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HIGHLIGHTS

� A machine-learning model has been

developed to improve accuracy on pre-

dicting the activity of missense LDLr

mutations.

� ClinVar was used as database, and the

model function was defined by using

specific characteristics of the LDLr.

� A high-score prediction ML model with

specificity of 92.5% and sensitivity of

91.6% has been developed to predict

pathogenicity of LDLr variants.

� Implementation of high-predicting ca-

pacity software constitutes a valuable

approach for assessing pathogenicity of

LDLr variants to help in the early diag-

nosis and management of FH disease.

� An open-access predictive software (MLb-

LDLr) is provided to the scientific

community.
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SUMMARY
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Untreated familial hypercholesterolemia (FH) leads to atherosclerosis and early cardiovascular disease. Mu-

tations in the low-density lipoprotein receptor (LDLr) gene constitute the major cause of FH, and the high

number of mutations already described in the LDLr makes necessary cascade screening or in vitro functional

characterization to provide a definitive diagnosis. Implementation of high-predicting capacity software con-

stitutes a valuable approach for assessing pathogenicity of LDLr variants to help in the early diagnosis and

management of FH disease. This work provides a reliable machine learning model to accurately predict the

pathogenicity of LDLr missense variants with specificity of 92.5% and sensitivity of 91.6%.

(J Am Coll Cardiol Basic Trans Science 2021;6:815–827) ©2021 TheAuthors. PublishedbyElsevier on behalf of

the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
F amilial hypercholesterolemia (FH) is
the most common autosomal domi-
nant disorder with an estimated prev-

alence between 1:200 and 1:250 (1). FH is
characterized by an elevated concentration
of low-density lipoprotein (LDL) cholesterol
in plasma as a consequence of a defective
catabolism of LDL particles (2). The progres-
sion of FH is asymptomatic and normally is
not detected until advanced stages of the disease
when long-term exposure to LDL induces the devel-
opment of atheroma plaques and increases the risk
of cardiovascular diseases (3,4). Despite the high inci-
dence of FH, <1% of the patients are properly diag-
nosed, and consequently, the implementation of
early intervention programs to prevent plasma LDL
accumulation and long-term associated problems is
limited (5,6).

Mutations in the LDL receptor gene (LDLr) are the
most common genetic cause of FH, accounting for
more than 90% of the cases (7). To date, more than
3,000 LDLr genetic variants have been described and
submitted to the ClinVar database. Among them,
missense variants, resulting from single nucleotide
substitution, are the most frequent ones (8). Single
nucleotide variations can affect (pathogenic) or not
(benign) protein structure and function; however,
only a reduced number of variants have been func-
tionally validated and proven to be pathogenic (9).
Cascade screening and in vitro functional character-
ization are the most reliable methodologies to vali-
date pathogenicity of LDLr variants (10).
Nevertheless, both methods have their own limita-
tions: in vitro functional validation is laborious and
ttest they are in compliance with human studies committe

d Food and Drug Administration guidelines, including patien

r Center.
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time-consuming, whereas cascade screening requires
patient clinical data availability and a high number of
patients (11). Lately, the use of computational tools
has been extended to many fields of medical sciences,
including development of predictive software to
assess the pathogenicity of protein variants (12,13).
Given the high frequency of the mutations found in
the LDLr gene, developing specific software to predict
LDLr pathogenicity would allow a rapid and system-
atic characterization of pathogenic variants.

Taking advantage of the large number of missense
LDLr variants already characterized and annotated in
the ClinVar database, the aim of this work has been to
develop an advanced machine learning (ML) algo-
rithm to accurately predict the pathogenicity of LDLr
missense variants. To do so, 7 characteristics of the
protein have been considered in order to obtain a
high-score prediction. The introduction of a ML al-
gorithm provides a predictive model with a specificity
of 92.5% and a sensitivity of 91.6%, which shows high
accuracy in predicting both pathogenic and benign
variants. Here, we provide an open access machine
learning–based LDLr predictive software (MLb-LDLr)
for the scientific community to predict the pathoge-
nicity of missense LDLr variants (14). Ultimately, the
data presented here will help clinicians and re-
searchers interpret the effect of any missense muta-
tion in the LDLr gene.

METHODS

DATASET. To date, more than 3,000 LDLr variants
have been annotated in the ClinVar database (May 25,
2021). These variants are divided into 6 subclasses
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according to the type of the mutation: frameshift,
missense, nonsense, splice site, noncoding RNA, and
untranslated region (UTR). In order to develop an
efficient ML diagnostic tool, each subclass must be
analyzed individually because a given feature could
be important for one subclass, but not relevant for
others, taking into account their very different effect.
However, most of the subclasses have a reduced
number of variants, thus prediction of protein activ-
ity is not possible due to the limited available infor-
mation. In addition to limited data availability, the
nature of some mutation subclasses leads to a dele-
terious effect in most of the variants (ie, frameshift
and nonsense mutations) or almost always a benign
effect (noncoding RNA and UTR). Therefore, the lack
of enough variants with the contrary effect does not
allow obtaining an accurate ML model if included. On
the other hand, the existence of large amount of both
pathogenic and benign LDLr missense variants whose
activity has been validated allows the development of
a ML predictive software to predict the pathogenicity
of these variants.

More than 1,200 missense variants are already an-
notated in ClinVar, which are distributed according to
their pathogenicity as follows: 7 benign, 58 likely
benign, 284 of uncertain significance, 239 of conflic-
tive interpretation, 568 likely pathogenic, and 248
pathogenic, although some of these variants have
been included into more than 1 subclass. In order to
ease the classification, benign and likely benign var-
iants were grouped into a benign subclass (n ¼ 65),
and pathogenic and likely pathogenic variants into a
pathogenic subclass (n ¼ 639). ClinVar is a great
source to evaluate the pathogenicity of LDLr variants,
and although most of the used variants have multiple
submitters to support their pathogenicity, 1 limitation
of the database is that in some cases, there is only 1
submitter, and a few of them have no assertion.
Therefore, this has been taken into consideration in
the training and validation of the model.

In addition, an exhaustive bibliographic search
allowed to ascertaining the effect of variants with
conflictive interpretation or uncertain significance
and their inclusion in the benign or pathogenic cate-
gories. This process allowed increasing the number of
variants with a reliable diagnosis. In sum, the data set
consisted of 80 benign and 664 pathogenic LDLr
variants.

MODEL DEFINITION. A classification model to pre-
dict the probability p(Pi ¼ 1)pred of pathogenicity (Pi)
of the ith protein variant was defined. Applying these
criteria, the model fits the objective function f(Pi)obs.
The function f(Pi)obs ¼ 1 when Pi ¼ pathogenic and
f(Pi)obs ¼ 0 when Pi ¼ benign. The output of the model
is the scoring function f(Pi)calc. This function gets real
values and consequently cannot be compared directly
to f(Pi)obs. As a consequence, f(Pi)calc was transformed
into the searched probability scale values p(Pi ¼ 1)pred.
Using these probability values, the predicted classi-
fication of each protein variant f(Pi)pred can be ob-
tained. The predicted classification f(Pi)pred ¼ 1
(Pi ¼ pathogenic) when p(Pi ¼ 1)pred >0, otherwise
f(Pi)pred ¼ 0 (Pi ¼ benign). Both linear and nonlinear
ML models were trained. The general formula for the
linear ML model is shown in Equation 1.

f ðPiÞcalc ¼ � e0 þ
Xk¼ 7

k¼ 1

ek$Pik (1)

The coefficient e0 is the independent term, and
ek>0 are the coefficients for each input variable Pik.
These coefficients ek>0 quantify the influence
(weight) given to each characteristic on the overall
pathogenicity. In order to fit the objective function
f(Pi)obs, we used as input variable Pik parameters.
These Pik parameters are the probabilities with which
pathogenic protein variants in the data set present a
given value of the characteristic Ck within a given
range. We encoded Pik values of each protein variant
into the quantitative vector Pik ¼ [Pi1, Pi2, Pi3, . Pi7].
The specific characteristics studied were:
C1 ¼ conservation of the substituted residue,
C2 ¼ charge change, C3 ¼ original amino acid,
C4 ¼ substituting amino acid, C5 ¼ amino acid hy-
drophobicity change, C6 ¼ amino acid size change,
and C7 ¼ affected domain. These characteristics were
further divided into 2 different subgroups: physico-
chemical (C2, C5, C6, and C7) or biological-evolutive
(C1, C3, and C4). The values of each characteristic Ck

of the 3 continuous variables (C1, C5, and C6) were
split into 5 mutually exclusive and equal intervals or
classes (c). On the other hand, the values of each
characteristic Ck of the discrete variables (C2, C3, C4,
and C7) were split into different classes. Characteristic
selection and obtention process are shown in the
Supplemental Appendix and Supplemental Tables S1
to S4. Ck variables were transformed into Pik proba-
bility values according to Equation 2.

Pik ¼ nCkðPi ¼ 1Þ
nCkðPi ¼ 1Þ þ nCkðPi ¼ 0Þ (2)

In Equation 2, nCk(Pi ¼ 1) is the number of patho-
genic protein variants (Pi ¼ 1) with values of Ck within
the class c. By analogy, in this formula, nCk(Pi ¼ 0) is
the number of benign protein variants (Pi ¼ 0) with
values of Ck within the class c. Pik values are shown in
Supplemental Table S5.

https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
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MODEL TRAINING AND VALIDATION. As mentioned
before, training was performed in both linear and
nonlinear models. In the case of the ML linear models,
different algorithms were used to define the ek co-
efficients. The linear ML algorithms used were linear
discriminant analysis (LDA) (parametric), linear neu-
ral networks (LNN) (nonparametric) from STATISTICA
data analysis software system, version 6.0 (StatSoft,
Inc.) and Excel Solver Evolutionary algorithm (ESEA)
(parametric) (15). In the case of nonlinear models, 2
types of nonlinear artificial neural network (ANN) al-
gorithms were used: multilayer perceptron (MLP)
(parametric) and radial basis function (RBF)
(nonparametric) (STATISTICA, data analysis software
system, version 6.0, StatSoft, Inc.). These models were
chosen because they allow testing different types of
ML mechanisms, linear and nonlinear, parametric and
nonparametric. Linear and parametric models create
lineal equations formed by coefficients such as weight
or threshold, whereas the nonparametric ones are
more complex and use other types of equations.

In order to train/validate the model, the dataset
was split into 2 subsets using the variable subset ¼ T
(training series) and subset ¼ V (validation series).
Variants in training series were used to obtain Pik

values and to train the ML models. Variants in vali-
dation series were used neither to obtain Pik values
nor to train the model. The variants were assigned to
training or validation series randomly. Three-quarters
of the pathogenic variants (n ¼ 499) were used for
training and the remaining (n ¼ 166) to validate the
model. In the case of benign variants, two-thirds
(n ¼ 54) were used in the training group, and the
remaining (n ¼ 26) were used in the validation group
due to the limited number of annotated variants.
VARIABLE SELECTION AND OPTIMIZATION. In a first
stage, linear and ANNML algorithms from STATISTICA
were run with different variable selection strategies:
forward stepwise, backward stepwise, etc. Next, ESEA
strategy was used. ESEA maximized f(Pi)calc function
and increased the number of correctly predicted vari-
ants, modifying ek coefficients (see the details in the
Supplemental Appendix). The maximum and mini-
mum limits established forweights and thresholdwere
ek>0max ¼ 0.2 and ek>0min ¼ 0.001, and e0max ¼ 1 and
e0min¼0.1, respectively. These limit valueswere set up
arbitrarily. In order to obtain a balanced relation be-
tween the correctly predicted pathogenic and benign
variants, the objective function Equation 3 was
described as follows:

F0 ¼ Sensitivity � Specificity (3)

Next, ESEA expert-guided selection (EGS) strategy
was used to optimize ek values. EGS was carried out
as follows: Once the best fitting weights and
threshold were established through ESEA, some Pik

values were adjusted to improve the number of
correctly predicted variants. Consequently, EGS
strategy included a reparameterization of some Pik

values, thus increasing the number of correct pre-
dictions; see the details in the Supplemental
Appendix and Supplemental Table S6. The general
workflow of the model is shown in Figure 1.

STATISTICAL ANALYSIS. Accuracy of the model was
tested by 4 statistic parameters: sensitivity, speci-
ficity, positive predictive value, and negative pre-
dictive value. The sensitivity and the specificity
values refer to the percentage of correctly predicted
pathogenic and benign variants, respectively. These
parameters were calculated in both training and
validation sets.

In addition, random bootstrapping training and
validation subsets of the same sample size with
replacement were used to test the sampling distri-
bution. One thousand bootstrapped samples were
tested, and the statistics previously mentioned were
presented with 95% confidence intervals.

EXPERIMENTAL MODEL VALIDATION. In vitro func-
tional characterization of ClinVar-annotated conflic-
tive LDLr variants.

LDLr VARIANT SELECTION. Thirteen LDLr variants
with conflictive or uncertain interpretations on Clin-
Var were selected to experimentally validate the ac-
curacy of MLb-LDLr and other predictive software.
The selection criteria were based on the disparity of
the prediction of the most used pathogenicity-
predictive software. Hence, not only the functional
characterization of conflictive LDLr variants was
performed, but also software accuracy was assessed
when facing a hard to predict variant. In addition, the
selected variants have been described in patients
with elevated levels of LDL cholesterol. Descriptions
of the studied variants and in silico predictions are
shown in Table 1.

CHO-LDLD7 CELL CULTURE AND TRANSFECTION.

The CHO-ldlD7 cell line was cultured in Dulbeccós
modified eagle medium low glucose, 1 g/L (GE
Healthcare) supplemented with 10% fetal bovine
serum, 2 mmol/L L-glutamine, 100 units/mL peni-
cillin, and 100 mg/mL streptomycin. Ten thousand
CHO-ldlD7 cells were plated into 96-well culture plates
and transiently transfected with the plasmids carrying
wild-type LDLr or Ex3_4del, c.599T>G p.(Phe200Cys),
c.889A>C p.(Asn297His), c.914G>C p.(Trp305Ser),
c.1112T>C p.(Lau371Pro), c.1118G>C p.(Gly373Ala),
1345A>G p.(Arg449Gly), c.1418T>A p.(Ile473Asn),
1732G>A p.(Val578Ile), 1912G>C p.(Asp638His),

https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009


FIGURE 1 General Workflow of the Model

Clinical significance of characterized LDLr variants (f(Pi)obs) and values of physicochemical and evolutive characteristics (Ck) were obtained

from several software and databases. Pathogenicity probability values (Pik) were calculated using the relation between pathogenic and

benign variants in each characteristic. Then, different ML models (LNN, LDA, ESEA) were applied to obtain the weight of each characteristic on

the overall pathogenicity and the threshold that divides pathogenic and benign variants (ek coefficients). These values were later used to

calculate a pathogenicity score of each variant (f(Pi)calc). Finally, some f(Pi)calc values were manually modified, and the ML models were

applied again in order to optimize ek values. The resulting coefficients were used on MLb-LDLr software. ESEA ¼ Excel Solver Evolutionary

algorithm; LDA ¼ linear discriminant analysis; LNN ¼ linear neural network; ML ¼machine learning; MLb-LDLr ¼machine-learning–based low-

density lipoprotein receptor software.
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c.1955T>C p.(Met652Thr), c.2049C>T p.(Pro683Leu),
c.2098G>A p.(Asp700Asn), and c.2113G>C
p.(Ala705Pro) LDLr variants using Lipofectamine 2000
Transfection Reagent (Thermo Fisher Scientific).
Transfected cells were maintained in culture for 48
hours to achieve maximal LDLr expression.
QUANTIFICATION OF LDLr ACTIVITY. LDLr activity
was determined by flow cytometry in CHO-ldlD7 cells
transfected with plasmids encoding the LDLr variants
as previously described (16). Transfected CHO-ldlD7
cells were grown in 96-well culture plates. Forty-
eight hours after transfection, cells were incubated
4 hours at 37 �C with 20 mg/mL fluorescein isothio-
cyanate–LDL. Cells were then washed twice in
phosphate-buffered saline and incubated with
phosphate-buffered saline 5% EDTA for 10 min. To
determine the amount of internalized LDL, Trypan
blue solution (Sigma-Aldrich) was added directly to
the samples to a final concentration of 0.2% (v/v) to
extinguish the extracellular signal by dynamic
quenching of the noninternalized LDLr-LDL
complexes (17). Fluorescence intensities were
measured by flow cytometry in a CytoFlex cytometer
(Beckman Coulter) according to the manufacturer’s
instructions. For each sample, fluorescence of 10,000
events was acquired for data analysis, and the results
were expressed as the mean fluorescence.

ETHICAL APPROVAL. All methods were carried out
in accordance with relevant guidelines and regula-
tions. This study was approved by the research ethics
committee from the University of the Basque Country
(Comité de Ética en la Investigación y la Práctica
Docente de la Universidad del País Vasco/Euskal
Herriko Unibertsitatea, CEID/IIEB).

RESULTS

COMPUTATIONAL MODEL FOR PATHOGENICITY

PREDICTION. Once the weights of each characteristic
in the overall pathogenicity (ek>0) and the
pathogenicity threshold (e0) were calculated
(Supplemental Table S7), pathogenicity prediction of

https://doi.org/10.1016/j.jacbts.2021.08.009


TABLE 1 Selected LDLr Variants for In Vitro Characterization and Their Pathogenicity Prediction

LDLr Variant MLb-LDLr PolyPhen-2 SIFT SFIP-MutID MutationTaster CADD

p.(Phe200Cys) Pathogenic Pathogenic Benign Pathogenic Pathogenic Pathogenic

p.(Asn297His) Pathogenic Benign Benign Pathogenic Pathogenic Pathogenic

p.(Trp305Ser) Pathogenic Pathogenic Benign Pathogenic Pathogenic Pathogenic

p.(Leu371Pro) Pathogenic Pathogenic Benign Pathogenic Benign Pathogenic

p.(Gly373Ala) Pathogenic Pathogenic Benign Benign Pathogenic Pathogenic

p.(Arg449Gly) Pathogenic Benign Benign Pathogenic Pathogenic Benign

p.(Ile473Asn) Benign Benign Pathogenic Pathogenic Pathogenic Benign

p.(Val578Ile) Benign Pathogenic Benign Pathogenic Benign Benign

p.(Asp638His) Pathogenic Pathogenic Benign Pathogenic Pathogenic Pathogenic

p.(Met652Thr) Benign Benign Pathogenic Pathogenic Pathogenic Pathogenic

p.(Pro683Leu) Pathogenic Pathogenic Benign Pathogenic Benign Benign

p.(Asp700Asn) Pathogenic Pathogenic Benign Pathogenic Pathogenic Benign

p.(Ala705Pro) Benign Benign Benign Pathogenic Pathogenic Pathogenic

CADD ¼ Combined Annotation-Dependent Depletion software; MLb-LDLr ¼ machine-learning–based low-density lipoprotein receptor software; PolyPhen-2 ¼ Polymorphism
Phenotyping v2 software; SFIP-MutID ¼ structure-based functional impact prediction for mutation identification; SIFT ¼ Sorting Intolerant From Tolerant software.

Larrea-Sebal et al J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 6 , N O . 1 1 , 2 0 2 1

Machine Learning Algorithm for LDLr Missense Variants N O V E M B E R 2 0 2 1 : 8 1 5 – 8 2 7

820
missense LDLr variants was assessed following the
equation model shown in Equation 4.

f ðPiÞcalc ¼ � ðþ0:667Þ þ 0:082$Pi1 þ 0:132$
Pi2 þ 0:093$Pi3 þ 0:088$Pi4 þ 0:165$
Pi5 þ 0:115$Pi6 þ 0:077$Pi7

(4)

Where NTraining ¼ 552, NValidation ¼ 192, NTotal ¼ 744,
c2 ¼ 349, and P < 0.05. The model classifies correctly
91.2% of pathogenic variants (454 of 498) and 90.7%
of benign variants (49 of 54) on training, and 92.8% of
pathogenic (154 of 166) and 96.2% of benign (25 of 26)
on validation. The positive predictive values are
98.9% and 99.9% on training and validation, respec-
tively, and negative predictive values are 52.7% and
67.6% on training and validation, respectively.

The obtained results show the predictive ability of
the model, which is able to classify LDLr variants into
benign or pathogenic with an accuracy higher than
90% in training and validation. The similarity be-
tween specificity and sensitivity parameters of MLb-
LDLr is explained by obtaining the variables through
the ESA algorithm, where balance on the percentage
of correctly predicted pathogenic and benign variants
was prioritized instead of better overall score in only 1
category (Equation 3). However, this process was
performed only with training variants, so the balance
on validation ones is a sign of the homogeneity of the
training/validation data set division.

COMPARATIVE ANALYSIS OF THE PREDICTIVE

ACCURACY OF ML-BASED METHODOLOGIES. The
predictive accuracy of 5 ML models was tested: 3
linear models (LDA, LNN, and ESEA) and 2 nonlinear
ones from ANN (MLP and RBF) (Table 2). LDA shows a
much lower specificity and a slightly higher sensi-
tivity than ESEA. By contrast, MLP, RBF, and LNN
show a slightly higher specificity but much lower
sensitivity than ESEA.

MLb-LDLr SOFTWARE. The best ML model found
with ESEA was implemented into user-friendly soft-
ware denominated MLb-LDLr. MLb-LDLr was devel-
oped using several libraries: Python (3.8.5), Click
(7.1.2), Flask (1.1.2), Gunicorn (20.0.4), Itsdangerous
(1.1.0), Jinja2 (2.11.2), MarkupSafe (1.1.1), and Werk-
zeug (1.0.1). The code and the database used for the
software are available at GitHub under Creative
Commons CC0 license.

MLb-LDLr software uses its own algorithm to give
pathogenicity predictions of every single LDLr
missense variant. f(Pi)calc score values were relativ-
ized to a maximum and the pathogenicity threshold.
The final percentage value is obtained relativizing the
score to 100 (5).

pðPi ¼ XÞpred ¼8>>>><
>>>>:

f ðPi ¼ 1Þcalc > e0;
f ðPi ¼ 1Þcalc � e0

Maxðf ðPi ¼ 1ÞcalcÞ � e0
� 50þ 50

f ðPi ¼ 1Þcalc < e0; � f ðPi ¼ 1Þcalc � e0
Maxðf ðPi ¼ 1ÞcalcÞ � e0

� 50� 50

(5)

The maximum possible value (Max(f(Pi ¼ 1)calc)) is
obtained when Pi1 ¼ Pi2 ¼.¼ Pi7 ¼ 1 (Equation [4]).
The max value gets only positive values because
during the ESEA optimization, we used the restriction
ek >0. Because it is not possible for any LDLr missense
variants to reach that value (f(Pi¼1)calc ¼ 0.752) using
this model, the maximum value was set in



TABLE 2 Comparison of ESEA With Other ML Models

Model Set Sp Sn PPV NPV Technique

ESEA Training 90.7 91.1 98.9 52.7 ESEA

Validation 96.2 92.8 99.4 67.6

LDA Training 44.4 96.2 94.1 55.8 LDA

Validation 50.0 95.1 92.4 61.9

MLP 7:7-9-1:1 Training 92.3 70.3 98.9 25.3 BP100, CG20, CG0b

Validation 100 65.1 100 30.9

RBF 4:4-9-1:1 Training 90.7 66.1 98.5 22.5 KM, KN, PI

Validation 92.3 66.3 98.2 30.0

LNN 7:7-1:1 Training 92.6 71.2 98.8 26.1 PI

Validation 100 66.9 100 32.1

Green indicates positive input. Red indicates negative input.

BP ¼ backpropagation; CG ¼ conjugated gradient; ESEA ¼ Excel Solver Evolutionary algorithm; KM ¼ K-
means; KN ¼ K-nearest neighbor; LDA ¼ linear discriminant analysis; LNN ¼ linear neural network; ML ¼machine
learning; MLP ¼ multilayer perceptron; NPV ¼ negative predictive value; PI ¼ pseudoinversion; PPV ¼ positive
predictive value; RBF ¼ radial basis function; Sn ¼ sensitivity; Sp ¼ specificity.
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f(Pi ¼ 1)calc ¼ 0.74 in order to obtain more accurate re-
sults. The software visualizes the final probability
values (p(Pi ¼ 1)% or p(Pi ¼ 0)%) in a 50-100 scale.
Whether a variant is predicted as a benign
(f(Pi ¼ 1)calc < e0), the software visualizes p(Pi ¼ 0)%.
This way, the result displayed is always positive and
higher than 50% of being pathogenic or benign. The
top-5 pathogenic and benign variant predictions on the
training and validation groups are shown in
Supplemental Table S8. The complete prediction
database is shown in Supplemental Table S9, and data
used for prediction are available on Figshare.

MLb-LDLr INTERFACE. Both DNA or amino acid
nomenclature can be used as input, and the software
is able to carry out multiple analyses at once
(Figure 2). The result summary includes information
about the affected domain, the conservation and
amino acid size, charge, and hydrophobicity change.
The information of the last 4 characteristics is given
in “low,” “medium,” or “high” format (Figure 3), ac-
cording to Supplemental Table S6 probability ta-
ble values.

ACCURACY OF MLb-LDLr VERSUS OTHER PREDICTIVE

SOFTWARE. To date, several software programs are
available to predict the effect of a given mutation on
the protein function. Although most of them are used
to predict the functional effect of a mutation in any
protein (eg, Polymorphism Phenotyping v2
[PolyPhen-2] [18], Sorting Intolerant From Tolerant
[SIFT) [19], Combined Annotation-Dependent Deple-
tion [CADD] [20], MutationTaster [21]), recently, a
structure-based software for missense LDLr variants
has been developed (SFIP-MutID) (22). Each model
uses different databases and techniques for predic-
tion, so their effectiveness can vary. In this work, we
have used all missense LDLr variants (744) annotated
at ClinVar database to compare the accuracy of
different software, with and without bootstrapping
resampling. Because EGS optimization process must
be done manually, this process has not been carried
out on bootstrapped resampling. The main results are
shown in Table 3 and Figure 4. The prediction of each
variant on the nonbootstrapped sample is shown in
Supplemental Table S10.

Regarding the nonbootstrapped samples, MLb-
LDLr is the only software program with all statistic
values higher than 90%. MutationTaster shows the
top score for sensitivity in both training and valida-
tion sets but has the second-worst specificity values.
The highest specificity in the training set corresponds
to MLb-LDLr, and the highest in the validation set
corresponds to CADD.
These results are mostly maintained in boot-
strapped samples, MutationTaster having the highest
sensitivity values and CADD the highest specificity
ones. MLb-LDLr on the other hand shows slightly
lower values in most statistics because EGS optimi-
zation cannot be performed when bootstrapping
samples.

Regarding area under the receiver operating curve
(AUROC) values, CADD has the highest score (0.959)
followed by MutationTaster (0.934), PolyPhen-2
(0.933), and MLb-LDLr (0.932).

As shown in Supplemental Table S11, 453 of 744
variants are correctly predicted by the 6 analyzed
software programs, 181 variants are correctly pre-
dicted by 5 software programs, 62 variants are
correctly predicted by 4 programs, 27 by 3 software
programs, 17 by 2 software programs, and only 4
variants are correctly predicted by 1 or none. These
results show that the 60% of the variants annotated
in ClinVar are correctly predicted by any of the
analyzed software programs, and that the remaining
variants except for p.(Ala299Thr) can be correctly
predicted by a combination of them. Altogether, this
indicates that the available software should be used
in combination to improve prediction accuracy.

IN VITRO FUNCTIONAL CHARACTERIZATION OF

CONFLICTIVE LDLr VARIANTS. In order to experi-
mentally validate the model, 13 LDLr variants were

https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009
https://doi.org/10.1016/j.jacbts.2021.08.009


FIGURE 2 Interface of MLb-LDLr

The variants to be predicted can be introduced on amino acid or nucleotide code and only the position and the substituting residue is

necessary. LDL ¼ low-density lipoprotein; MLb-LDLr ¼ machine-learning–based low-density lipoprotein receptor software.
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selected according to their conflictive interpretations
in ClinVar and contradictive activity predictions.
LDLr activity was assessed as indicated in Methods.
As shown in Figure 5, p.(Val578Ile) and p.(Pro683Leu)
variants show similar LDLr activity to wild type,
indicating that these mutations are not pathogenic.
On the contrary, p.(Phe200Cys), p.(Asn297His),
p.(Trp305Ser), p.(Lau371Pro), p.(Gly373Ala),
p.(Arg449Gly), p.(Ile473Asn), p.(Asp638His),
p.(Met652Thr), p.(Asp700Asn), and p.(Ala705Pro)
variants showed a reduced activity ranging from 5%
to 40% and thus are classified as pathogenic.

Activity results were compared with the pathoge-
nicity predictions of each software program. As
shown in Table 4, MLb-LDLr shows the second-best
accuracy for both pathogenic and benign variants,
being the most balanced software. By contrast,
PolyPhen-2 and CADD correctly predict barely more
than one-half of the pathogenic variants and not a
single benign variant. SIFT is the only one correctly
predicting the benign variants, but only hits 2 path-
ogenic ones. MutationTaster correctly predicts 8
pathogenic variants, but no benign ones. Finally,
SFIP-MutID has the highest score on pathogenic var-
iants, but does not correctly predict any benign ones.
The similarity between the results obtained in Table 4
and the prediction of the ClinVar database shown in
Table 3 is noteworthy.

DISCUSSION

Alongside the extraordinary growth of newly
described LDLr variants brought by the fast devel-
opment of next-generation sequencing (10), there is
developing desire to develop powerful software to
accurately assign biological activity roles to LDLr
variants. PolyPhen-2, CADD, MutationTaster, and
SIFT are some of the most used software packages to
predict the effect of a mutation in the LDLr (18-21).
PolyPhen-2 utilizes a combination of sequence-and
structure-based attributes for the description of an
amino acid substitution; SIFT makes inferences from
sequence similarity; CADD is based on evolutive gene
factors and uses more than 60 variables; Muta-
tionTaster analyzes evolutionary conservation,
splice-site changes, loss of protein features, and
changes that might affect the amount of mRNA
Therefore, as they consider common features of many
proteins, when predicting the effect on the activity of
LDLr variants the results often disagree. More
recently, a specific model for LDLr missense variants
based on LDLr structural resolution has been



FIGURE 3 MLb-LDLr Results Display

Results display page shows the pathogenicity prediction of the variant and its most important characteristics. The prediction is given on

probability values and the characteristics are categorized in ranges, high, medium, and low, depending on their effect on the overall

pathogenicity. MLb-LDLr ¼ machine-learning–based low-density lipoprotein receptor software.

TABLE 3 Comparison of Predictive Software Using ClinVar Database

Predictive Tool

No Bootstrapping Bootstrapping

T V T V

Sn Sp Sn Sp Sn Sp Sn Sp

MLb-LDLra 90.7 91.1 92.8 96.2 87.5 91.2 85.8 81.8

PolyPhen-2 92.9 79.6 94.6 96.1 93.6 83.6 93.8 83.7

SIFT 83.9 90.7 90.3 88.5 85.4 89.9 85.5 90.5

SFIP-MutIDb 92.1 18.5 87.3 26.9 90.5 21.1 90.5 21.1

CADD 88.5 88.9 89.7 100 88.9 92.5 89.1 92.6

MutationTaster 95.8 66.7 95.8 84.6 96.1 72.5 96.2 73.0

Statistics of the original sampling and randomly bootstrapped sampling. One thousand bootstrapped samples
were used, and the results are shown with a 95% confidence interval. aThe expert-guided strategy optimization
process cannot be carried out when bootstrapping, decreasing the accuracy of the model bSFIP-MutID is not able
to predict mutation within 1-21 and 715-860 residues.

T ¼ training; V ¼ validation; other abbreviations as in Tables 1 and 2.
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developed (SFIP-MutID), but the model lies in pre-
dicting pathogenic mutations rather than predicting
benign mutations thus limiting its use (22).

This work sought to develop a ML model to
improve accuracy on predicting the activity of
missense LDLr mutations. It has previously been
shown that combining information obtained from
multiple sequence alignment and 3-dimensional
protein structure can increase prediction perfor-
mance (23). Therefore, specific features of the LDLr
protein such as conservation of the substituted res-
idue, charge change, the original amino acid, the
substituting amino acid, hydrophobicity change,
amino acid size change, and the location of the
substituted amino acid within the different LDLr do-
mains have been considered to quantify their influ-
ence on the overall pathogenicity. After having been
represented as quantitative vectors, ESEA has been
used to calculate both the weight of each character-
istic on the overall pathogenicity and the threshold
that determines whether a variant is pathogenic or
not. The introduction of ClinVar database in the ML
model constitutes an innovative feature about the
MLb-LDLr software, which sets it apart from other
software. This strategy allowed increasing the pre-
dictive power of the MLb-LDLr by integrating ML al-
gorithms, resulting in a specificity of 92.5% and a
sensitivity of 91.6%. A major challenge in the MLb-
LDLr optimization process was generating a
balanced software program able to predict both
pathogenic and benign variants with high accuracy.
Our results demonstrated the value of combining in-
formation, especially the use of the ClinVar database,
which provided predictive software with an accuracy
higher than 90% in both pathogenic and benign
variants.

The bootstrap resampling method is commonly
used to test a model with many different training and



FIGURE 4 Performance of MLb-LDLr in Comparison to Other Software

Several scores are compared by area under the receiver operating curve (AUROC) using the ClinVar database. MLb-LDLr ¼ machine-learning–

based low-density lipoprotein receptor software; other abbreviations as in Tables 1 and 2.

FIGURE 5 In Vitro Validation of the Model by Assessing LDL Uptake on CHO-ldlD7 Cells Transfected With LDLr Variants

LDL uptake was quantified by flow cytometry, as described in Methods. The values represent the mean of at least 4 experiments, error bars

represent �SD. *P < 0.01 comparing WT with each variant. WT ¼ wild-type; other abbreviations as in Figure 2.
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TABLE 4 Accuracy of MLb-LDLr, PolyPhen-2, SIFT, SFIP-MutID, CADD,

and MutationTaster on 13 Characterized Novel LDLr Variants

Software
Predicted

Pathogenic (n ¼ 11)
Predicted

Pathogenic, %
Predicted

Benign (n ¼ 2)
Predicted
Benign, %

General
Accuracy, %

MLb-LDLr 8 72 1 50 69

PolyPhen-2 6 54 0 0 46

SIFT 2 18 2 100 30

SFIP-MutID 10 91 0 0 77

CADD 6 54 0 0 46

MutationTaster 8 72 0 0 61

Values are n unless otherwise indicated.

MLb-LDLr ¼ machine-learning–based low-density lipoprotein receptor software; other abbreviations as in
Tables 1 and 2.
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validation sets. This test is usually carried out auto-
matically, because more than 1,000 groups are
required, but the last process on MLb-LDLr software,
EGS, must be done manually. Although the optimi-
zation process could not be implemented on the re-
sults shown in Table 3, these results are quite similar
to the ones obtained with no EGS. Therefore, the
bootstrapping resampling shows the validity of the
training and validation set division, because the re-
sults obtained with and without bootstrapping are
similar in all analyzed software programs.

All the analyzed software programs, except for
CADD, provide pathogenicity predictions according to
a specific threshold so that a probability value can be
given as a result. By contrast, CADD is based on
comparative scores and only provides relative path-
ogenicity values. This means that CADD relies on
AUROC and similar general statistics to obtain an ac-
curacy value; meanwhile, the rest of the software
programs have optimized a specific threshold to
obtain an optimum accuracy. This could explain why
CADD has the highest AUROC values by far, but it is
surpassed by MLb-LDLr and PolyPhen-2 on the over-
all accuracy.

SIFT and PolyPhen-2 are among the predictive
software programs with the highest ease of use and
speed, which allows for direct batch queries using
amino acid and genome coordinates (24). In order to
facilitate the use of MLb-LDLr, an interface has been
developed, which allows direct input using DNA or
amino acid nomenclature as well as querying multiple
predictions.

One of the major advantages of MLb-LDLr software
relies in the possibility of actualizing the dataset
periodically thus including newly annotated variants
in ClinVar. This allows continuously increasing data-
base accuracy in order to perform an updated pre-
diction for each new described variant. In the future,
some other ML algorithms may be introduced in the
MLb-LDLr software to integrate information such as
phenotype of the patients carrying pathogenic vari-
ants and the most suitable treatment for each of them
(25).

It is noteworthy that all the predicted models
tested in this work showed an accuracy of over 80%
when predicting variants, which indicates that the
data accessible in ClinVar are highly accurate, even
those with a single submitter to support the patho-
genicity. This fact supports the use of the ClinVar
database as a reliable source of information regarding
pathogenic variants due to the big effort done to
correctly assign pathogenicity to variants described
so far. These pathogenic LDLr variants have been
mostly found in patients with high plasma LDL
plasma levels and have been characterized both by
cascade screening or in vitro functional assays of the
LDLr variants (10,26,27).

As mentioned in the preceding text, the fast
development of next-generation sequencing brings to
light a great number of new LDLr variants that will
favor the emergence of benign ones. Hence, the
development of predictive software such as MLb-
LDLr with high accuracy in predicting benign vari-
ants is crucial. Nowadays, the simultaneous use of
several software programs to predict the effect of a
given mutation on protein activity is almost manda-
tory, because the ones with the highest accuracy on
pathogenic variants have low accuracy on benign
variants.

STUDY LIMITATIONS. First, MLb-LDLr software only
predicts missense LDLr variants. There are many
mutation types depending on their location and ef-
fect (frameshift, UTR, splicing site.), and each of
them has a different mechanism that should be
analyzed individually. Here, only missense variants
have been analyzed because they represent a high
percentage of total LDLr variants (40%) (8) and more
than 50% in the ClinVar database (28,29). Although
ClinVar is a great source to evaluate the pathogenicity
of LDLr variants, 1 limitation of the database is that in
some cases, there is only 1 submitter and a few of
them have no assertion. In addition, there are enough
cases of both missense pathogenic and benign vari-
ants to develop a ML model. Second, some Pik values
may not be totally correct due to the lack of enough
benign variants in some classes. However, this prob-
lem will be fixed, because the number of character-
ized benign variants will increase. In the meantime,
we tried to solve this by applying EGS strategy. The



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: This

study developed a machine learning model (MLb-

LDLr), which can help to provide a fast diagnosis to FH

patients saving time and expenditure for character-

izing the pathogenicity of LDLr variants. The MLb-

LDLr software developed here can be clinically

implemented to refine the diagnosis of FH and to

improve disease prognosis. MLb-LDLr software may

prove clinically useful and assist clinicians in tailoring

precise management and therapy for the patients with

FH and provide a novel diagnostic approach to

manage FH. This study provides an open access pre-

dictive software to the scientific community, to pre-

dict the pathogenicity of missense LDLr variants.

TRANSLATIONAL OUTLOOK: The MLb-LDLr

software increases the predictive power of previous

software used to predict the pathogenicity of LDLr

variants and provides an open-access interface to the

scientific community and clinicians, which allows

direct input using DNA or amino acid nomenclature as

well as querying multiple predictions. The strength of

MLb-LDLr software relies in its capacity of predicting

both benign and pathogenic, with an estimated hit

rate over 90%, highlighting the usefulness of MLb-

LDLr software as a helping diagnostic tool for

clinicians. Collectively, MLb-LDLr is expected to lower

the incidence of cardiovascular events by collecting

backpropagation data that are unmeasurable by cur-

rent diagnostic modalities.
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accuracy of the artificial intelligence model using a
validation cohort was not confirmed.

CONCLUSIONS

Here, we provide a powerful tool to predict the
impact of LDLr mutations on protein activity. The
strength of MLb-LDLr software relies in its precision
with both type of variants, benign and pathogenic,
with an estimated hit rate over 90% in both of
them. These results highlight the usefulness of MLb-
LDLr software as a helping diagnostic tool for
clinicians.
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