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Abstract: Background: Adipokines, as well as the fatty acid profile of red blood cell (RBC) membranes,
are known to play important roles in the development and progression of metabolic complications
induced by obesity. Thus, the objective of this study is to compare the serum adipokine profile
and the RBC membrane fatty acid profile of normal-weight and obese adults, and to analyze their
relationship with serum biochemical parameters. Methods: An observational case–control study
was performed in 75 normal-weight and obese adult subjects. Biochemical serum parameters, eight
serum adipokines and the RBC membrane fatty acid profiles were measured. Associations between
parameters were established using regression analysis. Results: Subjects with obesity showed
increased levels of leptin, fibroblast growth factor 21 (FGF21) and overexpressed nephroblastoma
(NOV/CCN3), decreased adiponectin, and similar levels of vaspin and chemerin compared to normal-
weight subjects. Significant positive and negative correlations were found with triglycerides and
high-density lipoprotein-cholesterol (HDL-c), respectively. An increase in the total ω-6 fatty acids in
the RBC membrane fatty acid profiles in subjects with obesity was observed, because of higher levels
of both dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA), and decreased total ω-3 fatty
acids, mainly due to lower levels of docosahexaenoic acid (DHA). The ω-6/ω-3 ratio in the RBCs
was significantly higher, suggesting an inflammatory status, as was also suggested by a reduced
adiponectin level. A negative association between DGLA and adiponectin, and a positive association
between DHA and serum triglycerides, was observed. Conclusions: Important alterations in serum
adipokine and RBC fatty acid profiles are found in subjects with obesity.

Keywords: obesity; adipokines; FGF21; NOV/CCN3; red blood cell fatty acid; regression analysis
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1. Introduction

Obesity can be defined as an excessive accumulation of fat mass with consequential
effects on health. Nowadays, obesity has become a relevant health problem worldwide,
especially in Western countries, and it affects almost 30% of the world population [1].
This disease is a key factor in the development of metabolic syndromes, and it can induce
alterations at the inflammatory and hormonal level. As a result, obesity is associated with
a variety of co-morbidities such as type 2 diabetes, dyslipidemia, hypertension, arthritis,
non-alcoholic fatty liver diseases, breathing pathologies and some types of cancer [2].

Cytokines are 5 to 30 kDa peptides, glycoproteins or proteins secreted by cells that
act, via receptors, to regulate the growth, responsiveness or maturation of certain target
cell groups. Once a cytokine binds to its corresponding receptor in the cell surface, an
intracellular signaling cascade is triggered, which leads to changes in gene expression of
the target cell and, consequently, to a biological action. Cytokines can regulate complex
networks with autocrine, paracrine or endocrine functions and can act in a pleiotropic,
redundant, synergic or antagonistic manner [3].

Among cytokines, great attention has been paid to those secreted by white adipose
tissue, known as adipocytokines or adipokines. Adipose tissue is considered an endocrine
organ that can establish a crosstalk with other organs and tissues by secreting adipokines.
These molecules play important roles in regulating whole-body homeostasis with a rele-
vant influence in the development and progression of metabolic complications induced
by obesity [4,5]. In the presence of adipocyte hypertrophy produced by excess energy
storage, adipokine secretion is altered due to an energy imbalance, which contributes to
the pathogenesis of obesity-associated complications [6].

On the other hand, the fatty acid profile of red blood cell (RBC) membranes can be
considered a good predictor of the fatty acid profile of other body tissues [7], and can help
monitor the ω-6 and ω-3 fatty acid contents in phospholipids that are directly linked with
inflammation mediators. Additionally, since RBC half-life is around 4 months, membrane
fatty acid composition of these cells can reflect the status of obesity-related diseases [8].

The aim of the present study is to compare the serum adipokine profile and the RBC
membrane fatty acid profiles of normal-weight and obese adults, and to analyze their
relationship with serum biochemical parameters.

2. Materials and Methods
2.1. Design and Subjects

The present observational case–control study was carried out on a cohort of 37 normal-
weight (18 males and 19 females) and 38 obese (19 males and 19 females) 19–68 year-old
adult subjects recruited from the Endocrinology Department at the Hospital Universitario
Cruces (Barakaldo, Spain). The distribution between both groups was made according
to body mass index (BMI), taking BMI > 30 kg/m2 as a reference to classify obesity and
18.5 < BMI < 25 kg/m2 for the normal-weight group. After a physical examination by
an endocrinologist, participants with any kind of acute or chronic disease or who were
taking medication were excluded from the study. Anthropometric measurements were all
conducted by doctors during the participant’s visit to the Hospital Universitario Cruces/IIS
Biocruces Bizkaia.

The study protocol was approved by the Euskadi Clinical Research Ethics Committee
(permission number PI2016181) and carried out according to the ethics principles derived
from the Declaration of Helsinki, consistent with Good Clinical Practice guidelines. All
participants were provided with a written informed consent form, in agreement with the
corresponding laws (Organic Law 3/2018, of December 5, Protection of Personal Data
and guarantee of digital rights; Law 14/2007 on Biomedical Research and RD 1716/2011
of Biobanks).
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2.2. Blood Collection and Biochemical Analysis

Blood samples were obtained in vacutainer tubes containing ethylenediaminete-
traacetic acid (EDTA). Blood was centrifuged at 1250× g for 20 min, and the plasma
obtained was stored at −80 ◦C until analysis. Plasma concentrations of glucose, insulin,
total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein
cholesterol (LDL-c), triglycerides (TG), aspartate aminotransferase (AST), alanine amino-
transferase (ALT), uric acid and bilirubin were measured using standard laboratory assays.

For cytokine measurements, sensitive and specific enzyme-linked immunoassay kits
were used: RD191001100 (BioVendor, Brno, Czech Republic) for leptin, RD195023100
(BioVendor, Brno, Czech Republic) for adiponectin, RD191100200R (BioVendor, Brno, Czech
Republic) for omentin, ab155430 (Abcam, Cambridge, UK) for chemerin, RD191097200R
(BioVendor, Brno, Czech Republic) for vaspin, ab193710 (Abcam, Cambridge, UK) for NOV-
CCN3, ab222506 (Abcam, Cambridge, UK) for FGF21 and RD191016100 (BioVendor, Brno,
Czech Republic) for resistin. The measurements were performed with a Labsystems iEMS
Reader MF analyzer plate photometer (Labsystems Diagnostics Oy, Helsinki, Finland).

The homeostatic model assessment for insulin resistance (HOMA-IR) was calculated
using the following formula:

HOMA-IR = Fasting plasma insulin (µU/mL) × fasting glycaemia (mg/d µU L)/405

2.3. Red Blood Cell (RBC) Membrane Fatty Acid Analysis

The fatty acid composition of mature RBC membrane phospholipids was obtained
from blood samples (approximately 2 mL) collected in vacutainer tubes containing ethylene-
diaminetetraacetic acid (EDTA). Samples were shipped to the Lipidomic Laboratory, where
they underwent the certified procedure MEM_LIP_1 upon arrival, according to the quality
control guidelines. The absence of hemolysis was promptly checked. For the blood, the
procedure to extract and work-up lipids to obtain fatty acid methyl esters (FAMEs) was
conducted following an automated protocol, including the selection of mature RBCs as pre-
viously disclosed [8,9]. Briefly, the EDTA blood was centrifuged (4000 rpm for 5 min at 4 ◦C)
and the cell fraction was isolated based on the high density of the aged cells and controlled
using a cell counter (Scepter 2.0 with Scepter™ Software Pro, EMD Millipore, Darmstadt,
Germany). The automated equipment subsequently executed the following tasks: cell
lysis, membrane pellets isolation, and phospholipid extraction from pellets using the Bligh
and Dyer method [10], transesterification to FAMEs was made with a solution of methyl
alcohol and potassium hydroxide (0.5 mol/L) during 10 min at room temperature and
extracted using n-hexane (2 mL). The automated procedure is available at the Lipidomic
Laboratory facility of Lipinutragen srl (www.lipinutragen.it) and is compliant with the
ISO/EIC 17025:2017 regulation [11]. Laboratory machinery used to analyze FAMEs were a
capillary column gas chromatography Agilent 6850 Network, supplied with a fused silica
capillary column Agilent DB23 (60 m × 0.25 mm × 0.25 µm) and a flame ionization detector
(FID). Libraries of trans isomers of monounsaturated (MUFAs) and polyunsaturated fatty
acids (PUFAs) [12] and commercial standards allow us to separate and identify fatty acids
as well as their geometrical and positional isomers registered. The results are reported
as a relative % for each fatty acid, with more than 97% of the GC peaks recognized with
appropriate standards.

2.4. Statistical Analysis

Data are presented as mean values ± standard error of the mean. The statistical
analyses were performed using IBM SPSS statistics (v25, Chicago, IL, USA). Normal data
distribution were assessed with Shapiro–Wilk’s test and the Kolmogorov–Smirnov test.
Differences between groups (subjects with a normal weight and subjects with obesity)
were evaluated using Student’s t test or the Mann–Whitney U test for data that were not
normally distributed. Correlations between variables were conducted using Spearman’s
rank correlation. Multiple linear regression analysis was used to find the major deter-

www.lipinutragen.it
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minants for serum biochemical parameters. This stepwise regression was achieved by
including all potential independent variables in the model and eliminating those that were
not statistically significant using a backward selection method. Statistical significance was
chosen at p value of <0.05.

3. Results
3.1. Anthropometric Parameters

As expected, obese subjects presented higher values of BMI and waist circumference
(Table 1).

Table 1. Anthropometric parameters in normal-weight subjects and subjects with obesity.

Normal-Weight Subjects
(n = 37)

Subjects with Obesity
(n = 38)

Weight (kg) 66.9 ± 1.4 111.6 ± 5.0 ***
Height (cm) 170.4 ± 1.7 166.9 ± 1.60
BMI (kg/m2) 22.9 ± 0.2 40.8 ± 1.1 ***
Waist circumference (cm) 78.7 ± 1.6 120.0 ± 2.6 ***

Data are expressed as mean ± SEM. *** p < 0.001. BMI: body mass index.

3.2. Biochemical Parameters

Table 2 summarizes the biochemical parameters of normal-weight subjects and subjects
with obesity. The latter presented higher concentrations of glucose, insulin, uric acid, LDL-
cholesterol, triglycerides and alanine aminotransferase (ALT/GPT) than normal-weight
subjects, as well as lower levels of HDL-cholesterol and albumin. No significant differences
were found in total cholesterol and aspartate aminotransferase (AST/GOT). The HOMA-IR
index was significantly higher in subjects with obesity.

Table 2. Biochemical parameters in normal-weight and obese subjects.

Normal-Weight Subjects
(n = 37)

Subjects with Obesity
(n = 38)

Glucose (mg/dL) 86.9 ± 1.50 103.0 ± 3.2 **
Insulin (mU/L) 10.0 ± 1.1 20.5 ± 1.9 **
HOMA-IR 2.2 ± 0.2 5.6 ± 0.5 **
Total cholesterol (mg/dL) 184.8 ± 6.6 193.4 ± 5.3
HDL-c (mg/dL) 61.3 ± 2.6 50.5 ± 2.7 **
LDL-c (mg/dL) 107.1 ± 5.3 121.9 ± 4.9 *
Triglycerides (mg/dL) 80.72 ± 4.9 155.5 ± 11.2 **
AST/GOT (U/L) 19.3 ± 0.8 21.7 ± 1.3
ALT/GPT (U/L) 19.5 ± 1.7 26.3 ± 1.9 *
AST/ALT 1.2 ± 0.1 0.9 ± 0.04 **

Data are expressed as mean ± SEM. * p < 0.05; ** p < 0.01. ALT/GPT: Alanine transaminase; AST/GOT: Aspartate
aminotransferase; HDL-c: high-density lipoprotein cholesterol; HOMA-IR: homeostasis model of assessment of
insulin resistance; LDL-c: low-density lipoprotein cholesterol.

3.3. Adipokine Concentrations

Figure 1 shows adipokine concentrations. Subjects with obesity showed signifi-
cantly higher values of NOV/CCN3, leptin and FGF21, and significantly lower values of
adiponectin than normal-weight subjects. No significant differences were found in omentin,
vaspin and chemerin. Lastly, resistin showed a tendency towards higher values in subjects
with obesity than in individuals with normal weight.
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3.4. Fatty Acid Profile of RBCs

Table 3 shows the fatty acid profile of RBCs. No significant differences were observed
in saturated fatty acids between both groups. Although individual monounsaturated
fatty acids (MUFAs) were not different between groups, subjects with obesity showed
significantly lower levels of total MUFAs. The fatty acid that contributed the most to this
difference was sapienic acid (C16:1, 6c). The ratio of saturated/monounsaturated fatty
acid (SFAs/MUFAs) was significantly higher in obese subjects compared to normal-weight
subjects, mainly due to the lower level of MUFAs. Subjects with obesity also showed a
significantly lower level of total ω-3 fatty acids, caused for the most part by the lower level
of docosahexaenoic acid (DHA), and an increased level of total ω-6 fatty acids which was
largely induced by the increase in dihomo-γ-linolenic acid (DGLA) and arachidonic acid
(AA). Consequently, the ratio ω-6/ω-3 was significantly higher in individuals with obesity
than in normal-weight subjects.
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Table 3. Red blood cell (RBC) membrane fatty acid profile in normal-weight subjects and subjects
with obesity.

Fatty Acid (%) Normal-Weight
Subjects (n = 37)

Subjects with Obesity
(n = 38)

Palmitic acid (C16:0) 22.13 ± 0.27 22.66 ± 0.19
Stearic acid (C18:0) 17.12 ± 0.23 17.11 ± 0.19

Total SFAs 39.25 ± 0.29 39.77 ± 0.22

Sapienic acid (C16:1, 6c) 0.38 ± 0.03 0.32 ± 0.04
Palmitoleic acid (C16:1, 9c) 0.48 ± 0.03 0.45 ± 0.03
Oleic acid (C18:1, 9c) 17.04 ± 0.19 16.75 ± 0.22
cis-Vaccenic acid (C18:1, 11c) 1.29 ± 0.05 1.24 ± 0.04

Total MUFAs 19.19 ± 0.21 18.76 ± 0.23

Linoleic acid (C18:2) 12.82 ± 0.20 12.43 ± 0.29
Alpha-linolenic acid (C18:3) 0.22 ± 0.02 0.20 ± 0.02
Dihomo-γ-linolenic acid
(C20:3) 1.84 ± 0.09 2.19 ± 0.07 **

Arachidonic acid (C20:4) 18.03 ± 0.33 18.89 ± 0.31

Eicosapentaenoic acid (C20:5) 0.73 ± 0.08 0.64 ± 0.06
Docosapentaenoic acid (C22:5) 1.97 ± 0.07 1.82 ± 0.05
Docosahexaenoic acid (C22:6) 5.75 ± 0.20 5.12 ± 0.22 *

Total ω-6 32.69 ± 0.46 33.50 ± 0.40

Total ω-3 8.67 ± 0.29 7.80 ± 0.30 *

Total PUFA 41.36 ± 0.42 41.30 ± 0.31

Trans C18:1 0.09 ± 0.01 0.10 ± 0.01
Trans C20:4 0.11 ± 0.02 0.08 ± 0.01

Total Trans 0.20 ± 0.02 0.18 ± 0.02

SFA/MUFA 2.05 ± 0.02 2.13 ± 0.03 *
ω-6/ω-3 3.95 ± 0.16 4.56 ± 0.20 *
∆6D + ELO 20:3/18:2 0.15 ± 0.01 0.18 ± 0.01 *
∆5D 20:4/20:3 10.47 ± 0.45 8.98 ± 0.35 *
∆9D 16:1/16:0 58.88 ± 6.12 64.49 ± 6.12
∆9D 18:1/18:0 1.01 ± 0.02 1.03 ± 0.02

Data are presented as mean ± standard error of the mean. * p < 0.05; ** p <0.01. D: desaturase; ELO: elongase;
MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acid; SFA: saturated fatty acid.

Based on the ratios between specific fatty acids, the activity of delta-5 desaturase (∆5D),
delta-9 desaturase (∆9D) and delta-6 desaturase (∆6D) + elongase (ELO) was estimated.
Whereas a nonsignificant difference was observed in the activity of ∆9D, that of ∆5D was
higher in subjects with obesity and ∆6D + ELO was lower in subjects with obesity.

3.5. Correlation Analysis

The correlations between serum metabolic parameters and cytokines, using only cy-
tokine data that showed significant differences between non-obese subjects and individuals
with obesity, are shown in Table 4. Positive correlations are as follows: Serum glucose,
insulin and HOMA-IR with leptin and FGF21; Serum triglycerides with leptin; HDL-c with
adiponectin and FGF21; Uric acid with FGF21; ALT/GPT with FGF21. In contrast, Serum
glucose, insulin and HOMA-IR, serum triglycerides, uric acid, and ALT/GPT all correlated
negatively with adiponectin.
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Table 4. Correlations between serum cytokines and biochemical parameters.

Adiponectin NOV/CCN3 Leptin FGF21

Glucose
ρ −0.338 ** 0.146 0.453 ** 0.356 **
p 0.004 0.244 0.000 0.002

Insulin ρ −0.392 ** 0.061 0.495 ** 0.451 **
p 0.001 0.615 0.000 0.000

HOMA-IR ρ −0.441 ** 0.079 0.504 ** 0.503 **
p 0.000 0.513 0.000 0.000

Triglycerides ρ −0.434 ** 0.223 0.395 ** 0.546 **
p 0.000 0.066 0.001 0.000

Cholesterol
ρ 0.144 0.119 0.176 0.123
p 0.221 0.325 0.133 0.295

HDL-c
ρ 0.441 ** −0.062 −0.179 −0.389 **
p 0.000 0.624 0.142 0.001

LDL-c
ρ 0.027 0.213 0.198 0.229
p 0.831 0.094 0.109 0.063

Uric acid
ρ −0.360 ** 0.174 0.196 0.313 **
p 0.002 0.150 0.095 0.007

ALT/AST
ρ −0.353 ** 0.012 0.027 0.265 *
p 0.003 0.923 0.821 0.026

ρ: Spearman’s correlation coefficient; p: p-value. * p < 0.05; ** p < 0.01. Significant correlations are in bold. ALT:
Alanine transaminase; AST: Aspartate aminotransferase; HDL-c: high-density lipoprotein cholesterol; HOMA-IR:
homeostasis model of assessment of insulin resistance; LDL-c: low-density lipoprotein cholesterol.

Lastly, Table 5 shows the correlations between cytokines and RBCs fatty acid profiles.
Adiponectin was positively correlated with ∆6D + ELO and ∆5D, and negatively correlated
with DGLA. Negative correlations were observed between leptin, ∆6D + ELO and DHA
and total ω-3 fatty acids, and a positive correlation between this adipokine and the ratio
ω-6/ω-3. FGF21 was positively correlated with DGLA and negatively with ∆6D + ELO.

Table 5. Correlations between fatty acids in RBC membranes and cytokines.

Adiponectin Leptin FGF21

∆6D + ELO
ρ 0.412 ** −0.344 * −0.322 *
p 0.004 0.024 0.042

∆5D
ρ 0.374 * −0.197 −0.263
p 0.011 0.301 0.121

DGLA
ρ −0.378 * 0.068 0.337 *
p 0.011 0.297 0.029

DHA
ρ 0.177 −0.375 * −0.131
p 0.364 0.011 0.531

total ω-3 fatty
acids

ρ 0.122 −0.393 ** −0.168
p 0.573 0.006 0.398

ω-6/ω-3 ratio
ρ −0.124 0.345 * 0.157
p 0.562 0.024 0.435

P: Spearman’s correlation coefficient; p: p-value. * p < 0.05; ** p < 0.01. Significant correlations are in bold.;
D: desaturase; DGLA: dihomo-γ-linolenic acid; DHA: docosahexaenoic acid; ELO: elongase.

3.6. Stepwise Multiple Regression Analysis for Major Determinations

This analysis was performed to find a set of independent variables that significantly
influence biochemical parameters, adipokines and RBC membrane fatty acid. The indepen-
dent variables included in the multiple regression analysis were participant sex, age and
BMI, for all dependent variables, the parameters that showed to be correlated with each
dependent factor through backward stepwise selection. The results are shown in Table 6.
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Table 6. Stepwise multiple regression analysis.

Dependent
Variable

Independent
Variables β Coefficient p Adjusted R2

HOMA-IR sex −0.251 0.040 0.362
adiponectin −0.273 0.017

leptin 0.521 0.000

Triglycerides FGF21 0.476 0.000 0.329
adiponectin −0.277 0.007

HDL-c FGF21 −0.272 0.017 0.207
adiponectin 0.360 0.002

Uric acid age 0.267 0.012 0.236
sex −0.420 0.000

ALT sex −0.553 0.000 0.296

Adiponectin
HOMA-IR −0.320 0.005

0.352sex 0.307 0.004
D6D + ELO 0.315 0.005

Leptin

HOMA-IR 0.175 0.045

0.876
age 0.175 0.009
sex 0.520 0.000

ALT/AST 0.128 0.021
DHA −0.175 0.000

FGF21
triglycerides 0.329 0.003

0.339age 0.330 0.003
HDL-cholesterol −0.232 0.029

DGLA
triglycerides 0.312 0.015

0.187adiponectin −0.253 0.047

∆6D + ELO
adiponectin 0.321 0.008

0.283leptin −0.426 0.001

∆5D triglycerides −0.410 0.000 0.156
HDL-c: high-density lipoprotein cholesterol; HOMA-IR: homeostasis model of assessment of insulin resistance;
ALT: Alanine transaminase; AST: Aspartate aminotransferase; DHA: Docosahexaenoic acid; D: desaturase;
DGLA: Dihomo-γ-linolenic acid; ELO: elongase; FGF21: fibroblast growth factor 21. Sex variables considered as 0
for males and 1 for females.

4. Discussion

Cytokines can represent interesting biomarkers of metabolic disorders and diseases.
In the present study the cytokine profile of subjects with obesity that showed metabolic
syndrome, in agreement with the US National Cholesterol Education Programme Adult
Treatment Panel III (NCEP ATP III) [13], was evaluated and compared with that of healthy
normal-weight subjects. Subjects with obesity showed an altered serum cytokine profile,
characterized by increased levels of leptin, FGF21 and NOV/CCN3, a decreased level
of adiponectin, and similar levels of vaspin and chemerin compared to normal-weight
subjects. In general terms, this altered profile can be related to an increased risk of suffering
alterations in glycemic control and inflammation [5,14]. The alterations in adipokine levels
in subjects with obesity have been widely studied. However, in the vast majority of studies
either a single adipokine or a reduced number of adipokines has been analyzed. Thus, a
strength of the present research is that concurrent levels of eight adipokines have been
studied in the same cohort together with the association with other metabolic parameters
such as RBC fatty acids and biochemistry.

Correlation analyses showed a positive association between leptin and three classical
parameters related to glycemic control, serum glucose, serum insulin and HOMA-IR index,
and negative correlations between each of these parameters and adiponectin or FGF21.
The correlations between leptin or adiponectin and glycemic control-related parameters
have been widely described [15–19], and the present results are in accordance with the
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published works. Few clinical studies examining the effects of FGF21 on glycemic control
and obesity are available. In the present work, increased serum FGF21 levels showed a
positive correlation with glycemic control-related parameters. Nevertheless, the multiple
regression analysis did not show any association between this adipokine and the glycemic
control-related parameters.

In general, FGF21 influences glucose homeostasis by stimulating glucose uptake by
adipocytes and inhibiting glucose production in the liver or improving insulin sensitiv-
ity [20]. In accordance with our results, other authors observed higher serum FGF21 levels
in subjects with obesity compared to those detected in lean individuals [21,22]. However, a
recent meta-analysis revealed that the use of FGF21 analogs exhibited no effect on fasting
blood glucose, glycated hemoglobin, and HOMA index, although a decreased fasting
insulinemia was detected. As stated by the authors, the quality of the evidence ranged
from moderate to very low and more clinical trials are needed to increase the quality of this
evidence [23].

Regarding serum lipids, the correlation study showed significant correlations with
adiponectin, leptin and FGF21. The regression analysis confirmed the positive association
between FGF21 and triglycerides and a negative correlation between FGF21 and HDL-
cholesterol, which is in line with that observed by other authors [24–26]. It has been shown
that this cytokine increases the expression of PGC1-α in the liver, which induces FFA oxida-
tion through mitochondrial enhancement, thus preventing their conversion into triglyc-
erides and reducing serum triglyceride concentration. Moreover, FGF21 lowers serum
triglyceride levels through the suppression of white adipose tissue lipolysis, lipoprotein
lipase activity increase and thus lipoprotein clearance enhancement [27]. Taking these facts
into account, a resistance to FGF21 can be proposed [28,29]. Regarding, HDL-cholesterol,
it has been demonstrated that FGF21 inhibits the expression of SREBP-2 [30], and that
this transcription factor activates the transcription of the hepatic enzyme ABCA1, which
catalyzes the assembly of cholesterol, phospholipids and apoproteins for HDL-c secretion
from liver [31]. Consequently, FGF21 reduces HDL-cholesterol production. Moreover, a
negative association between adiponectin and serum triglycerides, and a positive associ-
ation between adiponectin and HDL-cholesterol were also confirmed by the regression
analysis. These results are in accordance with those reported by other authors [32,33]. With
regard to the negative association between adiponectin and serum triglycerides, it has been
proposed that adiponectin increases triglycerides clearance by increasing lipoprotein lipase
expression in white adipose tissue [34]. The positive association between adiponectin and
HDL-cholesterol can be explained because compelling evidence suggests that adiponectin
plays a significant role in promoting cellular cholesterol efflux and HDL biogenesis. Indeed,
it has been hypothesized that ABCA1 activity and adiponectin receptors, AdipoR1 and
AdipoR2, play a critical role in adiponectin-mediated cholesterol efflux [35].

In addition, adiponectin was negatively correlated with uric acid. Other studies in the
literature have also shown this correlation in cohorts with characteristics different from
those of the present study, in terms of ethnic background, age or gender [36–38]. However,
the multiple regression analysis did not confirm the association.

Although it is known that transaminases are not as good markers of liver damage
as imagined, ALT is the most commonly used parameter to reflect hepatic impairment,
including non-alcoholic fatty liver disease (NAFLD). Other authors reported a positive
correlation between ALT and FGF21 [39,40]. Moreover, several studies have shown that
plasma FGF21 concentration was highly correlated with hepatic fat content in cases of
mild and moderate liver steatosis, either in adult subjects [41–44] or children [45–48].
Unfortunately, once again the multiple regression analysis did not confirm the association.
In contrast, regression analysis showed a positive association between leptin and the ratio
ALT/AST. Taking into account that leptin increases in overweight subjects and subjects
with obesity, this association could suggest the development of fatty liver in the subjects
with obesity in the present study. Nevertheless, this hypothesis could not be confirmed
because, unfortunately, potential liver steatosis was not analyzed in these subjects.
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To summarize, the main result concerning the relationship between serum biochemical
parameters and serum cytokines are the significant associations found between FGF21 and
adiponectin with serum lipids (triglycerides and HDL-cholesterol).

With regard to the fatty acid profile in RBC membranes, in subjects with obesity
this was characterized by an increase in total ω-6 fatty acids, as a result of a higher level
of DGLA, and a decrease in total ω-3 fatty acids, mainly due to a lower level of DHA.
Consequently, the ratio ω-6/ω-3 was significantly higher. The increase in ω-6 fatty acids
and the decrease in ω-3 fatty acids observed in subjects with obesity, when compared with
normal-weight subjects, indicated that the former showed an inflammatory status, as was
also suggested by a reduced adiponectin level.

Concerning DGLA, several authors have proposed that the increased level of this
fatty acid observed in obesity may represent a mechanism conferring protective effects
against the associated inflammation [49,50]. This is due to its conversion into the series-1
prostanoids via the cyclooxygenase pathway and suppression of inflammatory leukotriene
(LT) formation, and the ability to compete with AA in the synthesis of pro-inflammatory
AA mediators [51,52]. However, other studies have reported a positive association with
inflammatory and endothelial activation markers, with a more significant association
found in obese adults [53]. In fact, DGLA can be converted to 15-HETrE via the 15-
lipoxygenase pathway [54]. Regression analysis revealed a negative association between
DGLA and adiponectin, suggesting that the increase in DGLA in RBC membranes acts as
an inflammatory marker [51].

On the other hand, DHA, an ω-3 polyunsaturated fatty acid with cardioprotective
effects was negatively associated with leptin. In fact, low levels of ω-3 fatty acids and
high levels of leptin have been reported in subjects with obesity, which are related to a
proinflammatory state [55]. A recent systematic review revealed that an increase in DHA
intake can negatively modulate the expression of leptin [56]. Taking into account that RBC
fatty profiles reflect in part fatty acid intake, this result might be in line with the association
found in the present study.

The association between serum triglycerides and the content of DGLA in RBC has
been scarcely studied. The present results do not agree with those reported by Deon et al.,
who did not find any significant association, but it should be noted that their study was
addressed in children and adolescents with primary hyperlipidemia [57].

In addition, adiponectin was positively correlated with ∆6D + ELO and the association
was maintained after the adjustment in the multiple regression analysis. There are few
studies showing this association in the literature; they have been addressed, not in RBC
membrane phospholipids, but in plasma phospholipids [58,59]. Nevertheless, taking into
account that plasma phospholipids do not mirror RBC membrane phospholipids [60,61],
no comparisons with the present results can be made.

In conclusion, important alterations in serum adipokine profile and RBC fatty acid
profiles are found in subjects with obesity. Regression analysis reveals interesting associ-
ations between adipokines and other biochemical serum parameters, between RBC fatty
acid profiles and general biochemical serum parameters, and between serum adipokines
and RBC fatty acid profile, some of them being described for the first time. In view of these
associations, further studies are needed to better explain them, and to check if they are also
found in other cohorts.

The present study shows some limitations, the relatively small number of subjects in
the sample being one of them. This fact may have affected the strength of the correlations
found in this cohort. Another limitation is that, due to the cross-sectional nature of the
study, it is not possible to determine a cause-and-effect relationship between changes in
adipokine and RBC fatty acid profiles and the alterations found in the serum biochemical
parameters in the obese subjects. Moreover, diet is considered to be the major modifying
factor of fatty acid composition of tissues. Unfortunately, dietary intake was not registered
in the present study.
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