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Abstract—Goal: Accurate shock decision methods during1

piston-driven cardiopulmonary resuscitation (CPR) would2

contribute to improve therapy and increase cardiac arrest3

survival rates. The best current methods are computationally4

demanding, and their accuracy could be improved. The objective5

of this work was to introduce a computationally efficient6

algorithm for shock decision during piston-driven CPR with7

increased accuracy. Methods: The study dataset contains 2018

shockable and 844 nonshockable ECG segments from 230 cardiac9

arrest patients treated with the LUCAS-2 mechanical CPR10

device. Compression artifacts were removed using state of the11

art adaptive filters, and shock/no-shock discrimination features12

were extracted from the stationary wavelet transform analysis of13

the filtered ECG, and fed to a support vector machine (SVM)14

classifier. Quasi-stratified patient wise nested cross-validation was15

used for feature selection and SVM hyperparameter optimization.16

The procedure was repeated 50 times to statistically characterize17

the results. Results: Best results were obtained for a 6 feature18

classifier with mean (standard deviation) sensitivity, specificity,19

and total accuracy of 97.5 (0.4), 98.2 (0.4) and 98.1 (0.3),20

respectively. The algorithm presented a five-fold reduction in21

computational demands when compared to the best available22

methods, while improving their balanced accuracy by 3-points.23

Conclusions: The accuracy of the best available methods was24

improved while drastically reducing the computational demands.25

Significance: An efficient and accurate method for shock decisions26

during mechanical CPR is now available to improve therapy and27

contribute to increase cardiac arrest survival.28

Index Terms—Support Vector Machine (SVM), Machine29

Learning, Stationary Wavelet Transform (SWT), Cardiac arrest,30

cardiopulmonary resuscitation (CPR), electrocardiogram (ECG),31

mechanical chest compressions, piston-driven compressions,32

shock decision algorithm.33
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I. INTRODUCTION 34

H IGH quality cardiopulmonary resuscitation (CPR) and 35

early defibrillation are key for the survival of 36

out-of-hospital cardiac arrest (OHCA) patients [1]. During 37

CPR, chest compressions and ventilations should be delivered 38

according to international guidelines [1]. Interruptions in 39

chest compressions decrease coronary perfusion pressure [2], 40

and may compromise the survival of the patient [3]. Chest 41

compressions induce an artifact in the ECG, so current 42

defibrillators instruct the rescuers to stop chest compressions 43

for a reliable shock decision [4]. 44

Many efforts have been made to allow a reliable shock 45

decision during CPR, with solutions that go from analyzing 46

the rhythm during ventilation pauses [5], [6] to ad-hoc 47

algorithms designed for a reliable shock decision in the 48

presence of chest compression artifacts [7], [8], [9]. The 49

best known solutions are based on adaptive filters that 50

remove the CPR artifact before using the shock decision 51

algorithm of the defibrillator. These filters model the 52

artifact using additional reference channels recorded by the 53

defibrillator such as compression depth, thoracic impedance, 54

chest acceleration, or chest force/pressure. Several solutions 55

have been proposed including Wiener filters [10], Matching 56

Pursuit algorithms [11], [12], Kalman filters [13], [14], Gabor 57

filters [15], Least Mean Squares (LMS) filters [16], [17], [18] 58

and Recursive Least Squares (RLS) filters [19]. Reference 59

channels are not always available and may increase the cost of 60

defibrillators, fortunately filters based only on the frequency 61

of chest compressions are as effective as complex filters 62

based on several reference channels [16], [20]. For manual 63

CPR, solutions based on adaptive filters followed by the 64

shock decision algorithms of commercial defibrillators do 65

not meet the accuracy requirements of the American Heart 66

Association (AHA) [4]. The sensitivity (Se) for shockable 67

rhythms is above the minimum 90% recommendation, but 68

the specificity (Sp) for nonshockable rhythms is below the 69

minimum recommended value of 95%. Filtering residuals have 70

been identified as the main confounding factor for the shock 71

decision algorithms of commercial defibrillators [12], [21], 72

which are designed to classify ECGs free of artifacts [22]. 73

Mechanical CPR is becoming increasingly popular to 74

treat OHCA patients, even if it has not shown benefits 75

in survival [23], [24], [25]. Mechanical devices guarantee 76

high quality chest compressions, and have become important 77

in scenarios where manual CPR is impractical, such as 78

during transport or invasive procedures [26], [27], [28], 79
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[24]. There are two families of mechanical compressors80

available: pneumatically driven pistons and load distributing81

bands. According to the resuscitation guidelines the most82

popular/widespread devices are the LUCAS-2 (Physio-Control83

Inc/Jolife AB, Lund, Sweeden) piston-driven device and84

the Autopulse (Zoll Circulation, Chelmsford, Massachusetts,85

USA) load distributed band [29]. This study focuses on86

the LUCAS-2 device, whose impact on survival has been87

thoroughly studied on two of the three largest randomized88

controlled trials on mechanical chest compression devices [23],89

[25].90

Mechanical chest compression artifacts have larger91

amplitudes and more harmonics than manual CPR92

artifacts [30], but their frequency is fixed and known [19]. So93

the methods to remove manual CPR artifacts have to be recast94

for piston-driven devices. In the last few years, methods based95

on comb filters [31], [30], LMS filters [30] and RLS filters [19]96

have been introduced. Unfortunately these filters followed by97

the shock decision algorithms of commercial defibrillators98

were strongly affected by filtering residuals and did not meet99

AHA goals [30]. Recently, a multi stage algorithm based on100

two RLS filters and three decision algorithms has been proven101

to meet the AHA Se/Sp goals [19], albeit with a complex102

solution and a high computational cost. There is a need to103

simplify the algorithms that allow an accurate shock decision104

during piston-driven chest compressions.105

This study introduces a new method for shock decision106

during piston-driven compressions based on an adaptive filter107

followed by a machine learning algorithm designed to classify108

the filtered ECG. The machine learning algorithm learns the109

characteristics of the filtered ECG, including those of the110

filtering residuals that confound the shock decision algorithms111

designed for artifact free ECGs. This solution considerably112

simplifies the best current multistage solution, and improves113

its accuracy with a much lower computational cost. The114

paper is organized as follows: the study dataset is described 115

in Section II; feature engineering including CPR artifact 116

filtering, the Stationary Wavelet Transform (SWT) and feature 117

extraction are described in Section III; Section IV describes 118

the architecture used for feature selection and the optimization 119

and evaluation of the classifier. Finally, results, conclusions 120

and discussion are presented in Sections V to VI. 121

II. STUDY DATASET 122

The dataset used in this study was collected and annotated 123

for a previous study, so further details on data collection and 124

preparation are available in [30], [19]. In brief, data comes 125

from 263 OHCA patients treated with the LUCAS-2 device by 126

the Oslo and Akershus (Norway) emergency services between 127

July 2012 and December 2013. Signals including ECG and 128

thoracic impedance were recorded using the Lifepak 15 129

monitor-defibrillator (Physio Control, Redmond, WA, USA), 130

exported to an open matlab format for processing, and 131

resampled to 250Hz. A 50Hz notch filter was used to remove 132

powerline interferences from the ECG. 133

The complete episodes were reviewed and 20-s segments 134

were extracted for studies on mechanical CPR artifact removal. 135

These segments, like the ones shown in Fig. 1, contain an 136

initial 15-s interval during LUCAS-2 use, followed by a 5-s 137

interval without compressions. Ground truth shock/no-shock 138

decisions were adjudicated by consensus between two 139

specialists on cardiac arrest data, a clinical researcher and 140

a biomedical engineer, who inspected the 5-s artifact-free 141

intervals. Nonshockable rhythms included organized rhythms 142

(OR) and asystole (AS), and shockable rhythms were 143

ventricular fibrillation (VF) and ventricular tachycardia (VT). 144

The initial 15-s intervals were used to develop and test the 145

shock decision methods during mechanical compressions. The 146

final dataset contained 1045 20-s segments from 230 patients, 147

whereof 201 were shockable (62 patients) and 844 were 148

a) Nonshockable rhythm (OR) b) Shockable rhythm (VF)

Fig. 1. Two examples of 20- s ECG segments corresponding to a patient presenting a nonshockable rhythm (example a) and to a patient presenting a shockable
rhythm (example b). The top panel depicts the corrupt ECG, scor(n), and the panel below the ECG after adaptive filtering. The top panel has two intervals,
the initial 15-s in which the chest compression artifact is visible, and the last 5-s without artifact in which the underlying rhythm is visible. Finally, the three
panels at the bottom zoom in on the 8-s interval used by the shock decision algorithm, and show the filtered ECG, and two significant components obtained
from the wavelet analysis of the filtered ECG: the denoised ECG, ŝden(n), and the detail 3 coefficient, d3.
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nonshockable (209 patients). For an extended description of149

the dataset and the annotation process consult [30], [19].150

III. FEATURE ENGINEERING151

Shock/no-shock decision features were extracted in three152

phases. First an adaptive CPR artifact filter was used to remove153

chest compression artifacts and obtain the filtered ECG,154

ŝecg(n), then a wavelet analysis provided the denoised signal,155

ŝden(n), and the subband decomposition. Finally features156

were extracted from ŝden(n) and the subband components.157

Filtering and wavelet analysis (denoising and the most relevant158

subband) are illustrated in Fig. 1 for a shockable and a159

nonshockable rhythm.160

A. CPR artifact filtering161

During compressions the corrupt ECG, scor(n), was162

assumed to follow an additive artifact model [32], [10]:163

scor(n) = secg(n) + scc(n) (1)

where secg(n) is the ECG containing the underlying rhythm164

and scc(n) the chest compression artifact. Chest compressions165

given by the LUCAS-2 device have a constant rate of166

100 ± 2min−1 (f0 = 1.694Hz), and a depth of 4.0-5.3 cm167

(depending on the chest height), with a 50% duty cycle at168

a fixed position on the chest. The pattern of the artifact is169

therefore quasi-periodic and can be represented as an N term170

Fourier series of fixed frequency and slowly time varying171

amplitudes:172

scc(n) = A(n)

N∑
k=1

ak(n) cos(kω0n) + bk(n) sin(kω0n) (2)

where ω0 = 2πf0/fs is the fundamental frequency of173

the LUCAS-2 device and fs the sampling frequency. The174

amplitude envelope A(n) was introduced to differentiate175

intervals with (A = 1) and without (A = 0) compressions.176

In this work two adaptive methods, LMS [16] and RLS [19]177

filters, were examined to estimate the time varying in-phase,178

ak(n), and quadrature, bk(n), amplitudes. For each filter two179

degrees of freedom were adjusted: N the number of harmonics180

of the artifact model and µ/λ the coarseness of the filter [16],181

[19]. N can also be interpreted as the order of the filter. It182

determines the number of filter coefficients, which is 2N since183

there are a cuadrature and in-phase coefficient per harmonic.184

The coarseness of the filter is either µ, the step size of the185

LMS filter, or λ the forgetting factor of the RLS filter. Both186

these values offer a compromise between tracking capabilities187

and misadjustment and stability of the filter. A small forgetting188

factor in the RLS filter or a large step size in the LMS filter189

mean that a bigger change can occur in the filter coefficients190

for each new sample, i.e. a more coarse filter [16], [19]. This191

produces adaptive filters that follow changes in the input signal192

better, but also that filter coefficients can increase without193

bound if changes accumulate, resulting in an unstable filter.194

B. Stationary Wavelet Transform 195

Feature extraction was based on the wavelet decomposition 196

of the filtered ECG. Previous studies on OHCA rhythm 197

classification have successfully applied feature extraction 198

based on the Discrete Wavelet Transform (DWT) [33]. 199

We chose instead a Stationary Wavelet Transform 200

(SWT) approach [34], [35]. Unlike the DWT, the SWT 201

is shift-invariant and better suited for edge detection, fiducial 202

point location or denoising [36], [37]. The SWT is based 203

on the same dyadic decomposition as the DWT, a typical 204

architecture is shown in Fig. 2. Shift invariance is achieved 205

by upsampling the filters instead of sub-sampling the signal at 206

each level of decomposition. The DWT scaling and wavelet 207

filters for signal decomposition, g0(n) and h0(n), are a pair 208

of quadrature mirror lowpass and highpass filters. The filters 209

at stage j are obtained by upsampling the original filters by 210

a factor of 2j , that is: 211

hj(n) = (h0 ↑ 2j)(n) =

{
h0
(

n
2j

)
n = k · 2j

0 n 6= k · 2j
(3)

The detail, dj(n), and approximation, aj(n), coefficients at 212

all levels from j = 1, . . . , J are then recursively obtained: 213

a0(n) = ŝecg(n) (4)
aj+1(n) = gj(n) ∗ aj(n) (5)
dj+1(n) = hj(n) ∗ aj(n) (6)

where ∗ stands for convolution. The filter coefficients depend 214

on the mother wavelet used. In this work a Daubechies-2 215

mother wavelet was adopted because it produced the 216

best results (see supplementary materials). The filters for 217

reconstruction are obtained by time reversion: gj(n) = 218

gj(−n) and hj(n) = hj(−n). Therefore, the original signal 219

can be reconstructed from the level J coefficients (ISWT) by 220

recursively applying [35]: 221

aj−1(n) =
1
2

(
gj(n) ∗ aj(n) + hj(n) ∗ dj(n)

)
(7)

from j = J, . . . , 1. 222

Eight decomposition levels (J = 8) were used to generate 223

nine sets of coefficients, a8 and d8, . . . d1. A signal interval of 224

M = 2048 samples was analyzed, for a sampling frequency 225

of fs = 250Hz it included the 8-s interval of the filtered 226

ECG highlighted in Fig. 1. Since the analysis is based on 227

a dyadic decomposition in which the available bandwidth 228

is split in two at each successive decomposition level, and 229

considering that the bandwidth of interest in defibrillators is 230

commonly between 0.5-30Hz, only detail coefficients d3-d8 231

were kept and d1, d2 and a8 were set to zero [33]. A soft 232

denoising was then applied to d3-d8 using a fixed treshold, ρ, 233

and single estimation of level noise based on first-level detail 234

coefficients [38]: 235

ρ = 1.483 ·MAD(d1)
√
2 lnM (8)
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where MAD(d1) is the median absolute deviation of236

d1. Finally, the denoised d3-d8 coefficients were used in237

equation (7) to reconstruct ŝden(n) in the 0.5 − 31.25Hz238

frequency range.239

h0(n)

g0(n) h1(n)

g1(n)

h7(n)

g7(n)

· · ·

· · ·

a0(n)

a1(n)

d1(n)

a2(n) · · ·
· · ·

d2(n)

a7(n)

a8(n)

d8(n)

...

d1(n)

d2(n)

LEVEL 1 LEVEL 2 LEVEL 8

Fig. 2. SWT implementation for eight levels of decomposition.

C. Feature extraction240

The denoised signal, ŝden(n), and the detail coefficients,241

d3-d8, were used to obtain a set of 38 features for the242

shock decision algorithm, selected from the literature on the243

topic [33], [39], [40], [41], [42], [43], [44], [45], [46], [47],244

[48], [49], [50], [51].245

The first 18 features were the interquartile range (IQR),246

first quartile (FQR) and the sample entropy (SampEn)247

of the detail coefficients d3-d8 [33]. The remaining 20248

features were computed from ŝden(n), and constitute a249

comprehensive set of features from the available methods250

on shock decision algorithms that included time domain,251

frequency domain and signal complexity characterizations252

of the ECG. The extracted features were TCSC [39],253

Expmod [40], MAV [41], count1-count3 [42], x1-x2 [43], bCP254

and bWT [44], A1-A3 [45], VFleak [46], SampEn [47], [48],255

the number of peaks in the 8-s interval (Np) [33], HILB [51],256

CM [50], Kurt and Frqbin [49]. A detailed description257

can be found in the references given above, and a258

Matlab implementation of the features derived from the259

denoised ECG is available in: https://github.com/FelipeURJC/260

ohca-vs-public-dbs/tree/master/ecg parameters computation/261

parameters.262

IV. ARCHITECTURE OF THE MODEL AND EVALUATION263

A nested cross-validation (CV) architecture was used for264

feature selection, and classifier hyperparameter optimization,265

and model assessment, as shown in Fig. 3. In the inner266

loop features were selected using a wrapper approach in267

a 5-fold CV [52]. In the outer loop, 10-fold CV was used268

for hyperparameter optimization and model assessment. Both269

inner and outer folds were partitioned patient-wise in a270

quasi-stratified way, by ensuring that the shock/no-shock case271

prevalences matched to at least 85% those of the whole dataset.272

The performance of the method was evaluated by comparing273

the shock/no-shock decisions of the classifier with ground274

truth labels in the outer test set. The following metrics were275

computed: Se, Sp, accuracy (Acc) and the Balanced Accuracy276

(BAC), i.e. the mean value of Se and Sp.277

A. Feature selection 278

In the inner loop, a PTA(4, 3) (plus 4, take away 3) 279

feature selection algorithm was used [53], [54]. The criterion 280

to include or exclude a feature within each inner loop was the 281

maximization of the BAC of a Linear Discriminant Analysis 282

(LDA) classifier [33], see inner loop in Fig. 3. BAC values 283

were obtained by comparing the shock/no-shock decisions 284

obtained through the LDA classifier with ground truth labels 285

of the inner test set. At each step of the PTA(4,3) four 286

features were included in the model using Sequential Forward 287

Selection, and then three were removed from the model using 288

Sequential Backward Selection. The feature selection method 289

was run until K features were included, several values of K 290

were tested in the experiments. A wrapper-based approach was 291

adopted in order to address feature dependencies and hence 292

select K features that altogether are the most discriminative 293

ones. Finally, we chose the PTA algorithm to avoid the nesting 294

effects of sequential feature selection [53]. 295

B. Shock Decision Algorithm 296

The decision algorithm was designed in the outer loop, 297

deploying a Support Vector Machine (SVM) classifier with 298

a Gaussian kernel [55]. Features were standardized to zero 299

mean and unit variance using the data in the training set, 300

and the K features from the inner feature selection loop 301

were used. This resulted in a training set of instance-label 302

pairs {(x1, y1), ..., (xn, yn)} ∈ RK × {±1}, where yi = 1 303

for shockable and yi = −1 for nonshockable rhythms. 304

The decision function of the SVM is found by solving the 305

following maximization problem [55]: 306

W (α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj exp(−γ‖xi − xj‖2) (9)

s.t. : 0 ≤ αi ≤ C ∀i, and
N∑
i

αiyi = 0 (10)

where the αi Lagrange multipliers are non-zero only for Ns 307

support vectors, C is the soft margin parameter and γ the 308

Training Test

Training Test

PTA+LDA
BAC

Gaussian kernel SVM
Hyperparameters: C, γ

K feature subset

Se, Sp, BAC, Acc

In
ne

r
lo

op
O

ut
er

lo
op

Fig. 3. Nested cross-validation architecture used for feature selection and for
model optimization and evaluation.

https://github.com/FelipeURJC/ohca-vs-public-dbs/tree/master/ecg parameters computation/parameters
https://github.com/FelipeURJC/ohca-vs-public-dbs/tree/master/ecg parameters computation/parameters
https://github.com/FelipeURJC/ohca-vs-public-dbs/tree/master/ecg parameters computation/parameters
https://github.com/FelipeURJC/ohca-vs-public-dbs/tree/master/ecg parameters computation/parameters
https://github.com/FelipeURJC/ohca-vs-public-dbs/tree/master/ecg parameters computation/parameters
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width of the gaussian kernel. Once the support vectors are309

determined the decision function is:310

f(x) = sign

[
Ns∑
i=1

αiyi exp(−γ‖x− xi‖2) + b

]
(11)

where the threshold b is determined in the optimization phase.311

A rhythm will be classified as shockable for f(x) = 1 or312

nonshockable for f(x) = −1.313

Hyperparameter optimization for a gaussian kernel SVM314

involves selecting γ and C, and was carried out using the315

libsvm library [56]. The soft margin parameter C represents316

a trade-off between maximizing the margin and minimizing317

errors in the training data, and γ controls the flexibility of the318

decision boundary [57]. The values of C and γ that maximized319

the BAC were determined in the outer loop doing a 25 × 25320

logarithmic grid search in the ranges 10−1 ≤ C ≤ 102 and321

10−3 ≤ γ ≤ 101, respectively. The nested CV procedure was322

repeated 50 times to estimate the statistical distributions of the323

performance metrics that will be reported as mean (standard324

deviation).325

V. RESULTS AND DISCUSSION326

This section provides the main results for the shock decision327

algorithm; additional results are given in the supplementary328

materials and referenced in the manuscript. First the LMS/RLS329

filter was optimized; then the effect of two variables were330

analyzed, the number of features used by the classifier331

(K), and the length of the analysis segment used for332

the shock/no-shock decision (L). Finally the results are333

compared to all available solutions for shock decisions during334

piston-driven chest compressions. The results are reported for335

the C/γ pair with best average BAC in the 50 repetitions of336

the outer CV loop.337

A. CPR artifact filter configuration and processing times 338

Fig. 4 shows the mean values of the BAC obtained in the 50 339

random repetitions of the nested CV procedure for different 340

configurations of the LMS and RLS filters, using an interval 341

of L = 8 s for feature extraction and an SVM classifier with 342

K = 6 features. Both filters showed near-optimal performance 343

with a BAC above 96.5% for a wide range of configurations, 344

that is, for different filter orders (N ) and coarseness levels 345

(µ, λ): N ≥ 10 and µ ∼ 3-12 ·10−3 for the LMS filter and 346

N ≥ 10 and λ ∼ 0.970-0.990 for the RLS filter. The accuracy 347

of the solution is not very sensitive to the CPR artifact filter, 348

so filters can be considerably simplified by decreasing their 349

order N to reduce the computational cost. Table I shows 350

the distribution of the performance metrics and the average 351

computation time for different filter orders. The filters were 352

configured at their optimal coarsness, µ = 8 · 10−3 and 353

λ = 0.99, as shown in Fig. 4. The computation time t1 is the 354

time required to suppress the CPR artifact and t2 includes the 355

wavelet decomposition, feature calculations (K = 6), and the 356

decision of the SVM classifier obtained through Eq (11). All 357

calculations were done in Matlab on an i7 3.2GHz single-core 358

processor and 16GB of memory. 359

AHA performance goals were met with the RLS and LMS 360

filters with as few as N = 5 harmonics, but best results 361

were obtained with N = 20, as shown in Table I. For 362

N = 5 the computational demands of the complete algorithm 363

were very low, 16ms for the LMS or 38ms for the RLS 364

filter. Feature extraction including SWT/ISWT analysis and 365

denoising consumed on average 6ms, so the LMS filter 366

is computationally very cheap and its computational cost 367

negligible regardless of its order, it uses up 10ms for N = 5, 368

and 18ms for N = 30. The RLS filter has a greater 369

computational cost that increases considerably with its order, 370

from 30ms for N = 5 to over 140ms for N = 30. This 371

excessive computational cost is caused by the RLS recursion 372

Fig. 4. The mean values of BAC obtained in the 50 repetitions of the nested CV procedure when a LMS (left) or a RLS (right) filter is used to remove the
CPR artifact. The performance is given as a function of the coarseness (λ, µ) of the filter for 4 significant values of the filter order, N.
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TABLE I
SHOCK DECISION ACCURACIES AND PROCESSING TIMES FOR FILTERING (t1) AND SHOCK DECISION (t2) FOR DIFFERENT FILTER ORDERS.

RLS, λ = 0.99 LMS, µ = 8 · 10−3

N Se (%) Sp (%) BAC (%) Acc (%) t1/t2 (ms) Se (%) Sp (%) BAC (%) Acc (%) t1/t2 (ms)

4 90.6 (1.1) 94.3 (0.7) 92.5 (0.7) 93.6 (0.7) 30/5 92.3 (0.8) 94.6 (0.6) 93.5 (0.5) 94.2 (0.5) 10/6
5 92.8 (1.2) 95.6 (0.6) 94.2 (0.7) 95.1 (0.5) 32/6 91.8 (1.2) 95.9 (0.3) 93.8 (0.7) 95.1 (0.4) 10/6

10 95.4 (0.7) 97.9 (0.4) 96.7 (0.4) 97.4 (0.4) 37/5 96.0 (0.4) 98.6 (0.3) 97.3 (0.3) 98.1 (0.3) 14/7
15 95.8 (0.7) 98.4 (0.3) 97.1 (0.4) 97.9 (0.3) 50/5 96.7 (0.4) 98.6 (0.4) 97.7 (0.3) 98.3 (0.3) 15/7
20 97.0 (0.5) 98.3 (0.2) 97.6 (0.2) 98.0 (0.2) 72/6 97.5 (0.4) 98.2 (0.4) 97.9 (0.3) 98.1 (0.3) 16/5
25 96.6 (0.5) 98.5 (0.3) 97.5 (0.2) 98.1 (0.3) 96/4 96.8 (0.4) 97.9 (0.3) 97.3 (0.3) 97.7 (0.3) 17/5
30 96.9 (0.6) 98.0 (0.4) 97.4 (0.4) 97.8 (0.3) 147/6 97.5 (0.4) 97.9 (0.3) 97.7 (0.2) 97.8 (0.3) 18/7

formula for the gain matrix which involves 2N × 2N matrix373

multiplications for each signal sample [19]. The RLS filter374

has been shown to be more effective than the LMS filter375

to remove piston-driven compression artifacts when shock376

decision algorithms from commercial defibrillators are used377

in the classification stage [58], [19] (see also Table III). Shock378

decision algorithms in commercial defibrillators are designed379

to classify artifact free ECGs, so an effective suppression of380

the CPR artifact is critical. This is also important if the filtered381

ECG (ŝecg in Fig. 1 and Fig. 7) is shown in the screen of the382

monitor-defibrillator to serve as a decision support signal for383

the emergency clinician. However, our results show that the384

design of CPR artifact filters can be relaxed when a properly385

designed machine learning algorithm trained with the filtered386

ECG is used for classification. This is probably because387

the classification algorithm now learns the characteristics of388

filtering residuals that confound the shock decision algorithms389

of commercial defibrillators.390

For all the analyses hereafter an LMS filter with µ = 8·10−3
391

and N = 20 was used.392

B. Classification features and feature ranking393

One of the pivotal aspects of a machine learning algorithm is394

the design of the classification features. The method proposed395

includes features extracted from the d3-d8 denoised SWT396

TABLE II
FEATURES RANKED BY Nf , THE NUMBER OF TIMES THEY WERE

SELECTED IN THE 500 INNER LOOPS.

RLS filter LMS filter

Feature Nf Feature Nf

SampEn, d3 500 SampEn, d3 500
FQR, d7 397 VFleak 321
VFleak 337 FQR, d7 236
A1 275 IQR, d7 217
CM 255 A2 183
Kurt 248 Kurt 157
A2 207 A3 148
bWT 146 FQR, d6 119
A3 86 Np 102
IQR, d7 65 FQR, d8 85
MAV 60 CM 73
Frqbin 52 count2 67

components and their reconstructed signals. Table II shows 397

the ranking of the features by the number of times they were 398

selected using the PTA(4,3) feature selection scheme in the 399

inner loop and 50 random repetitions of the outer CV loop 400

(50 × 10 = 500 feature selection loops). This ranking was 401

obtained for a solution with K = 6 features. The features 402

with the best ranking are a mixture of those derived from the 403

detail coefficients and from the denoised signal, and represent 404

a variety of signal analysis approaches that comprise signal 405

regularity/complexity (SampEn, CM, Frqbin) [59], [50], [49], 406

spectral analysis (VFleak, A1-3, bWT) [60], [45], [44], time 407

domain features (MAV, Np, count2) [41], [33], [42], or the 408

sample distributions of the denoised signal (Kurt) and its 409

detail coefficients FQR/IQR [33]. Additional results for the 410

discriminative power of the features using ROC curve analysis 411

are available in the supplementary materials. 412

Fig. 5 shows the accuracies (balanced and absolute) of the 413

shock decision system as a function of features allowed in 414

the SVM. For a good accuracy the number of features in the 415

classifier must be between 3 and 7, which gives an Acc and 416

BAC above 97.8%. A classifier with fewer features presented 417

lower BAC and Acc, with a more negative impact on Acc. This 418

Fig. 5. Mean values of BAC and Acc as a function of the number of features,
K, used in the classifier.
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means that the most prevalent class, the Sp for nonshockable419

rhythms, is negatively affected by using a simpler classifer.420

Adding more than 7 features sligthly reduces both accuracies,421

and makes the classifier more complex.422

C. Duration of the analysis segment423

Fig. 6 shows how the performance metrics change as424

the analysis segment is shortened. The perfomance of425

the algorithm stabilizes at near-optimal values for analysis426

segments longer than 4 s, and drops if shorter segments are427

used. However, for segments as short as 2 s the algorithm428

still meets the minimum AHA recommendations for Se and429

Sp, with values of 96.5 (94.9 – 97.6) and 96.0 (95.1 – 96.7),430

respectively. Studies that have developed ad-hoc algorithms431

for cardiac arrest data have reported minimum segment lengths432

for an accurate analysis around 3-4 s, both for the analysis of433

the ECG without CPR artifacts [61], [47] or after suppression434

of manual CPR artifacts [43]. Previous studies on shock435

decision during piston-driven chest compressions relied on436

shock decision algorithms of commercial defibrillators. These437

algorithms require analysis segments in excess of 5 s in most438

devices [62]. For instance, in two previous studies on shock439

decision during mechanical CPR the analysis segment was440

either 6 s or 9 s long, because the algorithm applied a majority441

vote to three consecutive 3-s analysis subsegments [30], [19].442

Reducing the length of the analysis segments is not critical443

during compressions, since CPR therapy is not interrupted for444

the analysis. However, if a rhythm transition analysis is to445

be performed during CPR [63] short intervals would permit a446

more accurate time-location of transitions between shockable447

and nonshockable rhythms, and a reduction of computational448

burden.449

Fig. 6. Distribution of the performance metrics as a function of the length
of the analysis segment (L). The graph shows the median values and the
2.5-97-5 percentile range for Se, Sp and BAC.

D. Discussion on the near-optimal solution 450

The accuracy for the (near)-optimal solutions using an RLS 451

and an LMS filter (see Table I) are compared in Table III to 452

the available methods for shock decision during piston-driven 453

compressions. Feature extraction was done with L = 8 s 454

and an SVM with K = 6 features was used. The optimal 455

(C, γ) pairs for the SVM were (17.8 · 10−2, 6.8 · 10−2) and 456

(3.162, 1 · 10−2) for the LMS and RLS filter based solutions, 457

respectively. 458

The multistage solution introduced in [19] was the most 459

accurate shock decision algorithm for mechanical devices 460

proposed to date. As shown in Table III, the machine learning 461

approach proposed in this study increases the BAC of single 462

filter solutions by over 5-points, and that of the multistage 463

solution by 3-points, and increases the sensitivity substantially, 464

making the solution very reliable for the detection of 465

shockable rhythms. The overall accuracy is also increased 466

by around 1-point, which is a considerable increase because 467

the multistage solution had an overall accuracy of 96.9 %. A 468

1-point increase from that baseline means that around 30 % of 469

the errors are now correctly classified. Very importantly, this 470

improvement was achieved together with a drastic reduction 471

of the computation demands of the algorithms. For a solution 472

based on the LMS filter the mean processing time per 8-s 473

segments was 21ms, an over five fold improvement when 474

compared to the 110ms required by the multistage solution. 475

This reduction is very important in defibrillators with scarce 476

computation resources. 477

Finally, Fig. 7 shows three illustrative examples of 478

misclassified segments both for shockable and nonshockable 479

rhythms. In the two examples of nonshockable rhythms the 480

denoised signal and the d3 detail coefficient (best features) 481

show a disorganized signal, fast in the case of the AS example 482

(middle) and slower for the OR (top). These disorganized 483

signals are interpreted as shockable rhythm by the SVM 484

classifier. In the example of the missed VF, the filter is unable 485

to remove the spiky artifact introduced by the mechanical 486

device at each compression, and these spikes confound the 487

decision algorithm. In any case misclassifications were very 488

TABLE III
COMPARISON TO PREVIOUS METHODS USING THE SAME DATA.

Performance metric

Method Se (%) Sp (%) BAC (%) Acc (%)

1-Stg, Dfb†
LMS [30] 98.6 (1.0) 84.0 (1.8) 91.3 (1.2) 86.8 (1.6)
RLS [19] 98.1 (1.0) 87.0 (1.8) 92.5 (1.1) 89.1 (1.5)
Comb [30] 97.1 (2.0) 84.3 (1.8) 90.7 (1.3) 86.8 (1.6)

M-Stg, Dfb‡
LMS [19] 94.4 (3.0) 93.2 (1.2) 93.8 (1.6) 93.4 (1.1)
RLS [19] 91.7 (6.0) 98.1 (1.1) 94.9 (2.6) 96.9 (0.9)
Comb [19] 88.8 (6.0) 96.6 (1.7) 92.7 (2.4) 95.1 (1.1)

1-Stg, SVM
LMS 97.5 (0.4) 98.2 (0.4) 97.9 (0.3) 98.1 (0.3)
RLS 97.0 (0.5) 98.3 (0.2) 97.6 (0.2) 98.0 (0.2)

† Single stage filtering, shock decision of a commercial defibrillator
‡ Multistage filtering, shock decision of a commercial defibrillator
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a) Nonshockable rhythm (OR)

b) Nonshockable rhythm (AS)

c) Shockable rhythm (VF)

s c
or

s c
or

s c
or

Fig. 7. Three examples of misclassified segments. Panels a and b depict
nonshockable rhythms, OR and AS, respectively, while panel c represents a
shockable (VF) rhythm. From top to bottom, each panel shows the 20-s ECG
segment, and the filtered ECG, the denoised ECG and the detail 3 coefficient
of the 8-s interval used by the shock decision algorithm.

few, around 15 for nonshockable rhythms (Sp∼ 98.2 %), and489

around 5 for VF (Se∼ 97.5 %).490

VI. CONCLUSIONS491

This study introduces a machine learning algorithm for492

shock decisions during piston-driven chest compressions. The493

algorithm improves the accuracy of the best known solutions to494

date by 3 points in BAC with an additional 5-fold reduction in495

computational cost. This makes this solution very accurate and496

efficient. There are two main reasons for these advances. First,497

the feature extraction phase based on the stationary wavelet498

analysis resulted in new and improved discriminating features. 499

Second, extracting the features after removing the CPR artifact 500

and feeding those features to the SVM improves the accuracy 501

considerably, because the machine learning algorithm is able 502

to learn the characteristics of filtering residuals. Our results 503

show that this approach allows relaxing the characteristics of 504

the compression artifact filters. 505

The main limitations of this study are associated with 506

the data. The dataset came from a single type of 507

monitor-defibrillator, so the methods may need adjusting 508

to encompass data from other devices with different ECG 509

acquisition characteristics like bandwidth, sampling rates or 510

A/D resolution. Furthermore, the data were compiled from 511

a single emergency service and the LUCAS-2 device may 512

be used differently across emergency services, that may also 513

enforce different resuscitation protocols. Those differences 514

may result in chest compression artifacts with different 515

characteristics. Finally, the (near)-optimal solutions presented 516

in Table I were obtained following a training/validation data 517

partition given the amount of samples available. If more 518

data were available the results should be confirmed using an 519

independent test set. 520
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