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ABSTRACT The availability of an automatic pulse detection during out-of-hospital cardiac arrest (OHCA)
would allow the rapid identification of cardiac arrest and the prompt detection of return of spontaneous
circulation. The aim of this study was to develop a reliable pulse detection algorithm using the electro-
cardiogram (ECG) and thoracic impedance (TI), the signals available in most defibrilators. The dataset
used in the study consisted of 1140 ECG and TI segments from 187 OHCA patients, whereof 792 were
labelled as pulse-generating rhythm (PR) and 348 as pulseless electrical activity (PEA) by a pool of experts
in OHCA. First, an adaptive filtering scheme was used to extract the impedance circulation component and
its first derivative from the TI. Then, the wavelet decomposition of the ECG was carried out to obtain the
different subband components and the denoised ECG. Pulse/no-pulse (PR/PEA) discrimination features were
extracted from those signals and fed into a support vector machine (SVM) classifier that made the pulse/no-
pulse decision. A quasi-stratified and patient wise nested cross validation procedure was used to select the
best feature subset and to tune the SVM hyperparameters. This procedure was repeated 50 times to estimate
the statistical distributions of the performance metrics of the method. The optimal solution consisted in a five
feature classifier that yielded a mean (standard deviation) sensitivity, specificity, balanced accuracy and total
accuracy of 92.4% (0.7), 93.0% (0.8), 92.7% (0.5) and 92.6% (0.5), respectively.When compared to available
methods, our solution presented an improvement in balanced accuracy of at least 2.5 points. A reliable pulse
detection algorithm for OHCA using the signals available in defibrillators was acomplished.

INDEX TERMS Machine learning, adaptive filtering, stationary wavelet transform (SWT), support vector
machine (SVM), out-of-hospital cardiac arrest (OHCA), thoracic impedance, electrocardiogram (ECG),
pulse detection.

I. INTRODUCTION
Every year out-of-hospital cardiac arrest (OHCA) accounts
for about 300 000 deaths among adults in the United
States [1]. The majority of OHCAs occur at home and are
unwitnessed [2], [3]. The survival rate is around 10% in
witnessed OHCA treated by emergency medical services
(EMS) [4]. An early recognition of cardiac arrest is determi-
nant for the patient’s survival as it leads (1) to a rapid dispatch
of the EMS, (2) to an immediate initation of bystander car-
diopulmonary resuscitation (CPR) which has been reported
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to double or quadruple survival [5]–[9], and (3) to an early
defibrillation that has been asssociated with increased sur-
vival [10]. The essential electromedical equipment used for
treatment and monitoring in OHCA is the defibrillator, either
a monitor/defibrillator used by trained EMS personel or auto-
mated external defibrillators (AEDs) prepared to be used by
untrained lay rescuers.

Recognizing cardiac arrest can be challenging. Confirming
the absence of circulation through a carotid pulse check has
been found innaccurate for both lay rescuers and healthcare
personnel [11], [12]. Assessment of ’normal breathing’ pro-
posed in current resuscitation guidelines [13] as an indicator
of circulation has been proved unreliable [14], [15]. Pulse
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checks and breathing assessments are time consuming and
introduce unnecessary CPR interruptions, needing in average
9.5 s for carotid pulse checks [11] and 12 s for breathing
assessments [14]. These interruptions in CPR compromise
coronary perfusion pressure and are detrimental for the sur-
vival of the patient [16]. Therefore, there is a need for reliable
pulse detectors that might be incorporated into defibrillators.
Such methods would allow for an early and rapid identifi-
cation of the cardiac arrest, and would shorten CPR inter-
ruptions to confirm absence of circulation. In addition, they
would allow for a rapid detection of the return of spontaneous
circulation (ROSC), which would result in a prompt initia-
tion of post-resuscitation care and avoidance of potentially
harmful chest compressions or administration of adrenaline
in spontaneously beating hearts.

Several solutions based on the digital processing of
biomedical signals have been proposed to detect pulse during
cardiac arrest. Doppler-ultrasound in the carotid [17] and
nasal photoplethysmography [18], [19] have been used to
detect pulse in swine models of cardiac arrest. Recent stud-
ies used the regional cerebral oxygen saturation measured
through near-infrared spectroscopy to predict ROSC during
in- and out-of-hospital cardiac arrest [20], [21]. Accelera-
tion signals measured on the common carotid artery from
in-hospital cardiac arrest patients [22] or acquired from
accelerometer-based CPR feedback devices in a porcine
model of cardiac arrest [23] have also been used to develop
pulse detectors. An abrupt rise of end tidal CO2 (EtCO2)
has recently been reported as a specific but non-sensitive
predictor of ROSC in OHCA [24], [25]. Several studies have
used the ECG [26]–[28] or thoracic impedance (TI) [29],
[30] to detect pulse. Others however have combined ECG
and TI [31]–[33], ECG and EtCO2 [34] or ECG, TI and
EtCO2 [35].

Most current commercial defibrillators record the ECG
and TI signals through the defibrillation pads. The ECG is
used to analyze the underlying cardiac rhythm and to decide
whether defibrillation is necessary. The TI signal is used to
check the correct skin-pad contact and to adjust defibrillation
energy. Therefore, a pulse detector based on both signals
might be incorporated into defibrillators without hardware
modifications and could be used by both lay rescuers (AEDs)
and healthcare professionals (monitor/defibrillators).

Pulse detection in cardiac arrest is typically framed as
the discrimination between pulseless electrical activity (PEA)
and pulse-generating rhythm (PR) [26], [29], [31]–[33]. Both
PEA and PR present a (quasi)-normal ECG with visible QRS
complexes, the electrical activity associated with the depolar-
ization of the ventricles in a heartbeat. However, during PEA
the heart loses its contractile function so there is a dissociation
between the electrical and mechanical activities of the heart,
and thus no blood flow [36]. In contrast, PR presents a
normal electrical and mechanical activity, and thus effective
blood flow. Differences between PR and PEA are not always
perceptible in the ECG, but PR usually presents regular and
narrow complexes, while PEA might show more irregular

and wider QRS complexes [36]. In the TI small fluctua-
tions (<100m�) correlated with the QRS complexes can be
observed for PR, but not for PEA [37], [38].

This study presents a new method for pulse detection dur-
ing OHCA using the ECG and TI signals. The approach uses
an adaptive filter to extract the circulatory-related component
from the TI, from here on referred to as impedance circulation
component (ICC), and a suppport vector machine (SVM)
classifier based on features extracted from the ECG and ICC
to discriminate PEA and PR. The manuscript is organized as
follows: Section II provides a description of the study dataset;
Section III details the feature engineering methods including
the extraction of the ICC, and the process of extracting fea-
tures from the ECG, TI and ICC; the architecture used for
feature selection, and the optimization and evaluation of the
method are described in Section IV; results and discussion are
described in Section V; and finally conclusions are presented
in Section VI.

II. DATA MATERIALS
The study cohort was composed of 187 OHCA patients
treated by the Tualatin Valley Fire & Rescue (Tigard, OR,
USA) using the Philips HeartStart MRx (Philips Healthcare,
MA, USA) monitor/defibrillator between 2010 and 2014.
Each episode contained ECG, TI and capnography signals.
The amplitude resolution per least significant bit and the
sampling frequency of the ECG and TI signals were 1.03mV
and 250Hz, and 0.74m� and 200Hz, respectively. All sig-
nals were converted to a Matlab (Matick, MA, USA) format
and the TI was resampled to match the ECG sampling rate.
The powerline interferences and spiky noise in the ECG
were removed by using a 60Hz notch filter and a Hampel
filter, respectively. Other sources of noise were removed
through wavelet denoising techniques, as described in
Section III.

The episodes were visually reviewed to extract those seg-
ments that during resuscitation were used to analyze the
patient’s heart rhythm. Only segments with visible QRS
complexes (PEA or PR) and a minimum duration of 5 s
were included in the dataset. Those segments were then
annotated as PEA or PR by three expert reviewers: an
emergency medicine doctor, a cardiologist and a biomedi-
cal engineer. To make a decision the reviewers were pro-
vided with annotations of ROSC made in the field. Abrupt
increases and decreases (from below 20 to above 35mmHg
and viceversa) indicated ROSC and loss of ROSC, respec-
tively. Resuming chest compressions after an interval to ana-
lyze the heart rhythm was also considered as an indicator of
no ROSC. Annotation discrepancies among reviewers were
further reviewed until a consensus PEA/PR annotation was
reached.

The dataset used in the study consisted of a total
of 1140 segments, 792 PR and 348 PEA, containing the ECG
and TI signals. Themean (standard deviation, SD) duration of
the segments was 8.2 (1.7) s, 8.0 (1.7) s for PR and 8.5 (1.7) s
for PEA segments.
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FIGURE 1. Wavelet analysis of the ECG signal and adaptive extraction of the ICC for a PR (left) and PEA (right) segments. From top to bottom,
the original ECG signal (secg), the denoised ECG (sden), a relevant subband of the ECG (d2), the original TI signal (simp), the ICC (sicc) and its first
derivative (sdicc).

III. FEATURE ENGINEERING
The starting point for feature extraction were the ECG signal,
secg(n), and TI signal, simp(n), where the sample index n is
related to time by t = n/fs, with a sampling frequency of fs =
250Hz. The feature extraction process was composed of three
phases. First, an adaptive filter was used to extract the ICC,
sicc(n), from simp(n). Then, the wavelet decomposition of the
ECG signal was carried out to obtain the different subband
components and the denoised signal, sden(n). Finally, fea-
tures were computed from sicc(n), its first derivative sdicc(n),
the subband components and sden(n). Fig. 1 shows examples
of the most relevant signals and subbands used for feature
extraction for a PEA and a PR segment.

A. ADAPTIVE EXTRACTION OF THE ICC
In patients presenting pulse the simp(n) can be expressed using
the following additive model [31], [32]:

simp(n) = srest(n)+ sicc(n) (1)

where srest(n) contains the impedance’s baseline value
and artifacts mainly due to pads movement and skin-pad

contact. The ejection of blood into the aorta caused by each
effective contraction of the heart produces fluctuations in the
impedance, that is the sicc(n) component. Consecutive fluc-
tuations slightly vary on amplitude and duration. Therefore,
the nature of sicc(n) is quasi-periodic and can be modeled
using a Fourier series with N terms of slowly time varying
amplitudes and frequencies:

sicc(n) =
N∑
k=1

ak (n)cos(k ω0(n) n)+ bk (n)sin(k ω0(n) n) (2)

where N represents the number of harmonics. The Fourier
coefficients ak (n) and bk (n) represent the in-phase and
quadrature amplitudes of the model, and ω0(n) = 2π f0(n)/fs
its fundamental frequency. The Hamilton-Tompkins algo-
rithm [39], [40] was used to detect the sample indices of the
R peaks of the QRS complexes (ri), but some adaptations
were made for OHCA data such as shortening the refractory
period and lowering the threshold coefficient [26]. The sam-
ple indices ri were used to compute f0(n) as follows:

f0(n) =
fs

ri+1 − ri
∀n ∈ (ri, ri+1] (3)
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There is therefore a variation in f0(n) for consecutive QRS
intervals, but it remains constant within each interval. For
estimating ak (n) and bk (n), three different adaptive algo-
rithms were inspected: Recursive Least Squares (RLS) [31],
[41], [42], Least Mean Square (LMS) [41], [43] and Kalman
filtering [44], [45]. For each algorithm two were the param-
eters to be tuned: N and µ/λ/q, the constants that regulate
the stability and convergence rate of the LMS/RLS/Kalman
algorithms, respectively. Larger values of µ (step size) or
q (variance of the process noise) and smaller values of λ
(forgetting factor) result in a faster rate of convergence but
could turn the process unstable [41]–[45].

B. STATIONARY WAVELET TRANSFORM
The multiresolution analysis of the ECG signal, secg(n), was
carried out using the stationary wavelet transform (SWT).
Basically, the SWT consists in the application, at each level
of decomposition, of a pair of conjugate quadrature low-pass,
hj−1(n), and high-pass, gj−1(n), filters to produce at the next
level two new sequences, the approximation (aj) and detail
(dj) coefficients, as follows:

aj(n) = hj−1(n) ∗ aj−1(n) (4)

dj(n) = gj−1(n) ∗ aj−1(n) (5)

where (∗) denotes convolution, a0(n) = secg(n) and the
high-pass filters at each level are obtained by time reversal
and a π radian frequency shift of the low-pass filters as:

gj(n) = (−1)n+1hj(M − 1− n) (6)

where M is the length of the filter. The SWT, unlike the
discrete wavelet transform, does not decimate aj and dj at
each level and therefore, they always have the same length
as the original signal a0. Instead, filters at each level are
upsampled by a factor of 2 with respect to filters at previous
level. Thus, hj(n) is obtained by inserting a zero between each
adjacent pair of samples of hj−1(n).
After some preliminary tests (see details in the supple-

mentary materials), a Coiflet 3 mother wavelet was used to
decompose secg(n) into J = 8 decomposition levels which
generated detail coefficients d1−d8 and approximation coef-
ficient a8. Detail coefficients d2−d8 were soft denoised using
the universal threshold described in [46] and used to synthe-
size the denoised ECG signal, sden, by recursively evaluating

aj−1(n) =
1
2
(g′j(n) ∗ aj(n)+ h

′
j(n) ∗ dj(n)) (7)

from j = J , . . . , 1, where g′j(n) = gj(M − 1− n) and h′j(n) =
hj(M − 1 − n) are the time-reversed versions of the decom-
position filters, known as synthesis filters. The synthesized
a0(n) coefficient corresponded to sden which only retained
frequency components in the 0.5 − 62.5Hz band. Although
most commercial defibrillators only analyze the ECG in the
0.5− 30Hz frequency band to recommend defibrillation, for
pulse detection we decided to retain d2 (31.25−62.5Hz sub-
band). These components are important to discriminate PEA
from PR because electrical conduction is better in PR than

in PEA resulting in narrower QRS complexes that produce
higher spectral components [47].

C. FEATURE EXTRACTION
A total of 40 PEA/PR discrimination features were com-
puted from sicc, sdicc, sden and the denoised detail coefficients
d2 − d8.
The first 8 features were the mean peak-to-trough ampli-

tude (MPT), the SD of the peak-to-trough amplitude (SDPT),
mean area (MA) [43] and fuzzy entropy (FuzzyEn) [48]–[50]
of sicc and sdicc. The following 21 features were the energy
(Enrg) [41], Kurtosis (Kurt) [51] and FuzzyEn of the detail
coefficients d2 − d8. The next 9 features were computed
from sden including the number of QRS complexes (nQRS),
mean (MRR) and SD (SDRR) of the interval between R
waves [31], [32], mean (MPP) and SD (SDPP) of the QRS
complex amplitude [31], median QRS width (QRSw) [32],
amplitude spectrum area (AMSA) [52], energy at high fre-
quency bands (Sxx) [26], [53] and FuzzyEn. Finally, 2 addi-
tional features were computed, the mean cross power [33]
between sicc and sden (CP), and between sicc and detail coef-
ficient d7 (CPd7). A detailed description of the features can
be obtained in the references provided above, and a Matlab
implementation of these features in https://github.com/erik-
alonso/PEA-PR-features.

IV. ARCHITECTURE OF THE MODEL AND EVALUATION
A nested cross-validation (CV) architecture was used to train
the model and evaluate its performance [54]. The inner loop
consisted in a 5-fold CV scheme for feature selection using a
wrapping approach, while in the outer loop 10-fold CV was
used to optimize the classifiers’ parameters and evaluate the
performance of the model. In both inner and outer loops ran-
dom quasi-stratified patient-wise partitions of the data were
used. Partitions maintained at least 90% of the PEA and PR
proportions of the original dataset. The model was evaluated
in terms of sensitivity (SE, capacity to correctly detect PR),
specificity (SP, capacity to correctly detect PEA), accuracy
(ACC, correct classification ratio), and balanced accuracy
(BAC, mean of SE and SP). The performance metrics were
calculated always in the test folds by comparing the model’s
PR/PEA decisions with the ground truth labels set by expert
reviewers. The PEA and PR class imbalance was addressed
by weighting each class according to their proportion of
samples.

The nested CV procedure was repeated 50 times using
different random partions to estimate the statistical distribu-
tions of the performance metrics. All the results are given as
mean (SD) of the values obtained in the 50 repetitions of the
experiments.

A. FEATURE SELECTION
Feature selection was carried out in the inner loop using the
sequential floating forward selection (SFFS) algorithm [55],
and a multivariate logistic regression algorithm to evaluate
the classification performance of the feature subsets. The
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SFFS consists in applying first sequential forward selec-
tion to add a new feature and then a number of backward
steps (backtracking) as long as the resulting feature subsets
perform better than the ones selected before at those lev-
els [56]. Therefore, features added in previous steps might be
removed in posterior steps. This procedure avoids the nesting
effect of purely sequential selection algorithms [57], namely
sequential forward selection (SFS) and sequential backward
selection (SBS).

The SFFS algorithmwas run until the bestV -feature subset
was selected, using the maximization of the BAC as feature
inclusion/exclusion criterion.

B. CLASSIFICATION ALGORITHM
The classification algorithm was based on a support vector
machine (SVM) classifier [58], [59], which is an extension
of the maximal margin hyperplane to accomodate non-linear
decision boundaries between classes.

Given training instance-label pairs (xi, yi) for i = 1, . . . , l
where xi ∈ RV is a vector containing the z-scores of the
V features selected in the inner CV loop and yi ∈ {−1, 1}
denotes the ground truth for PEA (no pulse) and PR (pulse),
respectively; the SVM requires to solve the following opti-
mization problem:

min
w0,w

1
2
‖w‖2 + C

l∑
i=1

εi

subject to yi(wTφ(xi)+ w0) ≥ 1− εi,

εi ≥ 0 ∀i. (8)

where w0 and w are the coefficients of the maximal mar-
gin hyperplane, C is a nonnegative tuning parameter, εi are
variables that indicate if the ith training instance is in the
incorrect side of the margin or the hyperplane, and φ is the
basis function that maps training instances, xi, into a higher
dimentional space.

Given the solutions w0 and w of (8), the SVM decision
function, can be expressed as

G(x) = sign
(
wTφ(x)+ w0

)
(9)

with a test instance, x, classified as PEA/PR for nega-
tive/positive signs, respectively. However, in practice there is
no need to specify the transformation φ(x) and only knowl-
edge of the kernel function is required

K (x, xi) = 〈φ(x), φ(xi)〉 (10)

to calculate inner products in the higher dimentional space.
Thus, the SVM decision function can also be written as

G(x) = sign
(
wTφ(x)+ w0

)
=

l∑
i=1

αiyiK (x, xi)+ w0 (11)

with nonzero coefficients αi only for the support vectors, i.e
those training instances i for which the constraints in (8) are

exactly met. In this study a radial basis kernel function was
used:

K (x, xi) = exp(−γ ‖x− xi‖2). (12)

Therefore, the hyperparameter optimization of the classi-
fier consists in tuning C and γ . The cost parameter C reg-
ulates the bias-variance trade-off of the SVM and γ defines
the adaptability of the decision boundary [54], [60]. Hyper-
parameters C and γ were tuned in the outer loop through
a 30 × 30 grid search in the ranges 1 ≤ C ≤ 100 and
0.03 ≤ γ ≤ 1.26 tomaximize the BAC of the SVMclassifier.
The development and optimization of the SVM classifier was
carried out using the LIBSVM library [61].

V. RESULTS AND DISCUSSION
The main results from the experiments and their contextu-
alization are presented in this section. First, the search for
the optimal working points of the adaptive filters for the
extraction of the ICC is conducted. Second, the importance of
feature selection is analyzed by ranking the selected features
and by evaluating the effect on performance of different
feature selection algorithms and the number of features, V ,
included in the model. Then, the effect of the duration of
the signal segment, L, on the performance of the model is
analyzed. Finally, a comparative assessment with the most
relevant available solutions based on ECG and TI signals is
presented.

A. CONFIGURATION OF THE ADAPTIVE FILTERS
Fig. 2 represents the mean BAC obtained by the model in
the 50 repetitions of the nested CV procedure for different
configurations of the adaptive filters. The results are shown
as a function of the number of harmonics in the model N ,
and the tuning parameter governing tracking (λ, µ or q) for
the RLS, LMS and Kalman filters. In this analysis, the pulse
detection algorithm was based on V = 5 features extracted
from segments with a duration of L = 5 s. All configurations
showed a mean BAC above 90%, and the maximumBACwas
obtained with a small number of harmonics, N = 2 for the
RLS and N = 3 for the LMS and Kalman filters. Overall,
adding more harmonics (N ≥ 4) resulted in a decrease in
the BAC. This is well aligned with the results in [31] where
the RLS filter with N = 3 was used to obtain the ICC.
In our study, the RLS and LMS filters outperformed the
Kalman filter, both reaching a mean BAC above 92%. The
RLS is more complex and computationally demanding than
the LMS, but converges faster than the LMS. In a setting
with short signal segments this can be advantageous, in our
analysis for L = 5 s the best BAC was 0.6 points larger for
the RLS than for the LMS. Table 1 shows in greater detail the
performance of the pulse detection algorithm with respect to
N for the optimal values of the tuning parameters λ = 0.9993,
µ = 39 · 10−4 and q = 6 · 10−5 for RLS, LMS and Kalman
filters, respectively.

From here on, the rest of the analyses were carried out
using the RLS filter with λ = 0.9993 and N = 2.
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FIGURE 2. Mean BAC of the pulse detection algorithm in the 50 repetitions of the nested CV procedure when RLS/LMS/Kalman adaptive filters are
used to extract the ICC. The BAC is depicted for different values of the parameter governing tracking (λ, µ or q) and the complexity of the model
determined by the number of harmonics, N .

TABLE 1. Performance metrics of the pulse detection algorithm for optimal values λ/µ/q of the adaptive filters and different number of harmonics, N .

B. ON THE IMPORTANCE OF FEATURE SELECTION
Fig. 3 shows the mean BAC as a function of the number
of features used in the model. This analysis was carried out
using L = 5 s segments and the SFFS feature selection
algorithm. The results were compared to 3 other feature selec-
tion algorithms: SFS, SBS and Plus-l take-away-r [57], more
concretely PTA(3,2) in our analysis. The trends were similar
independently of the feature selection algorithm. Adding fea-
tures increased the mean BAC until performance plateaued
when 4-6 features were included in the model. Including
more than 6 features resulted in a decreased BAC. The pulse
detection algorithm presenting the maximum BAC (92.7%)
was based on V = 5 features selected through the SFFS
algorithm, although it was only 0.1 points higher than when
PTA(3,2) was used. The SFFS algorithm differs from the
PTA(l, r) algorithm [57] in that (1) it allows a dynamic and
self-controlled backtrack without the need of predicting the
best fixed values for (l, r); and (2) it also allows for more than
one sweep through feature subsets [55]. The nesting effect
negatively affected the mean BAC obtained via the SFS and
SBS algorithms, with a decrease between 0.3 − 0.8 points
with respect to that obtained by SFFS and PTA(3,2) in the
high performance plateau (4-6 features).

Features were ranked in Table 2 according to PTS ,
the proportion of times they were selected in the inner
loop of the 50 repetitions of the nested CV procedure

FIGURE 3. Mean BAC of the pulse detection algorithm in the
50 repetitions of the nested CV procedure when different algorithms are
used to select a varying number of features, V .

(50 repetitions × 10-fold CV = 500 feature selection loops).
The SFFS algorithm and V = 5 features were considered
to compute the ranking. Table 2 also shows the mean area
under the curve (AUC) obtained from the receiver operating
characteristic curve analysis carried out on the test folds.
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TABLE 2. Features ranked by the PTS in the 50 repetitions of the nested
CV procedure and their discriminative power in terms of AUC.

The top in the ranking included features extracted from ECG
and TI signals in (1) time domain (MA, SDPT, MRR) [43],
(2) frequency domain (Enrg) [41], (3) the complexity analysis
(FuzzyEn) [48] and the statistical distribution of the samples
(Kurt) [51]. The feature ranking showed the importance of
retaining detail coefficient d2 as its FuzzyEn and Enrg turned
out to be the second and sixth most selected features with a
mean AUC of 0.93 and 0.91, respectively. Overall, most of
the features presented a high discriminative power with up
to 11 features extracted from both ECG and TI showing AUC
values above 0.90. Some of the features presented a very large
AUC but were not frequently selected because of the strong
correlation with the top ranking features. This is particularly
evident for features derived from the detail coefficients. For
instance, the mean Pearson correlation coefficient between
FuzzyEn for d2 and d4 in the test folds was 0.72 (0.02), both
had AUCs above 0.91, but FuzzyEn was selected 77.4% of
the times for d2 and only 3.4% of the times for d4.

C. EFFECT OF SEGMENT DURATION ON PERFORMANCE
Fig. 4 shows the mean values of the performance metrics as a
function of the duration of the signal segment, L. In this anal-
ysis an algorithm based on V = 5 features was used. Increas-
ing L resulted in an improved BAC. However, the magnitude
of those increases was smaller for L ≥ 5 s, the mean BAC
increased in over 3 points from L = 3 s to L = 5 s, but
only in less than 0.3 points from L = 5 s to L = 7 s. Mean
values of BAC above 90% were obtained for all segment
durations except for L = 3 s. The SP decreased faster than the
SE as segment duration decreased. An accurate identification
of PEA is more challenging for shorter segment durations

FIGURE 4. Mean values of the performance metrics (SE, SP, BAC and ACC)
of the pulse detection algorithm as a function of the segment duration, L.

because of the slower and more irregular heart rates in PEA
compared with PR.Moreover, at least 2 heartbeats are needed
to obtain an estimate of the ICC and to derive robust classifi-
cation features from the ICC and ECG. These considerations
explain why increasing L from 3 s to 4 s increases the SP by
over 3 points, but the SP only in 1 point.

The pulse detection algorithm presented an SE, SP, BAC
and ACC above 92.4%, 93.0%, 92.7% and 92.6%, respec-
tively, for L ≥ 5 s. Therefore, an accurate pulse detection
is possible with such segment durations. Current commercial
defibrillators require on average segment durations greater
than 5.2 s for an ECG rhythm analysis to reliably decide
whether or not to defibrillate a patient [62]. The pulse detec-
tion algorithm could run in those intervals, and prompt the
pulse/no-pulse results for the cases in which a nonshock-
able rhythm with QRS complexes has been identified [31],
[43]. This would avoid prolonged pauses in CPR for pulse
checks, which ultimately may contribute to improve survival
rates.

D. COMPARISON WITH PREVIOUS ALGORITHMS
Table 3 shows the comparison between the performance met-
rics for our method and three relevant methods proposed in
the literature for pulse detection during OHCAusing the ECG
and TI. Our method (SVM) is compared to a feedforward
neural network (FNN) proposed by Risdal et al. [32], a logis-
tic regression (LR) classifier proposed by Alonso et al. [31],
and a simple decision tree (SDT) recently proposed by
Ruiz et al. [33]. For a fair comparison every method was
replicated according to authors’ descriptions in the original
papers and trained/tested in the outer loop of the same 50 rep-
etitions of the nested CV procedure used in this study. The
performance metrics were obtained for a segment duration
of L = 5 s. Our solution was based on V = 5 features
while the rest of the methods used the optimal feature subset
reported by their authors in the original manuscripts, that is
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FIGURE 5. Misclassified PR (left) and PEA (right) segments. From top to bottom, the denoised ECG (sden), detail coefficient d2, the ICC (sicc) and its
first derivative (sdicc).

12 features in FNN, 6 features in LR and 2 features in SDT.
Our method had a significantly higher (p < 0.05 in the
McNemar test) ACC and BAC than any other method, with
a minimum increase of 2.5 points in BAC and 1.6 points in
ACCwith respect to the best performing previous algorithms.
These are large increases in performance because the BACs
and ACCs of previous algorithms were already above 90%.
Thus, a 1.6 point increase in ACC, from 91.0% to 92.6%,
means that around 20% of the classification errors of the
other classifiers are now corrected, and a 4 point increase
in SP means that 40% of the PEAs incorrectly classified by
other methods are correctly classified by our solution. Two
are the main reasons for these advances. First, the extraction
of a very good estimate of the ICC as a consequence of
the extensive search for the optimum number of harmonics
to model the ICC and for the best adaptive filter and the
optimum value of its tuning parameter. This maximized the
discriminative ability of the features extracted from the ICC
estimate, with features like the MA of sdicc with an AUC
of 0.93 (see Table 2). Second, the multiresolution analysis
of the ECG through the SWT which allowed a rich feature
extraction in the relevant ECG subbands, including the higher
subband in the 31.25 − 62.25Hz range represented by d2.
Features extracted from d2 showed great disciminative power
with AUC values up to 0.93.

Fig. 5 shows two examples of segments misclassified by
our solution, a PR (left panel) and a PEA (right panel).
Each panel shows, from top to bottom, the denoised ECG
(sden), detail coefficient d2, the ICC (sicc) and its first deriva-
tive (sdicc). The misclassified PR shows narrow and regular
QRS complexes with a heart rate around 100 bpm that can

TABLE 3. Performance metrics of the most relevant machine learning
based pulse detection algorithms in the literature. The p-value for the
McNemar test to compare the ACC and BAC of our method (SVM) to the
rest of the methods is reported. All comparisons yielded a significantly
higher BAC and ACC for our method.

be observed in sden. This is also reflected in d2 in the form
of a considerable energy in the 31.25 − 62.25Hz subband.
Although the ECG analysis may indicate the presence of
a PR, the amplitude of the ICC is small with no activity
correlated with the heartbeats, which ultimately led the SVM
classifier to make a no-pulse decision. On the other hand,
in the misclassified PEA the denoised ECG presents wide
QRS complexes with a heart rate around 50 bpm, and d2
shows low energy which might be an indicator of PEA.
Nevertheless, the highly correlated and large amplitude ICC
forced the classifier to make a pulse diagnosis.

VI. CONCLUSION
This study presented a machine learning framework to detect
pulse during OHCA. A novel feature extraction approach
using the combined information in the ECG and TI was
introduced, which when combined with a systematic use of
machine learning techinques led to a significant increase
in performance when compared to previous methods.
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Our method improved the BAC of the best previous methods
by over 2.5 points. This algorithm could be incorporated
without hardware modifications to any current defibrillator
because it uses only the signals recorded through the defib-
rillation pads. The algorithm might also contribute to shorten
or even eliminate pauses in CPR for pulse detection, which
would help improve therapy and may contribute to increase
survival rates.
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