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Abstract 

Background 

Automated detection of return of spontaneous circulation (ROSC) is still an unsolved problem 
during cardiac arrest. Current guidelines recommend the use of capnography, but most 
automatic methods are based on the analysis of the ECG and thoracic impedance (TI) signals. 
This study analysed the added value of EtCO2 for discriminating pulsed (PR) and pulseless 
(PEA) rhythms and its potential to detect ROSC. 

Materials and methods 

A total of 426 out-of-hospital cardiac arrest cases, 117 with ROSC and 309 without ROSC, were 
analysed. First, EtCO2 values were compared for ROSC and no ROSC cases. Second, 5098 
artefact free 3-s long segments were automatically extracted and labelled as PR (3639) or PEA 
(1459) using the instant of ROSC annotated by the clinician on scene as gold standard. Machine 
learning classifiers were designed using features obtained from the ECG, TI and the EtCO2 
value. Third, the cases were retrospectively analysed using the classifier to discriminate cases 
with and without ROSC. 

Results 

EtCO2 values increased significantly from 41 mmHg 3-min before ROSC to 57 mmHg 1-min 
after ROSC, and EtCO2 was significantly larger for PR than for PEA, 46 mmHg/20 mmHg 
(p < 0.05). Adding EtCO2 to the machine learning models increased their area under the curve 
(AUC) by over 2 percentage points. The combination of ECG, TI and EtCO2 had an AUC for the 
detection of pulse of 0.92. Finally, the retrospective analysis showed a sensitivity and 
specificity of 96.6% and 94.5% for the detection of ROSC and no-ROSC cases, respectively. 

Conclusion 

Adding EtCO2 improves the performance of automatic algorithms for pulse detection based on 
ECG and TI. These algorithms can be used to identify pulse on site, and to retrospectively 
identify cases with ROSC. 

Keywords: Return of spontaneous circulation (ROSC), ROSC detection, Capnography, End-tidal 
CO2 (EtCO2), Electrocardiogram (ECG), Thoracic impedance 

https://doi.org/10.1016/j.resuscitation.2019.03.048
https://www.sciencedirect.com/science/article/pii/S0300957219301327


Capnography: A support tool for the Detection of Return of Spontaneous

Circulation in Out-of-Hospital Cardiac Arrest

Andoni Elola∗,a, Elisabete Aramendia, Unai Irustaa, Erik Alonsoa, Yuanzheng Lub, Mary P.

Changc, Pamela Owensc, Ahamed H. Idrisc

Affiliation and addresses:

a
Communications Engineering Department.

University of the Basque Country UPV/EHU.

48013 Bilbao, Spain

b
Emergency and Disaster Medicine Center.

The Seventh Affiliated Hospital, Sun Yat-sen University.

Shenzhen, China

c
Department of Emergency Medicine.

University of Texas SouthWestern Medical Center (UTSW).

Dallas, United States

Corresponding author:

∗
Andoni Elola

email: andoni.elola@ehu.es

Tel. : +34946013956

Fax. : +34946014259



Word counts: 3255

Abstract word counts: 281



Abstract

Background : Automated detection of return of spontaneous circulation (ROSC) is still an

unsolved problem during cardiac arrest. Current guidelines recommend the use of capnography,

but most automatic methods are based on the analysis of the ECG and thoracic impedance (TI)

signals. This study analysed the added value of EtCO2 for discriminating pulsed (PR) and pulseless

(PEA) rhythms and its potential to detect ROSC.

Materials and methods: A total of 426 out-of-hospital cardiac arrest cases, 117 with ROSC and

309 without ROSC, were analysed. First, EtCO2 values were compared for ROSC and no ROSC

cases. Second, 5098 artefact free 3-second long segments were automatically extracted and labelled

as PR (3639) or PEA (1459) using the instant of ROSC annotated by the clinician on scene as

gold standard. Machine learning classifiers were designed using features obtained from the ECG,

TI and the EtCO2 value. Third, the cases were retrospectively analysed using the classifier to

discriminate cases with and without ROSC.

Results: EtCO2 values increased significantly from 41 mmHg 3-min before ROSC to 57 mmHg

1-min after ROSC, and EtCO2 was significantly larger for PR than for PEA, 46 mmHg/20 mmHg

(p < 0.05). Adding EtCO2 to the machine learning models increased their area under the curve

(AUC) by over 2 percentage points. The combination of ECG, TI and EtCO2 had an AUC for the

detection of pulse of 0.92. Finally, the retrospective analysis showed a sensitivity and specificity of

96.6% and 94.5% for the detection of ROSC and no-ROSC cases, respectively.

Conclusion: Adding EtCO2 improves the performance of automatic algorithms for pulse

detection based on ECG and TI. These algorithms can be used to identify pulse on site, and

to retrospectively identify cases with ROSC.
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1. Introduction1

The main goal of resuscitative efforts during out-of-hospital cardiac arrest (OHCA) is to achieve2

return of spontaneous circulation (ROSC). Those efforts include high quality cardiopulmonary3

resuscitation (CPR), during which chest compressions should be minimally interrupted for actions4

like rhythm analysis or pulse checks. Current pulse detection methods such as carotid pulse check,5

or checking for signs of life as recommended by the current guidelines, are both time consuming and6

inaccurate [1–5]. There is therefore a need for accurate and automated pulse detection methods [6]7

that can be used by emergency medical personnel as a decision support tool to identify ROSC. Such8

methods would contribute to improve therapy, reduce and shorten pauses in chest compressions,9

and increase survival rates [7, 8].10

Current guidelines support the use of capnography for early detection of ROSC [9]. Higher11

values of end tidal CO2 (EtCO2), and sudden increases in EtCO2 have been linked to ROSC in12

OHCA [10–13]. Although some medical algorithms exist for the detection of ROSC using EtCO213

values [14], the only automatic method based on capnography was recently proposed [15].14

Most automatic methods for the detection of pulse in OHCA rest on the analysis of the ECG and15

the thoracic impedance (TI). The TI signal shows low amplitude fluctuations for every effective16

heartbeat [16], so features characterizing the TI signal have been proposed alone [17–19], or in17

combination with ECG features [20–22] for the detection of pulse. In this context, detection of18

pulse is framed as a classification problem with two types of organized rhythms: pulse-generating19

rhythms (PR) and pulseless electrical activity (PEA).20

The purpose of this study was to evaluate the added value of capnography for the classification21

of PR/PEA during OHCA. First, EtCO2 values were automatically detected in order to compare22

the values between patients with and without ROSC, and to analyse how EtCO2 changed as23

the patient approached ROSC. Then, the added value of EtCO2 for PR/PEA classification was24

evaluated by developing machine learning PR/PEA classifiers.25

2. Materials26

For this study we analysed 1561 OHCA episodes retrospectively, treated by the Dallas27

FortWorth Center for Resuscitation Research (UTSW, Dallas) using the Philips HeartStart MRx28

device between 2012 and 2016. The device files included the ECG and TI recorded through29



the defibrillation pads with sampling frequencies of 250 Hz/200 Hz respectively, and capnography30

recorded through sidestream acquisition with a sampling frequency of 125 Hz. The electronic files31

were linked to clinical annotations and ROSC was defined as palpable pulse in any vessel for any32

length of time. The first ROSC instant annotated by the rescuer on scene was the gold standard;33

based on that instant PR and PEA annotations were made automatically and patients with ROSC34

and without ROSC were classified.35

The following patient inclusion/exclusion criteria were applied. Only episodes with TI, ECG36

and capnography were considered (n=835). Cases where ROSC was suspected but not annotated37

by clinicians on site were excluded, which comprised patients transported to hospital (n=252), or38

episodes with long periods (> 2 min) without compressions presenting an organized rhythm with39

EtCO2 above 25 mmHg (n=26). Episodes with suspected intermittent ROSC were also excluded,40

these were episodes in which shocks or chest compressions (> 2 min) were delivered after the41

annotated onset of ROSC (n=76). For our analysis of the ROSC cases, the capnogram had to42

be available at least 4 minutes before and 1 minute after the onset of ROSC. If not, the case43

was excluded (n=55). The final dataset contained 426 episodes, 117 with ROSC and 309 without44

ROSC.45

Figure 1 shows a 3-minute interval from two cases of the study dataset. In the ROSC case (top46

panel) EtCO2 increases at ROSC onset, and after ROSC the heart rate increases and there is pulse47

related activity in the TI. In the no-ROSC case (bottom panel) EtCO2 is always below 20 mmHg,48

and although the heart rate changes during PEA there is no pulse related activity in the TI.49

3. Methods50

Three analyses were conducted: EtCO2 levels in episodes with and without ROSC, development51

and evaluation of a PR/PEA classifier using ECG/TI segments and EtCO2 values, and a case study52

of the use of the classifier to retrospectively identify cases as ROSC/no-ROSC.53

3.1. Analysis of EtCO2 levels54

Onset and offset of each ventilation were automatically delineated in the capnogram using55

a method introduced in a previous study [23]. For each ventilation, EtCO2 was automatically56

calculated as the maximum CO2 value during the alveolar plateau (see Figure 1).57



In ROSC cases, median EtCO2 levels were computed every minute (MEtCO2) in a five minute58

interval around ROSC (4-min before to 1-min after). Similarly, for patients without ROSC, the59

MEtCO2 values were computed for each one of the last five minutes of the episode. The MEtCO260

value for the last minute of the episode corresponds to the last minute before the EOE, i.e. the61

instant when the monitor/defibrillator was disconnected.62

3.2. PR/PEA machine learning classifier63

Following the classical scheme proposed in previous studies [20–22], the detection of ROSC64

implies the discrimination between PR and PEA once an organized rhythm is identified by the65

shock advice algorithm. It is therefore a two class classification problem, for which, first, the dataset66

of PR/PEA segments was defined, and then a classifier was designed using features extracted from67

the ECG, TI and capnography signals.68

3.2.1. PR/PEA segment dataset69

PR and PEA segments of 3.2-s duration were extracted during intervals with no chest70

compression artefacts. Pauses in chest compressions were automatically detected using the71

compression depth signal from the CPR assist pad when available [24], or the TI otherwise [25].72

Segments with large ECG amplitude oscillations (> 3.5 mV) were discarded as noisy, and then73

organized rhythms (PEA or PR) were detected during the pauses using an offline version of a74

rhythm analysis algorithm of a commercial automated external defibrillator (AED) [26]. In ROSC75

cases, all segments before ROSC onset were labelled as PEA, and those after ROSC onset as PR76

(see Figure 1, panel a). In no-ROSC cases, all segments were labelled as PEA (see Figure 1, panel77

b). A minimum separation between consecutive segments of 20-s was enforced to foster ECG and78

TI waveform diversity in the segments.79

3.2.2. Machine learning PR/PEA classifier80

Nine PR/PEA classification features were computed from the most recently proposed81

algorithms, six ECG features introduced in [27], and three TI features [17, 22, 28]. These ECG82

and TI features are described in detail in Appendix A. The MEtCO2, the median EtCO2 in the83

minute before the analysis window (pause in chest compressions with organized ECG rhythm) was84

also added. The features were combined in a Random Forest (RF) classifier, a machine learning85

algorithm based on the aggregate vote of several independently designed uncorrelated decision trees86



[29]. RF classifiers have shown excellent performance in many classification problems, including87

PR/PEA classification [27], and are robust against annotation errors.88

All patients were weighted equally to train the RF classifier and 300 trees were used. For89

each segment, the RF classifier computes the probability of being PR (ppr), and segments were90

classified as PR for ppr > 0.5 and as PEA otherwise. The classifier was trained and tested using91

a patient wise 10-fold cross-validation procedure [30]. For each of the 10 folds, the algorithm was92

optimized using 90% of the cases, and the accuracy results were obtained from the remaining 10%93

(test fold). This procedure guaranteed that the optimization of the classifier and the estimation94

of its accuracy were done on data from separate patients, and that the performance was assessed95

using all available data.96

3.3. Case study: Retrospective identification of patients with ROSC97

Using the PR/PEA classifier, a simple method was developed to automatically identify patients98

with ROSC in a retrospective analysis of a set of OHCA episodes. This method may be used as99

an automated tool for post arrest debriefing or annotation. Complete episodes (until EOE) were100

processed and the case was labelled as ROSC if from any three consecutive segments at least two101

were identified as PR by the classifier.102

Our ground truth was the ROSC instant annotated by clinicians on scene, which discriminated103

the group of patients with ROSC and patients without ROSC, and the detection of episodes with104

ROSC was evaluated using the test sets in the 10-fold cross validation procedure.105

3.4. Statistical analysis106

MEtCO2 distributions did not pass the Kolmogorov-Smirnov normality test, and are reported107

as median and interquartile range (IQR). MEtCO2 distributions at different times (within108

ROSC cases) or between ROSC/no-ROSC cases were compared using the Mann-Whitney U test.109

Differences were considered significant for p < 0.05.110

PR/PEA classification was evaluated using Receiver Operating Characteristic (ROC) curves,111

and the area under the curve (AUC) was used as measure of performance [31]. The Youden index112

was used to define the optimal point in the ROC curve, which gives equal importance to the113

sensitivity (SE, for PR segments) and specificity (SP, for PEA segments) [32].114

When the classifier was used as a retrospective tool to identify ROSC, SE and SP were defined115

as the proportion of correctly identified ROSC and no-ROSC cases, respectively.116



4. Results117

The mean (standard deviation) durations were 58 (23) min and 38 (11) min for the episodes with118

and without ROSC, respectively. The commercial AED algorithm detected 5098 segments with119

organized rhythms. A total of 3639 PR segments were extracted from episodes with ROSC, and120

1459 PEA segments, 308 from episodes with ROSC and 1151 from episodes without ROSC. Some121

examples of the extracted ECG segments can be found in Figure 1 and Figure 4. The median122

(IQR) ventilation rate per episode was 7.8 (5.7-10.5) min−1.123

The MEtCO2 for ROSC cases were statistically significantly larger than for no-ROSC cases at124

all time-stamps (Figure 2). Elevated EtCO2 levels were observed in patients with ROSC, with an125

upward trend from 41 mmHg (at 3 min before ROSC) to 57 mmHg close to ROSC onset (see Figure126

2 a).127

Figure 3 shows the ROC curves of the RF classifier for different features sets. The curves in128

panel (a) were calculated using the whole dataset, while the curves in panel (b) were calculated129

excluding the PEA segments extracted from patients with ROSC, that is the pre-ROSC PEA130

segments. The analysis of the ROC curves is shown in Table 1. The ROC curves showed that the131

AUC of the PR/PEA classifier increased as features from different sources were added. Including132

MEtCO2 in the classifier increased the AUC for all feature combinations, thanks to the added133

uncorrelated information. Adding MEtCO2 to an ECG-only and to an ECG+TI based classifiers134

increased their AUCs in 3 and 2-points, respectively. The best classifier combined all features135

and presented an AUC of 0.92 with a SE and SP of 84% and 86%, respectively (see Table 1).136

MEtCO2 alone was also a good classifier (AUC around 0.76), the median MEtCO2 values were 46137

(32-64) mmHg for PR and 20 (8-38) mmHg for PEA segments (p < 0.05).138

The accuracy of the classifiers increased when PEAs that transitioned to PR (episodes with139

ROSC) were not included. The accuracy increase was on average 4-points for all classifiers (see140

Table 1). Significant differences were observed between PEAs in ROSC and no-ROSC cases.141

The MEtCO2 values of the PEA in the ROSC and no-ROSC cases were 31 (20-44) mmHg and 16142

(7-35) mmHg (p < 0.05), respectively. The probabilities of being PR, ppr, for the classifier with all143

features were also significantly different for these two subgroups of PEA, 0.09 (0.03-0.29) for the144

PEA from no-ROSC cases and 0.33 (0.11-0.58) for those of the ROSC cases (p < 0.05).145

Figure 4 shows the performance of the PR/PEA classifier with three consecutive segments in146



three patients. Each panel represents the 3 consecutive 3.2-second ECG and TI segments used147

for analysis, and the capnogram in the 1-minute interval before the segment, which was used to148

compute MEtCO2 (depicted as a dashed line). The text on top of each segment shows the true149

class followed by the class predicted by the classifier. The first example (panel a) shows a patient150

achieving ROSC transitioning from PEA to PR in which all segments were correctly classified. The151

first segment was taken 80 seconds prior to ROSC (PEA) and the other two after ROSC. It can152

be observed that heart rate, TI activity and MEtCO2 (specially in PEA/PR transition) increase153

among consecutive segments. The second example (panel b) shows three correctly classified PEA154

segments in a patient without ROSC. Despite having a heart rate above 60 bpm, low EtCO2 values155

and low circulation-related TI activity yielded the correct classification of the three segments and156

of the patient without ROSC. The third example, however, corresponds to a patient without ROSC157

incorrectly identified as patient with ROSC. Two of the segments were classified as PR because158

the ECG was regular with a heart rate above 60 bpm, the TI showed large fluctuations and EtCO2159

levels were above 30 mmHg.160

When the PR/PEA classifier with all features was used as a retrospective tool to automatically161

identify episodes with and without ROSC, the SE and SP were 96.6% and 94.5%, respectively. Only162

4 cases with ROSC were misidentified as no-ROSC, and 17 cases with no-ROSC were identified as163

ROSC cases.164

5. Discussion165

Detection of ROSC remains a challenge in OHCA, and there is still a need for a reliable166

monitoring of the hemodynamic state of the patient [6]. This study shows that EtCO2 has great167

potential to support the rescuer in the identification of ROSC, both as a stand-alone marker but168

also in combination with the ECG and TI. This is, to the best of our knowledge, the first study169

that demonstrates that the addition of EtCO2 improves PR/PEA classification based on the ECG170

or on the combination of ECG and TI.171

The results shown in Figure 2 and Table 1 reveal that a three-signal classifier provides better172

performance than two-signal solutions, which are better than a classifier based on a single signal.173

These results may help in the design of PR/PEA classification systems, and different solutions174

may be implemented depending on the availability or usability of the signals in a particular175



monitor/defibrillator.176

For this study, we extracted PEA segments from patients with and without ROSC, and we177

relied on the ROSC onset annotations made by clinicians on site. We believe that is the most178

realistic (and challenging) scenario, although we observed differences in the characteristics of the179

PEA obtained from patients that ultimately recovered ROSC and those who did not. MEtCO2180

levels during PEA were significantly higher in patients that recovered ROSC, and the AUCs of181

the PR/PEA classifiers increased by over 4-points when PEAs from patients that recovered ROSC182

were not included. In fact, the SP for the PEAs of the patients that recovered ROSC was 61.2%,183

significantly lower than 91.2% obtained for the patients with no ROSC. There are two main reasons184

behind the differences in SP. First, the instant of ROSC annotated by clinician on scene and used185

as gold standard might show some delay depending on the rescuer. Second, there are differences186

between PEAs leading to PR (from ROSC patients) and PEAs not leading to PR (from patients187

without ROSC). Rhythms from first group are more likely to be pseudo-PEAs since they present188

a better prognosis, and they show different ECG characteristics and EtCO2 values [33–39]. This189

type of border rhythm challenges the design of an accurate classifier. An experiment supporting190

these conclusions is detailed in the supplementary file. The ppr obtained from the classifier was191

significantly lower for PEA in no-ROSC cases, and as shown in Figure 5, the median value of ppr192

increases for PEA in ROSC patients as the patient approaches ROSC onset. This indicates that193

the ppr obtained from the RF classifier may serve as a potential surrogate hemodynamic marker194

that could measure the evolution of PEA in response to therapy.195

The analysis of the MEtCO2 values for the intervals around ROSC (Figure 2 a) showed that196

EtCO2 values increase as the patient approaches ROSC, and the rise is higher closer to ROSC197

onset, in line with previous findings [12, 13]. We also observed that EtCO2 levels were maintained198

after ROSC, or even decreased if ventilation rates were high. Abrupt increases in EtCO2 can be199

used to identify ROSC onset, but are of little use in a PR/PEA classifier due to its short period200

utility time. During both PR and PEA, EtCO2 may increase or decrease around high (PR) or low201

(PEA) baseline levels. However, interrupting chest compressions only after a sudden increase in202

EtCO2 to check for an organized rhythm facilitate early detection of ROSC and minimize hands-off203

intervals by avoiding unnecessary chest compressions pauses to check for pulse [9, 14]. The EtCO2204

levels reported in this study were high, which may be caused by the inclusion criteria applied to205



the data that contained those patients with sustained ROSC.206

The overall performance of the PR/PEA discriminator is high (AUC > 0.9), but slightly below207

the scores reported by other methods based exclusively on the ECG [27] or combination of ECG208

and TI [21, 22]. Those studies used segments selected ad-hoc for the processing of the ECG or209

the TI, which might have introduced a positive bias in the results. Our dataset was automatically210

selected, including all segments classified as organized rhythm by a commercial AED algorithm,211

and segment labelling was based exclusively on ROSC annotations made by clinicians on site. In212

fact, when we applied the method proposed in [27] to the dataset of this study, the SE/SP were213

78.8%/84.1%, well below the 88.4%/89.7% reported in the original paper. This dataset reflects a214

more realistic and difficult scenario for PR/PEA classification.215

As an example of applicability of the PR/PEA classifier, a simple automatic tool to216

retrospectively identify cases with ROSC was proposed. In our 426 cases, a simple method was217

over 95% accurate, yielding a 96.6% SE and a 94.5% SP for the retrospective detection of ROSC.218

These values are well above the 73.9% SE and 58.4% SP reported for an automatic algorithm based219

on capnography trends alone [15].220

Finally, the accuracy of the PR/PEA classifier supports its applicability as an automatic221

decision support tool to aid clinicians in the identification of ROSC. The algorithm uses only222

a 3.2-s analysis interval without chest compressions, so it can be used during CPR with minimal223

interruptions to chest compressions. Furthermore, we used an automatic CO2 based ventilation224

detector that identifies the offset/onset of ventilations. This allows us to measure the EtCO2 level225

as the maximum value during the alveolar plateau in the capnography, which avoids some of the226

problems associated with EtCO2 readings (capnometry) at the end of the expiratory phase when227

chest compression artefacts are present in the CO2 waveform [40]. Each ventilation was delineated228

using the algorithm proposed in [23], a software-based algorithm that could be integrated in any229

equipment without hardware modifications. The algorithm is launched once the AED algorithm230

has detected an organized rhythm, and it only requires waveform characteristics of the 3.2-s long231

ECG and TI signals and the median of the EtCO2 values in the minute prior to the analysis.232



6. Limitations233

This study shows three limitations. Firstly, the data were collected with the capnography234

module of the Philips HeartStart MRx monitor/defibrillator. Using another capnometer might235

alter the levels of EtCO2. Secondly, our ground truth for all the experiments was the time of236

ROSC annotated by the clinician on scene. Using an independent gold standard for circulation,237

such as invasive blood pressure, would result in more robust conclusions. Lastly, there were no data238

available on the advanced airway technique used on each patient. However, the reported EtCO2239

values might be affected by the used airway management technique (supraglottic/endotracheal).240

7. Conclusions241

The results of this study demonstrate the added value of the capnogram for the automatic242

detection of ROSC in OHCA. The EtCO2 level added discriminative power to the PR/PEA243

classifier based on the ECG and the TI. The accuracy of the models increased significantly when244

MEtCO2 levels were added. This study shows that an automatic algorithm that uses capnography245

can be implemented to reliably detect ROSC.246
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Appendix A. Signal processing and feature extraction256

Nine features (v1-v9) were computed from the ECG (s[n]) and the TI (z[n]) signals. The ECG257

was filtered between 0.5 Hz and 30 Hz using zero-phase filtering to remove baseline component and258

high frequency noise. The TI was resampled to 250 Hz and filtered between 0.7 and 7 Hz to remove259

fluctuations caused by ventilations and enhance the circulation component.260

Six different features, v1-v6, were calculated from the ECG as recently proposed in [27]:261

• The first difference of the signal (s∆ = s[n] − s[n − 1]) was computed and the mean of its262

absolute value was the first feature:263

v1 =
1

N

N∑
n=1

|s∆[n]| (A.1)

where N is the length of the segment in samples.264

• The standard deviation of s∆[n]:265

v2 =

√√√√√N−2∑
n=0

(s∆[n]− v1)2

N − 3
(A.2)

• The kurtosis (tailedness) of the square and averaged (with a 125 ms moving average filter) of266

s∆ was v3.267

• Amplitude Spectrum Area (AMSA) is the sum of spectral amplitudes weighted by their268

frequency components. The spectral amplitudes at fi, Ai, were calculated using the NF =269

4096 point FFT of the Tuckey windowed s[n] segment:270

v4 =
∑
i

Ai · fi, 2 < fi < 30 (A.3)

• The energy of s[n] at frequencies higher than 17.5 Hz:271

v5 =
fs

2NF

∑
i

A2
i , 17.5 < fi < 30 (A.4)

• Fuzzy Entropy of s[n], a measure of its regularity, was the v6 feature.272



PEA is defined as absence of palpable pulse when organized electrical activity of the heart is273

present. The TI signal shows small fluctuations for every effective heartbeat. Many efforts have274

been made to extract the circulation component of the signal using adaptive filters or ensemble275

averaging [20, 21, 41], but all of them need accurate QRS detection. Ruiz et al. and Alonso276

et al. considered the circulation component as a quasi-periodic signal and estimated its Fourier277

coefficients using least mean squares or recursive least squares algorithms. The instantaneous278

heart rate was computed from the QRS complexes. Risdal et al. applied ensemble averaging to279

the TI signal around QRS instants to extract the circulation component. However, in this study280

we considered only features independent of QRS complex detection, in particular those proposed281

in [17, 22, 28]:282

• The mean power of the two half segments of z[n] were computed and the minimum value283

assigned to v7 [22].284

• The power spectrum of the first difference of z[n] was computed, and v8 was its peak amplitude285

in the 1.5-4.5 Hz range [17].286

• The normalized cross-correlation function was computed as follows:287

rsz(l) =
1

√
rssrzz

N∑
n=1

s[n]z[n− l], l = 0,±1, . . . ,±N − 1 (A.5)

where rss =
∑N

n=1(s[n])2 and rzz =
∑N

n=1(z[n])2. The maximum peak of rsz[l] was v9 [28].288
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[22] Ruiz JM, de Gauna SR, González-Otero DM, et al. Circulation assessment by automated external defibrillators338

during cardiopulmonary resuscitation. Resuscitation 2018;128:158–163.339

[23] Aramendi E, Elola A, Alonso E, et al. Feasibility of the capnogram to monitor ventilation rate during340

cardiopulmonary resuscitation. Resuscitation 2017;110:162–168.341

[24] Ayala U, Eftestøl T, Alonso E, et al. Automatic detection of chest compressions for the assessment of342

CPR-quality parameters. Resuscitation 2014;85(7):957–963.343

[25] Alonso E, Ruiz J, Aramendi E, et al. Reliability and accuracy of the thoracic impedance signal for measuring344

cardiopulmonary resuscitation quality metrics. Resuscitation 2015;88:28–34.345

[26] Irusta U, Ruiz J, Aramendi E, de Gauna SR, Ayala U, Alonso E. A high-temporal resolution algorithm to346

discriminate shockable from nonshockable rhythms in adults and children. Resuscitation 2012;83(9):1090–1097.347

[27] Elola A, Aramendi E, Irusta U, Del Ser J, Alonso E, Daya M. ECG-based pulse detection during cardiac arrest348

using random forest classifier. Medical & biological engineering & computing 2019;57(2):453–462.349

[28] Wei L, Chen G, Yang Z, Yu T, Quan W, Li Y. Detection of spontaneous pulse using the acceleration signals350

acquired from CPR feedback sensor in a porcine model of cardiac arrest. PloS one 2017;12(12):e0189217.351

[29] Breiman L. Random forests. Machine learning 2001;45(1):5–32.352

[30] Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the royal statistical society353

Series B (Methodological) 1974;:111–147.354

[31] Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and355

predictive models. Circulation 2007;115(5):654–657.356

[32] Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF. Youden Index and optimal cut-point estimated from357

observations affected by a lower limit of detection. Biometrical Journal: Journal of Mathematical Methods in358

Biosciences 2008;50(3):419–430.359
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Figure Legends381

Figure 1 ECG, Thoracic Impedance (TI) and capnography signals for a patient382

with ROSC, panel (a), and without ROSC, panel (b). ROSC onset,383

as annotated by a clinician on site, is represented by a red line in384

the first example. The extracted 3.2-s segments are shaded in grey385

and the ECG and TI (green) are zoomed in. Chest compression386

intervals are depicted above TI signal. In the ROSC case a PEA387

and a PR segments were extracted in the depicted interval, and two388

PEA segments in the no-ROSC case. Ventilations were automatically389

detected in the CO2 curve, and the automatically measured EtCO2390

value is highlighted with red dots. In the ROSC case after pulse391

recovery the ECG presents stable and normal QRS complexes and392

heart rate, and chest compressions are stopped so there is no activity393

in the impedance.394

Figure 2 Median EtCO2 (MEtCO2) values and their interquartile ranges for395

cases with ROSC (left) and no-ROSC (right). For ROSC cases the396

interval around ROSC onset is analysed, in the no-ROSC cases the397

5 min before the end of episode (EOE) are shown. MEtCO2 was398

calculated as the median EtCO2 value of all ventilations in a 1-minute399

interval before the indicated time-stamp.400

Figure 3 ROC curves of the RF classifier for different feature sets. Panel (a)401

shows results for the whole dataset, while panel (b) shows the curves402

after excluding the PEAs from episodes with ROSC. The AUC value403

for each classifier is shown between parentheses.404

Figure 4 Examples of the case study. Panels (a), (b) and (c) show a405

correctly identified patient with ROSC, a correctly identified patient406

without ROSC, and a patient without ROSC incorrectly identified,407

respectively. Each panel depicts the three consecutive PEA/PR408

segments analysed. The text on top of each segment indicates its true409

label followed by the predicted label by the classifier. The capnogram410

corresponds to the minute before the onset of the segment and the411

dashed horizontal line represents the MEtCO2.412

Figure 5 Time evolution of ppr for the PEA segments as the patients approach413

ROSC. Blue dots indicate values for each segment, and the red curve414

is fitted to the median values of ppr every 2 minutes.415
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(a) A case of a patient with ROSC
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(b) A case of a patient without ROSC

PEA PEA

Figure 1: ECG, Thoracic Impedance (TI) and capnography signals for a patient with ROSC, panel (a), and without
ROSC, panel (b). ROSC onset, as annotated by a clinician on site, is represented by a red line in the first example.
The extracted 3.2-s segments are shaded in grey and the ECG and TI (green) are zoomed in. Chest compression
intervals are depicted above TI signal. In the ROSC case a PEA and a PR segments were extracted in the depicted
interval, and two PEA segments in the no-ROSC case. Ventilations were automatically detected in the CO2 curve,
and the automatically measured EtCO2 value is highlighted with red dots. In the ROSC case after pulse recovery
the ECG presents stable and normal QRS complexes and heart rate, and chest compressions are stopped so there is
no activity in the impedance.
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(b) No-ROSC cases

Figure 2: Median EtCO2 (MEtCO2) values and their interquartile ranges for cases with ROSC (left) and no-ROSC
(right). For ROSC cases the interval around ROSC onset is analysed, in the no-ROSC cases the 5 min before the end
of episode (EOE) are shown. MEtCO2 was calculated as the median EtCO2 value of all ventilations in a 1-minute
interval before the indicated time-stamp.
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Figure 3: ROC curves of the RF classifier for different feature sets. Panel (a) shows results for the whole dataset,
while panel (b) shows the curves after excluding the PEAs from episodes with ROSC. The AUC value for each
classifier is shown between parentheses.
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Figure 4: Examples of the case study. Panels (a), (b) and (c) show a correctly identified patient with ROSC, a
correctly identified patient without ROSC, and a patient without ROSC incorrectly identified, respectively. Each
panel depicts the three consecutive PEA/PR segments analysed. The text on top of each segment indicates its true
label followed by the predicted label by the classifier. The capnogram corresponds to the minute before the onset of
the segment and the dashed horizontal line represents the MEtCO2.



-10 -8 -6 -4 -2 ROSC
Time (min)

0

0.2

0.4

0.6

0.8

1

p
pr

Figure 5: Time evolution of ppr for the PEA segments as the patients approach ROSC. Blue dots indicate values for
each segment, and the red curve is fitted to the median values of ppr every 2 minutes.



Table Legends416

Table 1 ROC curve analysis of the machine learning classifier when the whole417

PR/PEA dataset is considered and when the PEAs from ROSC cases418

were excluded. The SE and SP are given for the optimal point according419

to the Youden index.420

21



All PR/PEA segments Excluding PEAs from ROSC

AUC SE SP AUC SE SP

EtCO2 0.76 72.3 67.8 0.79 83.7 64.6
ECG 0.88 84.2 78.2 0.93 81.7 90.8
ECG+TI 0.90 86.7 81.6 0.94 88.4 87.0
ECG+EtCO2 0.91 86.3 81.5 0.95 91.8 84.2
ECG+TI+EtCO2 0.92 83.9 86.0 0.96 87.8 91.3

Table 1: ROC curve analysis of the machine learning classifier when the whole PR/PEA dataset is considered and
when the PEAs from ROSC cases were excluded. The SE and SP are given for the optimal point according to the
Youden index.


	2018-Elsevier.pdf
	pulse_capnogram_Elola_v2.pdf

