical dot/wire single-domain
state with the magnetization along the cylindrical dot/wire axis. The SD magnetization
configuration limits, a → 0 and a → ∞ , correspond to the hopfion collapse or infinite
extension in the radial direction, correspondingly. The energy minimum at a finite value of
a = a0 is separated from the longitudinal SD state a → ∞ through an energy barrier.

The calculation method presented above allows us to conclude about the toroidal hop-
fion energy ε(a) as a function of the hopfion radius and identify the energy minimum at
a specific value of the hopfion radius, a = a0 (see Figures 2–4). Except for a minimum at
a = a0, the hopfion energy vs. a reveals some maxima at a = a±m , where (+) represents increas-
ing and (−) means decreasing value of a. The energy difference ∆E(a±m) = E(a±m)− E(a0) can
be treated as an energy barrier for transitions from the hopfion to the out-of-plane single-
domain state (described as limiting cases a → 0 and a → ∞ ) within the toroidal hopfion
model. However, the hopfion radius may not be an appropriate “reaction coordinate” to
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describe a transition from the hopfion to the out-of-plane single-domain magnetization
configuration. A more realistic path in multidimensional parameter space can include some
other intermediate magnetization configurations, which are very different from the toroidal
magnetic hopfion. The saddle point along this path corresponds to an energy barrier,
which can be essentially smaller than the barrier calculated within the approach of the rigid
hopfion transformation mode. Using the ferromagnetic cylinder parameters as described
in the caption to Figure 2, one can find the energy barriers as ∆E(a−m)/kBT = 2.39 × 105

for β = 2 and ∆E(a−m)/kBT = 1.97 × 105 for β = 8 (R = 20le = 100 nm). The energy scale
is 4πM2

s l3
e = 1.10 × 10−19 J. The energy barriers are much bigger than the thermal energy

kBT at room temperature T (assuming that T is much lower than the Curie temperature
Tc, where Ms(Tc) → 0 and the barriers disappear). Note that these huge energy barriers
found within the toroidal hopfion model by varying the hopfion radius are overestimated.
The calculation of more realistic energy barriers corresponding to a transient configuration
for the transformation from the toroidal hopfion to the single-domain magnetization con-
figuration is beyond the scope of the present article. These energy barriers are of interest
for the hopfion thermostability on a long-time scale. The calculations within the toroidal
hopfion model showed that the hopfion energy minimum is very deep, and the hopfion
magnetization configuration is thermostable.

We note that for the finite cylindrical samples, another hopfion ansatz was sug-
gested [20] and used in Ref. [22]. This ansatz is a good approximation to minimize the
hopfion energy if the magnetostatic energy contribution is ignored and a strong surface out-
of-plane magnetic anisotropy is introduced by enforcing the boundary conditions m = ẑ
at the dot's top/bottom faces z = ±L/2. The magnetostatic interaction is numerically
accounted for in Refs. [33,35]. However, the authors of these papers believe that the strong
out-of-plane magnetic anisotropy (K = 0.8 MJ/m3 in the surface layers [35] or the surface
anisotropy Ks = 0.5 mJ/m2 [33]) along with DMI are necessary for the hopfion stabiliza-
tion in cylindrical dots or infinite films. Calculation of the surface magnetic anisotropy
contribution to the hopfion energy (Equation 13) shows that it is negligible for the surface
anisotropy values Ks of the order of 1 mJ/m2. We demonstrated in Figures 2–4 that the
main contribution to the hopfion energy comes from the magnetostatic interaction, which is
unavoidable present for all inhomogeneous magnetization textures in the restricted geome-
try of cylindrical thick magnetic dots and wires. Although DMI and uniaxial out-of-plane
surface magnetic anisotropy may be accounted for in the energy functional, they are of
secondary importance for the toroidal hopfion stabilization.

The toroidal hopfion metastable magnetization configuration may be reached in the
process of the sample remagnetizing by applying a magnetic field along the cylindrical
axis Oz as an intermediate metastable state in the low-field part of the hysteresis loop,
⟨Mz(Hz)⟩ = V−1

∫
dVMz(r, Hz). Using the hopfion magnetization (3), we can find the

volume-averaged reduced magnetization µz(a, β) = ⟨mz(ρ, z)⟩ at zero magnetic field
Hz = 0, which has the sense of the hopfion remanent magnetization. The equilibrium
remanent magnetization µz(a0, β) is an increasing function of the cylinder aspect ratio β,
saturating at β ≫ 1, µz(a0, β ≫ 1) → 1 . We note that at a fixed value of the cylinder aspect
ratio β, the remanent magnetization µz(a, β) in soft magnetic materials has a minimum at
the hopfion radius aµ approximately equal to the hopfion equilibrium radius a0, aµ ≈ a0,
for any value of β ≥ 2. An external magnetic field applied to the sample in any direction
will suppress the inhomogeneous magnetization hopfion configuration and result in the
saturated magnetization state at some critical value of the field. However, the hopfion
hysteresis loop is beyond the scope of the present article and could be the subject of
future investigations.

4. Conclusions

It is demonstrated that the toroidal hopfion magnetization configuration is a metastable
state of a thick cylindrical ferromagnetic nanodot or nanowire with a finite radius R. The
existence of this state in soft magnetic materials is a result of the competition between the



Nanomaterials 2024, 14, 125 11 of 12

exchange and magnetostatic energies. The reduced equilibrium hopfion radius a0/R is
approximately equal to 0.9 and weekly depends on the sample's magnetic end geometrical
parameters. The uniaxial “easy axis” magnetic anisotropy (anisotropy constant K > 0)
destabilizes the hopfion state, whereas the “easy plane” magnetic anisotropy (K < 0)
facilitates the hopfion stabilization. The Dzyaloshinskii–Moriya exchange interaction and
the out-of-plane surface magnetic anisotropy are of secondary importance for hopfion
stabilization. The toroidal hopfion metastable magnetization configuration may be reached
during the process of the sample remagnetizing by applying an external magnetic field
along the cylindrical axis. The hopfion magnetization configuration corresponds to a deep
magnetic energy minimum and is stable with respect to thermal fluctuations.
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