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ABSTRACT 

A novel method is presented for the determination of mode I cohesive law for the 

characterization of delamination in unidirectional carbon fiber reinforced polymer laminates. 

The energy release rate as a function of the crack advance is determined based on an 

analytical approach where the compliance variation of the specimen as crack advances is used 

in order to obtain the crack length for every pair of load and displacement data. Based on the 

same analytic approach, the crack tip opening displacement is determined as a function of the 

equivalent crack advance assuming that the Fracture Process Zone development is analogous 

to an equivalent crack advance ∆a. These measurements are used to compute the Energy 

Release Rate and crack opening displacement from which a cohesive law is determined by 

numerical differentiation. This new method provides a simple way to obtain the mode I 

cohesive law using only the load and displacement data obtained from the testing machine, 

without any external displacement measurement technique and without any assumption of the 

form of the cohesive law.  
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1. INTRODUCTION 

Carbon Fibre Reinforced Polymer composites (CFRP) are widely used in advanced structural 

design, due to their high specific strength. However, their limited resistance to matrix 

dominated failures makes delamination one of the most concerns in the design of advanced 

composite structures. Interlaminar cracks, which can initiate at a free edge or at defects from 

manufacturing, are very difficult to detect and their presence may significantly reduce the 

global stiffness and compressive strength of the structure. Thus, modeling of the interlaminar 

behavior is crucial for safe design of an advanced structural component; especially when 

initiation of cracks is studied. Most numerical and theoretical analyses evaluate the energy 

release rate based on fracture mechanics approaches. Among the available methods for the 

investigation of crack propagation by means of finite element codes, the Virtual Crack 

Closure Technique (VCCT) and the cohesive zone model (CZM) are extensively used [1-6].  

VCCT was first formulated by Rybicki and Kanninen [7]. It is computationally simple and it 

is considered an effective method for determining the energy release rate. Nevertheless, it is 

not suitable analyzing the delamination growth. 

CZM was introduced in the early sixties by Barenblatt [8] and Dugdale [9] and describes the 

local fracture processes near the crack tips as a gradual phenomenon where the separation 

takes place across a cohesive zone. It is widely used in the commercial finite element 

packages due to the applicability for analyzing the fracture of different materials under 

different load conditions. With CZM, fracture is modeled as a process where a surface in the 

material first forms a cohesive zone called the fracture process zone (FPZ). The FPZ is later 

separated into two crack surfaces. In the cohesive zone, the crack surfaces are held together 

by cohesive tractions.  

The general idea is that the fracture process is described by a local stress-relative 

displacement relation of a fracture process zone (FPZ). This relation is a constitutive law of 
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the material, named cohesive law. The fracture process zone length (LFPZ) is the distance at 

the crack plane where the cohesive tractions are acting. Figure 1 illustrates a cohesive model, 

where the traction is assumed to decrease as the relative displacement of the cohesive surfaces 

increases. For a critical displacement, the traction is zero and a new crack surface is created. 

 

Figure1. General form of a cohesive zone law 

The cohesive law plays an important role in the simulation of the fracture behavior of 

materials [10]. Thus, methods to determine the cohesive law of adhesive layers have been 

developed by several authors [11- 17] methods to characterize the cohesive law and the fibre 

bridging law in laminated composites have been developed as well [18 -23]. 

For carbon fibre reinforced composites, two different delamination processes can be 

identified: one that takes place at the close proximity of the crack tip with a sub millimeter 

sized process zone and the other with a large scale process zone related to the fiber bridging 

effect [21].  

In order to determine relative displacements at the crack tip, those methods require the use of 

external equipment as Digital Image Correlation (DIC) or Linear voltage differential 

transformer (LVDT) [12,13,15-22]. Experimental difficulties associated with the existing 

measurement methods have been reported, related to inaccurate results in the measurement of 

very small crack tip separations [13, 21].   
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In the present study, a new method to determine the cohesive law in Mode I has been 

developed. It is based on the determination of the crack length due to the compliance variation 

of the specimen as crack advances, for every pair of load and displacement data recorded 

during the test. This method has been validated in a previous study [24]. Therefore, the 

energy release rate as a function of the crack advance is determined using only the load and 

displacement data obtained from the testing machine. Based on the same analytic approach, 

the crack tip opening displacement ∆n is determined as a function of the equivalent crack 

advance. Therefore, the energy release rate G can be expressed as a function of ∆n. Finally, 

the cohesive law is obtained by numerical differentiation of G with respect to ∆n .   

2. ANALYTIC APPROACH 

The J integral, presented by Rice [25] is a path independent contour integral for analysis of 

cracks can be calculated from the integral: 

    𝐽 = ∫ �𝑊𝑑𝑦 − 𝑻 𝜕𝒖
𝜕𝑥

 𝑑𝑐�𝑐      (1) 

Where c is the counter clockwise integration path, W is the strain energy density, T the 

traction vector and u the displacement vector. By choosing c close to the crack tip, T is null 

[11,25,26] and Eq. (1) becomes in:  

    𝐽 = ∫ 𝑊𝑑𝑦𝐶 = ∫ 𝜎 𝑑∆𝑛
∆𝑛
0 + ∫ 𝜏 𝑑∆𝑡

∆𝑡
0    (2) 

where σ, τ, ∆n and ∆t are the cohesive normal stress, shear stress, opening and shear 

displacement at the crack tip, respectively.  

Furthermore it is shown that the J-integral is equivalent to Energy Release Rate G for an 

elastic material [25-29 ]  

     𝐽 = 𝐺 = 1
𝑏
�𝜕𝑈

∗

𝜕𝑎
�
𝑃

     (3) 
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where U* is the complementary strain energy stored in the body, a is the crack length, b is the 

width and the subscript P follows the partial derivative convention indicating the load variable 

is held constant during partial differentiation.  

According to Eq. (2) if the relationship among G, ∆n and ∆t is known, assuming that G is an 

exact differential, the cohesive laws can be obtained as 

   𝜎(∆𝑛,∆𝑡) = 𝜕𝐺
𝜕∆𝑛

                          𝜏(∆𝑛,∆𝑡) = 𝜕𝐺
𝜕∆𝑡

   (4) 

For a symmetric specimen, symmetrically loaded with a crack advancing along the mid-plane, 

the crack opening displacement is normal to the crack plane and the crack shear displacement 

is zero. Then, the cohesive normal stress σ depends only on the normal opening ∆n [28, 30], 

being: 

      𝜎(∆𝑛) = 𝜕𝐺
𝜕∆𝑛

     (5) 

The double cantilever beam (DCB) test shown in Fig. 2 is the most popular method used to 

calculate delamination toughness in mode I [31]. In order to achieve pure mode I, a pre-

cracked specimen is loaded at one edge by means of bonded blocks or piano hinges. . 

 

Figure 2: Schematic DCB specimen 

Recently, a method to determine G for every pair of load and displacement data during the 

test has been proposed [24]. By this method the energy release rate is determined without any 

optical measurement of the crack length, based on a model that simplifies the stress 

distribution on the uncracked part of the specimen. The crack length is obtained based on the 
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compliance after having determined the elastic properties of the specimen. Furthermore, large 

displacements effects are included in a simple manner. In this way, the crack length is 

determined continuously, and thus a plot of the R-curve can be also determined. 

Fig. 3 shows the simplified model with distributed forces based on the results of the elastic 

foundation models presented by different authors [32- 39]. These models present a common 

shape for the stress distribution ahead of the crack tip, which has been approached to the one 

caused by two triangular distributed forces q1 and q3. The maximum intensities of the 

distributed loads are q10 and q30 located at Sections 1 and 3, respectively.  

 

Figure 3: Distributed force along the beam 

The displacement of the loading point can be determined applying the Engesser–Castigliano’s 

theorem [40,29], which in the case of shear and bending is given by 

  𝛿𝑖 = �𝜕𝑈
∗

𝜕𝐹𝑖
�
𝑎

= ∫ 𝑀
𝐸𝑓𝐼𝐿

𝜕𝑀
𝜕𝐹𝑖

𝑑𝑥 + ∫ 6
5

𝑄
𝐺13𝐴𝐿

𝜕𝑄
𝜕𝐹𝑖

𝑑𝑥    (6) 

Being Fi an independent applied force; δi the displacement of the application point of Fi in the 

direction of Fi; M is the bending moment; Q is the shear force; Ef is the flexural modulus; G13 

= G12 is the shear modulus, assuming transverse isotropy; I is the second moment of area; A is 

the cross sectional area. 

The derivatives of bending moments and shear forces are obtained applying a vertical unit 

load at the end section of the clamped beam of Fig. 3. The end point displacement is: 

q30 
q10 

a x3 x2 x1 

P 
1 2 3 
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    𝛿 = 𝛿3 + 𝜃3𝑎 + 𝑃𝑎3

3𝐸𝑓𝐼
+ 6𝑃𝑎

5𝐴𝐺13
     (7) 

Where the displacement and the bending angle of the section 3 concerning the equivalent 

crack tip are: 

  𝛿3 = 4𝑃
𝑘𝑒

(𝛽4 + 𝛽2 𝑎)   𝜃3 = 𝑃
12𝐸𝑓𝐼

(𝛽3 + 3 𝛽1 𝑎)  (8) 

Being ke the tensile stiffness of the elastic foundation  𝑘𝑒 = 2𝐸3𝑏
ℎ

  where E3 is the transverse 

Young’s modulus of the material, b is the width and h is the thickness of an adjacent sub-

laminate. 

The factors β only depend on the dimensions x1, x2 and x3 which do not vary for a given 

thickness of the specimen [24]. β parameters are: 

𝛽1 =
𝑥12 + 3𝑥1𝑥2 + 4𝑥1𝑥3 + 3𝑥22 + 8𝑥2𝑥3 + 5𝑥32

𝑥1 + 2𝑥2 + 2𝑥3
 

𝛽2 =
3

𝑥3(𝑥1 + 2𝑥2 + 2𝑥3) 

𝛽3 = 𝑥12𝑥3+3𝑥1𝑥32+3𝑥1𝑥2𝑥3+3𝑥22𝑥3+6𝑥2𝑥32+3𝑥33

𝑥1+2𝑥2+2𝑥3
       (9) 

𝛽4 =
𝑥1 + 2𝑥2 + 3𝑥3

𝑥3(𝑥1 + 2𝑥2 + 2𝑥3) 

x1, x2 and x3 distances were determined in [24] based on the Engesser-Castigliano theorem. 

Taking into account Eq. (7), the compliance of DCB specimen can be written as: 

 𝐶 = 2𝛿
𝑃

= 2
3𝐸𝑓𝐼

𝑎3 + 2𝛽1
4𝐸𝑓𝐼

𝑎2 + 2 � 6
5𝐴𝐺13

+ 2𝛽2ℎ
𝑏𝐸3

+ 𝛽3
12𝐸𝑓𝐼

� 𝑎 + 4𝛽4ℎ
𝑏𝐸3

   (10) 

In order to determine the equivalent crack length, Eq. (10) can be equated to the experimental 

value computed directly from the measured load–displacement curve. As the crack length is 

the only unknown quantity, it is obtained by means of an iterative method. This procedure 

allows obtaining the crack length at any stage of the test where P and δ are evaluated. 

Taking into account that 𝑈∗ = 𝑃2

2
𝐶 According to Eq (3) and Eq. (10), G is: 
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   𝐺 = 𝑃2𝑎2

𝑏𝐸𝑓𝐼
+ 𝑃2𝛽1𝑎

2𝑏𝐸𝑓𝐼
+ 6𝑃2

5𝑏𝐴𝐺13
+ 2𝛽2ℎ𝑃2

𝑏2𝐸3
+ 𝛽3𝑃2

12𝑏𝐸𝑓𝐼
   (11) 

In the current approach the Fracture Process Zone (FPZ) development is assumed to be 

analogous to an equivalent crack advance ∆a, related to the compliance variation.  

 

Figure 4: FPZ of a quasi brittle material (top), Cohesive zone model concept (middle) [14] 

and the equivalent approach proposed in the present work (bottom). 

Then, the crack tip opening displacement ∆n  is obtained assuming that the elastic zone of Fig. 

4 moves a quantity equal to the equivalent crack advance ∆a but without changing the initial 

crack tip position as it can be seen in Fig 5. Therefore, the initial crack length ai remains 

unchanged. 

Non-damaged material Damaged material Cracked material 

Elastic zone Cohesive zone Stress free zone 
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crack 

advance Initial crack length Elastic zone 
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Figure 5: Distributed force along the beam 

In order to get the crack tip opening displacement, the unit load method and the Engesser–

Castigliano’s theorem given in Eq (6) are used applying a unit load at the initial crack tip 

position in order to get the derivatives of the bending moment and the shear force. The 

relative opening displacement at the initial crack tip is given by: 

   ∆n= 2δ3 + 2θ3∆a + P
3EfI

[−∆a3 + 3∆a2a] + 12P∆a
5AG13

  (12) 

Representing the energy release rate with respect to crack opening displacement, according to 

Eq (5) the cohesive law can be obtained by numerical differentiation. To avoid excessive 

noise of experimental data, relation G- ∆n is written as a logistic function with the following 

form [41]: 

    𝐺
𝐺𝐵

= �𝑒−
1

𝐹(∆𝑛)�
                     
������� 𝐹(∆𝑛) = − 1

𝐿𝑛� 𝐺𝐺𝐵
�
   (13) 

GB is the asymptotic value of the G and F( ∆n) a function that is obtained by a first order 

regional fit using the commercial software Data curve fit creator Add in V262[42]. According 

q10 
q30 

q10 
q30 

Initial crack 
lenght ai 

∆a 

P 

P+∆P 

1 
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to Eq (5) the cohesive law is obtained from the derivative of Eq. (13), replacing the values of 

the derivative of F( ∆n) obtained by numerical differentiation.  

    𝜎(∆) = 𝜕𝐺
𝜕∆𝑛

= 𝐺𝐵
 𝑒−1/𝐹(∆𝑛)

𝐹(∆𝑛)2
�𝑑𝐹(∆𝑛)
𝑑∆𝑛

�    (14) 

3. EXPERIMENTAL PROCEDURE 

3.1. MATERIALS AND APPARATUS 

T6T/F593 prepregs provided by Hexcel Composites, with a 50% volume-content of fiber, 

were used to produce laminates. The plates were manufactured by hot press molding. Sixteen-

layered unidirectional laminates, [0]16, were made with a Teflon film introduced during the 

piling up process in order to make the initial crack. 

Specimens were cut with a diamond disc saw, being the nominal thickness and width of the 

specimens 3 and 15 mm, respectively. The edges of the laminate were discarded for the 

preparation of the specimens. Piano hinges were bonded to the specimens and tests were 

performed using a universal testing machine MTS-Insight 10 with a load cell of 250 N. In 

order to avoid the influence of the resin rich area the specimens were precracked in mode II 

by a ENF test, increasing the cracked length around 5 mm. 

 

3.2. PRELIMINARY TESTS  

For obtaining the elastic properties Ef and G13, the procedure based on three-point bending 

tests at different spans proposed by Mujika [43] was used, resulting in a longitudinal flexural 

modulus of 116,5 GPa and a shear modulus of 4,4 GPa. Bending tests were done for each 

specimen in the uncracked zone, at five different spans. 

Specimen displacement (δspec) was determined from load–displacement curves. The 

experimental displacement (δexp) is the addition of the specimen displacement and the 

displacement due to the system compliance. 
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𝛿𝑒𝑥𝑝 = 𝛿𝑠𝑝𝑒𝑐 + 𝐶𝑠𝑃  
              
�⎯⎯⎯� 𝛿𝑠𝑝𝑒𝑐 = 𝛿𝑒𝑥𝑝 − 𝐶𝑠𝑃        (15) 

In order to analyze system compliance, a thin steel plate with bonded piano hinges was tested 

five times as a DCB specimen. As the deformation of the plate is negligible, the slope of the 

obtained load–displacement curves can be considered to be the effect of the system 

compliance. The average value obtained for the stiffness of the system was Cs = 201·10-5 

mm/N. 

The transverse Young’s modulus of the material is E3=8GPa [24] 

Cs includes the compliance effects concerning the different parts of the testing system: 

• Piano hinges bonded to the specimen. 

• Load cell. 

• Testing machine frame. 

3.3. DETERMINATION OF THE COHESIVE LAW 

An experimental load - displacement curve that corresponds to a specimen named S1 is 

shown in Fig.6. The following points are marked in the load displacement curve: 

• A: Local damage initiation point 

• B: The last point of the test 

• C: Maximum load point 

As it can be seen in Fig 6, the force linearly increases until the load reaches the local damage 

initiation point. The load nonlinearity increases until the crack initiation process is completed. 

Then, the crack tip starts propagating. 
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Figure 6: Load-Displacement experimental curve of specimen S1 

After determining the crack length at each point of the test equating Eq (10) to the 

experimental compliance, the initial crack length is determined as an average value in the load 

range where the crack length remains constant as it can be seen in Fig 7. Therefore, the point 

where the local damage initiation occurs (point A) is related to the first point where the crack 

advance is not zero. 

 

Figure 7: Crack length-load curves of specimen S1 

Having the initial crack length and the crack length at each point of the test, it is possible to 

obtain the R-curves, which shows the evolution of G with respect to the crack advance, as 

shown in Fig. 8.  
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The initial rising trend of the G corresponding to the formation of FPZ (A-C) is followed by a 

region where the self-similar crack growth takes place (C-B). It can be seen that G increases 

as the crack propagates. This effect can be due to fiber bridging effect [22, 44, 45]. Therefore 

the last point of the test (B) is marked in Fig.8 and the corresponding value is denoted as GB.  

 

Figure 8: R curve in specimen S1 

According to Eq. (12) the crack tip opening displacements can be determined at each point of 

the test, replacing the corresponding crack advance. Fig. 9 shows the G-∆n curve that 

corresponds to specimen S1. 

 

Figure 9: Relationship between the crack tip relative displacement ∆n and the energy release 

rate G of specimen S1 
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In order to avoid the excessive noise of experimental data, G- ∆n data is approached to the 

logistic function of Eq (13). F(∆n) function is fitted to experimental data by linear regional 

fitting. Fig. 10a shows the experimental data obtained from Eq. (13) and the fitted curve. In 

order to evaluate the accuracy of the fitting, the experimental data and the logistic function 

approach are plotted in Fig 10b.  

 

Figure 10: Experimental and fitted values of specimen S1: a/ F(∆n)- ∆n curve; b/ G-∆n curve. 

Replacing the values of the fitted F(∆n) and its derivatives obtained by numerical 

differentiation in Eq (14), the cohesive law is obtained using the experimental data of load 

and displacement obtained from the testing machine. 

Fig 11 shows the cohesive law of the specimen S1. The left figure shows the determined 

cohesive law for a wide range of crack opening displacements, while in the right figure the 

cohesive law is plotted for the initial crack opening displacement range. 
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Figure 11: Cohesive law of the specimen S1 

Different parts can be identified in the cohesive law (Fig 11): linear elastic behavior, damage 

initiation, de-cohesion and fiber bridging. [46, 47] 

1. Linear elastic behavior: Initially, before any damage occurs, the behavior is close to 

linear elastic. The initial penalty stiffness can be determined as follows [46]: 

𝑘𝑝 =
𝜎𝑚𝑎𝑥 
∆0

 

where ∆0 is the crack tip displacement to 𝜎𝑚𝑎𝑥. 

2. Damage initiation: The point A, defined as the point where the crack advance occurs, 

is assumed as the point where the damage starts. The crack tip displacement for this 

point is denoted as ∆A, the stress σA and the value of G corresponding to this point is 

assumed as the damage initiation Energy Release Rate denoted as Gi
IC.  

3. De-cohesion: On the other hand, the crack tip displacement for the maximum load 

point C is assumed as the point where de-cohesion takes place and it is denoted as ∆C, 

which is the critical displacement point where a new crack surface is created. ∆aC is 
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assumed as the small scale cohesive fracture zones length (LFPZ_C) [23, 48]. The value 

of G at this point is the propagation Energy Release Rate denoted as Gp
IC.  

4. Fiber bridging: Finally in the wake of crack growing, fiber bridging occurs and this 

process increases the total fracture energy significantly. As it can be seen in Fig 11, 

the bridging stress is very low and the associated bridging zone is a large scale fracture 

zone. A mean value of that stresses named σB can be determined by the slope of the 

G-∆n curve between points C and B in Fig. 9 [19]. 

The most relevant values determined for the specimen S1 are summarized in table 1. It is 

worth noting that G increases significantly between C and B in spite of the low value of σB.  

∆o 

(µm) 

σmax 

(MPa) 

kp 

(kN/mm3) 

σA 

(MPa) 

Gi
IC 

(J/m2) 

∆C 

(µm) 

LFPZ_C 

(mm) 

Gp
IC           

(J/m2) 

σB 

(MPa) 

GB 

(J/m2) 

2.7 32.4 12.0 17.6 48.4 35 1.33 252.9 0.2 450 

 

Table 1 Results for the specimen S1 

The penalty stiffness of the cohesive law must be equal to the tensile stiffness of the elastic 

foundation kp=ke/b=2E3/h . In the present study the nominal value of the penalty stiffness 

obtained with ke is 10.6 kN/mm2. On the other hand, according to the data obtained from the 

cohesive law of Fig. 11 the penalty stiffness of specimen S1 is 12 kN/mm3. 

Regarding the prediction of maximum traction, according to Sorensen et al. [47] it should be 

equal to the transverse tensile strength of a transversely isotropic unidirectional composite, 

which in this case is 55 MPa.  

In Fig. 11 it can be seen that σA corresponds to the transition stress in the softening law. 

Furthermore, the area of the cohesive law for the transition point represents Gi
IC [46, 47].  
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In order to check the applicability of the proposed data reduction method and its suitability to 

obtain the cohesive law in composite materials, 4 different specimens with 4 different initial 

crack lengths have been tested. Results have been obtained from the initial pre-cracked 

specimens. The nominal initial crack lengths of the specimens were: 

S1: 30 mm; S2: 45 mm; S3: 40 mm; S4: 50 mm 

The cohesive laws of the specimens are shown in Figure 12. The parameters explained 

previously are presented in Table 2.  

 

Figure 12: Cohesive law of S1, S2, S3 and S4 specimens 

The most relevant values determined are shown in Table 2. 
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S2 2.8 33.0 11.8 14.6 84.1 46 1.79 256.4 0.15 377 

S4 3.3 37.5 11.4 11.3 95.0 62 2.29 271.6 0.11 357 

Mean 2.9 33.9 11.6 15.2 87.3 51.3 2.0 256.7 0.17 404.5 

SD ±0.3 ± 2.4 ±0.3 ±2.9 ±10.6 ±13.2 ±0.5 ±10.9 ± 0.05 ±44.5 

 

Table 2 Results of S1, S2 S3 and S4 specimens 

4. SUMMARY AND CONCLUSIONS  

In the present paper, a new method for the determination of mode I cohesive law for 

unidirectional composite is proposed. The approach is based on the correlation between the 

developed Energy Release Rate (G) as a function of crack tip opening displacement (∆n). The 

Resistance Curve are determined obtaining the G as a function of the crack advance based on 

the compliance variation of the specimen as crack advances. The crack tip opening 

displacement is determined as a function of the equivalent crack advance assuming that the 

Fracture Process Zone development is analogous to an equivalent crack advance, related to 

the compliance variation. These measurements are used to compute the Energy Release Rate 

and crack opening displacement. A logistic function is fitted to the G-∆n curve and the 

experimental cohesive law is determined by numerical differentiation. 

Experiments performed on a carbon/epoxy material are evaluated using the proposed method. 

The initiation Gi
IC, the critical Gp

IC and the cohesive strength obtained are in the order of 86 

J/m2, 256 J/m2 and 34 MPa, respectively.  
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The proposed method provides a simple way to obtain the mode I cohesive law using only 

load-displacement data provided by the universal testing machine, without the need of any 

external displacement measurement and without assuming the shape of the cohesive law. 
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