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Abstract: The COVID-19 outbreak has brought to the forefront the importance of predicting and
controlling an epidemic outbreak with policies such as vaccination or reducing social contacts. This
paper studies an SIHR epidemic model characterized by susceptible (S), non-seriously infected (I),
hospitalized (H), and recovered (R) subpopulations, and dynamic vaccination; vaccination itself
and H are fed back, and its dynamics are also determined by a free-design time-dependent function
and parameters. From a theoretical analysis, the well-posedness of the model is demonstrated;
positivity and the disease-free (Pd f ) and endemic (Pee) equilibrium points are analyzed. The controlled
reproduction number (Rc) is proved to be a threshold for the local asymptotic stability of Pd f and
the existence Pee; when Rc < 1 (Rc > 1), then Pd f is (not) locally asymptotically stable and Pee

does not (does) exist. Simulations have been carried out with data concerning COVID-19 where the
importance of keeping Rc < 1 to prevent the disease spreading and future deaths is highlighted.
We design the control input, since it can be easily adapted to match the user specification, to obtain
impulsive and regular vaccination and fulfill the condition Rc < 1.

Keywords: epidemiological model; SIHR model; COVID-19; feedback vaccination; regular
vaccination; impulsive vaccination

MSC: 37N35; 34D23; 34D45; 34E10; 34H05; 92B05; 92D30

1. Introduction

In December 2019, after the increment in pneumonia cases in Wuhan (China), the
authorities ordered respiratory tests to be carried out to find out its origin. They discov-
ered that the new rise in these cases was caused by a novel virus, which was coincident
with severe acute respiratory syndrome coronavirus (SARS-CoV) and other mammal coro-
naviruses (especially bat and pangolin); their similarity was more than 70% and 95%,
respectively [1–3]. Therefore, this new virus was named SARS-CoV-2 (more commonly
known as COVID-19) and, in spite of being spotlighted due to the pneumonia cases, it had
recently been found via survey that the most common symptoms were cough, fever, and
weakness [4,5]. Even though many countries implemented prevention measurements to
avoid the spread of COVID-19, by 9 March 2020, more than 118,000 cases and 4291 deaths
were reported in 114 countries, and the World Health Organization (WHO) characterized
this virus as a pandemic [6]. This situation highlighted the importance of epidemic models,
and some derived terms such as the effective reproduction number or herd immunity,
which allow the epidemic situation and its future behaviour to be determined.

The basic idea behind these mathematical models is to split the population into
different subpopulations depending on their medical condition [7–15], so the SIR model
(which divides the population into susceptible, infectious, and recovered subpopulations),
SEIR model (the exposed subpopulation is included in the SIR model), etc. are built up,
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and the conditions to eradicate the disease are usually obtained and analyzed. For example,
in [14], the vaccination coverage level needed to eliminate Ebola from a population is
given and, in [15], different prevention policies are compared. Usually, diseases do not
affect different age groups homogeneously (i.e., the elderly population are often more
sensitive to diseases), so many studies consider age-group epidemic models [16–19]. While
the complexity is increased, the obtained results are more precise. For instance, in [16],
data concerning the COVID-19 epidemic evolution in Shijiazhuang City, Hebei Province in
China and three different prevention strategies, with respect to different age groups, are
characterized by a set of epidemic features, which gives an overview of each strategy’s
impact. In [17], to reach the WHO’s target measles incidence rate in India, they concluded
that it is necessary to increase the vaccination coverage rate among children of age 0–4 years.
The literature regarding control techniques for epidemic models is also exhaustive; in some
studies, they apply constant and pulse vaccination [20–23], and they show it to be simple
and effective. Other studies use control theory techniques, such as feedback control [24–26],
and they show better convergence time and steady-state errors. Machine learning has
also been applied to make more accurate models and therefore tackle more efficiently the
control problem [27–31].

In addition, due to the global impact caused by COVID-19, many studies have put into
practice this kind of mathematical model for this specific case; the works in [32,33] consider
a quarantine subpopulation, and the condition that makes the disease disappear from the
whole population is obtained. Moreover, in both cases, the model is validated with real data
regarding the epidemic evolution in Saudi Arabia [32] and Italy [33], so its future evolution
can be predicted. During the first stage of the COVID-19 epidemic evolution, as no vaccine
was available, reducing social contact was a widely adopted measurement all over the
world, and the impact of this prevention method is researched in [34,35]. Other works
included vaccination strategies such as newborn vaccination [36], vaccinating a proportion
of the susceptible subpopulation [37,38], and implementing dynamic vaccination and
treatment with an SIR-like model [39]. All of these analyze the local and global stability of
their respective systems’ equilibrium points, among other things.

In this paper, an SIHR model has been built up where the total population has been
divided into susceptible (S), non-seriously infected (I), hospitalized (H), and recovered
(R) subpopulations, and a vaccination control strategy has been included. Thus, taking
each subpopulation as a state variable and vaccination as the input variable, this model
lays out a set of first-order non-linear differential equations. It has been assumed, as in
a real-case situation, that S, I, and R are unknown, so only vaccination and hospitalized
variables have been fed back to the vaccination dynamics through the gains c1 and c2,
respectively. Moreover, to make a flexible vaccination, a free-design time-dependent
function f (t) has been included in the vaccination control dynamics. From the formulated
system, the disease-free equilibrium point (Pd f ) and the endemic equilibrium point (Pee)
have been calculated, and it has been proved that Pee is reachable under certain conditions.
In addition, considering the existence of a vaccination and making the right choice of the
free-design parameters (c1, c2, and c3), it is possible to turn Pee into Pd f . The conditions
for the global and local asymptotic stability of Pd f have been obtained. In the case of the
endemic equilibrium point in absence of vaccination (Pnv

ee ), the Routh–Hurwitz criterion
has been used to conclude that it is locally asymptotically stable whenever it is reachable
and, from Rouche’s theorem, the conditions for the local asymptotic stability of Pee have
been inferred.

Finally, a value has been given to each parameter based on the background liter-
ature [40–45], and several simulations have been carried out to reinforce and display
the achieved theoretical results. Overall, the main novelties that this paper presents are
as follows:

(i) The implementation of a vaccination (dynamic control input), where hospitalization
and the vaccination itself are fed back;

(ii) Including a free-design time-dependent function into vaccination;
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(iii) Considering the vaccine stock in the vaccination strategy;
(iv) A strategy to choose the vaccination free-design time-dependent function and param-

eters such that Pd f and Pee are locally asymptotically stable and unstable, respectively.

The first novelty, in comparison with the background literature, gives a more realistic
feedback vaccination control; it includes only hospitalization and vaccination state variables
as feedback of the vaccination dynamics, which are related to data that are usually known
or accessible. This vaccination can easily be adapted to the desired specifications since it
includes a free-design time-dependent function (second novelty). Meanwhile, in practice,
the vaccines stockpile is reduced as they are provided; many epidemic models usually
ignore this constrain. Therefore, the introduced vaccination has been constrained by the
vaccines stockpile; the number of individuals who receive a dose cannot exceed the vaccines
stock (third novelty). This characteristic, with the fact of free-design parameters (c1, c2,
and c3), allows a realistic vaccination strategy to be designed. The controlled reproduction
number (Rc), which depends on c1 and c3, has been found to be a fundamental part of
the local asymptotic stability of Pd f and its uniqueness. So, with the objective of reducing
as much as possible the epidemic impact, one can consider Rc and select a pair of c1
and c3 to ensure the local asymptotic stability of Pd f (fourth novelty). However, if the
condition for the local asymptotic stability of Pd f can not be accomplished (i.e., there is a
low vaccine reserves), one can consider a suitable Pee and the conditions that make it locally
asymptotically stable.

The paper is organized as follows: Section 2 describes the SIHR model within the
vaccination policy: what characterized the subpopulations, which parameters are taken
into account, how vaccination affects each subpopulation, and how each subpopulation
transforms into another. Thus, the resulting first-order non-linear differential system is
formulated. Afterwards, considering non-negative initial conditions, the non-negativity
of each state variable, with and without vaccination, is studied and proved. Finally, from
the dynamical system, Pd f and Pee are obtained, and the conditions for their existence are
discussed. Section 3 is divided into three subsections; Sections 3.1 and 3.2 are focused on
the stability analysis of Pd f , whereas Section 3.3 focuses on Pee. In Section 3.1, the condition
for the local asymptotic stability of Pd f is proved with the next generation matrices and,
in Section 3.2, the solutions of the differential equations are used to derive a sufficient
condition for the global stability. In Section 3.3, the system is linearized about Pee, and
the Jacobian matrix is inferred. Then, the eigenvalue problem of the Jacobian matrix is
formulated, and the conditions that ensure a negative real part for all eigenvalues (so Pee is
locally asymptotically stable) are obtained from the Routh–Hurwitz criterion and Rouche’s
theorem. In Section 4, several simulations have been carried out which show an accordance
between the theoretical results and the numerical ones. Moreover, in a simulation where a
vaccine stock function has been introduced, the free-design parameters and function have
been chosen based on a desired vaccination strategy. In addition to illustrating the desired
behavior, it shows that the disease is eradicated. Finally, the paper ends with Section 5,
where the results are discussed.

2. Model Description

When diseases spread through big populations, in terms of prediction, deterministic
models have been proven to give good results, so a deterministic model has been built up.
This type of models is usually represented by flow charts, which are composed by two
main parts: blocks and arrows. Each block stands for a subpopulation characterized by
its medical condition (e.g., healthy, sick, recovered, etc.), while the arrows indicate how
individuals from one block transform into another.

Figure 1 shows the deterministic system which adds a new block (H) to the SIR model.
Those compartments are used to represents the following subpopulations:

• Susceptible (S): Group of individuals that can catch the disease. They are not yet
infected nor have immunity against it.
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• Non-seriously infected (I): Group of individuals that caught the disease and present
symptoms. They are contagious and therefore responsible for the disease spreading.
It is assumed that they do not have grave symptoms. Note that in order to simplify
the technical nomenclature, the non-seriously infected population is simply referred
to as the "infected subpopulation" in the sequel.

• Hospitalized (H): This group of people is characterized by suffering from serious
symptoms and therefore being hospitalized. Since they are hospitalized, it is assumed
that prevention measurements are strict, and consequently, they are not contagious.

• Recovered (R): Group of individuals with immunity on them, that is; infected or
hospitalized people that already have been recovered or those susceptibles that
were vaccinated.

• Vaccinated (v): It defines the number of susceptible people vaccinated per unit time
which are introduced in the recovered subpopulation. It is used for control purposes.

Figure 1. System flow chart.

The parameters appearing in Figure 1 are:

• Λ: newborns per unit time.
• β: transmission rate.
• µ: natural mortality rate.
• p: probability of being hospitalized once you catch the disease.
• γ1: recovery rate of non-seriously infected individuals.
• γ2: recovery rate of hospitalized individuals.
• α: death rate of hospitalized individuals.
• ρ: immunity loss rate.

These parameters are conditioned by

0 ≤ Λ, β, µ, γ1, γ2, α, ρ and 0 ≤ p ≤ 1. (1)

N is the total population size, and it is assumed to be sufficiently large. Newborns
are incorporated to the class S with a rate Λ. Considering that all inhabitants die naturally
indistinctly to the subpopulaiton they belong to, a portion proportional to µ will be removed
from all compartments. Hospitalized individuals not only will die naturally but also due to
the disease; a portion αH will also be removed.

Assuming that the population is homogeneously mixed, the rate β indicates the
probability of infecting susceptible individuals when they are in contact with infected
individuals. Thus, the mathematical expressions is

β = cpi, (2)
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where c is the average number of close contacts per day of a member from I, and pi is the
probability of infecting susceptible individuals when there is a close contact. Hence, how
the susceptible individuals get infected can be defined; there is a probability cI/N that an
individual from S contacts an individual from I. Therefore, an individual from S has a
probability βI/N of being infected, and consequently, βIS/N susceptible individuals will
be infected. Models with this type of transmission are known as mass action models.

The probability of those who caught the disease being hospitalized is p, so βISp/N
individuals will be hospitalized. The rest (βIS(1 − p)/N) will go to I. Infected individuals
from I and H subpopulations will recover at rates γ1 and γ2, respectively; that is, γ1 I
and γ2H will be removed from I and H, respectively, and they will be introduced into R.
The vaccinated susceptible individuals per day (v) are extracted from S and brought to R.
However, immunity disappears after ρ−1 days, and they become susceptible again.

Each state variation with respect to time is equal to the added individuals minus
the removed ones. Thus, the flow chart shown in Figure 1 leads to the following time
differential system,

Ṡ(t) = Λ + ρR(t)− βI(t)S(t)
N(t) − µS(t)− v(t),

İ(t) = βI(t)S(t)(1−p)
N(t) − (µ + γ1)I(t),

Ḣ(t) = βI(t)S(t)p
N(t) − (µ + γ2 + α)H(t),

Ṙ(t) = γ1 I(t) + γ2H(t) + v(t)− (ρ + µ)R(t),

(3)

and initial conditions S(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, and R(0) ≥ 0. Regarding the
total population,

N(t) = S(t) + I(t) + H(t) + R(t),
Ṅ(t) = Λ − µN(t)− αH(t).

(4)

The controller v(t) is defined by the following equation:

v̇(t) = −c1v(t) + c2H(t) + c3 + f (t), (5)

where ci ≥ 0 : i ∈ {1, 2, 3} are tuning parameters adjusted to yield a desired behavior,
and f (t) represents the free-design time-dependent function. Note that Equation (5) is a
first-order differential equation, where only v(t) and H(t) are taken into account, and its
solution will be a feedback function of the state variables and time.

2.1. Non-Negativity of the Solution

To demonstrate the consistency of the equations given in (3), (4), and (5) the sizes
of the subpopulations S(t), I(t), H(t), and R(t), and the total population N(t) must be
non-negative as well as the vaccination per unit time v(t). It can be shown that all the
solutions will be kept non-negative for a given finite non-negative initial condition under
certain reasonable constrains.

Theorem 1. Assuming that there is no vaccination (v(t) = 0 for all time), the following proper-
ties hold:

(i) The solution of the epidemic model defined by the set of Equation (3) is non-negative for all
t > 0 and for any finite initial condition such that S(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, and
R(0) ≥ 0.

(ii) The set

D =

{
(S, I, H, R) ∈ R4

+ : N ≤ Λ
µ

}
, (6)

where R4
+ = {x ∈ R4 : x ≥ 0}, is positively invariant with respect to the dynamical

system (3).
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Proof of Theorem 1. Since the differential equations shown in (3) and (4) are first-order
differential equations, each solution is obtained with the superposition of the respective
homogeneous part and the forcing part, so it leads to

S(t) = S(0)e−
∫ t

0

(
µ+

βI(τ)
N(τ)

)
dτ

+
∫ t

0 e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′

(Λ + ρR(τ))dτ,

I(t) = I(0)e−
∫ t

0

(
µ+γ1−

βS(τ)(1−p)
N(τ)

)
dτ ,

H(t) = H(0)e−(µ+γ2+α)t +
∫ t

0 e−(µ+γ2+α)(t−τ)
(

βI(τ)S(τ)p
N(τ)

)
dτ,

R(t) = R(0)e−(ρ+µ)t +
∫ t

0 e−(ρ+µ)(t−τ)(γ1 I(τ) + γ2H(τ))dτ.

(7)

From (7), it is straightforward that I(t) is non-negative for all time if the initial condi-
tion is non-negative. By introducing the expressions for I(t) and H(t) into R(t), one obtains:

R(t) = R(0)e−(ρ+µ)t +
∫ t

0 e−(ρ+µ)(t−τ)

γ1

I(0)e
−
∫ τ

0

(
µ+γ1−

βS(τ′)(1−p)
N(τ′)

)
dτ′


+ γ2

[
H(0)e−(µ+γ2+α)τ +

∫ τ
0 e−(µ+γ2+α)(τ−τ′)

(
βI(τ′)S(τ′)p

N(τ′)

)
dτ′

])
dτ.

(8)

From (7) and (8), it follows that:

S(t) = S(0)e−
∫ t

0

(
µ+

βI(τ)
N(τ)

)
dτ

+
∫ t

0 e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′

(
Λ + ρ

{
R(0)e−(ρ+µ)τ

+
∫ τ

0 e−(ρ+µ)(τ−τ′)

γ1

I(0)e
−
∫ τ′

0

(
µ+γ1−

βS(τ′′)(1−p)
N(τ′′)

)
dτ′′


+ γ2

[
H(0)e−(µ+γ2+α)τ′ +

∫ τ′

0 e−(µ+γ2+α)(τ′−τ′′)
(

βI(τ′′)S(τ′′)
N(τ′′)

)
dτ′′

])
dτ′

})
dτ.

(9)

After removing some terms from (9), the next inequality can be obtained:

S(t) ≥ S(t) = ργ2

∫ t

0
e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′ ∫ τ

0
e−(ρ+µ)(τ−τ′)

∫ τ′

0
e−(µ+γ2+α)(τ′−τ′′)

(
βI(τ′′)S(τ′′)

N(τ′′)

)
dτ′′dτ′dτ. (10)

From the expression above, it follows that S(t) ≥ 0 =⇒ S(t) ≥ 0. Therefore, we
proceed by contradiction to prove that S(t) ≥ 0. Assume that t1 is the first time instant at
which S(t1) < 0. Taking into account that I(t) ≥ 0 for all t ∈ [0, ∞) since I(0) ≥ 0, see the
second equation in (3), the condition S(t1) < 0 can only be fulfilled if the total population
was negative in a previous time interval. Therefore, it will be assumed that there exists
a time interval at which the total population becomes negative; that is, N(t) ≥ 0 for any
t ∈ [0, t2], and N(t) < 0 for any t ∈ (t2, t1).

From the expression for H(t) in (7), it is concluded that H(t) ≥ 0 for t ∈ [0, t2] as a
result of βI(τ)S(τ)/N(τ) non-negativeness, since S(t), I(t), and N(t) are non-negative
during the given time interval. As all the integrands of R(t) are non-negative, see (7), R(t)
will also be non-negative.

Now, considering the time derivative of N(t) given in (4), its solution is obtained by
direct calculation:

N(t) = N(0)e−µt +
∫ t

0
e−µ(t−τ)(Λ − αH(τ))dτ, (11)

and, by substituting the expression for H(t) in (7) into (11), it follows that:

N(t) = N(0)e−µt +
∫ t

0
e−µ(t−τ)

(
Λ − α

[
H(0)e−(µ+γ2+α)τ +

∫ τ

0
e−(µ+γ2+α)(τ−τ′)

(
βI(τ′)S(τ′)p

N(τ′)

)
dτ′

])
dτ. (12)

Let Ñ(t, t0) be defined as



Mathematics 2024, 12, 245 7 of 33

Ñ(t, t0) = N(t0)e−µ(t−t0) +
∫ t

t0

e−µ(t−τ)
(

Λ − αH(t0)e−(µ+γ2+α)τ
)

dτ, (13)

and it yields

Ñ(t, t0) = e−µ(t−t0)

(
N(t0)−

αH(t0)

γ2 + α

)
+

Λ
µ

(
1 − e−µ(t−t0)

)
+

αH(t0)

γ2 + α
e−(µ+γ2+α)(t−t0). (14)

Taking into account that N(t0) = S(t0) + I(t0) + H(t0) + R(t0), it leads to

Ñ(t, t0) = e−µ(t−t0)

[
S(t0) + I(t0) + H(t0)

(
1 − α

γ2 + α

)
+ R(t0)

]
+

Λ
µ

(
1 − e−µ(t−t0)

)
+

αH(t0)

γ2 + α
e−(µ+γ2+α)(t−t0). (15)

Previously, it was found that all the subpopulations are non-negative for any t ∈ [0, t2].
Therefore, it follows that Ñ(t, t0) ≥ 0 for any t0 ∈ [0, t2] and t ∈ [0, ∞), where t0 ≤ t.
Continuing with the contradiction, for any t ∈ (t2, t1), Equation (12) can be rewritten
as follows:

N(t) = Ñ(t, t2) + α

(∫ t

t2

e−µ(t−τ)
∫ τ

t2

e−(µ+γ2+α)(τ−τ′)
(

βI(τ′)S(τ′)p
|N(τ′)|

)
dτ′dτ

)
≥ 0, (16)

which contradicts the existence of a time interval where N(t) < 0. Therefore, N(t) ≥ 0 for
all t ∈ [0, ∞), and consequently, a t1 at which S(t1) < 0 does not exist. Thus, from (10), one
concludes that S(t) ≥ 0, and S(t) ≥ 0 too, for all t ∈ [0, ∞). It was previously proved that
I(t), S(t), and N(t) non-negativity implies H(t) and R(t) non-negativity, so property (i)
is proved.

Moreover, considering that nobody is dying because of the disease (α = 0), it is
possible to prove that the entire population will be bounded. The solution of the differential
Equation (4) is given by

N(t) =
(

N(0)− Λ
µ

)
e−µt +

Λ
µ

, (17)

and the limit

lim
t→∞

[(
N(0)− Λ

µ

)
e−µt +

Λ
µ

]
=

Λ
µ

. (18)

So, let D be a set defined as

D =

{
(S, I, H, R) ∈ R4

+ : N ≤ Λ
µ

}
, (19)

where R4
+ = {x ∈ R4 : x ≥ 0}. Hence, given any initial condition belonging to D, the

solution of system (3) will remain in D. Therefore, the set D is positively invariant and
Property (ii) is proved.

Theorem 2. If a vaccination v(t) exists, the following properties hold:

(i) The solution of the epidemic model, defined by the set of equations in (3) and (5), is non-
negative for any initial condition such that S(0) ≥ 0, I(0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0, and
v(0) ≥ 0, if the following condition is accomplished:

max (0, f Im(t)) ≤ f I(t) ≤ f IM(t), (20)

where f I(t), f Im(t), and f IM(t) are defined as follows:
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ḟ I(t) = f (t),
f Im(t) = −v(0)e−c1t − c2

∫ t
0 e−c1(t−τ)H(τ)dτ − c3

c1

(
1 − e−c1t)+ f I(0)e−c1t + c1

∫ t
0 e−c1(t−τ) f I(τ)dτ, and

f IM(t) = min(v(t), vs(t))− v(0)e−c1t − c2
∫ t

0 e−c1(t−τ)H(τ)dτ − c3
c1

(
1 − e−c1t)+ f I(0)e−c1t + c1

∫ t
0 e−c1(t−τ) f I(τ)dτ.

v(t) and vs(t) are the maximum number of susceptible individuals that can be vaccinated and
the vaccination stock, respectively, where 0 ≤ vs(t), and

v(t) = S(t) + Λ + ρR(t). (21)

(ii) The set D is positively invariant with respect to the dynamical system (3).

Proof of Theorem 2. First, the solution of v(t) is calculated:

v(t) = v(0)e−c1t + c2

∫ t

0
e−c1(t−τ)H(τ)dτ +

c3

c1

(
1 − e−c1t)+ ∫ t

0
e−c1(t−τ) f (τ)dτ. (22)

Considering that f (t) = ḟ I(t) and substituting into (22), one obtains:

v(t) = v(0)e−c1t + c2

∫ t

0
e−c1(t−τ)H(τ)dτ +

c3

c1

(
1 − e−c1t)+ ∫ t

0
e−c1(t−τ) ḟ I(τ)dτ, (23)

and, by applying the integration by parts, it follows that:

v(t) = v(0)e−c1t + c2

∫ t

0
e−c1(t−τ)H(τ)dτ +

c3

c1

(
1 − e−c1t)+ f I(t)− f I(0)e−c1t − c1

∫ t

0
e−c1(t−τ) f I(τ)dτ (24)

so the expression for f I(t) is

f I(t) = v(t)− v(0)e−c1t − c2

∫ t

0
e−c1(t−τ)H(τ)dτ − c3

c1

(
1 − e−c1t)+ f I(0)e−c1t + c1

∫ t

0
e−c1(t−τ) f I(τ)dτ. (25)

Depending on the non-negativity of f Im, two possibilities are found; if f Im ≥ 0, then
f Im ≤ f I is necessary so that v(t) ≥ 0. In contrast, if f Im < 0, then f I = 0 is sufficient so that
v(t) ≥ 0. Therefore, if the left part inequality in (20) is accomplished, 0 ≤ v(t) is proved to
be true. If the right part inequality in (20) is fulfilled, then v(t) ≤ min (v(t), vs(t)). Then,
0 ≤ min

(
v(t), vs(t)

)
provided that (20) is fulfilled.

To prove each subpopulation’s non-negativity through time, the solutions of the
equations shown in (3) have been calculated:

S(t) = S(0)e−
∫ t

0

(
µ+

βI(τ)
N(τ)

)
dτ

+
∫ t

0 e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′

(Λ + ρR(τ)− v(τ))dτ,

I(t) = I(0)e−
∫ t

0

(
µ+γ1−

βS(τ)(1−p)
N(τ)

)
dτ ,

H(t) = H(0)e−(µ+γ2+α)t +
∫ t

0 e−(µ+γ2+α)(t−τ)
(

βI(τ)S(τ)p
N(τ)

)
dτ,

R(t) = R(0)e−(ρ+µ)t +
∫ t

0 e−(ρ+µ)(t−τ)(γ1 I(τ) + γ2H(τ) + v(τ))dτ.

(26)

Taking into account the solution of S(t) given in (26), and the constrain v(t) ≤ v(t), it
leads to

S(t) ≥ S(t) = S(0)e−
∫ t

0

(
µ+

βI(τ)
N(τ)

)
dτ −

∫ t

0
e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′

S(τ)dτ. (27)
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By contradiction, it will be demonstrated that S(t) is positive for all t ∈ [0, ∞) and
S(0) ≥ 0. Let us suppose that S(t) becomes negative during a time interval; that is, S(t) ≥ 0
for any t ∈ [0, t1), and S(t) < 0 for any t ∈ (t1, t2). Then,

S(t) ≥ S(t1)e
−
∫ t

t1

(
µ+

βI(τ)
N(τ)

)
dτ

+
∫ t

t1

e
∫ t−τ

0

(
µ+

βI(τ′)
N(τ′)

)
dτ′

|S(τ)|dτ ≥ 0. (28)

Thus, a time interval at which S(t) < 0 does not exist, so S(t) ≥ 0 =⇒ S(t) ≥ 0 for
all t ∈ [0, ∞).

Now, as in the proof of Theorem 1, we proceed by contradiction to conclude that
N(t) ≥ 0 for all t ∈ [0, ∞); let us assume that N(t) ≥ 0 for any t ∈ [0, t1], and N(t) < 0 for
any t ∈ (t1, t2), then H(t) ≥ 0 for t ∈ [0, t1] since βI(τ)S(τ)/N(τ) is non-negative during
t ∈ [0, t1]. From the solution of R(t) given in (26), it follows that R(t) ≥ 0 for any t ∈ [0, t1]
as all the integrands are non-negative. Regarding the solution of N(t), the expression given
in (12) is still valid for the system (3) when vaccination is being applied, and Ñ(t, t1) ≥ 0
for all t > t1 since all the subpopulations are non-negative at t1. Thus,

N(t) = Ñ(t, t1) + α

(∫ t

t1

e−µ(t−τ)
∫ τ

t1

e−(µ+γ2+α)(τ−τ′)
(

βI(τ′)S(τ′)p
|N(τ′)|

)
dτ′dτ

)
≥ 0, (29)

so a time interval (t1, t2) where N(t) < 0 does not exist, and consequently, N(t) ≥ 0 for all
t ∈ [0, ∞). Property (i) is proved.

Considering that nobody dies due to the disease, the solution of the differential
Equation (4) is given by the expression (17). Consequently, the set D, see (19), is posi-
tively invariant with respect to the dynamical system (3) with vaccination. Property (ii)
is proved.

2.2. Equilibrium Points

At an equilibrium point, the system variables do not change with respect to time;
therefore, the time derivatives in (3) and (5) are set to zero (Ṡ(t) = İ(t) = Ḣ(t) = Ṙ(t) =
v̇(t) = 0), and its solution will give the equilibrium points. Two different equilibrium
points are found: Pd f and Pee.

Definition 1. Pd f is an equilibrium point of the system (3), and it is characterized by a null
infected subpopulation:

Pd f = (Sd f , Id f , Hd f , Rd f , vd f ), (30)

where
Sd f = Λ

µ − c3+ f
c1(ρ+µ)

,

Rd f = c3+ f
c1(ρ+µ)

,

Id f = 0,
vd f = c3+ f

c1
,

Hd f = 0,
(31)

and the total population Nd f = Λ/µ.

This result shows that the susceptible and the recovered subpopulations hold the
whole population, and a population exchange exists between them due to vaccination.
Moreover, vaccination effort must be limited to not contradict Theorem 2 and consequently
ensure the solution’s non-negativeness. In a real situation, this implies that it is not possible
to vaccinate more individuals than those in the susceptible suppopulation.

Note that f (t) has been considered as time-invariant ( f (t) → f ) in order to calculate
the equilibrium points.

Proposition 1. Pd f is reachable (each subpopulation has a non-negative value) if and only if the
vaccination control law tuning parameters c1 and c3, and f , are chosen such that:

0 ≤ B ≤ Bd f =
Λ(ρ + µ)

µ
. (32)
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where B = (c3 + f )/c1.

Taking into account the expressions for each subpopulation given in (31), Pnv
d f is defined

as follows:
Pnv

d f = (Snv
d f , Inv

d f , Hnv
d f , Rnv

d f , vnv
d f ), (33)

where
Snv

d f =
Λ
µ

, Inv
d f = 0, Hnv

d f = 0, Rnv
d f = 0, vnv

d f = 0, (34)

and, in this particular case, it can be observed that the Snv
d f holds the whole population:

Nnv
d f = Snv

d f .

Definition 2. Pee is an equilibrium point of the system (3), and it is characterized by a non-zero
infected subpopulations (Iee > 0 and Hee > 0):

Pee = (See, Iee, Hee, Ree, vee), (35)

where

See = (Λ − αHee)
(

k1
µk4

)
,

Hee = (Λk3(k1−k4)+µk4B)pk1
k5+k6−Aµk4 pk1

,
vee = AHee + B,

Iee = k2(1−p)
k1 p Hee,

Ree = 1
k3

[(
(1−p)γ1k2+pγ2k1

pk1
+ A

)
Hee + B

]
, (36)

and
k1 = µ + γ1,
k3 = ρ + µ,
k5 = k3k1(pαk1 − k4k2),
A = c2

c1
.

k2 = µ + γ2 + α,
k4 = β(1 − p),
k6 = k4ρ((1 − p)γ1k2 + pγ2k1),

(37)

The total population Nee = (Λ − αHee)
1
µ .

Remark 1. Considering Theorem 2 and all the subpopulations in (36), the following hold:

(i) From the expression for See in (36), it can be seen that a portion of the susceptible subpopulation,
which is proportional to αHee (deaths due to the disease), is removed from See. In the case of a
disease with a high death rate, the number of deaths could surpass the newborns, and it could
cause a negative value of See, which contradicts Theorem 2.

(ii) Other variables’ non-negativeness only depends on Hee’s non-negativeness; that is, the vari-
ables Iee, Ree and vee are linear with respect to Hee, and their respective independent parameters
are positive, so the condition Hee > 0 is sufficient to ensure Iee > 0, Ree > 0, and vee > 0.

(iii) Let Λk3(k1 − k4) + µk4B → 0, then Pee → Pd f ; when Λk3(k1 − k4) + µk4B → 0, then
Hee → 0, Iee → 0, and Ree → Rd f . Considering that k1/k4 → 1 − Bµ/(Λk3) (equivalent
to Λk3(k1 − k4) + µk4B → 0), it follows that See → Sd f .

(iv) From the point above, it is possible to transform Pee into Pd f with a suitable vaccination; that
is, B can be modified to Λk3(k1 − k4) + µk4B → 0, or equivalently Λ(ρ + µ)(γ1 + µ −
β(1 − p)) + µβ(1 − p) c3+ f

c1
→ 0, so Pee → Pd f .

Proposition 2. The endemic equilibrium point is not reachable, in the sense that it has some
negative component, if

β(1 − p) ≤ γ1 + µ. (38)

Proof of Proposition 2. Considering the expressions for See and Nee in (36), the normalized
variable see = See/Nee is calculated:

see =
k1

k4
. (39)



Mathematics 2024, 12, 245 11 of 33

If the condition k1 > k4 is fulfilled (i.e., γ1 + µ > β(1 − p)), then see > 1. This result
contradicts Theorem 2 since it demonstrates that all the subpopulations are positive, and
therefore all of them will be bounded by the whole population N; that is, the normalized
subpopulation can not exceed 1.

If k1 = k4, then see = 1, which implies that the susceptible subpopulation holds the
whole population (i.e., Iee = Hee = Ree = 0). This particular case does not correspond with
the definition of Pee, see Definition 2, but with the definition of Pd f , see Definition 1.

Proposition 3. Assuming that:
β(1 − p) > γ1 + µ, (40)

the endemic equilibrium point is reachable if the following conditions are fulfilled:

(i) β(1−p)
γ1+µ

(
1 − µ(c3+ f )

c1(ρ+µ)Λ

)
> 1

(ii) 0 < c1 < ∞

Proof of Proposition 3. Considering the expression for the denominator of Hee in (36):

dH = k5 + k6 − Aµk4 pk1, (41)

and taking into account k5 and k6, by direct calculations, it is obtained that:

dH = pαk2
1k3 − k4µk1k2 − k4ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− Aµk4 pk1. (42)

Assuming that k4 > k1, it follows that:

dH < k3k1 pαk4 − k4µk1k2 − k4ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− Aµk4 pk1, (43)

which leads to

dH < −k4µ
{
[pγ1 + (1 − p)γ2 + (1 − p)α + µ]ρ + [(1 − p)α + γ2 + µ]k1

}
−Aµk4 pk1 < 0. (44)

If the condition (i) from Proposition 3 is fulfilled, the nominator of Hee will be negative,
and consequently, Hee will be positive since its denominator is negative.

Remark 2. As it was mentioned in Remark 1, part (i), See could reach a negative value due to a
very aggressive disease. Taking into account the expression for See in (36), it is concluded that this
situation cannot occur if αHee < Λ. By doing this, one obtains the following:

αpk1(Λk3(k4 − k1)− µk4B) < −ΛdH , (45)

and considering expression (41), it follows that the inequality above is still true if the next inequality
is fulfilled:

αpΛk1k3(k4 − k1) < Λ
{
−k3k1 pαk1 + k4µk1k2 + k4ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)] + Aµk4 pk1

}
(46)

which leads to

0 < Λ
{

k4k1µ(α(1 − p) + γ2 + µ) + k4ρ[γ1 pµ(1 − p)γ2µ + µ((1 − p)α + µ)]
}

. (47)

The condition above is always fulfilled, so a value of α that neglects the existence of See does
not exist.

The expressions for each subpopulation given in (36) include the particular case in
which no vaccination is being applied. Thus, considering the expressions in (36), one can
define Pnv

ee as follows:
Pnv

ee = (Snv
ee , Inv

ee , Hnv
ee , Rnv

ee , vnv
ee ), (48)
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where

Snv
ee = (Λ − αHee)

(
k1

µk4

)
,

Rnv
ee =

(
(1−p)γ1k2+pγ2k1

pk1k3

)
Hee,

Inv
ee = k2(1−p)

k1 p Hnv
ee ,

vnv
ee = 0,

Hnv
ee = Λpk1k3(k1−k4)

k5+k6
, (49)

and the total population Nnv
ee = (Λ − αHnv

ee )
1
µ .

3. Stability of the Equilibrium Points
3.1. Local Stability of the Disease-Free Equilibrium Point

The basic reproduction number (R0) is a well-known parameter in epidemic models;
it determines the number of secondary infections caused by an infected person when intro-
duced to a disease-free equilibrium state type population without vaccination. Depending
on its value, it is possible to determine whether the Pnv

d f is locally asymptotically stable
or not; that is, when its value is less than one (R0 < 1), Pnv

d f is locally asymptotically
stable. In contrast, if its value is greater than one (R0 > 1), Pnv

d f is unstable. To obtain the
mathematical expression for R0, the next generation matrices [7,46], F and V , are used.
The same procedure can be used to calculate Rc; it is equivalent to R0 but taking into
account the implemented vaccination.

F is defined as the rate of appearance of new infections in the subpopulations I and
H, and V represents the transfer of individuals. Thus,

F =

 βI(t)S(t)(1−p)
N(t)

βI(t)S(t)p
N(t)

, V =

(
(µ + γ1)I(t)

(µ + γ2 + α)H(t)

)
. (50)

The derivatives of F and V with respect to the vector x(t) = (I(t) H(t)), and evaluated
at Pd f , give the matrices F and V, respectively. Then,

F =

 β(1−p)S(t)(N(t)−I(t))
N(t)2 0

βpS(t)(N(t)−I(t))
N(t)2 0

∣∣∣∣∣∣
Pd f

=

 k4

(
1 − µB

k3Λ

)
0

(β − k4)
(

1 − µB
k3Λ

)
0

, (51)

V =

(
(µ + γ1) 0

0 (µ + γ2 + α)

)∣∣∣∣
Pd f

=

(
k1 0
0 k2

)
. (52)

Considering the expressions (51) and (52), V−1F is calculated

V−1F =

(
k−1

1 0
0 k−1

2

) k4

(
1 − µB

k3Λ

)
0

(β − k4)
(

1 − µB
k3Λ

)
0

 =

 k4
k1

(
1 − µB

k3Λ

)
0(

β−k4
k2

)(
1 − µB

k3Λ

)
0

, (53)

and its spectral radius (the maximum of the absolute value of the eigenvalues) is equal to
the basic reproduction number. From (53), it follows that:

Rc = σ(V−1F) =
k4

k1

(
1 − µB

k3Λ

)
=

β(1 − p)
γ1 + µ

(
1 − µB

(ρ + µ)Λ

)
. (54)

Theorem 3. Assume that Pd f is reachable. Then, it is locally asymptotically stable if and only if
the control parameters are chosen such that:

Rc =
β(1 − p)
γ1 + µ

(
1 − µ(c3 + f )

c1(ρ + µ)Λ

)
< 1 (55)

Proof of Theorem 3. If the eigenvalues of a linear system ẋ(t) = Ax(t) have a negative
real part, then the system is asymptotically stable. In case the system is non-linear, the
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local asymptotic stability of the system about an equilibrium point x∗ is determined by the
eigenvalues of the system’s Jacobian matrix J evaluated at the equilibrium point x∗,

J =
dA
dx

∣∣∣
x∗

. (56)

If the eigenvalues of J have a negative real part, the system is locally asymptotically
stable at the given equilibrium point x∗.

Considering the systems (3) and (5), its Jacobian matrix gives

J =


− βI(N−S)

N2 − µ − βS(N−I)
N2

βSI
N2

βSI
N2 + ρ −1

k4 I(N−S)
N2

k4S(N−I)
N2 − k1 − k4SI

N2 − k4(1−p)SI
N2 0

βpI(N−S)
N2

βpS(N−I)
N2 − βpSI

N2 − k2 − βpSI
N2 0

0 γ1 γ2 −k3 1
0 0 c2 0 −c1

. (57)

Evaluating the expression above at point Pd f in (30), one obtains:

J =



−µ −β
(

1 − µB
Λk3

)
0 ρ −1

0 k4

(
1 − µB

Λk3

)
− k1 0 0 0

0 β
(

1 − µB
Λk3

)
p −k2 0 0

0 γ1 γ2 −k3 1
0 0 c2 0 −c1


, (58)

and the eigenvalues of the matrix (58) are:

λ1,2,3,4 = −µ, −k2, −k3, −c1

λ5 = −k1 + k4

(
1 − µB

Λk3

) (59)

where the eigenvalues λ1,2,3,4 are negative. Therefore, the disease-free equilibrium point is
locally asymptotically stable if and only if the following condition is fulfilled:

k4

k1

(
1 − µB

k3Λ

)
=

β(1 − p)
γ1 + µ

(
1 − µ(c3 + f )

c1(ρ + µ)Λ

)
< 1 (60)

as it was demonstrated with the next generation matrices.

Remark 3. Consider the following characteristics:

(i) Taking into account the obtained Rc, R0 is achieved with B = 0 (i.e., R0 = β(1−p)
γ1+µ ). In

such a case, Pnv
d f is locally asymptotically stable if the transmission rate value is less than

βc =
µ+γ1
1−p (critical transmission rate without vaccination). Since the transmission rate is

proportional to the contact rate c, see expression (2), the condition β < βc could be guaranteed
by reducing the contact rate (e.g., imposing quarantine periods or reducing people’s mobility).

(ii) When comparing R0 with Rc, it is evident that vaccination (B ̸= 0) permits greater transmis-
sion rates and therefore contact rates, too; if vaccination measurements are being implemented,
one can calculate βcc =

(γ1+µ)(ρ+µ)Λ
(1−p)[(ρ+µ)Λ−µB] (critical transmission rate with vaccination), which

can be rewritten in terms of βc; that is, βcc = βc
(ρ+µ)Λ

(ρ+µ)Λ−µB . Therefore, if B ̸= 0 and

B < Λ(ρ+µ)
µ , it is straightforward that βcc > βc.

(iii) If the probability of being hospitalized is considered null (i.e., p = 0) and no vaccination
is being applied, then an SIR model is obtained. In this particular case, R0 is reduced
to R′

0 = β
γ1+µ , which corresponds to the basic reproduction number attained for an SIR

model [7].



Mathematics 2024, 12, 245 14 of 33

(iv) The nominator of Hee, see (36), can be rewritten in terms of Rc;

nH = Λp(ρ + µ)(γ1 + µ)2(1 −Rc). (61)

Since it was proved that the denominator of Hee is negative as far as γ1 + µ < β(1 − p), then
the existence of Hee is ensured if nH < 0, which corresponds with Rc > 1. Therefore, when
Rc < 1, Pd f as well as being locally asymptotically stable is the system’s (3) unique attractor.
When Rc > 1, Pd f turns unstable, and Pee is reachable.

Proposition 4. Assume that the disease-free equilibrium point is reachable. Then, it is marginally
stable if and only if the control parameters are chosen such that:

Rc =
β(1 − p)
γ1 + µ

(
1 − µ(c3 + f )

c1(ρ + µ)Λ

)
= 1. (62)

3.2. Global Stability of the Disease-Free Equilibrium Point

With the aim of analyzing the global stability of the disease-free equilibrium point,
first, the non-existence of a periodic solution will be proved, and secondly, the conditions
for the global stability will be exposed.

Proposition 5. Assume that β < βc = µ+γ1
1−p , f (t) = f for all t ∈ [0, ∞), and c1 ≥ µ(c3+ f )

Λ(ρ+µ)
.

Then, the non-seriously infected and the hospitalized subpopulations vanish asymptotically. The
above result still holds if f (t) is picewise continuous with finite jump discontinuities on a finite real
interval, f (t) → f ∗ as t → ∞ and c1 > µ(c3+ f ∗)

Λ(ρ+µ)
.

Proof of Proposition 5. One obtains from I(t) in (26) that if

µ + γ1

β(1 − p)
> lim sup

t→∞

S(t)
N(t)

, (63)

then I(t) → 0 as t → ∞ for any finite I(0) ≥ 0, then any periodic solution of I(t) is
neglected. Since, from Theorem 1, S(t)/N(t) ≤ 1 for all t ∈ [0, ∞) as all the subpopulations
are non-negative and bounded for all t > 0 for any non-negative initial conditions.

The above condition is guaranteed if

µ + γ1

β(1 − p)
> 1, (64)

that is, if β < βc. Note from (55) that if f (t) = f for all t ∈ [0, ∞) then

Rc =
β(1 − p)
µ + γ1

(
1 − µ(c3 + f )

c1Λ(ρ + µ)

)
≤ β(1 − p)

µ + γ1
(65)

provided that c1 ≥ µ(c3+ f )
Λ(ρ+µ)

and if β < βc then Rc < 1. Also, from H(t) in (26),

H(t) = H(t0)e−(µ+γ2+α)(t−t0) +
∫ t

t0

e−(µ+γ2+α)(t−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ, (66)

and the properties of the upper limits lead to the following inequality:

lim sup
t→∞

H(t) ≤ lim sup
t→∞

H(t0)e−(µ+γ2+α)(t−t0) + lim sup
t→∞

∫ t

t0

e−(µ+γ2+α)(t−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ, (67)

and considering a finite and non-negative initial condition H(t0), it follows that:

lim sup
t→∞

H(t) ≤ lim sup
t→∞

∫ t

t0

e−(µ+γ2+α)(t−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ. (68)
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Now, let us rewrite the expression for H(t) for a time t′ = t + ∆ where ∆ is finite and
positive. Thus,

H(t + ∆) = H(t)e−(µ+γ2+α)∆ +
∫ t+∆

t
e−(µ+γ2+α)(t+∆−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ, (69)

and its upper limit

lim sup
t→∞

H(t + ∆) ≤ lim sup
t→∞

H(t)e−(µ+γ2+α)∆ + lim sup
t→∞

∫ t+∆

t
e−(µ+γ2+α)(t+∆−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ. (70)

Since lim supt→∞ H(t) ≤ lim supt→∞ H(t + ∆), it yields

lim sup
t→∞

H(t) ≤ 1
1 − e−(µ+γ2+α)∆

lim sup
t→∞

∫ t+∆

t
e−(µ+γ2+α)(t+∆−τ)

(
βI(τ)S(τ)p

N(τ)

)
dτ. (71)

In Theorem 1, it was proved that S(t) and N(t) are bonded, then if I(t) → 0 as t → ∞,
one has that:

lim sup
t→∞

H(t) = 0. (72)

Since in Theorems 1 and 2 it was proved that H(t) is non-negative, the following
limit exists:

lim
t→∞

H(t) = lim sup
t→∞

H(t) = 0. (73)

The first part of the result for constant f (t) has been proved. If now f (t) → f ∗ ( f (t)
tends asymptotically to f ∗) and it is picewise continuous with bounded jump discontinu-
ities, then for any given real ϵ > 0, there is some finite t1 = t1(ϵ) such that f (t) ≤ f ∗ + ϵ,
for all t ≥ t1. Then, the above results hold if c1 ≥ µ(c3+ f ∗+ϵ)

Λ(ρ+µ)
since ϵ > 0 is arbitrary, and it

suffices that c1 > µ(c3+ f ∗)
Λ(ρ+µ)

.

Remark 4. If the vaccination (5) is performed with c1, the gain of the vaccination dynamics is
sufficiently large and f (t) is constant, then the basic reproduction number is less than unity, and
the disease-free equilibrium point is locally asymptotically stable. Moreover, if it is assumed that
β < βc, βc is the critical disease transmission threshold, the disease-free equilibrium point is unique
(independently of the vaccination tuning parameters, the endemic equilibrium point is not reachable;
see Proposition 2), then the above proposition ensures that the disease-free equilibrium point is also
globally asymptotically stable.

3.3. Local Stability of the Endemic Equilibrium Point

Theorem 4. Assume that there is no vaccination, and that the Pnv
ee is reachable. Then, the endemic

equilibrium point is locally asymptotically stable and the Pnv
d f is unstable.

Proof Outline of Theorem 4. To proof the local stability of Pnv
ee (i.e., c1 = c2 = c3 = f = 0),

system (3) has been linearized about Pnv
ee given in (49), and the Jacobian matrix has been

obtained. Due to the system’s complexity, instead of calculating directly its eigenvalues,
the Routh–Hurwitz criterion has been applied, which determines the conditions for the
existence of eigenvalues with positive real parts. From the Routh–Hurwitz criterion, and
assuming that γ1 + µ < β(1 − p), it is concluded that the equilibrium point is locally
asymptotically stable. More details are given in Appendix A.
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Theorem 5. Assume that a vaccination exists and that Pee point is reachable. Then, Pd f is unstable,
and given any c1, c3, and f , the endemic equilibrium point is locally asymptotically stable if c2
fulfills the following conditions:

c2 <
c1
{

k1k2µ + ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− k1k3 pα Rc
R0

}
k1 pµ

, (74)

c2 sup
ω∈R+

(
|∆ f (iω)|
| f (iω)|

)
< 1, (75)

where R+ = {x ∈ R : x ≥ 0}. In addition,

f (λ) = di1(λ
4 + a3λ3 + a2λ2 + a1λ + a0)(λ + c1),

∆ f (λ) = (λ + µ)
[
R0k1 pµ

c1
(λ + k3)(λ + k2)(λ + c1)λ + pβni(1 − see)(λ + k1)

]
,

(76)

and

ni = (γ2 + α + µ)(ρ + µ)(1 − p)µ(Rc − 1),
di1 = R0{(γ1 + µ)(γ2 + α + µ)µ + ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− (γ1 + µ)(ρ + µ)pα Rc

R0
},

a3 = β ni
di1

+ γ2 + α + ρ + 3µ,
a2 = β ni

di1
[γ1 + α + γ2 + ρ + 3µ − αpsee] + µ(ρ + µ) + (γ2 + α + µ)(ρ + 2µ),

a1 = β ni
di1

[(γ1 + ρ + 2µ)(1 − psee)α + [pγ1 + (1 − p)γ2 + 2µ]ρ + (γ1 + 2µ)(γ2 + µ) + (γ1 + µ)µ] + µ(γ2 + α + µ)(ρ + µ),
a0 = β ni

di1
{(γ1 + ρ + µ)(1 − psee)αµ + p(1 − see)γ1αρ + (1 − p)γ2ρµ + [(γ1 + µ)γ2 + (pρ + µ)γ1 + (ρ + µ)µ]µ}.

(77)

Proof Outline of Theorem 5. To prove the local stability of Pee, as in the proof of Theorem 4,
from the linearized system (3) about Pee given in (36), the characteristic equation has been
obtained, and it has been rewritten as the sum of two polynomials whose roots location is
known. Finally, from Rouche’s theorem [47], the conditions which ensure that all roots are
located in the open left-half plane (they have a negative real part), so the system is locally
asymptotically stable, have been inferred. More details are given in Appendix B.

Remark 5. Taking into account Theorem 5 and the conditions (74) and (75), the following hold:

(i) Conditions (74) and (75) are sufficient conditions; that is, if they are fulfilled, the stability
of the endemic equilibrium point is ensured. Contrary, if the conditions are not fulfilled, the
stability of the equilibrium point is not guaranteed.

(ii) Taking into account condition (74), and considering that it is proportional to c1, let c1 → 0;
then, the endemic equilibrium point is stable if c2 → 0 regardless of the condition (75), which
is in accordance with Theorem 4. In addition, bigger values of c1 allow bigger values of c2.

(iii) The conditions (74) and (75) can be unified on a single condition; that is,

c2 < c2 = min

{
c1
{

k1k2µ + ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− k1k3 pα Rc
R0

}
k1 pµ

,
1

supω∈R

(
|∆ f (iω)|
| f (iω)|

)}, (78)

which, from a numerical point of view, can easily be computed. Once all the parameters are
defined, the values of c1, c3, and f can be chosen so Rc > 1, and then the condition (74)
can be computed. Finally, to obtain a numerical value of the second condition, from the bode
magnitude plot of |G(iω)| = |∆ f (iω)|

| f (iω)| , it is possible to obtain its peak value Gmax and calculate
the condition (75). Finally, the minimum between both results will be chosen.

Proposition 6. Assume that the endemic equilibrium point is reachable and

β → βcc =

(
µ + γ1

1 − p

)(
(ρ + µ)Λ

(ρ + µ)Λ − µB

)
, (79)
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so Rc → 1. Then, the endemic equilibrium point is marginally stable.

Proof of Proposition 6. Rc → 1 implies iee → 0, so the eigenvalues problem exposed in
Appendix B is reduced to

λ(λ + c1)
[
λ3 + (γ2 + α + ρ + 3µ)λ2 + (µ(ρ + µ) + (γ2 + α + µ)(ρ + 2µ))λ + µ(γ2 + α + µ)(ρ + µ)

]
= 0 (80)

From Equation (80), two roots are directly derived; λ1,2 = 0,−c1. Regarding the
remaining roots, with the Routh–Hurwitz stability criterion, it can be easily proved that all
their real parts are negative.

Remark 6. In Remark 1, point (iv), it is noted that Pee tends to Pd f when Rc → 1. In addition,
in Proposition 4, it is stated that Pd f is marginally stable when Rc = 1. Then, it is clear that
Proposition 6 is consistent with the previous results.

3.4. Stability of the Endemic Equilibrium Point

Taking into account the definition of stability given in [48], one obtains the subse-
quent result.

Proposition 7. Assume that the endemic equilibrium point is reachable, then it is stable at time t0.

Proof of Proposition 7. It is possible to determine the bound of the initial conditions δ(t0)
as D, see (19), such that any solution of (3) starting at t0 always lies inside ϵ > 0 (one can
simply choose δ = ϵ) at all times t ≥ t0; that is, considering x(t) and x∗ as the solution and
the equilibrium point, respectively, of system (3), it follows that:

∥x(t0)− x∗∥ < δ(t0) =⇒ ∥x(t)− x∗∥ < ϵ, ∀ t ≥ t0. (81)

With δ(t0) = ϵ = D, (81) holds.

4. Simulations

Some simulations have been carried out to validate the results obtained in the previous
sections. The parameter values have been gathered from different sources; regarding the
natural birth and death rate, the Spanish public source Instituto Nacional de Estadística
(National Statistics Institute) [40] has been used. In a survey where 28,503 people partici-
pated [41], their contact rate with respect to their incomes, locations, age, etc. was analyzed,
and they showed an overall value of 14.5 contacts per day. The transmission probability has
been proved to vary in different settings [42]; that is, in cases in which the contact is more
prolonged, the transmission probability value can reach the 21.1%, and in working places,
it decreases to 1.9%. It has been observed that the hospitalization risk among the COVID-19
patients in England changes notoriously between groups, being the greatest (39.5%) in
the elderly population (80 years or older), and in the case of a medium-age population
(40–49 years), the probability decreases to 19.1% [43]. In addition, all age groups achieve a
peak value in winter months, which is a trend that may be caused by a weakener health
system during this period. Regarding hospitalized people’s recovery and death rates,
confirmed COVID-19 cases from Belgium are processed in [44], and it is concluded that
people around 20–60 years old stay 8.2 days in the hospital until they recover. In addition,
on average, they stay 12.2 days until they die. With respect to the duration of immunity,
the immunity wanes after 3–24 weeks after vaccination, and is not until the 24th week that
there is an important decline in immunity [45]. Based on available data, Table 1 shows a
summary of the parameter values used for simulation proposes within their respective
references. Note that depending on the analysis, the contact rate (c) will be modified.
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Table 1. Values of the model parameters.

Parameter Definition Value Cite

c Contact rate 14.5 day−1 [41]

pi
Transmission probability of not serious

infected people 0.211 [42]

p Hospitalisation probability 0.16 [43]

µ Natural death rate 2.282 ∗ 10−5 day−1 [40]

γ1 Non-seriously infected recovery rate 0.13 day−1 [49]

γ2 Hospitalized people recovery rate 0.12 day−1 [44]

α Disease-induced death rate 0.082 day−1 [41]

ρ Immunity lose rate 0.006 day−1 [45]

Considering the parameters given in Table 1, the condition γ1 + µ < β(1 − p) is
fulfilled, and by substituting their values into the denominator of Hee, see (36), one obtains:

dH = k5 + k6 − Aµk4 pk1 = −1.6177 ∗ 10−5 − 6.597 ∗ 10−8(14.0789 + A), (82)

which is negative as far as A ≥ 0, as it was seen in the proof of Proposition 3.
One can rewrite the nominator of Hee in terms of Rc:

(Λk3(k1 − k4) + µk4B)pk1 = Λk3 pk2
1(1 −Rc) = Λp(ρ + µ)(µ + γ1)

2(1 −Rc), (83)

and in agreement with the statement exposed in Remark 3, from (82) and (83), it is concluded
that the endemic equilibrium point is reachable (unrechable) when Rc > 1 (Rc < 1).

The simulations have been carried out with the version R2022a of Matlab, and the
differential equations shown in (3) have been solved with the solver ode45(), where the
selected time step has been 1 day; that is, all the results regarding the epidemic evolution
(any subpopulation or vaccine evolution) are given in discrete form, which are equally
spaced data points in time (i.e., 1 day). For the graphical representation, the function plot(),
which generates a line plot from the data points, has been used. Note that in the interest of
clarity in data visualization, the function plot() has been applied instead of stem(), which is
used to plot discrete sequence data.

Since in Section 3.2, it was proved that the disease-free equilibrium point is globally
asymptotically stable under certain conditions, in the following simulations, this char-
acteristic will be verified, and subsequently other simulations will be executed for the
local asymptotic stability analysis. With regard to the endemic equilibrium point, with
and without vaccination, the condition for its stability will be evaluated for different c1
values, and it will be verified that the requirements given in Theorem 5 are accomplished.
In Section 4.3, the state feedback vaccination method is compared with other common
vaccination methods based on the hospitalized subpopulation and vaccination evolution.
Finally, a vaccination specification is defined, and the tuning parameters are set up to match
the desired specification.

4.1. Stability of the Disease-Free Equilibrium Point
4.1.1. Global Stability

Firstly, the condition (32) shown in Proposition 1, which ensures the existence of
Pd f , has been considered (i.e., B ≤ Bd f = 1.642 ∗ 105). Consequently, by establishing
B = 1.410 ∗ 105, the condition is fulfilled and Pd f is reachable. Then, the conditions
for the global stability have been considered, see Proposition 5; taking into account that
β < βc = 0.15 must be fulfilled (first condition), with β = 0.14, the requirement is satisfied,
and it leads to the contact rate c = 0.663 (for the simulation carried out in this subsection,
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instead of using the value of the contact rate shown in Table 1, the value 0.0663 has
been used). With c3 = f = B/2 = 70500, it follows that c1 > 0.082 (second condition).
Consequently, if one chooses c1 = 1, the second condition is fulfilled and Pd f is globally
stable. With A = c2/c1 = 0 =⇒ c2 = 0, all parameters needed for simulation purposes
have been already defined. Regarding the initial conditions, it has been assumed that
there is a low quantity of non-seriously infected and hospitalized people and that nobody
has been vaccinated yet; that is, S(0) = 46 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 0, and
v(0) = 0. Then, the epidemic evolution has been simulated; see Figure 2.

As it was expected from the theoretical results, it can be observed that all the subpopu-
lations tend asymptotically to the disease-free equilibrium value. After 37 days the number
of hospitalized people is reduced to less than one, and after 30 days, the same happens with
the infected individuals. During this period, 404 people die as a consequence of the disease.
This type of epidemic evolution is always desired, since the the number of infected and
hospitalized individuals decay rapidly to zero regardless the outbreak magnitude. However,
the social effort needed for this propose is high; considering that pi = 0.211, the contact rate
must be reduced to less than 0.7 contacts per day so that β < βc, which implies self-isolation.
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Figure 2. Evolution of all subpopulations and vaccinations when the conditions for global asymptotic
stability of the disease-free equilibrium point (Pd f ) are fulfilled (β = 0.14, c1 = 1, c2 = 0 and
c3 = f = 70500).

4.1.2. Local Stability

As it was previously seen, Pd f is reachable with B < Bd f = 1.642 ∗ 105. Now, the most
common way to achieve a Rc lower than one, so Pd f is locally asymptotically stable, is to
modify the contact rate or/and the vaccination tuning parameters. Considering the contact
rate given in Table 1, and supposing that its value is fixed, in the following two simulations,
the asymptotic stability will be analyzed with respect to the different vaccination tuning
parameters. For both simulations, it has been assumed that initially, R is big compared to S;
S(0) = 7.42 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 40 ∗ 106, and v(0) = 1000.

• From the condition Rc > 1, so Pd f is unstable, it follows that B < 1.5606 ∗ 105: for
c2 = 0.01, c3 = f = 5500, and c1 = 0.1, one obtains that B = 1.1 ∗ 105 and Rc = 6.64.
The epidemic evolution shown in Figure 3 is obtained where the subpopulations do not
reach Pd f , but Pee: See = 1.66 ∗ 106, Iee = 2.84 ∗ 104, Hee = 3.39 ∗ 103, Ree = 3.18 ∗ 107

and vee = 1.10 ∗ 103. This is a predictable result since, for the parameters itemized in
Table 1, Pee is reachable when Rc > 1.
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• From the condition Rc ≤ 1, so Pd f is locally asymptotically stable, it follows that
B ≥ 1.5606 ∗ 105. With c2 = 0.01, c3 = f = 7850, and c1 = 0.1, B = 1.57 ∗ 105 and
Rc = 0.8846 are attained. The resulting epidemic evolution has been depicted in
Figure 4, where one can see that the model tends to Pd f ; after 164 days approximately,
the non-seriously infected and the hospitalized subpopulations are less than one, and
some time after, S and R reach the points Sd f = 2.282 ∗ 106 and Rd f = 4.3682 ∗ 107,
respectively, as expected.
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Figure 3. Evolution of the whole subpopulations and vaccinated individuals when the conditions for
local asymptotic stability of Pd f are not fulfilled. The values of the vaccination tuning parameters are
c1 = 0.1, c2 = 0.01 and c3 = f = 5500.
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Figure 4. Evolution of the whole subpopulations and vaccinations when the conditions for local
asymptotic stability of Pd f are fulfilled. The values of the vaccination tuning parameters are c1 = 0.1,
c2 = 0.01 and c3 = f = 7850.
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In Table 2, some data of interest regarding previous simulations are summarized.

Table 2. Epidemic evolution’s significant features.

Rc = 6.64 Rc = 0.88

Time (Days) Individuals Time (Days) Individuals

vpeak 38 134.550 × 103 39 176.580 × 103

Hpeak 30 436.770 × 103 31 363.290 × 103

deaths peak 30 35.801 × 103 31 29.778 × 103

total vaccines 0–730 82.096 × 106 0–730 113.750 × 106

total deaths 0–730 2.3467 × 106 0–730 509.220 × 103

During the first days, when the infected subpopulation starts to increase again, even if
the differences between both cases are minor, it is observed that a higher vaccination helps
to avoid future deaths. At the end of 2 years, the differences between both cases are more
notorious; when Rc = 0.88, the total vaccination is 1.3% higher than the total vaccination
in Rc = 6.64, whereas the total deaths decreases four times.

The simulations of these particular cases are significant because the initial conditions
are comparable to the current COVID-19 epidemic situation, and they highlight the impor-
tance of maintaining Rc < 1, since it avoids a significant increment in the total number
of deaths.

4.2. Stability of the Endemic Equilibrium Point
4.2.1. Local Stability without vaccination

Theorem 4 states that if Pnv
ee is reachable (i.e., γ1 + µ < β(1 − p)), then it is locally

asymptotically stable. With the objective of reinforcing this theorem, the terms from the
Routh tablet (dnv

1 and gnv
1 ) given in (A7), Appendix A, can be evaluated numerically for

different β values and verify its stability; if the terms are positive, then Pnv
ee is locally

asymptotically stable. Whereas, if any term is negative, then Pnv
ee is unstable. Considering

the parameter values given in Table 1, the terms in (A7) have been evaluated for different β
values, and the result is depicted in Figure 5.
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Figure 5. The blue lines stand for the graphical representation of the terms in (A7), which determine
the local asymptotic stability of the endemic equilibrium point without vaccination (Pnv

ee ) with respect
to β(1 − p). Note that only the values at the right side of the red lines, which represent β(1 − p) = k1

for any dnv
1 (left graph) and gnv

1 (right graph), must be considered.
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In Figure 5, a red line is also shown to emphasize that only the values of dnv
1 and gnv

1
that correspond to β(1 − p) > γ1 + µ must be taken into account. As it was expected from
the theoretical results, dnv

1 and gnv
1 are positive if β(1 − p) > γ1 + µ.

4.2.2. Local Stability with Vaccination

Theorem 5 states that it is sufficient if the conditions (74) and (75) are fulfilled to ensure
the local asymptotic stability of Pee. In this section, the procedure to compute the condition
for c2, which is exposed in Remark 5, will be followed.

Let us consider the parameters given in Table 1 and the following vaccination tuning
parameters values c1 = 0.1 and c3 = f = 736.05, so Rc = 2.08 > 1 (Pd f is not locally
asymptotically stable). Then, the condition (74) has been computed:

c2 < 25.7206. (84)

To calculate the numerical value for the second condition, see expression (75), the
bode magnitude plot of the function |G(iω)| = |∆ f (iω)|

| f (ω)| has been computed, which is
shown in Figure 6. From Figure 6, the peak has been obtained, which corresponds to
22.7093 dB. Thus,

c2 < 0.0732. (85)

Finally, the minimum value between the values given in (84) and (85) has been chosen;
c2 < c2 = 0.0732.
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Figure 6. Bode magnitude diagram of |G(iω)|, see Equation (75), given the parameters shown in
Table 1, and the vaccination tuning values c1 = 0.1 and c3 = f = 736.05.

The roots of the characteristic equation obtained from the linearized system (3) about
Pee, see Equation (A12), have been computed for different c2 cases; c2 < c2, c2 = c2 and
c2 > c2. See Table 3 for more details.
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Table 3. Roots of the characteristic equation, see expression (A12) in Appendix B, for different c2

cases when c1 = 0.1 and c3 = f = 736.05.

Roots c2 = 0.007 c2 = 0.073 c2 = 0.73

r1 −2.2552 × 10−4 −1.5916 × 10−4 −5.551 × 10−5

r2 −0.0171 − 0.0641i −0.0089 − 0.069i 0.0083 − 0.0758i
r3 −0.0171 + 0.0641i −0.0089 + 0.0069i 0.0083 + 0.0758i
r4 −0.1009 −0.1058 −0.113
r5 −0.2046 −0.2093 −0.220

Taking into account the results in Table 3, variations in c2 barely affect r4 and r5. In the
case of r1, r2, and r3, when c2 increases, their real parts decrease (the time for the response
to reach the final value will be bigger), whereas the imaginary parts of r2 and r3 tend
to increase (the response of the associated eigenvectors will be characterized by bigger
oscillations). Regarding the stability, two of three are stable since all ri, where i = 1, 2, 3, 4.5,
have negative real parts. As it was mentioned in Remark 5, even if the condition c < c2 is
not fulfilled, the system might still be stable since not fulfilling the conditions (74) and (75)
does not imply that the equilibrium point will be unstable. However, when c2 = 0.073, r2
and r3 have a positive real part and they are complex-conjugate poles. This instability is
caused by the violation of the condition (i) given in Theorem 2 (i.e., v(t) > v(t)).

4.3. Study of State Feedback Vaccination

To analyze the benefits of the state feedback vaccination method, its performance will
be compared with that of other common vaccination control methods, such as the constant
and the proportional methods. These controllers will be defined as follows.

v(1) = c(1)2 ,
v(2) = c(2)2 H, and

v̇(3) = −c1v + c(3)2 H.

(86)

Note that v̇(3) is the simplified version of the equation given in (5). In addition, v(2)

and v(3) are functions of the state H, since it has been assumed that data exist regarding the
hospitalized people, which makes its implementation possible. Each vaccination function
will be set up to drive the hospitalized subpopulation to the desired value H∗, and each
performance will be evaluated based on the following features: vpeak, Hpeak, the total
number of people who receive a vaccine dose up to 365 days, and the total number of
deaths up to 365 days.

Let P(i)
ee = (S(i)

ee , H(i)
ee , I(i)ee , R(i)

ee ) be the endemic equilibrium point belonging to v(i),
where i = 1, 2, 3. Taking the parameter values in Table 1, H(i)

ee has been calculated, and the
condition H(1)

ee = H(2)
ee = H(3)

ee = H∗ = 1.067 ∗ 104 has led to c(1)2 = 7.68 ∗ 103, c(2)2 = 0.72,

and c(3)2 = c1c(2)2 for ∀c1 > 0. Two values of c1 have been considered, c1 = 1 and c1 = 0.1,

thereby giving c(3)2 = 0.72 and c(3)2 = 0.072, respectively. Then, with the initial conditions
S(0) = 10 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 40 ∗ 106, and v(0) = 0, a simulation of the
epidemic evolution has been carried out, and in Figure 7, the evolution of the hospitalized
subpopulation per day and the number of vaccinated people per day has been displayed.
Note that the settling time is bigger than 365 days, since none of the four cases reach the
desired state H∗ at the end of 1 year.

As it can be observed in Figure 7, with our state feedback controller, the vaccination
performance can be modified; it is possible to switch from an underdamped-like behavior
to an overdamped. Meanwhile, with v(1) and v(2), vaccination is totally conditioned by a
constant value and H, respectively.

Taking into account the performance measurements given in Table 4, if the objective is
to reduce as much as possible the number of deaths, then v(2) gives the best response while
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v(1) gives the worst. However, these types of responses are usually difficult to implement
(e.g., there could be staff limitations or cost limits), and in such cases, big vaccination peaks
(e.g., the peaks observed with v(2), and v(3) when c1 = 1) are not desired. By decreasing
the value of c1, v(3) can be adjusted to the desired response.
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Figure 7. Evolution of infected hospitalized (H) subpopulation and vaccinated individuals (v), with
respect to time, with the initial conditions S(0) = 10 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 40 ∗ 106,
and different vaccination methods.

Table 4. Performance of different vaccination control methods.

v(1) v(2) v(3)

c(1)
2 = 1.7 × 104 c(2)

2 = 0.72 c1 = 1, c(2)
2 = 0.72 c1 = 0.1, c(2)

2 = 0.072

vpeak - 4.567 × 105 4.642 × 105 65,781
Hpeak 7.811 × 105 6.344 × 105 6.65 × 105 7.905 × 105

total vaccines 2.810 × 106 2.387 × 107 2.383 × 107 2.006 × 107

total deaths 3.972 × 106 2.717 × 106 2.719 × 106 2.94 × 106

4.4. Study of Vaccination Strategy Design and Implications

For the proposal of a vaccination strategy, it will be assumed that the initial conditions
are known and that vd vaccines are delivered every T days:

vd(t) = vdδ(t − (n − 1)T) : n ∈ N+ (87)

Then, the vaccines stock vs(t) can be defined as:

vs(t) =
∞

∑
n=1

vdθ(t − (n − 1)T)−
∫ t

0
v(τ)dτ, (88)

where n ∈ N+, and θ(t) is the Heaviside function. Therefore, vs(t) is a picewise continuous
with jump discontinuities.

During the period (n − 1)T ≤ t < nT, the vaccination strategy will be characterized
by two main points:
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• A continuous vaccination of about vs((n − 1)T)/3T: considering the expression for
v(t) in (24), the term c3(1 − e−c1t)/c1 is a good candidate for this propose, since

lim
t→∞

c3

c1
(1 − e−c1t) =

c3

c1
. (89)

Therefore, c3/c1 = vs((n − 1)T)/3T. It is possible to define c1 by imposing a condi-
tion related to the vaccination response; that is, if it is desired to reach 7/10 of the
vaccination final value (i.e., c3/c1) when t = T/3, then

c1 =
3
T

ln
(

10
3

)
, (90)

and consequently,

c3 =
vs((n − 1)T)

T2 ln
(

10
3

)
. (91)

Note that c3 depends on vs((n − 1)T), whose value changes every period. Therefore,
for every time period, c3 must be updated before simulating the solution of system (3).

• As fast as there is a new vaccine delivery, an increment in vaccination is desired, and
this rise must disappear with respect to time. This condition can be accomplished if
one chooses f (t) such that f (t) = vdδ(t − (n − 1)T)/2. Thus, the term containing f (t)
in Equation (22) turns into∫ t

(n−1)T
e−c1(t−τ) f (τ)dτ =

vd
2

∫ t

(n−1)T
e−c1(t−τ)δ(τ − (n − 1)T)dτ =

vd
2

e−c1(t−(n−1)T). (92)

Regarding c2, different values will be used to see its implications.
Supposing that T = 30 days and vd = 6 ∗ 106, it leads to c1 = 0.1204. With the initial

conditions S(0) = 7.42 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 40 ∗ 106, and v(0) = 0,
a simulation has been carried out for n = 1, 2, 3, 4, 5, and c3 has been updated for each
period; see Table 5 for more information. After repeating this procedure for different c2
values, the results have been depicted (blue lines) in Figure 8. To show the advantage of
vaccination strategy, Figure 8 also shows how infected and hospitalized individuals as well
as the cumulative deaths evolve with respect to time when no vaccines are implemented
(red lines). For each c1, c2, and c3 combination, it has been checked that the number of
vaccinated individuals never exceeds the vaccines stock nor the number of susceptible
individuals, so Theorem 2 is not contradicted.

Table 5. Computed values of c3 and Rc for the given time periods.

n Time Period (Days) c3 Rc

1 0–30 8.03 ∗ 103 11.70
2 30–60 1.29 ∗ 104 6.84
3 60–90 1.59 ∗ 104 3.82
4 90–120 1.80 ∗ 104 1.81
5 120–150 1.94 ∗ 104 0.35

Regarding I, H, and the total number of deaths, during the first few days, the vac-
cination strategies do not make a big difference. At the end, the vaccinations drive the
mentioned subpopulations to zero, and consequently, the number of cumulative deaths is
stabilized, since Rc ≤ 1; see Table 5. Without vaccination Rc > 1, hence the increase of the
total number of deaths observed during the last period.

With the chosen c1 and c3 values, v(t) follows the desired behavior; when there is a
vaccine delivery, there is an increment in vaccinations and thereafter it tends to c3/c1. An
increase of c2 can modify this tendency when there is a rise in the number of hospitalized
people; during the time period 0–30 days, when c2 = 0.05, the number of vaccinations
continuous growing instead of drifting to a constant value. With respect to vs(t), at
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the beginning of each time period, the stock is greater than in the previous one (i.e.,
vs((n − 1)T) < vs(nT)), since not all the vaccines are being implemented.
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Figure 8. Evolution of infected (I) and H, cumulative deaths, v, and vaccines stock (vs) with respect
to time, with the initial conditions S(0) = 7.42 ∗ 106, I(0) = 1000, H(0) = 50, R(0) = 40 ∗ 106, and
v(0) = 0. The blue lines simulate the cases in which a vaccination strategy is implemented, whereas
the red lines show the behavior when there is no vaccination.

5. Discussion

An epidemic model consisting of susceptibles, non-seriously infected, hospitalized,
and recovered subpopulations (SIHR) has been built up. In addition, a vaccination policy
has also been included where the vaccination and hospitalization state variables are fed
back and controlled with the tuning parameters c1 and c2, respectively. For more design
freedom, another parameter (c3) and a time-varying function ( f (t)) have been added.
This vaccination design is advantageous, since data regarding hospitalized people and
vaccinated individuals are usually known.

The positivity of the model without vaccination has been proved. Considering the
model with vaccination, a very impulsive one could provoke the negativeness of either the
susceptible subpopulation or the vaccination stock. Therefore, in Theorem 2, the mentioned
characteristic is taken into account, and the positivity of this model is proved under certain
conditions. Then, Pd f and Pee as well as the conditions for their existence have been
obtained. From the analysis of the local asymptotic stability of Pd f , the analytical expression
for Rc has been calculated, which gives broad information; when Rc < 1, in addition to
Pd f being locally asymptotically stable, Pee is not reachable. Contrary, when Rc > 1, Pd f
is not locally asymptotically stable and Pee is reachable. In addition, considering that the
vaccination tuning parameters are constant with respect to time, the expression for βc, so
the local asymptotic stability of Pd f is ensured, has been calculated. Pd f has been proved to
be globally stable when β is below βc. The local asymptotic stability of Pee has also been
proved; when a vaccination is being applied, the stability is conditioned by some constrains,
whereas the model without vaccines is not.
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To study how the COVID-19 epidemic might evolve under different initial conditions,
vaccination strategies, or average contact rate, data concerning population such as the natu-
ral death rate, birth rates, etc. have been gathered from official sources, and some features
regarding COVID-19 disease (i.e., transmission probability) have also been collected. Firstly,
an outbreak has been simulated when the conditions for the global stability are met, and
even if a good result regarding the total number of deaths is attained, the number of contact
rates needed for that purpose (approximately an average of 0.66 contacts per day) is very
low and not affordable from a real point of view. Then, two simulations have been carried
out to study the implications of the local asymptotic stability/instability; with a slight
difference in vaccination and the same contact rates, during the first days, the differences
between both is not prominent. However, after some time, one reaches Pd f while the
other reaches Pee, which implies that the deaths stop and continue constantly, respectively.
Therefore, it is concluded that from the public health point of view, governments should
always try to maintain Rc < 1, since by increasing the total vaccines administration 1.3%
(from 82.10 ∗ 106 to 113.75 ∗ 106 in two years), the total number of deaths during that time
decreases approximately four times (from 2.35 ∗ 106 to 509.22 ∗ 103).

Regarding the stability of the endemic equilibrium point, two cases have been consid-
ered: Pnv

ee and Pee. In the first particular case, the stability is conditioned by the positivity
of two terms (the equilibrium point is locally asymptotically stable when both terms are
positive) derived from the Routh–Hurwitz criterion, which has been proved to be positive
if Pnv

ee is reachable. When vaccines are being implemented, from Rouche’s theorem, it has
been concluded that it is sufficient if c2 fulfills two conditions to ensure the local asymptotic
stability of Pee. In both cases, numerical simulations have been carried out with a regular
vaccination, and it has been found that both cases match with the theoretical results.

The response of the hospitalized subpopulation with respect to different vaccination
functions (constant, proportional, and state feedback) has been simulated, and the results
have been compared; with the state feedback vaccination, its behavior can be easily adapted
to a desired performance (e.g., a vaccination without peaks).

The last simulation could stand for a real-case example; a vaccines delivery function
(vd(t)) and vaccines stock function (vs(t)) have been included, and c1, c3, and f (t) have
been chosen to match a vaccine specification; that is, f (t) has been chosen as a periodic
pulse-type function, so an impulsive vaccination is obtained, and the selected c1 and c3 drive
vaccination to a desired steady value after a while. Several simulations have been carried
out for different c2 values, and the results have been compared with the case in which
no vaccination is applied. When vaccines are implemented, the infected subpopulation
tends to zero, and consequently the number of deaths do, too. With greater values of
c2, better results are shown since the number of vaccinated individuals at the beginning
increases. For instance, the last simulation shows that with a periodic vaccines delivery, it
is possible to eradicate the disease without administrating all the doses (i.e., the vaccines
stock increases with respect to time), which is very important in case future outbreaks are
anticipated (i.e., fall and winter are characterized by the prevalence of outbreaks).

Overall, the epidemic model with vaccination has been proved to be coherent in the
sense that its solution and the equilibrium points are non-negative under certain conditions.
Moreover, from the global and local asymptotic stability analysis of Pd f , the conditions
that force the disappearance of the disease have been obtained. With the Routh–Hurwitz
criterion, the conditions for the local asymptotic stability of Pee have been also derived.
Then, based on real data, numerical values have been assigned to the parameters, and
different simulations have been carried out; it has been found that the conditions for Pd f
global stability are difficult to accomplish, whereas for the local asymptotic stability, they
are quite affordable. In the last simulation, it has been demonstrated that the implemented
vaccination, as a result of the way in which it is built up and its free-design parameters and
time-dependent function, can be easily adapted to desired requirements.

Taking into account that usually the death rate differs notoriously between age groups,
our future work will consider this model as the baseline for an age-group epidemic model.
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Then, the optimal control problem can be formulated, where the performance measure
could be defined to follow the minimum control effort (i.e., least waste of resources), to
transfer a system from an arbitrary initial state to the target state (the Pd f ) in minimum time
and to maximize the deviation of the hospitalized subpopulation state from the hospital’s
bed limit.
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S Susceptible subpopulation
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Pee Enedemic equilibrium point
Pnv

ee Endemic equilibrium point in absence of vaccination
R0 Basic reproduction number
Rc Controlled reproduction number
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Appendix A. Proof of Theorem 4 (Vaccination Free Case)

To obtain the condition for which the endemic equilibrium point is locally asymptoti-
cally stable, the previously calculated Jacobian matrix, see (57), has been considered but
without vaccination (i.e., c1 = c2 = c3 = f = 0). Therefore, the expression (57) is reduced to

J =


−βinv

ee (1 − snv
ee )− µ −βsnv

ee (1 − inv
ee ) βinv

ee snv
ee βinv

ee snv
ee + ρ

k4inv
ee (1 − snv

ee ) k4snv
ee (1 − inv

ee ) −k4inv
ee snv

ee − k1 −k4inv
ee snv

ee
βpinv

ee (1 − snv
ee ) βpsnv

ee (1 − inv
ee ) −βpinv

ee snv
ee − k2 −βpinv

ee snv
ee

0 γ1 γ2 −k3

, (A1)

where

snv
ee = see =

See
Nee

= k1
k4

= 1
R0

, and

inv
ee = Inv

ee
Nnv

ee
= µk2(1−p)Hnv

ee
k1 p(Λ−αHnv

ee )
= k2k3(1−p)µ(R0−1)

R0{k1k2µ+ρ[pγ1(α+µ)+(1−p)γ2µ+µ(α+µ)]−k1k3 pα} .

(A2)
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Taking into account Proposition 3, the normalized subpopulations will be positive and
bounded; that is, 0 < snv

ee < 1 and 0 < inv
ee < 1.

Let us solve the eigenvalue problem |J − λI4x4| = 0, that is:∣∣∣∣∣∣∣∣


−βinv
ee (1 − snv

ee )− µ − λ −βsnv
ee (1 − inv

ee ) βinv
ee snv

ee βinv
ee snv

ee + ρ
k4inv

ee (1 − snv
ee ) k4snv

ee (1 − inv
ee )− k1 − λ −k4inv

ee snv
ee − k1 −k4inv

ee snv
ee

βpinv
ee (1 − snv

ee ) βpsnv
ee (1 − inv

ee ) −βpinv
ee snv

ee − k2 − λ −βpinv
ee snv

ee
0 γ1 γ2 −k3 − λ


∣∣∣∣∣∣∣∣ = 0, (A3)

and by direct calculations, it is obtained that:

λ4 + anv
3 λ3 + anv

2 λ2 + anv
1 λ + anv

0 = 0 (A4)

where
anv

3 = βinv
ee b3 + k2 + k3 + µ > 0,

anv
2 = βinv

ee b2 + µ(k3 + k2) + k2k3 > 0,
anv

1 = βinv
ee b1 + µk2k3 > 0, and

anv
0 = βinv

ee b0 > 0,

(A5)

and

b3 = 1,
b2 = k1 + k2 + k3 − αpsnv

ee ,
b1 = (k1 + k3)(1 − psnv

ee )α + [pγ1 + (1 − p)γ2 + 2µ]ρ + (k1 + µ)(γ2 + µ) + k1µ, and
b0 = (k1 + ρ)(1 − psnv

ee )αµ + p(1 − snv
ee )γ1αρ + (1 − p)γ2ρµ + [k1γ2 + (pρ + µ)γ1 + k3µ]µ.

(A6)

The Routh table is formed by the following terms:

dnv
1 = −

∣∣∣∣∣ 1 anv
2

anv
3 anv

1

∣∣∣∣∣
anv

3
=

−anv
1 +anv

3 anv
2

anv
3

,

dnv
2 = −

∣∣∣∣∣ 1 anv
0

anv
3 0

∣∣∣∣∣
anv

3
= anv

0 , and

gnv
1 = −

∣∣∣∣∣ anv
3 anv

1

dnv
1 dnv

2

∣∣∣∣∣
dnv

1
=

−anv
3 dnv

2 +dnv
1 anv

1
dnv

1
=

−anv
3 anv

0 +dnv
1 anv

1
dnv

1
.

(A7)

Considering that the endemic equilibrium point is reachable (0 < inv
ee < 1 and

0 < snv
ee < 1), and that the parameters are non-negative (they fulfill the condition given

in (1)), it follows that dnv
1 and gnv

1 are positive. Therefore, from the Routh–Hurwitz criterion,
it is concluded that the polynomial (A4) has its roots on the open left-half plane, and conse-
quently, the endemic equilibrium point without vaccination is locally asymptotically stable.

Appendix B. Proof of Theorem 5 (Vaccination Control)

Considering the expression for Nee in (37), the normalized subpopulations see and iee
are calculated:

see =
See
Nee

= k1
k4

= 1
R0

and

iee =
Iee
Nee

= µk2(1−p)Hee
k1 p(Λ−αHee)

= ni
di1+c2di2

,
(A8)

where

ni = k2k3(1 − p)µ(Rc − 1),
di1 = R0{k1k2µ + ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− k1k3 pα Rc

R0
} and

di2 = R0k1 pµ
c1

.
(A9)
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Each normalized subpopulation will be positive if the conditions given in Proposition 3
are fulfilled, and they will be bounded (0 < see < 1 and 0 < iee < 1) since Nee is the sum of
all subpopulations.

To analyze the local stability of the endemic equilibrium point, let us take the previ-
ously calculated Jacobian matrix, see (57), and evaluate it above Pee; see terms in (36), (37)
and (A8):

J =


−βiee(1 − see)− µ −βsee(1 − iee) βinv

ee snv
ee βinv

ee snv
ee + ρ −1

k4iee(1 − see) k4see(1 − iee)− k1 −k4inv
ee snv

ee − k1 −k4inv
ee snv

ee 0
βpiee(1 − see) βpsee(1 − iee) −βpinv

ee snv
ee − k2 −βpinv

ee snv
ee 0

0 γ1 γ2 −k3 1
0 0 c2 0 −c1

, (A10)

and the eigenvalues are obtained from the solution of the equation |J − λI5x5| = 0, that is:∣∣∣∣∣∣∣∣∣∣


−βiee(1 − see)− µ − λ −βsee(1 − iee) βinv

ee snv
ee βinv

ee snv
ee + ρ −1

k4iee(1 − see) k4see(1 − iee)− λ −k4inv
ee snv

ee − k1 −k4inv
ee snv

ee 0
βpiee(1 − see) βpsee(1 − iee) −βpinv

ee snv
ee − k2 − λ −βpinv

ee snv
ee 0

0 γ1 γ2 −k3 − λ 1
0 0 c2 0 −c1 − λ


∣∣∣∣∣∣∣∣∣∣
= 0, (A11)

which leads to
λ5 + a′4λ4 + a′3λ3 + a′2λ2 + a′1λ + a0 = 0, (A12)

where
a′4 = av

3 + c1,
a′3 = av

2 + c1av
3,

a′2 = av
1 + c1av

2 + δ,
a′1 = av

0 + c1av
1 + (k1 + µ)δ, and

a′0 = c1av
0 + k1µδ,

(A13)

and
av

3 = βieeb3 + k2 + k3 + µ > 0,
av

2 = βieeb2 + µ(k3 + k2) + k2k3 > 0,
av

1 = βieeb1 + µk2k3 > 0,
av

0 = βieeb0 > 0, and
δ = c2 pβiee.

(A14)

Note that the parameter av
i , where i = 0, 1, 2, 3, is related to the coefficients of the

polynomial (A4) defined in Appendix A; that is, taking into account the expression for av
i

in (A14), if one substitutes iee for inv
ee , then anv

i is obtained. One can rewrite (A12) as follows:

(λ4 + av
3λ3 + av

2λ2 + av
1λ + av

0)(λ + c1) + δ(λ2 + (k1 + µ)λ + k1µ) = 0. (A15)

Considering that iee =
ni

di1+c2di2
, then the expression above can be rewritten as:

di1(λ
4 + a3λ3 + a2λ2 + a1λ + a0)(λ + c1)

+(λ + µ)
[

c2
c1

di2(λ + k3)(λ + k2)(λ + c1)λ + c2 pβni(λ + k1)
]
= 0,

(A16)

where ai is equal to av
i , see expression (A14), but considering iee = ni

di1
instead of

iee =
ni

di1+c2di2
.

Let D be a bounded domain and ∂D be its boundary. Let F(λ) = f (λ) + ∆ f (λ), where
f (λ) and ∆ f (λ) are analytical on D ∪ ∂D. If | f (λ)| > |∆ f (λ)| for λ ∈ ∂D, by Rouche’s
theorem [47], f (λ) and F(λ) have the same number of roots in D. Therefore, let us consider

f (λ) = di1(λ
4 + a3λ3 + a2λ2 + a1λ + a0)(λ + c1) and

∆ f (λ) = (λ + µ)
[

di2
c1
(λ + k3)(λ + k2)(λ + c1)λ + pβni(λ + k1)

]
,

(A17)
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and hence, the polynomial (A16) can be rewritten as

F(λ) = f (λ) + c2∆ f (λ). (A18)

The roots of λ4 + anv
3 λ3 + anv

2 λ2 + anv
1 λ + anv

0 had a negative real part (all roots are
inside the closed left-half plane) as far as 0 < inv

ee < 1 and 0 < see < 1, see the proof
of Theorem 5 in Appendix A, and consequently, f (λ) roots will also be inside the closed
left-half plane since ni

d1
fulfills the condition 0 < ni

d1
< 1. Let D correspond to the closed right-

half plane and ∂D = ∂D1 ∪ ∂D2 to its boundary, where ∂D1 = {|λ| = R : ℜ(λ) > 0} and
∂D2 = {λ = iω : |λ| < R}. Since f (λ) and ∆ f (λ) are polynomials, it is straightforward
that they are analytical on D ∪ ∂D. If | f (λ)| > c2|∆ f (λ)| for λ ∈ ∂D, from Rouche’s
theorem, it follows that F(λ) roots are inside the open left-half plane.

Considering the boundary ∂D1, if

c2 <
c1di1

R0k1 pµ
=

c1
{

k1k2µ + ρ[pγ1(α + µ) + (1 − p)γ2µ + µ(α + µ)]− k1k3 pα Rc
R0

}
k1 pµ

, (A19)

then | f (λ)| > c2|∆ f (λ)| for all λ ∈ ∂D1 as R → ∞. Regarding ∂D2, one finds that the
following condition must be fulfilled:

sup
ω∈R

|G(iω)| = c2 sup
ω∈R

(
|∆ f (iω)|
| f (iω)|

)
< 1, (A20)

and considering its symmetry, it follows that

sup
ω∈R+

|G(iω)| = c2 sup
ω∈R+

(
|∆ f (iω)|
| f (iω)|

)
< 1, (A21)

where R+ = {x ∈ R : x ≥ 0}.
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