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 54 

According to the competitive exclusion principle, species with low competitive 55 

abilities should be excluded by more efficient competitors, and yet they generally 56 

remain as rare species. Here, we describe the positive and negative spatial 57 

association networks of 326 disparate assemblages, showing a general organization 58 

pattern that simultaneously supports the primacy of competition and the 59 

persistence of rare species. Abundant species monopolize negative associations in 60 

about 90% of the assemblages. Contrarily, rare species are mostly involved in 61 

positive associations, forming small network modules. Simulations suggest that 62 

positive interactions among rare species and microhabitat preferences are the most 63 

likely mechanisms underpinning this pattern and rare species persistence. The 64 

consistent results across taxa and geography suggest a general explanation for the 65 

maintenance of biodiversity in competitive environments.  66 

Rare species, in terms of low abundance, are the main component of the diversity of 67 

ecological assemblages1. However, despite decades of intense investigation, general 68 

mechanisms behind the persistence of these species remain unclear. In theory, the 69 

widely assumed effects of competition between pairs of species should preclude the 70 
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persistence of weak competitors and the high diversity observed in natural 71 

assemblages2,3. Explanations for this diversity paradox include the differential roles of 72 

niche partition, intraspecific competition, facilitation, indirect and neutral interactions4-9, 73 

among others. Yet, there is no consensus to explain rare species persistence across taxa 74 

and environmental conditions so far.  75 

The spatial arrangement of individuals plays a crucial role for unveiling the 76 

mechanisms underpinning species assembly and coexistence10-21. Because individuals 77 

within assemblages are not homogeneously distributed, their spatial organization may 78 

both reflect important assembly processes10,11 and induce species coexistence per se12. 79 

For example, the patchy distribution of a dominant species might prevent the 80 

monopolization of resources and allow the existence of its subordinate species12,13. 81 

Hence, considering spatial aspects of coexistence appears to be an important step in 82 

elucidating assembly mechanisms12. The spatial sorting of species can be the outcome 83 

of divergent habitat preferences, dispersal abilities, and biotic interactions, although the 84 

role of interactions is thought to prevail under rather homogeneous environmental 85 

conditions, and especially at very fine spatial scales11,14,15. The organization of species 86 

within assemblages can be translated into association networks of species that are 87 

spatially aggregated (positive networks) or segregated (negative networks). Association 88 

networks of disparate biological assemblages can provide valuable empirical evidence 89 

of the main forces driving the assembly of species16-20, helping to reveal general 90 

mechanisms underlying species coexistence.  91 

Here we describe a general pattern of positive and negative species associations 92 

that is consistent with the competitive exclusion paradigm but, at the same time, can 93 

explain the persistence of rare species in natural assemblages. We base our results on a 94 

dataset of 326 assemblages21 that meet the following criteria: (i) each assemblage 95 
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comprises taxa from only one trophic guild, thereby excluding the possibility that 96 

species associations result from direct predation or parasitism; (ii) each assemblage 97 

shows reduced spatial extent and low environmental heterogeneity, to increase the 98 

likelihood that species associations are mainly due to biotic interactions; (iii) the 99 

abundance of at least ten species is recorded in a minimum of ten samples, to improve 100 

statistical power (Appendix S1); (iv) the dataset represents a wide variety of biomes 101 

(e.g., tropical forests, deserts, temperate steppes and polar climates), thus avoiding 102 

biome-specific results; and (v) it encompasses a diversity of taxa (such as bryophytes, 103 

vascular plants, and insects among others), to ensure the generalization of our results 104 

across taxonomic and functional groups. We generated positive and negative association 105 

networks for each assemblage by comparing the observed spatial association patterns 106 

among species to a null model22. Species pairs that significantly deviate from random 107 

expectations receive positive or negative links in their respective association networks 108 

(Fig. 1). 109 

We first analysed whether the structure of positive and negative association 110 

networks can reflect predictions from the competitive exclusion principle. Given that 111 

competition is heavily emphasized in the literature2, one would expect species to be 112 

more segregated than aggregated in natural systems. If so, negative networks should be 113 

more densely connected (i.e., more links per species) than their positive counterparts. In 114 

accordance, negative networks were significantly more connected than their positive 115 

pairs in a notable 93.2% of all assemblages (t = 17.01, P < 0.001, Fig. 2a). Differences 116 

in connectivity remained similar after accounting for differences in network size (t = -117 

16.81, P < 0.001, for 78.8% of the assemblages) or when calculating differences in the 118 

average number of links (i.e. average species degree; t = -14.69, P < 0.001, for 69.0% of 119 

the assemblages). Furthermore, if abundance is considered to be an expression of the 120 
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species’ competitive abilities23, the number of segregations should be monopolized by 121 

the most abundant species. Accordingly, results indicated a strong positive correlation 122 

between abundance and species degree in negative networks (mean Spearman’s ρ = 123 

0.65, SD = 0.23), but a weak or even negative correlation in positive networks (mean ρ 124 

= 0.02, SD = 0.38), with differences between networks being statistically significant (t= 125 

-23.88, P < 0.001, Fig. 2b). Moreover, we found evidence showing that a particular 126 

species is more often involved in negative associations when it becomes abundant 127 

(Appendix S2). Both the greater density of links and the relationship between species 128 

degree and abundance in negative networks support current knowledge about the 129 

prevailing role of competitive interactions in sustaining the dominance of abundant 130 

species.  131 

Yet, if the competitive exclusion principle is supported across several 132 

assemblages, how can rare species persist? To search for potential mechanisms 133 

answering this question we looked at the role played by rare species in association 134 

networks. Curiously, we found that rare species are mostly involved in positive 135 

associations in 91.7% of the assemblages studied, where positive networks showed a 136 

higher incidence of less abundant species than their negative pairs (t= 22.42, P < 0.001, 137 

Fig. 2c). Such spatial aggregations, however, do not occur among every rare species in 138 

the assemblage. In fact, we found that 91.1% of positive networks were more modular 139 

than their negative counterparts (t= 39.68, P<0.001, Fig. 2d). This result remained 140 

similar after accounting for network size and connectivity (t= 11.31, P<0.001, for 141 

67.3% of assemblages). Moreover, while 60.7% of positive networks were significantly 142 

modular, only 13.8% of negative ones showed this pattern. Taken together, these 143 

findings show that rare species tend to generate modular networks of positive spatial 144 

associations. 145 
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The patterns of negative and positive associations networks remain largely 146 

invariant regardless of different probability thresholds to detect significant associations, 147 

the use of quantitative links and assumptions of disparate null models (Appendix S1). 148 

This robust and conspicuous spatial organization suggests that the underlying 149 

mechanisms can also be responsible for the persistence of rare species. On the one hand, 150 

dissimilar habitat preferences between dominant species and groups of weak 151 

competitors14 may generate this pattern, enhancing also rare species persistence. Indeed, 152 

numerical simulations show that this possibility increased the probabilities of 153 

reproducing realized association network patterns, regardless of different interaction 154 

networks reflecting hypothesized assembly mechanisms (Fig. 3a and Appendix S3). 155 

This, however, mainly occurs when habitat preferences are strong, a situation that 156 

should arise under marked environmental gradients most likely far from the reality of 157 

the fine-scaled assemblages studied here. Complementarily, positive interactions within 158 

groups of rare species may also contribute and/or generate these modular positive 159 

networks. This may moreover increase the persistence of weak competitors since, just as 160 

in harsh abiotic environments24, the biotic harshness produced by superior competitors 161 

could be counterbalanced by positive interactions among rare species. Accordingly, 162 

simulations show that the inclusion of positive interactions within groups of weak 163 

competitors increases the chance of species persistence by 58.2% compared to 164 

assemblages ruled by competition alone. Our simulations also reveal that this 165 

hypothesis most likely reproduces the observed patterns in association networks 166 

compared to other stabilizing mechanisms such as neutral colonization-extinction 167 

dynamics9, intransitive competition25,26, differential density-dependent effects27,28 or 168 

facilitation by nurse species7 (Figs. 3b). Interestingly, the combination of habitats and 169 

positive interactions yields the highest probability of reproducing the observed network 170 
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patterns (Fig. 3a). This further suggests that, even under strong differences in habitat 171 

preferences, stabilizing forces, such as facilitation or complementarity, would enhance 172 

the coexistence of groups of rare species in reduced microhabitats15,17.  Besides habitat 173 

selection, it seems that modular positive interactions among rare species can contribute 174 

to the pattern we found and the persistence of these species, which agrees with recent 175 

experimental evidence29.  176 

 Overall, our results show that ecological assemblages are consistently organized 177 

in positive and negative association networks across the main biological groups (i.e., 178 

animals and plants) and geography (Fig. 4 and Extended Table 1). This ubiquity sheds	179 

light	on	the long-standing diversity paradox as the potential mechanisms leading to this 180 

organizational pattern can also enhance the persistence of rare species. Modular positive 181 

interactions among weak competitors emerged as a plausible mechanism even when 182 

assessed in conjunction with different microhabitat preferences. Questions remain about 183 

the relative contribution and feedbacks of these positive interactions and microhabitats. 184 

Nevertheless, the generality of the findings presented here bring us closer to 185 

understanding the assemblage of the vast biodiversity on Earth. 186 

Materials and Methods 187 

Data acquisition  188 

Assemblage data were collected from published studies in peer-reviewed journals 189 

and our own surveys21 (Appendix S4 and Supplementary Table 1). Each assemblage 190 

consists of at least ten samples where the abundance of at least ten species of the same 191 

trophic guild was recorded. In order to minimize the effects of environmental 192 

heterogeneity and dispersion on spatial patterns, we only included datasets that showed 193 

(i) low environmental variability across samples (excluding surveys where any kind of 194 

environmental gradient was reported or no clear information about it was provided), (ii) 195 
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a very reduced spatial extent (median = 0.1 ha; ranging from 0.01 to 25.6 ha), (iii) a 196 

very small grain size to increase the probability of physical and/or chemical contact 197 

among all species in the samples (median = 100 m2; ranging from 0.002 to 400 m2, 198 

respectively), and (iv) standardization among samples to avoid sampling biases (e.g. 199 

effects of area). Following these criteria, we gathered a total of 385 datasets distributed 200 

worldwide and representing a wide taxonomic spectrum, including bryophytes (n= 71), 201 

tracheophytes (n=279), anthozoans (n=7), and insects (n=28). Abundance was estimated 202 

as the number of individuals per sample in most of the assemblages, but a small number 203 

of assemblages included abundance data estimated as the percentage cover of the 204 

sampled surface (especially in bryophytes and plants). Since some null models only 205 

accept integer data (see below), we rounded percentages when necessary. Finally, we 206 

only used those assemblages where both positive and negative networks showed at least 207 

two links (n=326). 208 

 209 

Generation of association networks  210 

For each assemblage, we calculated similarity in abundance distribution across 211 

samples for each species pair i and j using the Schoener’s index32, 212 

𝑆(𝑖, 𝑗) = 1 −* +𝑝-. − 𝑝/.+ 2⁄
2

.34

 213 

where 𝑁 is the number of samples and 𝑝-.  is the proportion of the total abundance of 214 

species 𝑖 present in sample 𝑘 (𝑝-.=𝑥-. ∑ 𝑥-.2
.34⁄ ). We compared observed similarities to 215 

999 null values obtained through randomization of species abundances using a fixed-216 

fixed algorithm (i.e., row and column totals are kept constant). For each observed 217 

similarity value, two one-tailed p-values were calculated as the proportion of null values 218 

(plus the observation) that were higher than or equal to and lower than or equal to the 219 
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observed value for positive and negative associations, respectively. We considered an 220 

aggregation or segregation significant in those cases where associated p-values in any of 221 

the two tests were lower than or equal to 0.05. Alternative probability thresholds and 222 

null models provided quantitatively and qualitatively similar results (Appendix S1; 223 

Supplementary Figures 1 and 2). Significantly aggregated and segregated species pairs 224 

were used to generate unweighted links in the positive and negative association 225 

networks of each assemblage, respectively. It is important to note that the frequency of 226 

spurious associations (i.e., Type I errors) may be thought to be relatively high in species 227 

rich assemblages due to multiple comparisons (but see ref33). However, species pairwise 228 

similarities were compared against null values generated using a fixed-fixed 229 

assemblage-wise null model (i.e., a strict null model making null hypotheses among 230 

comparisons to be different but intrinsically interdependent). This partially alleviates the 231 

detection of false positives while preventing the use of powerful false discovery rate 232 

methods34.  Nevertheless, we used the same nominal error (i.e., α = 0.05) to detect both 233 

positive and negative associations, making the rate of false discoveries equal in both 234 

types of networks, and allowing unbiased comparisons of their structures. Indeed, 235 

results remained largely constant when using different nominal errors (Appendix S1 and 236 

Supplementary Figure 1).  237 

 238 

Network structure comparison 239 

To explore whether positive and negative association networks reflected 240 

competitive processes we compared their connectivity and their relationships between 241 

abundance (calculated as the sum of the abundances across samples) and species degree 242 

(i.e., species’ number of links) for each pair of network types. Connectivity is defined as 243 

the number of realised links relative to the number of potential links. This measure of 244 
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connectivity may be negatively correlated with network size. Hence, we also used 245 

residual connectivity obtained from the residuals of a linear regression between the 246 

number of observed and potential links, both log-transformed35. On the other hand, the 247 

relationship between abundance and species degree was assessed using the Spearman’s 248 

ρ correlation coefficient. Finally, to search for differences between network types we 249 

used a paired Student’s t-test, where the alternative hypothesis was that negative 250 

networks present higher means than their positive pairs. 251 

To determine if rare species have a larger participation in positive association 252 

networks, we compared the average relative abundance, weighted by the number of 253 

links of each species in the network, between the species involved in positive and 254 

negative networks. We also explored if positive networks were more modular than their 255 

negative pairs calculating modularity with the index proposed by Newman36 (𝑄) along 256 

with the optimisation algorithm of Louvain37. The algorithm was run 100 times, and we 257 

selected the partition that showed the highest modularity value. Since modularity can be 258 

related to network size and connectivity, we compared observed and null modularity 259 

values from random networks generated using a null model that maintains the number 260 

of links and nodes, as well as the degree sequence (implemented in the RandNetGen 261 

software38). Then, we computed relative modularity values as 𝑄: = −2(𝑃 − 0.5), 262 

where 𝑃 represents the proportion of null cases showing modularity higher than or equal 263 

to the observation. A paired Student’s t-test was used to explore the differences between 264 

network types in all cases. 265 

Finally, we explored whether the probability of finding the above-explained 266 

differences of positive and negative networks was related to the number of samples per 267 

assemblage (as indicative of sampling effort), an approximation of null model degrees 268 

of freedom (Appendix S1), latitude, longitude, taxonomic group (i.e., animals or plants) 269 
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and species richness. To do so, we firstly generated four binomial dependent variables, 270 

based on whether i) the negative networks of each assemblage were more densely 271 

connected than their positive pairs; ii) the negative networks present higher positive 272 

abundance-degree relationships; iii) the positive networks tend to be composed of less 273 

abundant species; and iv) the positive networks were more modular. Then, we fitted 274 

logistic models with a logit link function. 275 

 276 

Numerical simulations 277 

We ran simulations to explore whether different interaction matrices and/or habitat 278 

preferences can generate the patterns observed in association networks. We designed a 279 

simulation model composed of 20 samples and ten species, whose individuals were 280 

randomly distributed at the outset. Individuals reproduce, colonise a randomly chosen 281 

sample or die, with probabilities dependent on the density of individuals and the sample 282 

carrying capacity (K = 100). We subsequently incorporated the effects of both 283 

competition and positive interactions by modifying these probabilities depending on the 284 

species identities of co-occurring individuals (Appendix S3). That is, individuals of 285 

dominant species reduce the probability of reproduction and colonisation, while 286 

increasing mortality probability, of co-occurring individuals of subordinate species. 287 

Benefactor individuals have the opposite effects on beneficiary individuals’ 288 

probabilities (Supplementary Figure 3a and b).  289 

We further incorporated the effects of dissimilarities in habitat preferences by 290 

setting four habitats preferred by different groups of species (Supplementary Figure 3c). 291 

Specifically, the probabilities of reproduction, survival (i.e., one minus the mortality 292 

probability) and colonisation in non-preferred habitats were multiplied by a habitat-293 

tolerance coefficient, β, ranging between 0 (null tolerance) and 1 (total tolerance; 294 
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Appendix S3). Hence, when β = 0, individuals are highly specialist and only allowed to 295 

reproduce, survive or colonize in preferred habitat, whereas β = 1 corresponds to a 296 

neutral habitat scenario. 297 

We ran simulations following six hypotheses explaining species assembly and 298 

coexistence (Fig. 3 and Appendix S3). i) A neutral interaction model, where all species 299 

were ecologically equivalent9. ii) A hierarchical competition model with one strong 300 

competitor. iii) An intraspecific density-dependent model, where superior competitors 301 

suffer more from intraspecific competition5. iv) A model incorporating intransitive 302 

competition26, where the superior competitor is outcompeted by three species, which, in 303 

turn, outcompete all species except specific pairs (i.e., theoretically promoting the 304 

generation of empirical association patterns; see Appendix S3). v) A nurse model7 with 305 

four superior competitors, three of which facilitate different pairs of subordinate 306 

species. vi) A model reflecting positive interactions within three groups of three rare 307 

species.  Fourteen additional matrices with different settings to these six general models 308 

were also explored (see Appendix S3; Supplementary Figure 4).   309 

Simulations were run using a wide range of combinations (n=216) where 310 

demographic rates (i.e., reproduction, mortality and dispersal) had different relative 311 

importance (Appendix 3.4). In addition, we also used five values of the habitat-312 

tolerance parameter (β). For each interaction matrix and parameter combination, we ran 313 

25 replicates of 5,000 iterations each. We quantified the probability of simulated 314 

association networks showing empirical patterns (i.e., differences between positive and 315 

negative networks in connectivity, abundance-degree relationship, abundance and 316 

modularity), as well as the probability of persistence of all species (i.e., non-extinction), 317 

as the proportion of all our replicates showing these patterns. Finally, these probabilities 318 

were averaged across the parameter space defined by demographic rates where the 319 
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Competition model, under neutral habitat preferences, fulfilled expectations from the 320 

competitive exclusion principle (i.e., weak competitors went extinct; P (non-extinction) 321 

= 0; see Appendix S3 and Supplementary Figure 5).  322 
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 440 

Fig. 1. Approaching assembly mechanisms through the lens of positive and negative 441 

association networks. a, Species segregations and aggregations can inform on the main 442 

mechanisms underlying ecological assemblages. These spatial patterns are measured 443 

between species pairs using the similarity in the spatial distribution of their individuals. 444 

Observed similarities are compared with those obtained by a null model to distinguish 445 

actual associations from those generated by chance. Species pairs whose individuals are 446 

more aggregated in samples than expected by chance receive a positive link in association 447 

networks (blue nodes). Species pairs whose individuals are more segregated than 448 

randomly expected receive a negative link in association networks (red nodes). b, Positive 449 

(blue) and negative (red) networks of a tropical rainforest tree assemblage (see 450 

“Barra_Paraguacu” in Supplementary Table 1). The size of the nodes is proportional to 451 

the species’ abundances at the assemblage level. Networks were plotted using the 452 

Fruchterman-Reingold force-directed layout algorithm30.   453 
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 454 

Fig. 2. The contrasting patterns of positive and negative association networks. 455 

a, The higher connectivity of negative networks indicates that species segregation 456 

dominates over species aggregation. b, These segregations are monopolized mostly by 457 

dominant species, as shown by the strong relationship between abundance and species 458 

degree (i.e., number of links of a species) in negative networks. c, In contrast, less 459 

abundant species are more prone to generate positive associations, although, d, these 460 

associations only occur among specific groups of rare species, as indicated by the higher 461 

modularity of positive networks.  Main histograms show the differences in network 462 

features between pairs of positive and negative networks. Insets show the raw values for 463 

both types of networks, where purple colour represents the overlap between both 464 

distributions.   465 
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 466 

Fig. 3. Positive interactions among weak competitors alone or together with 467 

habitat preferences reproduce realized association patterns. a, Dissimilarities in 468 

habitat preferences between dominants and groups of rare species may generate the 469 

empirical patterns of association networks, regardless of different assembly mechanisms. 470 

However, this only occurs when habitat specialization is strong. Moreover, the 471 

combination of habitats and positive interactions among weak competitors (Positive rare) 472 

yields the highest probabilities. The y-axis represents the average probabilities of finding 473 

the four empirical patterns, and the x-axis depicts a gradient of habitat specialisation (see 474 

Methods and Appendix S3). Error bars depict confidence intervals at α = 0.05. b, All 475 

theoretical models explaining species coexistence increase the chance of species 476 

persistence (Non-extinction) relative to simulated assemblages only driven by 477 
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hierarchical competition. However, positive interactions among groups of rare species is 478 

the most likely model to generate simulated assemblages showing the same association 479 

networks as empirical assemblages (Connectivity, Fig. 2a; Abundance-degree, Fig. 2b; 480 

Abundance, Fig. 2c; and Modularity, Fig. 2d).  The y-axis represents the probability of 481 

simulated association networks showing empirical differences between positive and 482 

negative networks across different combinations of reproduction, mortality and dispersal 483 

rates where interactions are expressed (see Methods and Appendix S3). In boxplots the 484 

centre line shows median probabilities, being the box between 25th and 75th percentiles 485 

and the whiskers at minimum and maximum probability once outliers are discounted. 486 

Outliers are not shown.  P: positive networks. N: negative networks. 487 

  488 
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  489 

Fig. 4. Organization of association networks remains invariant across the 490 

globe and regardless of taxa.  Circles and triangles represent plant and animal 491 

assemblages, respectively. Green colour depicts assemblages where positive networks 492 

were both composed of less abundant species and more modular than negative 493 

counterparts, whereas red colour shows assemblages where these patterns were not found. 494 

Map colours represent the Earth climatic zones proposed by Bailey31. 495 
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