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Abstract 

A test configuration for studying mixed-mode is analyzed analytically and numerically. It is based on 

the End Notched Flexure test, inserting a roller in the cracked part in order to promote mixed mode 

I/II. The analytical approach includes the calculation of the force exerted by the roller, the midpoint 

displacement, the compliance of the test, and the relative displacement of both arms of the crack. 

Moreover, the energy release rate is determined based on the complementary strain energy. With 

respect to numerical analysis, the two-step extension procedure is used for determining energy release 

rates in mode I and mode II. Comparison between analytical and numerical results has been carried 

out in order to check the suitability of the test method. 

Keywords: Composites, Delamination, Fracture mechanics, Finite element analysis, Mixed mode 

fracture. 

1 Introduction 

Interlaminar fracture is one of the most common failure modes in composite materials. As 

delamination in composites is often a mixed-mode fracture, it is important that the composite 

toughness be measured at different mode mixtures [1-4]. Using fracture mechanics to characterize the 

onset and growth of delamination has become a generally accepted practice. According to Griffith-

Irwin linear elastic fracture mechanics, the crack initiation and propagation is governed by the critical 

strain energy release rate G [5,6] . 

A standardized method for characterization of the mixed-mode I–II fracture toughness was 

introduced in 2001 [6], named mixed mode bending test (MMB). The fixture proposed in the standard 

ASTM D6671 [6] is a modified version of that originally proposed by Crews and Reeder [3,7] . Chen et 

al. [8] carried out a modification on the MMB test rig for making it easier to calculate G, avoiding to 

introduce the weight of the lever. Blanco et al. [9] proposed a solution for determining the distance of 

the lever arm in the MMB test with better accuracy. Tenchev and Falzon [10], presented an analytical 

solution for the MMB problem, when the crack has propagated beyond the middle of the beam. 

For the MMB test the ratio between mode I and mode II, named mixed-mode ratio, remains constant. 

In the mixed-mode end load split test (MMELS) the mode mix depends on the crack extension. This 
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test is a modified version of the end load split test (ELS), where the interlaminar crack in a beam-type 

specimen is forced to propagate under mixed-mode and has been analysed by different researchers. 

The studies of Hashemi et al. [11] and Kinloch et al. [4] are based on the beam theory formulated by 

Williams [12]. They proposed a series of analytical expressions for the characterization of the test. 

Blanco et al. [13] demonstrated that beam theory is capable of modelling MMELS test when the crack 

is centred in the thickness. 

Other test and specimen configurations have been proposed in order to analyse the mixed mode I/II 

fracture. The asymmetric double-cantilever beam (ADCB), where the crack plane is out of the laminate 

midplane, generating a mixed mode load state at the crack tip. Mangalgiri et al. [14] were the first to 

apply the ADCB test. The European Structural Integrity Society (ESIS) TC4 group studied it in the 

1990´s. [15]. Ducept et al. [16] carried out experiments on ADCB glass fibre reinforced epoxy 

composite samples and compared results with analytical and numerical ones. Bennati et al. [17,18] 

developed an enhanced beam theory model for the ADCB test based on the experimental work 

developed by Ducept et al. ADCB configuration has been analyzed by other authors [19-21] 

Szekrényes proposed three different specimens for analyzing mixed mode I/II: Two prestressed 

specimens, one based on the end-notched flexure (ENF) specimen [22], and other based on the ELS 

specimen [23]. The main characteristic of these methods is that the mode I is provided by the insertion 

of a steel roller at the delamination plane. The third proposal, developed by Szekrényes and Uj [24], 

was the over-leg bending specimen, which is a modification of the single-leg bending  specimen, 

where the load is introduced eccentrically. 

Kolluri et al. [25] introduced a new miniature setup capable of applying a mixed mode bending load 

to a bilayer delamination sample with a pre-crack. In this set up a microscope is necessary to observe 

the delamination. 

Bonhomme et al. [26] proposed the two-step extension procedure (TSEP) as an alternative to the 

virtual crack closure technique (VCCT), which allows to determine G. Mollón et al. [27], compared 

experimental results of G obtained by ADCB and reduced by an analytical method based on a 

modified beam theory with numerical results obtained by the TSEP. They found a good agreement 

among all the studied methods. 

The aim of this study is to present a novel analytical model for a mixed-mode I/II interlaminar fracture 

test configuration for unidirectional composites. It is similar to ENF, but the specimen has an inserted 

roller for promoting mixed mode. This configuration was proposed by Szekrényes [22] for the 

particular position in which the roller is above the support. In the present work, the configuration is 

generalized for any position of the roller. Numerical analysis is also carried out by FEM applying the 

TSEP. 



 

Nomenclature 

a, aI,a Crack length, corrected crack length and crack increment, respectively  

c0,ci  Distances from the support to the position of the roller when it is at the outer side 

and at the inner side of the support, respectively 

b,2h Width and thickness of the specimen, respectively 

dinterf Distance from the support to the edge of the specimen, when there is interference  

A1, A2, A0 Surface areas of the upper and lower arms in the cracked zone, and of the whole 

section in the uncracked zone, respectively 

C Compliance of the test 

Ef Flexural modulus 

EL, ET, GLT, LT Longitudinal, transverse, in-plane shear elastic moduli and Poisson ratio, 

respectively 

Fx1i, Fy1i, u1i, v1i Forces at the crack tip and horizontal and vertical displacements of the released 

nodes, respectively 

GI,GII , G Mode I, mode II and total energy release rates, respectively 

I1, I2, I0 Second moments of area with respect to the middle plane of the upper and lower 

arms in the cracked zone, and of the whole section in the  uncracked zone, 

respectively 

M1, M2 ,Q1 ,Q2 Bending moments and shear forces in the cracked zone 

MI, MII ,QI ,QII Bending moments and shear forces in the crack tip due to mode I, and mode II, 

respectively 

L Half span of the test 

P Applied load 

R Roller radius 

W, U, U* Work done by external forces, strain energy and complementary strain energy, 

respectively 

Y Force exerted by the roller 

 Displacement of the load application point of the specimen  

rel Relative displacement between the upper and lower arms in the cracked zone 

P0,  Initial load and initial displacement, respectively 

ADCB Asymmetric double-cantilever beam 

ELS End load split test 

MMELS Mixed-mode end load split test 



 

2 Description of the test 

The test configuration is based on the ENF test. In order to get mixed mode, a roller is introduced 

between the two surfaces of the crack: The mode II is provided by the external load, and the mode I is 

obtained by the opening of the crack due to the insertion of the roller as shown in Fig. 1. 

This configuration has already been used by Szekrényes [22] in the particular case where the roller is 

directly above the support. In the present analysis the configuration of the test is generalized. The 

roller position can be located at the outer side or at the inner side of the support, as shown in Fig. 1. 

In the analytic approach it is assumed the hypothesis of small bending rotations. Thus, the horizontal 

components of forces that the supports and the roller exert on the specimen are neglected. Otherwise, 

even in the case of small bending rotations, the span reduction due to the variation in the contact point 

between the specimen and support rollers is not negligible depending on the radius of the rollers [28] 

It is expected a similar behaviour for the inserted roller. Nevertheless, it has been seen that those 

effects are not important in ENF tests if the roller radii is 2.5 mm or lesser [29]. As the radii of the 

inserted rollers used in the present work are lesser than that value, the effects concerning span 

variations are not considered. Furthermore, the effect of friction between rollers and specimen is 

neither considered.  

3 Redundant Force and Compliance  

3.1 Roller positioned at the outer side 

3.1.1 Force exerted by the roller 

Fig. 2 shows the test configuration and dimensions when the roller is located at the outer side of the 

support. 

The roller is replaced by the forces that generate the displacement. Being Y that force, and P/2 the 

reaction force, bending moments and shear forces in the crack zone are shown in Fig. 3. 

The upper arm is named 1 and the lower arm is named 2. The internal forces and moments in the 

cracked zone are: 
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Bending moments and shear forces in the zone without crack are shown in Fig. 4. 

Applying equilibrium equations it results: 
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Bending moments and shear forces in the right half of the specimen are: 
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The force exerted by the roller can be determined applying the Castigliano-Engesser theorem [30], 

which in the case of shear and bending is given by: 
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Being U* the complementary strain energy; Fi an independent applied force; and i the displacement of 

the application point of Fi in the direction of Fi. 

The relative displacement associated to the forces exerted by the roller is 2R, R being the roller radius. 

Thus, the derivative of the complementary strain energy U* with respect to the redundant unknown Y 

is:  
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Bending moments and shear forces depend on Y only in the cracked zone. Replacing M, Q and their 

derivatives with respect to Y from Eq. (1) in Eq. (4) and applying Eq. (5) the redundant force is: 

 

2

3

3

3

( ) (2 ) 3( )
2

5

8 12

5

o o o

LTf

LTf

a a a
R P

bhbh

c c c

GE
Y

GE

a a

bhbh



   
  

  



  (6) 

Where a is the crack length; Ef the flexural modulus; GLT is the in-plane shear modulus which is equal 

to the out-of-plane shear modulus GLT' assuming that the material is transversely isotropic; R is the 

radius of the roller, b the width of the specimen; and 2h the total thickness of the specimen. 

Considering only bending effects the force Y is: 
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According to Eq. (7) the force Y is always positive, for any position of the roller.  

3.1.2 Displacement of the load application point 

The displacement of the load application point is determined by the unit load method and the 

Engesser-Castigliano´s theorem. Since Y has been considered the redundant unknown, the equivalent 

basic system is the original one without the roller. Moreover, when a unit load is applied in the middle 

of the specimen, the upper arm is an unloaded cantilever. Then, it is not considered in Fig. 5. 



The derivatives obtained in the different parts of Fig. 5 are written in lowercase letters, being: 
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Hence, the displacement of the load application point is given by 
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Substituting the values from Eq.(1), Eq.(2), Eq.(3) and Eq. (8) in Eq.(9), the displacement is: 
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Taking into account only the term that corresponds to bending effects, and replacing the value of Y 

given in Eq.(7) in Eq.(10), the displacement can be expressed as: 
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According to Eq. (11), after inserting the roller and without applying load, the displacement of the 

load application point is given by the second term of the right hand, which is negative. Then, as the 

unit load has been applied downwards, the initial displacement is upwards. 

3.1.3 Relative Displacement between the crack-arm ends 

When the roller is inserted, the two arms of the crack are separated. The relative displacement 

between the crack-arm ends has been determined in order to analyse possible interference. Two 

opposite unit loads are applied on the basic system corresponding to the specimen, as shown in Fig. 6 

The derivatives obtained in the cracked zone of Fig. 6 are: 
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Substituting the forces and moments from Eq.(1) and Eq.(12) in the Engesser-Castigliano theorem of 

Eq. (4), the relative displacement between the two tips of the crack arms is given by: 
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Taking into account only terms that corresponds to bending effects and replacing the value of Y given 

in Eq. (7) in Eq. (13), the relative displacement is: 
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When the relative displacement is positive the two arms get separated. When it is equal to zero or 

negative, there is interference. According to Eq. (14) the relative displacement between the two tips of 

the crack arms is always positive and there is not interference in any case.  

3.1.4 Compliance  

As it can be seen in Eq.(10), there is an initial negative displacement when P=0. Therefore, when the 

displacement is null, there is a positive load. 

The initial conditions when shear effects are not considered can be calculated replacing P=0 and =0 in 

Eq.(11): 
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The expression of the compliance of the applied load-displacement is: 
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Replacing the values of Eq.(15) in Eq.(16), compliance can be expressed as: 

 
3 3 2 3

3

3 3

( ) (3 3 )1
2

8
o o o

f

a a ac c c
C

E
L

bh a


   
 

  
  (17) 

According to Eq.(17) the compliance does not depend on the radius of the roller.  

3.2 Roller positioned at the inner side  

3.2.1 Force exerted by the roller 

In this case the position of the roller is defined by ci, as shown in 

 



Fig. 7. 

Moments and shear forces in the cracked zone are: 
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Moments and shear forces in the zone without crack and in the other half of the specimen are: 
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Following a similar procedure to the previous section, the force between the two arms is given by: 
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Considering only bending effects, the Y force is: 
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The Y force is always positive, for any position of the roller, since a>ci as shown in 

 

Fig. 7. 



3.2.2 Displacement of the load application point 

In spite of the basic system is the same as in the previous case, the derivatives of forces and moments 

are determined in different intervals, being: 
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Replacing the moments and forces from Eq.(18), (19) and (22) in Eq (4), the displacement of the load 

application point can be expressed as: 
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Taking into account only bending effects, substituting the value of the force Y (Eq.(21)), the 

displacements is: 
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According to Eq.(24) the initial displacement is upwards. 

3.2.3 Relative Displacement of the crack-arm ends 

The basic system is the same as in the previous case, shown in Fig. 6. Thus, the derivatives in the 

cracked zone are the ones of Eq.(22). Replacing the forces and moments from Eq. (18) and Eq.(12) in 

Eq.(4), the relative displacement between the crack-arm ends can be expressed as: 
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Taking into account only bending effects and replacing the value of the force Y given in Eq.(21) in 

Eq.(25) the relative displacement is: 
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In this case it is possible to calculate interference conditions imposing rel =0 in Eq.(26). Hence, a critical 

value of the distance from the support to the specimen end, named d in Fig. 6, is obtained: 

 

2 3

3

( )(3 ) 2 (2 )

3( ) ( ) 6

i i i i

interf

i i

f

fi

Ec a c a R

E R

c P b a c h
d

a c c a c P bh

    


  
  (27) 



If d<dinterf there is not interference and the proposed analysis is valid. If d>dinterf there is contact between 

the crack-arm ends. In this case, the analysis is not valid. 

3.2.4 Compliance   

The initial displacement 0 and initial load P0 are obtained from Eq.(24), imposing P=0 and =0 

respectively: 
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Replacing the values of Eq.(28) in Eq.(16), compliance can be expressed as: 
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In this case, as in the previous one, the compliance is independent on the radius of the roller. 

3.3 Roller positioned above the support 

Regarding the particular case in which the roller is directly positioned above the support, that is 

co=ci=0  the forces obtained from Eq. (6) and Eq. (20) are the same being: 
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If R=0, the test is an ENF test and Y=P/4 is obtained. 

For the displacement of the load application point, when co=ci=0, Eq. (10) and Eq.(23) lead to: 
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Replacing the value of Y (Eq.(30)) in the former equation, the displacement can be expressed as: 
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If R=0, the displacement is the same as in the ENF test. 

For the relative displacement between the two crack-arm ends, when co=ci=0, Eq. (13) and Eq.(25) lead 

to: 
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Replacing co=ci=0, in Eq.(14) and Eq.(26) that include only bending effects, the relative displacement is:  
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According to Eq.(34) the relative displacement is always positive. That means that for any d distance, 

the two tips remain separated. 

The initial displacement and the initial load are obtained from Eq.(32), being: 
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Replacing values from Eq.(35) in Eq.(16) the compliance is: 
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According to Eq. (36), the compliance is the same as in the ENF test and it does not depend on the 

roller radius. The crack length, based on the compliance, can be expressed as: 
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Arrese et al. [29] developed a new method for determining the crack length at each point of the test 

based on the experimental compliance in ENF tests. Hence, the same method can be used when the 

effect of bending rotations at supports is negligible, since the compliance for ENF test and for the 

present test configuration are the same. Therefore, there is no need to monitor the crack length using 

any optical method, which is one of the most important drawbacks for any test that includes mode II. 

This problem was addressed by Szekrényes for the present configuration [22]. 

4 Energy Release Rate  

4.1 Energy Balance Criterion 

According to Griffith [31] and Irwin [32], the energy balance in a small crack advance can be expressed 

as: 

 dW dU Gbda    (38) 

Where dW is the work done by external forces; dU is the change in strain energy; G is the energy 

needed for the crack advance per unit area; b is the width of the crack; and da is the differential crack 

advance. The differential work done by the external forces Fi in their respective displacements i, 

assuming the repeated index convention is i idW Fd . Then, Eq. (38) results in: 

 
i i
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In spite of the crack advance is an irreversible process, it is assumed that in an elemental variation the 

strain energy is an exact differential. According to Eq.(39) the state variables are i and a. Then it 

results that: 
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Identifying first summands of Eq.(39) and Eq.(40), it results that /
i i

U F   , which is the first 

theorem of Castigliano. Identifying the second summands it results: 
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Furthermore the complementary strain energy U* is defined as: 
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Differentiating Eq.(42), and replacing in the energy balance equation of Eq.(38) it results: 
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In this case the state variables are Fi and a, thus: 
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Identifying the first summands of Eq.(43) and Eq.(44) it results the theorem of Engesser-Castigliano 

given in Eq. (4). Identifying the second summands it results: 
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The above explanations are carried out because in this case there are two forces that carry out work, Y 

and P. The work done by Y is related to the finite displacement imposed by the roller. The work done 

by P is the usual one, due to the application of the load. According to Eq. (45) the complementary 

strain energy must be used for determining G if forces are used as state variables. In a linear elastic 

system, the complementary strain energy is the same that the strain energy, being:  
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In order to obtain the derivative with respect to a, as the integral limits depend on that parameter, 

Leibniz’s integral rule is appropriate. Given a function f = f (x,a) this rule states that [33]: 
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As loads remain constant, in the derivation process it is assumed that  * * ,U U x a . Applying Eq. 

(47) to Eq. (46) it results: 
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As M and Q do not depend on a, the first and second terms of the right hand of Eq. (48) are 0. 



It is worth pointing out that in the present case the approach based on the derivative of the 

compliance is not suitable, as the work is not carried out by a unique force, but by two.   

4.2 Roller positioned at the outer side 

Determining U* from Eq. (46) after replacing the moments and shear forces from Eq.(1), Eq.(2) and 

Eq.(3), the energy release rate is determined replacing Eq. (48) in Eq. (45), being: 

 

2
22

2 3 2 2 3

29 )

16

3 4 ( ) (3( 4 )

4 40

o o

f LT f

P a c

E b

Ya P a c P Y
G

E b h G b h h

          (49) 

When R=0 and 
o

c =0 the result corresponds to ENF configuration. Then, the partition of the energy 

release rate, due to each fracture mode, can be expressed as follows:  
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Replacing the value of Y given in Eq.(6) in Eq.(50), and taking into account only bending effects, GI 

and GII are given by:  
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It is worth pointing out that when the roller is positioned at the outer side, the value (a-co) is the usual 

crack length measured in the ENF test configuration, according to Fig. 2.  

4.3 Roller positioned at the inner side   

Following the same procedure as in the previous section, determining U* from Eq. (46) after replacing 

the moments and shear forces from Eq.(18) and Eq.(19), the energy release rate is determined 

replacing Eq. (48) in Eq. (45), being: 
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By similar reasoning to the previous case, the partition of the energy release rate due to each fracture 

mode can be expressed as: 
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Replacing the value of Y of Eq.(20) in Eq.(53), and taking into account only bending effects, GI and GII 

are given by: 
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4.4 Roller positioned above the support  

Regarding the particular case in which the roller is positioned above the support, the energy release 

rate and the contribution of each mode can be determined, replacing ci=0 or co=0 in Eq. (50) and Eq.(52)

, respectively. The results obtained from both equations are the same. When shear effects are not 

considered, GI and GII can be obtained from Eq. (51) and Eq. (54) being: 
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Results of Eq.(55) are the same as those obtained by Szekrényes [22]. In the following paragraphs it is 

shown that mode I in this particular configuration is associated to the work done for introducing the 

roller. Before starting the external load application, the roller is inserted between the two surfaces of 

the crack. A force appears between the two arms Y for enforcing the displacement 2R. The initial 

complementary strain energy can be expressed as follows: 
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where the value of the force Y when P=0 is called Y0. Replacing the value of Y0 from Eq. (30) in Eq.(56), 

considering only bending effects and then calculating the energy release rate according to Eq.(45) it 

results: 
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The result obtained in Eq. (57) is the same result obtained in Eq.(55) for GI.  

4.5 William’s partition approach 

According to Williams [12], it is possible to determine the energy release rate G of a delaminated 

specimen based on the applied moments at the end of a crack. The mode partitioning consists of 

separating the total G, into the opening component GI and the shear component GII, being G = GI + GII. 

Considering the moment case shown in Fig. 8, the opening mode only requires moments in opposite 

senses. Thus -M1 is applied in the upper arm and M1 in the lower arm. Pure mode II is obtained when 

the curvature of the two arms is the same.  

The relation between moments for each fracture mode and moments at the crack tip, and between 

shear forces for each fracture mode and shear forces at the crack tip are: 
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The mode partition, being b the section width and 2h the total thickness, can be expressed as follows: 
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When the roller is at the outer side, the moments and forces at the crack tip are shown in Fig. 9: 

The bending moments and shear forces are then: 
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Replacing the values from Eq.(60) in Eq.(59), the energy release rate can be expressed as: 
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The result obtained in Eq. (61) is the same as that obtained in Eq.(49).  

When the roller is positioned at the inner side, the moments and shear forces at the crack tip are: 
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Replacing the values from Eq.(62) in Eq. (59), the energy release rate can be expressed as follows 
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The result obtained in Eq. (63) is the same as that obtained in Eq.(52). Therefore, the values of G 

obtained in the present study agree with those obtained by William’s partition method.  



5 Analysis of mode mixity  

For a given specimen geometry shown in Table. 1 and a given material, there are two parameters that 

can be varied to achieve a wide range of mode mixity: the roller radius and the roller position. 

The material used to perform analytical and numerical calculations has been the HexPly AS4/8552 

RC34 from Hexcel Composites, which properties are given in Table 2. This laminate incorporates the 

Hexcel 8552 modified epoxy resin in order to improve toughness properties. 

In spite of the tensile, compressive and flexure modulus are different in a unidirectional composite 

[34], the three modulus have been considered as equal as a first approach. Then, the tensile modulus 

given in Table 2 has been used in analytic and numeric calculations.  

The critical values of P and corresponding to crack initiation, named Pc and c respectively, have 

been determined using the values of GIc and GIIc of Table 2 according to the linear failure criterion 

given by [35]: 

 1I II

Ic IIc

G G

G G
   (64) 

The criterion of Eq. (64) has been selected as a simple way for determining the values Pc and c that 

correspond to crack initiation. Furthermore, in order to take into account the effect of rotation of the 

crack arms at the crack tip when GI is determined, the crack length must be corrected in the analytic 

approach. According to Williams, the effect of the end rotation could be modelled by increasing the 

real length by an amount a given by [36]: 
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This correction is related to the stiffness of the specimen along the thickness, which is not included in 

beam theory. Then, the mode I Double Cantilever Beam test is modelled as an elastic foundation in the 

middle plane of the specimen for obtaining Eq. (65). This correction is not applied to numerical 

analysis, as the stiffness along the thickness is incorporated in the model. The correction of the crack 

length in mode I is included in the standard ASTM D5528 [37]. With respect to GII, the sliding crack 

advance mode associated to it has no relation with the stiffness along the thickness and any correction 

factor with respect to the crack length is not included in the recently published standard ASTM D7905 

[38]. Thus, the crack length used in the analytic approach for GI has been corrected weighting the 

contribution of mode I according to: 
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The values of GI and GII have been obtained substituting Pc, the mechanical properties of Table 2 and 

the geometric parameters of Table. 1 in Eq.(6) and Eq.(20) for obtaining the Y force for the outer and 

inner cases, respectively. Then, Eq. (50) and in Eq.(53) are used for determining GI and GII in the outer 

and inner cases, respectively. As mentioned before, the corrected crack length aI from Eq.(66) is 

applied to the determination of GI. 

Fig. 10 shows the influence of the variation of the radius of the roller for three different locations of it. 

Three curves giving the mode ratio corresponding to each location are shown. The position defined by 

c=0 means that the roller is positioned above the support. The position defined by c=10 mm means that 



the roller is at 10mm from the support at the inner side. Finally the position defined by c=-10 mm, 

means that the roller is at 10mm at the outer side. 

As it can be seen in Fig. 10, when the roller radius increases, the mode ratio (GII /G) decreases. When 

the roller is positioned at 10 mm at the inner side, varying the radius from 0 mm up to 0.8 mm all the 

mode ratios can be achieved. 

Fig. 11 shows the influence of the variation of the location of the roller for three different radii. Three 

curves giving the mode ratio corresponding to each radius are shown.   

For a given radius, the mode ratio decreases when the roller moves towards the crack tip, as a greater 

opening mode is promoted. When the roller radius is 1 mm, varying its position from 14 mm towards 

the specimen end, up to 8 mm towards the crack tip, all the mode ratios can be achieved. 

Besides c and R parameters, varying the initial crack length, the mode ratio could also be varied. 

Moreover, taking into account other specimen geometries, the mode ratio also changes. It can be 

concluded that all mixed modes can be achieved with variations in the test configuration. 

6 Numerical Approach (FEM)  

An Ansys package was used to perform the numerical calculations. In order to calculate GI and GII 

energy release rates the TSEP or Two-Step Crack Closure Technique was followed. In this method, the 

crack path is modelled using pairs of coincident nodes coupled together as shown in Fig. 12 .a. In the 

first step when the imposed load or displacement reaches a critical value (Pc, c) the forces at the crack 

tip (1-1’) are calculated as shown in Fig. 12.b. The imposed displacement in the sample (c) is then held 

in a second step and the coupled degrees of freedom (DOF) of the nodes at the crack tip 1-1’ are 

released, as shown in  Fig. 12.c. Displacements are then calculated in this second step.  

The energy release rate is then calculated by means of the loads obtained in the first step and the 

displacements from the second step calculated in the same node pair 1-1’using the following 

expressions: 
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where: 

 Fx1i, Fy1i: forces at the crack tip (nodes 1-1’), being Fx1i= Fx1i’ and Fy1i= Fy1i’ 

 u1i, v1i: horizontal and vertical displacements of the released nodes (nodes 1-1’) 

 a: crack increment 

The suffix i takes into account the extension to a 3D system, where i nodes are placed along the crack 

front. 

The element used to model the test was the PLANE 42 with the plain strain option. The element size 

was set to 0.1 mm. 

7 Comparison between analytical and numerical results 

Fig. 13 shows the sample geometry and test configuration used in calculations and the deformed 

shape obtained in the FE analysis. 



With the aim of comparing analytic and FEM results, rollers of 0.5 mm and 0.7 mm radii were placed 

above the support and at 10 mm from the support at the inner side. Other roller of 1.5 mm was placed 

to 10 mm from the support at the outer side. The crack length was a = 40 mm in all cases, as shown in 

Fig. 13.  

Table 3 shows the values of Pc, Yc and c obtained analytically for the different cases. For the numerical 

calculations, the imposed displacement in the sample was the value of c. Without any load 

application, when the roller is moved towards the crack tip, the mode I contribution increases. 

Therefore, the load and displacement needed to achieve the linear failure criterion are lower. Table 3 

includes also the values of Pc and Yc obtained numerically and the relative errors of the analytic values 

with respect to numerical ones. The results obtained for Pc and Yc by the analytic approach and those 

obtained by FEM agree, being the relative errors lower than 3% and 5%, respectively. 

The analytical values of GI and GII have been obtained as explained in section 5. The results for the 

energy release rate due to each mode are listed in Table. 4. When the roller is placed at the outer side, 

the mode I contribution is very low. Thus, only one case of R = 1.5 mm has been analyzed. In the case 

of GI the lowest relative error occurs when the mode I is more dominant (case 4). It is probably related 

to the fact that the relative error of Yc is also minimum in that case. In the case of GII errors are near 1% 

in all cases. 

8 Conclusions 

A test configuration for obtaining mixed mode I/II interlaminar fracture in unidirectional composites 

has been proposed. It is a generalization of a previous proposal based on the ENF configuration with 

an inserted roller. Internal forces, mid point displacement, compliance and energy release rate have 

been determined analytically. Furthermore, it has been shown that all mixed modes can be achieved 

with simple variations concerning the radius or the position of the insterted roller. 

The analytic values have been compared with those obtained by FEM. The Two Step Extension 

Procedure has been used for obtaining the energy release rate by FEM. The values obtained by the 

new analytic approach agree reasonably with those obtained numerically.  

After having checked the analytic approach with FEM, and as different mode mixtures can be easily 

obtained, experiments can be carry out in order to determine interlaminar failure of composites under 

mixed mode I/II with the proposed procedure.  

Due to the difficulty of determining optically the crack length in ENF tests, the proposed 

configuration can be used for opening the crack with the roller at the outer side of the crack tip. In that 

case, the mode I contribution is very small but it is expected that the crack tip advance will be 

monitored more easily than in the case of ENF test. 
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