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Two-dimensional (2D) systems with time-dependent controls admit a quadratic Hamiltonian modeling near
potential minima. Independent, dynamical normal modes facilitate inverse Hamiltonian engineering to control
the system dynamics, but some systems are not separable into independent modes by a point transformation.
For these “coupled systems” 2D invariants may still guide the Hamiltonian design. The theory to perform
the inversion and two application examples are provided: (i) We control the deflection of wave packets in
transversally harmonic wave guides and (ii) we design the state transfer from one coupled oscillator to another.
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I. INTRODUCTION

Controlling the motional dynamics of quantum systems
is of paramount importance for fundamental science and
quantum-based technologies [1]. In particular, controlling the
evolution of interacting quantum systems is crucial to design
logic gates, one of the key elements of a quantum computer
[2]. Often the external driving needs to be fast, but also gentle,
to avoid excitations. Slow adiabatic driving is gentle in this
sense, but it exposes the system for long times to control noise,
heating, and perturbations. Shortcuts to adiabaticity (STA) are
techniques to reach, via fast nonadiabatic routes, the results of
slow adiabatic processes [3,4].

A distinction can be made between STA methods that keep
the structure of some Hamiltonian form and design the time
dependence of the controls, e.g., using invariants [5] and those
techniques that add new terms, e.g., counterdiabatic driving
[6]. Both may be useful depending on system-dependent prac-
tical considerations. A frequent problem with added terms
is the difficulty to implement them, whereas a limitation
of structure-preserving, invariant-based methods is that they
need Hamiltonian-invariant pairs with specific forms, such as
the Lewis-Leach family of Hamiltonian-invariant pairs [7], to
go beyond brute-force parameter optimization [3,4].

Here we shall deal with two-dimensional (2D) systems
with quadratic Hamiltonians, found in particular in small-
oscillation regimes of ultracold atom physics. In fact quadratic
Hamiltonians are ubiquitous as they represent the systems
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near potential minima [8]. So far, invariant based STA
have only been developed for 2D systems with independent
“dynamical normal modes” [9]. When the two dynamical-
mode motions separate, inverse engineering the dynamics
to perform some fast operation free from final excitations
is relatively easy: each of the time-dependent effective os-
cillators implies a one-dimensional Hamiltonian-invariant
“Lewis-Leach” pair [7] for which inverse engineering can
be performed. The two oscillators have to be driven simul-
taneously with common controls but, among the plethora of
parameter trajectories, it is possible to find the ones that satisfy
simultaneously the boundary conditions imposed on both os-
cillators. This strategy has been successfully applied to design
the driving of different operations on two trapped ions such as
transport or expansions [9,10], separation of two equal ions in
double wells [11], phase gates [12], or dynamical exchange
cooling [13].

This decomposition though, may not always be possible.
Lizuain et al. [14] described the condition for which a point
transformation of coordinates decouples the instantaneous
modes leading to truly independent dynamical normal modes
for two time-dependent harmonic oscillators: the principal
axes of the potential should not rotate in the 2D space.

This work extends the domain of systems and processes
that can be controlled by invariant-based inverse engineering
to those problems where the effective 2D potential rotates
and the normal mode motions remain coupled. Solutions to
the ensuing control problem exist that depend on the system
and/or the operation, such as taking refuge in a perturbative
regime [12], adding terms to cancel the inertial effects [14],
increasing the number of time-dependent controls to uncouple
the modes [13], or using more complex, nonpoint transfor-
mations to find independent modes [15]. Here we explore
instead the use of 2D dynamical invariants associated with the
coupled Hamiltonian.
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The paper is organized as follows: First we introduce the
model and its dynamical normal modes in Sec. II. Then we
present the invariant we will use to inverse engineer the con-
trol fields in Sec. III. The first application, in Sec. IV, is the
control of longitudinal energy in 2D deflected wave guides.
Section V describes further control possibilities for 2D waveg-
uides, and Sec. VI deals with a second type of application:
controlled state transfer between oscillators. The paper ends
with a discussion in Sec. VII.

II. HAMILTONIAN MODEL

Consider the Hamiltonian

B A SN SR
H() = 5 + 5 + 5‘01@)‘11 + sz(t)‘h —y(®)q1g2. (1)

We use throughout dimensionless variables such that no mass
factors or /i appear explicitly. Equation (1) describes different
physical systems, such as a single particle in a 2D potential,
or two coupled harmonic oscillators on a line. Other systems
different from (one or two) particles but driven by Hamil-
tonians of the form (1) are, e.g., coupled superconducting
qubits [16-20] or optomechanical oscillators [21-23]. All
these systems are analogous to each other but, arguably, the
single particle in a 2D potential is easiest to visualize so we
shall use a terminology (such as longitudinal and transversal
directions for principal axes, rotations...) borrowed from that
system. Indeed, our first example, see below, deals with a
single particle.

The Hamiltonian (1) may be instantaneously diagonalized
by “rotated” variables [14]
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Subscripts [ and ¢ stand for “longitudinal” and “transversal”.
The original Hamiltonian, expressed in terms of the new vari-
ables, is

where A(t) = (

2 2
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where A(t) = \[4y2() + [@3() — w}(0)P

The formal decoupling in Eq. (4) is a mirage. H is not
the Hamiltonian that describes the dynamics in the rotated
variables {p;, p:, qi, q¢:} [14,24]. In general the dependence
of A(¢) on time couples dynamically the “instantaneous nor-
mal modes”, i.e., the normal modes that would separate the
motion if the Hamiltonian kept for all times the values that
the parameters have at a particular instant. In the moving
frame the oscillators are coupled by a term proportional to
6 = d6/dt [14]. Some peculiar, but physically significant re-
lations between w;(t), w(t), and y(t) can make 6(¢) time
independent. Here we consider instead the scenario where

0(t) changes with time. This is unavoidable if the process
we want to implement implies boundary conditions for the
parameters such that 6(0) # 6(ty), as in the examples below.

III. 2D INVARIANT

Urzua et al. [8], generalizing previous results in 1D [25,26]
and the work in Ref. [27] for classical coupled oscillators, see
also Ref. [28], have recently found that the linear combination
of operators (dots stand for time derivatives hereafter)

G@) = w()py — wr()q1 + uz(1)p2 — 2 (t)q2,  (6)

satisfies the invariant equation i0G/dt — [H, G] = 0, pro-
vided u; and u; satisfy

i+ olOu = y(Oua, i+ o3Our = yOuy, (1)

which are classical equations of motion driven by a Hamilto-
nian (1). For any state driven by H (¢), (G(¢)) is the sum of two
Wronskians Wi[u(2), (q1)(t)] + Walua (), (g2) ()], where all
functions in their arguments evolve as Eq. (7). The geo-
metrical meaning of W;(¢) is an “oriented” phase-space area
formed by phase-space points U;(¢) = {u;(0), u;(¢)}, Qi(t) =
{{gi) (@), (pi)(¥)} and the origin O; = {0;, 0;}. We consider
two phase spaces, i = 1,2, one for each oscillator. W;(t)
is plus or minus the area A;(¢) of the triangle formed by
Ui, Q; and O; for each phase space, depending on whether
going from U; to Q; needs an anticlockwise or clockwise
displacement. For y = 0, the two areas (and Wronskians)
remain constant in time. When y # 0 the individual Wron-
skians are not conserved. The conserved quantities are now
Wi(t) — fot Wi(t')dt' = W;(0), i.e., the initial phase-space ori-
ented areas. The added terms cancel each other, namely, W, =
—Ws = (u1(q2) — (gq1)u2)y, so that the sum W, () + W (¢) is
the sum of oriented areas and it is constant. This result is a
particular case of the preservation of sums of oriented areas in
classical Hamiltonian systems [29].

We construct from G a quadratic invariant that may be-
come proportional to some relevant energy at boundary times
by choosing specific boundary conditions for the u; and u;,
I= %GT G. Designing the u; we may manipulate the invariants
and therefore the dynamics. From the u; we can as well get
the Hamiltonian as demonstrated in the following application
examples.

IV. CONTROLLED DEFLECTION

A single particle is launched along a potential “wave
guide”, which is harmonic in the transversal direction. Our
goal is to deflect it, that is, manipulate the potential to change
the waveguide direction, controlling the input/output scaling
factor of the longitudinal velocity. To have waveguide poten-
tials at the boundary times 7, = 0, f; we impose

y(tp) = w1(tp)w2(1p). ®)

As a consequence, 2;(t;) =0 and () = [a)f(tb) +
w%(t;,)]l/ 2 Thus, at boundary times, the potential is a har-
monic “waveguide” with longitudinal direction defined by
the angle 6(#;,) = arctan[w (¢,)/w2(,)]. The deflection angle
AO =0(t;) — 0(0) can take any value between O and 7 /2
for 6(ty) = 6(0). The condition (8) in Eq. (7) implies that
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TABLE 1. Initial and final frequencies and angles defining the
wave guides for y-constant and w,-constant protocols. The deflection
angle A9 = 0(ty) — 6(0) determines the ratio w,(0)/w; (0).

Initial wave guide Final wave guide

(0) w(ty) = w2(0)
y const. @,(0) wi(ty) = w1(0)

2,(0) Q. (tr) = :(0)

w1(0) wi(ty) = w3(0)/w(0)
@, const. @,(0) w:(tr) = w(0)

,(0) Qu(ty) = 2F(0)

i1 2(tp) = 0, which also gives

uy (tp)wi () = ua(tp)wr(p), 9

i.e., the reference trajectories must start and end at ¢, (f,) = 0,
on the axis of the waveguide. If the frequencies at 7, are fixed,
either ¢ (1), or one of the u;(#;) can still be chosen freely.

Rewriting the invariant G in terms of the rotated variables
{q:, qi} and imposing it; »(t,) = 0 we find that

[ w@w) 9
I(ty) = [m] ER (10)

i.e., I(#p) is proportional to the longitudinal energy.
With Eq. (10) we get

(pi(ty)) = F(pi(0)),
uy(0) sin6(ry)
ux(ty) sin6(0)
deflection angle AO and waveguide frequencies €2 (f,) we
may impose any scaling factor F' by manipulating the ratio
u3(0)/ux(t), which allows us to set any desired velocity scal-
ing, that is, any ratio between the incoming and the outgoing
average velocity of the wave packet. This scaling factor will
affect all wave packets, and the deflection angle A6 and
the waveguide compression/expansion factors [ratio between
€2,(0) and €, (¢/)] can be chosen independently.

The Hamiltonian parameters are found inversely from
Eq. (7). We choose uj, = ZZ:O a,(cl’z)(t/tf)k, with coeffi-
cients fixed so that i; 2(#5) = it1 2(f,) = 0, and the u; »(t;) are
consistent with Eq. (9).

There are three external parameters, w;(¢), w(t), and y (t),
but two coupled equations in Eq. (7). Thus we may fix one
of the external parameters or some combination. We consider
two simple, not exhaustive, possibilities: (i) y constant, so ini-
tial and final €2; coincide; and (ii) w; constant, which implies
a compression (transverse focusing useful to avoid transversal
excitation) of the final wave guide with respect to the initial
one, see Table I.

The initial state chosen for the numerical examples is a
product of the ground state of the transversal harmonic os-
cillator and a minimum-uncertainty-product Gaussian in the
longitudinal direction centered at g;y, with initial momen-
tum pio, ¥i(qr,t = 0) = [o+/27]7 12 P e=(@—a)/4o?),
Firstly, we design a process that interchanges w;(¢) and
wy(t) with A@ = /4 and constant y, conceived to preserve
the initial longitudinal velocities in the outgoing waveguide,

_ up(tp)
G(p) = mm,

E(ty) = F2E)(0), (11)

where F = and E; = (p7/2). For some chosen

. sf 6
4
\:: 4 )
~ 3 %5rTos o6
13: 2
<) 1
0
0.2 0.4 0.6

u2(0) /uz(tf)

FIG. 1. Ratio of final to initial longitudinal energy for different
process times 7 (a) and for different scaling factors u;(0)/u,(t) (b).
The insets show the scaled transversal excitation R, = AE, /Q,(tf).
(a) initial longitudinal Gaussian wave packet with 2!/20 = 1, p;o =
1, and g;0 = —4 (green), g0 = 0 (red), and g;o = 4 (black). A9 =
7 /4 starting from w,(0) = 1 and w,(0) = 2.41, using linear ramps
(solid lines) and an invariant-based protocol for y constant that
produces E;(t7) = E;(0) (dashed lines). (b) Initial longitudinal Gaus-
sian wave packet centered at the origin with p;o = 1 and 2'%¢ = 1.
A6 = /4 with 0;(0) =1 and w,(0) = 2.41 (orange curves), and
A0 = /3 with ;(0) =1 and w,(0) =3.73 (black curves) for
constant-y processes (solid lines) and constant-w, processes (dashed
lines, overlapping with solid lines in main figure). See Table I for
values att = ty.

E;(ty) = E;(0), and use linear ramps (a control field that
evolves linearly between the boundary values) for the same
boundary waveguides as a benchmark to compare the perfor-
mance of the invariant-based protocol.

Figure 1(a) depicts the final longitudinal energy. For the
linear ramps it oscillates with operation time. The envelope for
the minima is at zero but the maximum tends for long times to
some value that depends on the initial wave packet. Contrast
this with the full stability of the invariant-lead processes. They
guarantee a fixed result, the final longitudinal energy being
identical to the initial one for any initial wave packet. The
transversal excitation by the linear ramps in fast processes
increases considerably as the initial wave packet deviates from
the origin, while the transversal excitation in the invariant-
based protocol is, in general, small and much more stable.

Figure 1(b) verifies that, for some chosen deflection angle,
we can scale the final longitudinal energy at will in both
scenarios (y or w, constant). Since the invariant does not
control the transversal direction, the transversal energy may
be excited, but it still depends on the design of the u;(¢), see
the inset of Fig. 1(b). Such dependence may be exploited to
minimize the transversal excitation and even suppress it in
some cases (notice that the 7 /3 rotation with constant w, pro-
duces zero transversal excitation for a given relation between
the boundary values of u,). Figure 2 provides snapshots of

t=3t;/4 t=ts 30

t=t;/4

t=t;/2

20
V()
10

0

FIG. 2. Snapshots of the top view of the 2D potential for E; (t;) =
E;(0)/2 with constant w,. w;(0) = 1 and w, = 2.41, deflection angle
AO =7 /4 (wi(ty) = 2.41%) and process time t; = 1. The transversal
frequency is compressed 2.41 times, from €,(0) = 2.61 to ,(t;) =
6.29, see Table 1.
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the evolution of the 2D potential for a w,-constant processes
that slows down the particle by a factor of 2 with deflection
AO = 7 /4.

V. COMMUTATION OF H (t,) AND I(t;)
AND OTHER BOUNDARY CONDITIONS

Note that the necessary condition for the Hamiltonian and
the invariant to commute at boundary times is precisely the
waveguide condition in Eq. (8) (together with the auxilary
equations in Eq. (7)). In the case of a potential waveguide,
however, the eigenvectors of /(#;) are highly degenerate, since
a longitudinal plane wave multiplied by an arbitrary function
of g, is a valid eigenvector with the same eigenvalue. This
means that even if 1(¢,) commutes with H (¢;,) and shares some
eigenvectors with H(#,) the vast majority of them are not
eigenvectors of H(t,). This phenomenon, i.e., the existence
of eigenvectors of one operator not shared with the other one,
is well known and is explained in detail in Ref. [30].

Thus, commutativity of H(t,) and I(¢#;) plays a lesser role
in the 2D scenario, compared to the use of invariants for
inverse engineering in 1D [4], and may in fact be abandoned
for different applications. For example, note the following
alternative sets of boundary conditions and corresponding
quadratic invariants:

ui(tp) = 0, ur (tp)wr(tp) = —uz(tp)w: (1),
u3(tp) 17_,2

cos28(t,) 2°

where i = 1,2 and the invariant at the boundary time t,

is proportional to the transversal kinetic energy. With these

boundary conditions we could control and scale the transverse
kinetic energy. As well,

1(1) = 12)

ui(tp) = 0, w(tp)w1(tp) = i (tp) w2 (1),
() q;

sin? (1) 2’

which allows us to scale the longitudinal coordinate, e.g., to

focus or defocus, or

1(t) = 13)

ui(ty) = 0, w1 (tp)wa(ty) = —12(tp) w1 (tp),
) q_,z
cos2(t,) 2’

where the invariant at the boundary is proportional to the
transverse potential energy.

Even more generally, the boundary conditions imposed on
the u;(¢) and their derivatives do not need to be of the same
typeatt = O andty, i.e., for longitudinal momenta or positions
at both boundary times, of for transverse momenta or posi-
tions at both boundary times. Designing u;(¢) so as to satisfy at
t = 0 and ¢, different boundary condition types opens several
control possibilities such as, for example, driving the initial
longitudinal energy into final transversal kinetic energy or
vice versa.

1(1y) = (14)

VI. STATE TRANSFER

Up to now we have considered real u;(t), but the coupled
Newton’s equations admit purely real and purely imaginary
solutions combined into complex solutions. Exploiting this

complex structure, u; = uf + iu!, leads to interesting forms
of the invariant. In particular the invariant may become pro-
portional to the uncoupled Hamiltonians at boundary times,
enabling energy transfer form one oscillator to the other.
Processes that exchange the state, or some property of it,
between coupled systems are highly relevant for the devel-
opment of quantum technologies. They have been extensively
studied in the context of quantum computation and commu-
nication [31,32] and also addressed in experiments [33,34].
State transfer between coupled harmonic oscillators has also
been thoroughly explored [35-37]. Here we develop a pro-
tocol that induces energy exchange between oscillators by
inverse engineering the control fields that govern the system.

Let us first drop the waveguide condition (8) and go back
to the laboratory frame variables {q;, g»}. Defining annihi-
lation operators in the usual manner, a;(t) = J/w;(t)/2 q; +
ipi/s/2w;(t), i =1,2,G in Eq. (6) may become a; or a; by
certain choices of the u;. Let us choose at initial time

u1(0) = ico/v/2w1(0),  u1(0) = —coy/1(0)/2,  (15)

and uy(0) = u2(0) = 0 with ¢y real. This implies G(0) =
c0a1(0), and 1(0) = c2a(0)a; (0)/2. Instead, at final time we

impose
up(ty) = ico/+/202(ty),  a(ty) = —co/n(ty)/2, (16)

together with u;(t7) = u;(t;) = 0, so that G(ty) = coax(ty),
and I(ty) = coa;(tf)ag(tf)/Z. The same constant ¢y appears
in Egs. (15) and (16) because the solutions of Eq. (7) must
satisfy %{Im[u’f(t)ul(t) + u; (O ()]} = 0 [27].

The choice c(z) /2 = w;(0), together with the men-
tioned boundary conditions give /(0) = H{(0) and I(ty) =
[w1(0)/w(tr)]Ha(tf), where we define the ‘“uncoupled
Hamiltonians” H;(t) = w; (t)a; ()a;(t). Eigenstates of H;(0)
may thus be mapped into eigenstates of H,(ts) by proper
inverse engineering of the u;(¢). If w1(0) = w,(ty),

(H1(0)) = (1(0)) = (I(1y)) = (Ha(1y)) a7

for all initial wave packets. (Any other scale factor may
be chosen.) The system (7), which now involves four real
functions, uf (1), u! (1), u(t), ul (), has to be solved inversely
for w(t), w2(¢) and y(¢). The inversion is done following
techniques developed for trapped ions [12] or systems [38].
Assuming that the values of the control parameters at bound-
ary times are set, we start by designing a y (¢) that satisfies
the boundary values y (¢,) and that has zero first and second
derivatives at the boundaries for smoothness. We use a sum-
of-cosines ansatz

4
y(@) = Zak cos (kt—m) (18)

k=0 Y
which meets the boundary conditions with just five terms.
The coefficient a4 is left free for now. Then we design the
imaginary part of the dynamics, again using sums of cosines

6 .
t
ul(t) = Zb,- cos (%)

i=0 f
o jmt

uh(t) = Z;cj cos (T) (19)
j:
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FIG. 3. (a) Control parameters, w? (dashed black), w3 (short-
dashed green) and y (solid blue) vs ¢ /17, for an energy transfer from
oscillator 1 to 2. (H;) in solid red, (H,) in dashed blue, (H) in short-
dashed green, and (/) in long-dashed black, for initial (b) and final
(c) parts of the process. w;(0)* = a)g(tf)2 =1, w,(0)* = a).(t_,-)2 =
0.9 and y(0) = y(t;) = 6; t; =4; the system starts in a (tensor)
product state between the ground states of the uncoupled oscillators
H; and H,, not an eigenstate of the total Hamiltonian (1).

Coefficients {b, c};_5 are fixed so that the real reference tra-
jectories satisfy the boundary conditions for u; »(f,) and its
derivatives, and so that the frequencies w;(¢) have the desired
boundary values, which amounts to satisfying

w1(0)
wy(tf)’

ii5(0) = y(0), iiy(ty) = 0a(tf)y/wr1(n(ty).  (20)

Note, from the expression of the frequencies

y Ol | (1) — ii] 5(2)
u{’z(t)

that, even if the conditions in Eq. (20) are fulfilled, we may

encounter indeterminacies at boundary times (some u; »(#p)

become 0). Thus, we have to impose additional boundary
conditions for consistency using L’Hopital’s rule,

13
”1( )(’f) =0,

i} (0) = —(0)%,

i (tp) = y(ty)

2
wia(t) =

; ey

w1(0)

) [@1(t7)* + @2(t7)*],

Ul P(tr) = —y(ty)

uy¥(0) = 0,
s (0) = =y (0)[1(0)” + w2(0Y2]. (22)

Coefficients {b, c}¢ are left yet undetermined. In the next step,
we numerically solve the real equations of motion with the
already designed control parameters for the initial conditions
and find, again, numerically, the value of the coefficients that
have been left free to satisfy the final boundary conditions.

Figure 3(a) displays the resulting evolution of the control
parameters for a specific example in which the frequencies
w; swap their boundary values and y (0) = y (¢;). Figure 3(b)
shows the expectation values of the total and the uncoupled
Hamiltonians near the time boundaries, together with the con-
stant expectation value of the invariant. Indeed (H,(ty)) =
(H1(0)), thus proving that our protocol transfers the state from
one uncoupled oscillator at the initial time to the other one at
the final time. Simililarly to what happens with the transversal
energy in the wave guide, the invariant does not impose the
value of the final total energy, which does not necessarily
coincide with the initial one.

VII. DISCUSSION

In some multidimensional systems with time-dependent
control there are no point transformations that lead to un-
coupled normal modes. Our main point here is that in these
“coupled systems”, invariants of motion may still guide us
to inversely design the time dependence of the controls for
driving specific dynamics.

This inversion procedure extends the domain of invariant-
based engineering, which had been applied so far to 1D or
uncoupled systems [4]. An important difference with respect
to uncoupled systems is the diminished role of commutativity
of Hamiltonian and invariant at boundary times. Commuta-
tivity, because of degeneracy, does not guarantee one-to-one
mapping of eigenstates of the total Hamiltonian from initial
to final configurations. One should then focus on the invariant
itself for applications, and, if required, rely on design freedom
to keep other variables, e.g., the total energy, controlled. An
alternative to be explored is to make use of a second invari-
ant corresponding to a linearly independent set of classical
solutions of Eq. (7), {u}(¢), u5(¢)}, linearly independent with
respect to {u;(t), up(¢)} [27]. Imposing boundary conditions
to the second set we would aim to control the second invariant
as well, but the inversion problem becomes more demanding,
as the number of conditions double, while the number of
(common) controls remains the same.

As for further open questions, invariant-based engineering
is known to be related to other STA approaches such as coun-
terdiabatic driving for single oscillators [39]. It would be of
interest to connect the current work with counterdiabatic driv-
ing for coupled oscillators [40,41]. Finally, other boundary
conditions on the u#; would allow to control other processes,
different from the ones examined here.
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