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Abstract. Network theory can be useful for studying complex systems such as those that arise, for example,
in physical sciences, engineering, economics and sociology. In this paper, we prove the observability
of parabolic equations on networks with loops. By using a novel Carleman inequality, we find that the
observability of the entire network can be achieved under certain hypothesis about the position of the
observation domain. The main difficulty we tackle, due to the existence of loops, is to avoid entering into
a circular fallacy, notably in the construction of the auxiliary function for the Carleman inequality. The
difficulty is overcome with a careful treatment of the boundary terms on the junctions. Finally, we use
the observability to prove the null controllability of the network and to obtain the Lipschitz stability for an
inverse problem consisting on retrieving a stationary potential in the parabolic equation frommeasurements
on the observation domain.

1. Introduction

1.1. Presentation of the problem and state of the art

Network theory can be useful for studying complex systems such as those that
arise, for example, in physical sciences, engineering, economics and sociology. These
systems can be modeled as networks, also known as metric graphs, and their elements
and interactions or links are identified respectively by vertices and edges. During the
last decades, the use of networks has been helpful and effective, among others, in the
study of pipes, neural systems (the brain can be thought of as a network of neurons),
the flow of traffic on roads, the global economy and the human circulatory system
(see, for example, [9, Chapter 9], [11,22,43,55]).
In this work, we consider the propagation of heat on a network with loops. We seek

to control these networks by acting in its interior with a source term, and to estimate the
solutions with an observation domain located in the interior of the network. Indeed,
the main purpose of this research is to extend the results of [38] to networks with
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loops. This is relevant considering that loops arise naturally in pipe systems, transport
systems, etc.

Recent important works involving the control of parabolic equations on networks
are the followings: [56], where the controllability of the discretized heat equation
is studied, [12], where bilinear controls are analyzed on networks, [52], where the
optimal control is studied in time-fractional diffusion equations and, [5], where the
controllability is analyzed with vanishing viscosity. Note that the literature related to
the controllability of hyperbolic equations on networks is more extensive, on which
we may highlight the book [15] and the paper [37]. Particularly, [15] mainly ana-
lyzes the problem of propagation, observation and control of waves on planar one-
dimensional networks, using groundbreaking developments related to non-harmonic
Fourier series, Diophantine approximation, graph theory and wave propagation tech-
niques (d’Alembert formula, for example).

Let us nowoutline themain breakthroughs in the literature regarding the background
and the trajectory of the study of controllability for the heat equation:

• The first results on the study of the null controllability of the heat equation date
back to the 1970s, when the controllability is derived from that of the wave equa-
tion. In [57], boundary controllability is proved for parabolic PDEs using some
observability estimates of hyperbolic equations. Then, in [53,54] a null con-
trollability result is given for the heat equation using the transmutation method
and proving more accurate bounds of the controllability cost. The transmutation
method relates the null controllability of the heat equation to the exact control-
lability of the wave equation in a direct way, different from the indirect complex
and harmonic analysis method used in [57]. Similar methods allow to obtain
more precise results, as: [23], where the estimates on the cost of controllability
are improved assuming the geometric control condition, [16], where a lower
bound of the reachable set of the one-dimensional heat equation is obtained and,
[17], where better bounds were obtained for the 1D heat equation. There are
other results such as [60], where the work of [53] is improved by giving new
estimates on the norm of the operator associating the minimal norm control to
any initial state driving the system to zero.

• In [47] in 1995, the control to zero of the heat equation is constructed thanks
to some spectral inequalities proved there by using Carleman inequalities and
duality arguments. Based on this method, several studies have been carried out:
– The null controllability is studied when the control domain is a measurable
set with positive measure in [2,62,65].

– New observability inequalities are presented in [3], where bounded Lipschitz
locally star-shaped domains are studied, and with these inequalities the con-
trollability is obtained.

– Appropriate observability inequalities are proved and null controllability of
parabolic equations with fourth or higher order derivatives is obtained in [24,
25].
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• A new method is provided in 1996 in [35], where an observability inequality
is proved using global Carleman parabolic inequalities and energy methods.
It extends the result of null controllability to parabolic equations whose second
order coefficient depends on space and time variables. This outcome also allowed
other researchers to later obtain controllability results for more general parabolic
linear and non-linear equations as in [31,32,35]. Additional examples are given
when the diffusion coefficient is not continuous in [7,20,46]. Moreover, it is
well-known that this method can be generalized to cubes and to any Cartesian
product ofC2 domains (see, for instance, [36]). More recently, the heat equation
in pseudo-cylindrical domains has been studied in [4].

• Finally, the flatness approach introduced in [34] provides the possibility to prove
the null controllability of the heat equation in a bounded cylinder in [51], giving
an explicit and very regular control. The flatness approach parametrizes the
solution of the equation and the control by the derivatives of a flat output. This
technique is first introduced for parabolic one-dimensional equations in [44] for
motion planning.

The paper is organized as follows. In Sect. 1.2 we recall basic definitions from
network theory and its functional framework. In Sect. 1.3, we introduce the control
problem based on a parabolic system that models the dynamics of the flux in a network
with loops, we next set up the required hypotheses for the observation domain in
order to control those networks, and finally state the main results regarding the null
controllability and the existence of a feedback control. In Sect. 1.4, we complete the
introduction by presenting a result that gives us a Lipschitz stability to obtain the
solution of an inverse problem related to our parabolic system. Then, in Sect. 2 we
prove an observability inequality for our system. In particular, in Sect. 2.1 we construct
explicitly the necessary auxiliary function for the Carleman inequality, proved later in
Sect. 2.2. Lastly, in Sect. 3 we present applications of the previous Carleman inequality
to the null and feedback controllability (see Sect. 3.1) and to an inverse problem (see
Sect. 3.2), and we conclude with some open problems related to Control and Network
research areas (see Sect. 3.3).

1.2. Basic definitions

We first define some concepts related to graph theory that we use in this work. Let
G = (V, E) be a graph.

• An edge e ∈ E that is incident to the vertices v and ṽ ∈ V is expressed as
e = vṽ, where v and ṽ are the ends of e. The set of ends of e is denoted by V(e).
Similarly, for every vertex v ∈ V , E(v) denotes the set of edges incident to v.
The degree of a vertex v ∈ V , denoted by d(v), is |E(v)|.

• V0 = {v : |E(v)| ≥ 2} denotes the set of inner vertices, and V∂ = V\V0 denotes
the set of boundary vertices of the graph.
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• A sequence of vertices v0v1 . . . vn−1vn such that vi ∈ V for all i = 0, . . . , n and
such that vi−1vi ∈ E for all i = 1, . . . , n

is called a walk. If all the vertices are distinct, it is called a path, and if all the
vertices are distinct except v0 = vn it is called a cycle.

• A graph is connected if there is a walk joining each pair of vertices.
• A graph isomorphic to ({v0, . . . , vn}, {v0v1, . . . , vn−1vn}) for some n ∈ N

is called path graph.

We define a network as a tuple G = (V, E, I), where V is a finite set of vertices,
E ⊂ V × V is the set of edges, and I is the identification of each edge e = vṽ and
its ends v and ṽ with a closed interval [0, Le] and the ends 0 and Le respectively.
Formally, the identification can be viewed as a function from E to X × V × V , where
X is the set of compact intervals. Notably, I (e) = ([0, Le], v, ṽ), where v is the end
of e identified with 0, and ṽ is the other end of e, which we identify with Le. This
definition is also referred in the literature as metric graph. With the identification I,
for every edge e ∈ E , we define the following numbers for the vertex v identified with
0 and for the vertex ṽ identified with Le:

ne(v) = −1 and ne(ṽ) = 1.

This allows to define the operator ∂ne(v)y = ne(v)∂x ye(v), which can be shorten to
∂ne y when the vertex is clear. Usually, we make a small abuse of notation and do not
write the identification I explicitly when we denote the network G.

In this paper we work in the functional spaces Wk,p
pw (E), which denotes the set

of functions that belong to Wk,p(e) for all e ∈ E , k ∈ N and 1 ≤ p ≤ ∞, and
W 1,p(E) := Wk,p

pw (E) ∩ C0(E). Here “pw” stands for piecewise. Similar definitions

apply to Hk
pw(E) and Hk(E). In this context, given a function f ∈ Wk,p

pw (E), we

define by ∂x f the derivative in each of the edges. Clearly, if f ∈ Wk,p
pw (E), then

∂x f ∈ Wk−1,p
pw (E).

1.3. The controllability result

The problem that we study here is the dynamics of the flux and the control, which
can be modelled by the following parabolic system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∂t y − μ∂2xx y + b∂x y + cy = f 1ω, in (0, T ) × E,

y = 0, on (0, T ) × V∂ ,

yei = ye j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne y
e = γ y, on (0, T ) × V0,

y(0, ·) = y0, in E .

(1.1)

In this model y denotes the flux of the heat on the entire network. Throughout this
paper, we denote the restriction of a function to an edge e by adding the superscript
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e. In addition, a and μ are positive coefficients and b and c are coefficients which
characterize the properties of the pipes of the network (roughness or properties of the
heat flux, for example). Moreover, γ is a real coefficient measuring the flux of the
heat on junctions, and ω ⊂ E is the control domain. Here, when writing ω ⊂ E we
make a small abuse of notation to mean ω ⊂ ∪e∈E e. In addition, by coefficients we
mean functions which model the properties of the systems like the heat diffusivity
and, unless stated otherwise, depend on the time and spatial variables.
It is trivial to prove in system (1.1) the usual energy estimations in L2(0, T ; H1(E))∩

C0([0, T ]; L2(E)) and regularity result in L2(0, T ; H2
pw(E)) ∩ H1(0, T ; L2(E)) for

parabolic equations. This can be done by multiplying the first equation of the system
by y and yt and integrating it in (0, T ) × E (see [21] for a particular case).
In order to solve the controllability and inverse problemswith respect to theparabolic

system (1.1),we study the observability properties of the adjoint system,which is given
by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a∂tϕ − μ∂2xxϕ − ∂xbϕ − b∂xϕ + cϕ = 0, in (0, T ) × E,

ϕ = 0, on (0, T ) × V∂ ,

ϕei = ϕe j , on (0, T ) × V0, ∀ei , e j ∈ E(v),

∑

e∈E(v)

μe∂neϕ
e =

⎛

⎝−
∑

e∈E(v)

nebe + γ

⎞

⎠ϕ, on (0, T ) × V0,

ϕ(T, ·) = ϕT , in E .

(1.2)

System (1.2) might not be observable unless the control domain intersects a suffi-
cient number of edges. In particular, in order to avoid some of those non-observable
cases, we assume that the control domain intersects a sufficient number of edges:

Hypothesis 1. (Existence of an indexing function) Let G = (V, E) be a network and
ω ⊂ E an open subdomain. We suppose that:

1. ω intersects all the cycles of G. That is, if v1, . . . , vn ∈ V such that e1 :=
v1v2, . . . , en−1 := vn−1vn, en := vnv1 satisfy ei ∈ E for all i = 1, . . . , n, then
there is k ∈ {1, . . . , n} such that ek ∩ ω 
= ∅.

Moreover, we suppose that there exists a function u : {e ∈ E : e∩ω = ∅} �→ V0 such
that:

2. u is injective.
3. e is incident to u(e).

Roughly speaking, the state of the equation in the edge e is controlled by ω if
e ∩ ω 
= ∅, and by u(e) otherwise, which is controlled by the rest of the adjacent
edges. Identifying the right hypothesis, in the sense that allows us to prove the results
without being too restrictive, is not trivial and is one of the contributions of our paper.
Indeed, the main breakthrough with respect to the previous work, and notably [38],
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Figure 1. An example of a graph on which the heat equation is not
always controllable. All the edges are identified with the interval
[0, 1]. Moreover, the vertex on the tail of the arrow is identified with
0, and that of the head with 1. The control domain ω is represented
by the dashed edges

is to make sure that we do not enter a circular reasoning fallacy. This is done with
Hypothesis 1, as the proof of the controllability follows in a fluid way.

Remark 1.1. (On the necessity of having controls in cycles) Item 1 in Hypothesis 1 is
necessary to ensure controllability. Let us consider, for example, a networkG = (V, E),
with V = {v1, . . . , v6}, and E = {e1, e2, e3, e4, e5, e6} for e1 = v1v4 � [0, 1],
e2 = v2v5 � [0, 1], e3 = v3v6 � [0, 1], e4 = v4v5 � [0, 1], e5 = v5v6 � [0, 1] and
e6 = v6v4 � [0, 1]. In addition, we considerω = e1∪e2∪e3 (see Fig. 1). It is clear that
ω does not intersects the central cycle, but there exists a function that satisfies Items
2 and 3 of Hypothesis 1, for instance u(e4) = v5, u(e5) = v6 and u(e6) = v4. The
parabolic system (1.1) may not be approximately controllable on such a network. For
instance, if a = μ = 1, γ = 0 and b = c = 0, then the network is not approximately
controllable. In fact, for those parameters the system (1.2) does not satisfy the unique
continuation principle, given that there is an eigenfunction of the Laplacian null on
e1, e2 and e3; for example:

ψ(x) =
{
0, x ∈ e1 ∪ e2 ∪ e3,

sin(2πx), x ∈ e4 ∪ e5 ∪ e6.

Remark 1.2. (On the necessity of injectivity in Hypothesis 1) Item 2 in Hypothesis
1 is necessary to ensure controllability. We can find graphs where we cannot define
an injective function u as in Hipothesis 1, even if Items 1 and 3 can be satisfied.
Let us consider, for example, a network G = (V, E), with V = {v1, . . . , v9}, and
E = {e1, e2, e3, e4, e5, e6, e7, e8, e9} for e1 = v1v7 � [0, 1], e2 = v2v7 � [0, 1],
e3 = v3v8 � [0, 1], e4 = v4v8 � [0, 1], e5 = v5v9 � [0, 1], e6 = v6v9 � [0, 1],
e7 = v7v8 � [0, 1], e8 = v8v9 � [0, 1] and e9 = v9v7 � [0, 1]. Also, we consider
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Figure 2. Another example of a graph on which the heat equation is
not always controllable. All the edges are identified with the interval
[0, 1]. Moreover, the vertex on the tail of the arrow is identified with
0, and that of the head with 1. The control domain ω is represented
by the dashed edges

ω = e7 ∪ e8 ∪ e9 (see Fig. 2). In that network, we cannot find any injective function
u because |V0| = |{v7, v8, v9}| = 3 and because |{e1, e2, e3, e4, e5, e6}| = 6. The
system (1.1) may not be approximately controllable on such a network. For instance,
if a = μ = 1, γ = 0 and b = c = 0, then the network is not approximately
controllable. In fact, for those parameters the system (1.2) does not satisfy the unique
continuation principle, given that there is an eigenfunction of the Laplacian null on
e7, e8 and e9; for example:

ψ(x) =
{
sin(2πx), x ∈ e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5 ∪ e6,

0, x ∈ e7 ∪ e8 ∪ e9.

Remark 1.3. (Identification of edges) Let G = (V, E) be a network and let ω be a
control domain such that Hypothesis 1 is satisfied with an indexing function u that
we fix. In order to identify an edge e such that ω ∩ e = ∅ with an interval [0, Le], we
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establish that the end identified with Le is the vertex u(e). This assignment simplifies
some computations in the proof of Proposition 2.1.

Themain observability result in this paper is a Carleman inequality (see Proposition
2.5 in Sect. 2.2). With that inequality, we prove the following null controllability result
regarding open-loop control:

Theorem 1.4. (Controllability of the heat equation on networks with loops) Let
G = (V, E) be a network satisfying Hypothesis 1, a, μ ∈ W 1,∞((0, T ); L∞(E)) ∩
L∞((0, T );W 1,∞

pw (E)) such that inf a, inf μ > 0, b ∈ L∞((0, T );W 1,∞
pw (E)),

c ∈ L∞((0, T ) × E) and γ ∈ L∞((0, T ) × V0). Then, there exists C > 0 such
that for all y0 ∈ L2(E) there is f ∈ L2((0, T ) × ω) such that:

‖ f ‖L2((0,T )×ω) ≤ C‖y0‖L2(E),

and the solution of (1.1) satisfies y(T, ·) = 0.

Theorem 1.4 is proved in Sect. 3.1 by duality.
Next, we focus on feedback control, also known as closed-loop control, in order to

prove the stabilization properties for the simplified system of (1.1) when b = c = 0.
Many applications of feedback type controls can be found in industry and engineer-

ing: water level controller, air conditioner, adaptive measurement in quantum systems
or servo voltage stabilizer (see [1,18,61,66]). The study and construction of feed-
back controls is a well-established research topic (see for instance, [13,48,58] and the
survey [14]) and, in this work, we obtain a feedback control from Theorem 1.4.
In the works [58,59] we see the relation between the mild solution of Riccati equa-

tion and the null controllability of a system. The purpose of introducing Riccati equa-
tions into the study of control theory (see [42] and [63,Chapter 2]) is to design feedback
controls for linear quadratic control problems. We apply Theorem 1.4 to obtain the
existence of feedback controls for a simplified version of system (1.1), based mainly
on the theory of Riccati equations and it is formulated in Theorem 1.5. In order to
state our result we need first to define the following concepts:

• A and B are bounded operators defined as:

A : H1
0 (E) ∩ H2(E) −→ L2(E) and B : L2(E) −→ L2(E).

• ∑+
(L2(E)) is the Banach space of all symmetric and positive operators acting

in L2(E).
• CS

([0, T );∑+
(L2(E))

)
denotes the set of all mappings S : [0, T ) −→

∑+
(L2(E)) such that S(·)z0 is continuous in [0, T ) for each z0 ∈ L2(E).

• For each T > 0 and g ∈ L2((0, T ) × E), we denote (g(t))(x) := g(t, x) for
(t, x) ∈ (0, T ) × E .

• A∗ and B∗ denote the adjoint operators of the above mentioned corresponding
operators A and B.
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• A function P is called a mild solution to the Riccati equation:

P ′(t) + A∗P(t) + P(t)A − P(t)BB∗P(t) = 0 on [0, T ), (1.3)

if for each δ ∈ (0, T ) the function P satisfies:

P(T − δ − t)z0 = et A
∗
P(T − δ)et Az0

−
∫ t

0
e(t−s)A∗

P(T − δ − s)BB∗P(T − δ − s)e(t−s)Az0ds,

for each t ∈ [0, T −δ] and z0 ∈ L2(E), and the equality lim
(s,z)→(T,z0)

〈P(s)z, z〉 =
+∞ holds for each z0 ∈ L2(E) and z0 
= 0.

Theorem 1.5. (Existence of feedback control) LetG = (V, E) be a network satisfying
the hypotheses of Theorem 1.4. Then, for each z0 ∈ H1

0 (E) and T > 0, there exists
the following feedback control:

f (t, x) := −a−11ωP(t)y(t),

for the solution y to (1.1) with b = c = 0 and a, μ ∈ R constant coefficients, where
P ∈ CS([0, T );∑+

(L2(E))) is the unique mild solution of the Riccati system (1.3)
for A = a−1μ∂2xx and B = a−11ω.

Theorem 1.5 is proved in Sect. 3.1 by using auxiliary results from [58].

1.4. Application to the resolution of inverse problems

Carleman estimates can also be used to obtain results in the field of inverse problems,
which is an additional objective of our paper. In fact, the link between Carleman
inequalities and their applications is well known. Some important references regarding
this topic include [39,40], and detailed surveys are included in [6,64].
In this paper, we seek to generalize the results of [38] to systems with loops. With

that purpose, let us consider the system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t y − μ∂2xx y + py = 0, in (0, T ) × E,

y = 0, on (0, T ) × V∂ ,

yei = ye j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne y
e = γ y, on (0, T ) × V0,

y(0, ·) = y0, in E,

(1.4)

for μ a piecewise constant function, γ a real parameter, y0 the initial state and p the
static potential. Moreover, we denote by y[p, y0] the solution of (1.4).

Our objective is to recover the potential p by making measurements on the flux of
the heat at a time t0 > 0 and also on the observation domain ω but throughout the
whole time interval (0, T ). In particular, we prove the following result:
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Theorem 1.6. (Resolution of an inverse problem) Let G = (V, E) be a network sat-
isfying Hypothesis 1, p ∈ L∞(E), r > 0 and y0 ∈ L2(E) such that y[p, y0] ∈
H1(0, T ; H2

pw(E)) ∩ H2(0, T ; L2
pw(E)) and such that for some t0 ∈ (0, T ) the fol-

lowing estimate holds:

|y[p, y0](t0, ·)| ≥ r in E . (1.5)

Then, for any m > 0, there is a constant C(m, r, T, ‖∂t y[p, y0]‖L∞((0,T )×E)) such
that for any q ∈ L∞(E) satisfying:

‖q‖L∞(E) ≤ m,

we have:

‖q − p‖L2(E) ≤ C
(‖y[p, y0](t0, ·) − y[q, y0](t0, ·)‖H2(E)

+‖y[p, y0] − y[q, y0]‖H1(0,T ;L2(ω))

)
. (1.6)

The proof of Theorem 1.6 can be found in Sect. 3.2. In fact, this result is an easy
consequence of the Carleman inequality proved in Sect. 2.2.

2. The observability problem

In this section we prove the observability inequality for system (1.2). With that
purpose, in Sect. 2.1 we construct an auxiliary function of Fursikov–Imanuvilov type,
and in Sect. 2.2, using appropriate weights, we obtain the observability of system (1.2)
with a Carleman inequality.

2.1. Construction of the auxiliary function

In this section we construct an auxiliary function that is required to define the
Fursikov–Imanuvilov weights in Sect. 2.2. Throughout this section we consider an
open subdomain ω̃ ⊂ ω such that ω̃ ⊂ ω and such that, for all e ∈ E , ω̃ ∩ e 
= ∅ if
and only if ω ∩ e 
= ∅.
The construction of the auxiliary function is one of the main contributions of the

paper. We need to make sure that for all edge e, if e ∩ ω̃ 
= ∅, the maximum of ηe

is achieved in ω̃ and if e ∩ ω̃ = ∅, the maximum of ηe is achieved on u(e), being
its derivative small near u(e). As the “smallness” depends on the coefficients of the
system, we get a family of auxiliary functions whose derivatives near u(e) are as small
as needed, and such that they are uniformly bounded in W 2,∞

pw (E).

Proposition 2.1. (Construction of the auxiliary function) Let G = (V, E) be a net-
work, and ω̃ be a domain satisfying Hypothesis 1 with the indexing function u. We
identify the edges of G as in Remark 1.3. Then, there is C > 0 such that for all
δ ∈ [0, 1] there exists a function η satisfying:

1. The function η ∈ C0(E) ∩ C2
pw(E) and ‖η‖W 2,∞

pw
≤ C.
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2. For all edges e such that e ∩ ω̃ = ∅, then:
• ∂xη

e ≥ δ on e,
• ∂neη

e(0) = −∂xη
e(0) = −1,

• ∂neη
e(Le) = ∂xη

e(Le) = δ.
3. If an edge e that we identify with [0, Le] satisfies e ∩ ω̃ 
= ∅, then:

• |∂xη| = 1 on e\ω̃,
• ∂neη

e(0) = −∂xη
e(0) = −1,

• ∂neη
e(Le) = ∂xη

e(Le) = −1.

The proof of the existence of such function is based on an induction on the number
of edges of G, and is one of the contributions of the paper. In order to prove Proposition
2.1, we first need to study the case of an edge assuming we have some restrictions on
the boundary. This is done with Lemmas 2.2 and 2.3, whose proofs are standard (see
[35]), but which we prove for the sake of completeness. We first study the construction
of the auxiliary function for edges that have no intersection with ω̃.

Lemma 2.2. (Extension of the auxiliary function with one constraint) Let ω̃ ⊂ E be
an open subdomain, e � [0, Le] be an edge such that ω̃ ∩ e = ∅, R ∈ R, p ∈ {0, Le}
and δ ∈ [0, 1]. Then, there is a function ηe ∈ C2(e) such that:

• ∂xη
e ≥ δ on [0, Le],

• ‖ηe‖L∞(0,Le) ≤ |R| + Le, ‖∂xηe‖L∞(0,Le) ≤ 1, ‖∂xxηe‖L∞(0,Le) ≤ 1
Le ,

• ∂neη
e(0) = −∂xη

e(0) = −1,
• ∂neη

e(Le) = ∂xη
e(Le) = δ,

• ηe(p) = R.

Proof. For the case p = 0 it suffices to consider:

ηe(x) = R + x − 1 − δ

2Le
x2, ∀x ∈ [0, Le].

Indeed,

• ∂xη
e(x) = 1 − 1−δ

Le x , so, on [0, Le] we have that:

∂xη
e(x) ≥ ∂xη

e(Le) = 1 − (1 − δ) = δ.

• As ηe is increasing on [0, Le] and as δ ≤ 1:

‖ηe‖C0([0,Le]) ≤ max{|ηe(0)|, |ηe(Le)|}
= max

{

|R|,
∣
∣
∣
∣R + Le 1 + δ

2

∣
∣
∣
∣

}

≤ |R| + Le.

• ∂xη
e(x) = 1 − 1−δ

Le x , so ‖∂xηe‖L∞(0,Le) = ∂xη
e(0) = 1. Indeed, ∂xη

e is
decreasing and positive on [0, Le].

• ∂xxη
e = δ−1

Le , so ‖∂xxηe‖C0([0,Le]) ≤ 1
Le .

• Clearly, −∂xη
e(0) = −1, ∂xηe(Le) = δ and ηe(0) = R.
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Similarly, for p = Le we have the auxiliary function:

ηe(x) = R + δ(x − Le) + δ − 1

2Le
(x − Le)2, ∀x ∈ [0, Le].

Indeed,

• ∂xη
e(x) = δ + 1−δ

Le (Le − x), so, on [0, Le] we have that:
∂xη

e(x) ≥ ∂xη
e(Le) = δ.

• As ηe is increasing on [0, Le] and as δ ≤ 1:

‖ηe‖C0([0,Le]) ≤ max{|ηe(0)|, |ηe(Le)|}
= max

{∣
∣
∣
∣R − Le 1 + δ

2

∣
∣
∣
∣ , |R|

}

≤ |R| + Le.

• ∂xη
e(x) = δ − 1−δ

Le (x − Le), so ‖∂xηe‖L∞(0,Le) = ∂xη
e(0) = 1. Indeed, ∂xηe

is decreasing and positive on [0, Le].
• ∂xxη

e = δ−1
Le , so ‖∂xxηe‖L∞(0,Le) ≤ 1

Le .
• Clearly, −∂xη

e(0) = −1, ∂xηe(Le) = δ and ηe(Le) = R.

�
Next, in the following Lemma, we study the construction of the auxiliary function

for edges which intersect ω̃.

Lemma 2.3. (Extension of the auxiliary function with two constraints) Let ω̃ ⊂ E
be an open subdomain, e � [0, Le] be an edge such that ω̃ ∩ e 
= ∅ and R1, R2 ∈ R.
Then, there is a function ηe ∈ C2(e) such that:

• ‖ηe‖W 2,∞
pw (0,Le)

≤ C(|R1|, |R2|, Le, ω̃), for C increasing with |R1| and |R2| for
a fixed Le and ω̃,

• |∂xηe| = 1 on [0, Le]\ω̃,
• ∂neη

e(0) = −∂xη
e(0) = −1,

• ∂neη
e(Le) = ∂xη

e(Le) = −1,
• ηe(0) = R1, ηe(Le) = R2.

Proof. Let us fix an interval (p1, p2) ⊂ ω̃ ∩ e and let us consider χ a C∞ function
such that χ(x) = 0 for all x ≤ 0 and χ(x) = 1 for all x ≥ 1. Then, it suffices to
consider:

ηe(x) = (R1 + x)χ

(

1 − x − p1
p2 − p1

)

+ (R2 + Le − x)χ

(
x − p1
p2 − p1

)

.

It is easy to prove that ηe satisfies the required properties. In particular, the second
one is satisfied because (p1, p2) ⊂ ω̃ implies [0, Le]\ω̃ ⊂ [0, p1] ∪ [p2, Le]. �
Remark 2.4. Of course, Lemma 2.3 may be applied in a context of fewer constraints.
In that case, we proceed as follows: if we are given the value that ηe takes in Le, that
is, R2, we assume that R1 = 0, and if we are given the value that ηe takes in 0, that is,
R1, we assume that R2 = 0. This is relevant for proving Proposition 2.1.
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Proof of Proposition 2.1. Weprove the existence by induction on the number of edges
on graphs that satisfy Hypothesis 1 and are connected. If they are not connected, it
suffices to apply the result to each of the connected components.
The base case, a connected graph with one edge, is trivial, as a metric graph with

one edge is just a segment, and the intersection with ω̃ is non-trivial (since V0 = ∅,
ω̃ intersects the segment). Consequently, the existence on the base case follows from
Lemma 2.3 applied with R1 = R2 = 0.
Next, we consider a network G = (V, E) with an indexing function u and suppose

that the result is proved for any graph G′ = (V ′, E ′) such that |E ′| ≤ |E | − 1 and
which satisfies Hypothesis 1. We recall that each edge is identified with a segment
[0, Le] and that the identification of the edges is done in accordance with Remark 1.3;
that is, when ω̃ ∩ e = ∅, the value Le is identified with the vertex u(e). Also, in the
following, if we have an indexing function u defined in all e ∈ E such that ω̃ ∩ e = ∅
and E ′ ⊂ E , u|E ′ denotes the indexing function u restricted to all e ∈ E ′ which satisfies
that ω̃ ∩ e = ∅. This is a small abuse of notation but which makes the proof more
readable.
In order to prove the inductive case, we consider a division of cases based on the

structure of G, whose union covers all possible graphs:

1. G = (V, E) is a path graph. For the sakeof simplicitywedenoteV = {v0, . . . , vn}
and E = {e1, . . . , en}, where ei = vi−1vi ∀ i = 1, . . . , n. Let k ∈ {1, . . . , n} be
such that ek ∩ ω̃ 
= ∅ (as |V0| = n − 1 and |E | = n, such edge exists). Then, we
have the following three possibilities:

(a) e1 ∩ ω̃ = ∅. Then, necessarily u(e1) = v1, as it is the only end of e1 that
is in V0. Thus, G′ = ({v1, . . . , vn}, {e2, . . . , en}) satisfies Hypothesis 1 with
u = u|{e2,...,en} (if e2∩ ω̃ = ∅, then u(e2) = v2 because of the injectivity of u).
Thus, there is a function η which satisfies the conclusion of Proposition 2.1
in G′. Finally, we can extend it to e1 by using Lemma 2.2 with R = ηe2(v1)

and p = Le1 , as by Remark 1.3, v1 is the end identified with Le1 .
(b) en ∩ ω̃ = ∅. By symmetry this is analogous to the previous case.
(c) e1 ∩ ω̃ 
= ∅ and en ∩ ω̃ 
= ∅ (see Fig. 3 for an example). Then, there is k ∈

{1, . . . , n−1} such that vk 
∈ range(u). Indeed, the number of edges that do not
intersect ω̃ is at most n−2. Thus, the graph G′ = {{v0, . . . , vk}, {e1, . . . , ek}}
satisfies the inductive hypothesis with u = u|{e1,...,ek }, so we may define a
function η1 in G′ satisfying the conclusions of Proposition 2.1. Similarly,
G′′ = {{vk, . . . , vn}, {ek+1, . . . , en}} satisfies the inductive hypothesis with
u = u|{ek+1,...,en}, so we may define function η2 in G′′ satisfying the conclu-
sions of Proposition 2.1. Consequently, we can construct the function η as
follows:

η(x) =
{

η1(x), x ∈ ∪k
i=1ei ,

η2(x) − η2(vk) + η1(vk), x ∈ ∪n
i=k+1ei .
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Figure 3. An example for Case 1c, where the domain ω̃ is rep-
resented by the dashed edges. The tail and head of each arrow
denotes the vertices identified with 0 and Le respectively. Here
u(e2) = v1, u(e3) = v3 and u(e4) = v4, and consequently
v2 
∈ range(u). For this example, we define η1 in G′ =
{{v0, v1, v2}, {e1, e2}} and η2 in G′′ = {{v2, v3, v4, v5}, {e3, e4, e5}}
with the inductive hypothesis. With that, we define η as follows:

η(x) =
{

η1(x), x ∈ e1 ∪ e2,

η2(x) − η2(v2) + η1(v2), x ∈ e3 ∪ e4 ∪ e5.

Figure 4. An example for Case 2, where the domain ω̃ is represented
by the dashed edges. The tail and head of each arrow denotes the
vertices identified with 0 and Le respectively. Here u(e1) = v1,
u(e2) = v2, u(e4) = v5. We first construct η1 with Lemma 2.2
taking p = 0 and R = 0, then η2 with Lemma 2.2 taking p = Le

and R = η1(v2), then η3 with Lemma 2.3 taking R1 = 0 and R2 =
η2(v3), then η4 with Lemma 2.2 taking p = 0 and R = η3(v4), and
finally η5 with Lemma 2.3 taking R1 = η4(v5) and R2 = η1(v1)

2. The network is a cycle made up of the sets V = {v1, . . . , vn} and E =
{e1, . . . , en}, with ei = vivi+1 for i = 1, . . . , n − 1, and en = vnv1 (see Fig. 4
for an example). We may assume, by changing the indexes, that en ∩ ω̃ 
= ∅. We
define the function η1 in e1 as follows:
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Figure 5. An example for Case 3, where the domain ω̃ is represented
by the dashed edges. The tail and head of each arrow denotes the
vertices identified with 0 and Le respectively. Here u(e1) = v1,
u(e2) = v2, u(ẽ2) = ṽ2 and u(ẽ4) = ṽ3. For this example, we
define η in G′ = {{v2, ṽ1, ṽ2, ṽ3}, {ẽ1, ẽ2, ẽ3, ẽ4}} by the inductive
hypothesis. Next, we extend η to e2 with Lemma 2.2 and taking
p = Le and R = η(v2). Finally, we extend η to e1 with Lemma 2.2
and taking p = Le and R = η(v1)

(a) If e1 ∩ ω = ∅, we use Lemma 2.2 with R = 0 and p = 0.
(b) If e1 ∩ ω 
= ∅, we use Lemma 2.3 with R1 = R2 = 0.
In addition, for i = 2, . . . , n − 1, we define the functions ηi in ei recursively as
follows:

(c) If ei ∩ ω̃ = ∅ and vi is identified with 0, then we use Lemma 2.2 with p = 0
and R = ηi−1(vi ).

(d) If ei ∩ ω̃ = ∅ and vi is identified with Lei , then we use Lemma 2.2 with
p = Lei and R = ηi−1(vi ).

(e) If ei ∩ ω̃ 
= ∅ and vi is identified with 0, then we use Lemma 2.3 with
R1 = ηi−1(vi ) and R2 = 0.

(f) If ei ∩ ω̃ 
= ∅ and vi is identified with Lei , then we use Lemma 2.3 with
R1 = 0 and R2 = ηi−1(vi ).

Finally, we define ηn in en by using Lemma 2.3 with R1 = ηn−1(vn) and
R2 = η1(v1) if vn is identified with 0, and with R1 = η1(v1) and R2 = ηn−1(vn)

if vn is identified with Len . Thus, the function that satisfies the conclusion of
Proposition 2.1 is the following:

η(x) =
{

ηi (x), if x ∈ ei , i = 1, . . . , n.

3. There is one vertex v0 such that d(v0) = 1 and a path v0v1 . . . vn with d(vi ) = 2
for i = 1, . . . , n − 1 and d(vn) ≥ 3 (see Fig. 5). We denote ei = vi−1vi . It
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is trivial to check that the network G′ = (V\{v0, . . . , vn−1}, E\{e1, . . . , en})
satisfies Hypothesis 1. Indeed, vn ∈ V0(G′) as its degree in G is at least 3 (see
Fig. 5 for an example). Thus, there is a function η defined in G′ which satisfies
the conclusions of Proposition 2.1. We can extend this function to {e1, . . . , en}
by constructing an auxiliary function in each edge with one boundary constraint,
which can be done thanks toLemmas 2.2 and2.3. Thismust be done in a recursive
way: first we extend it to en with Lemma 2.2 if en ∩ ω̃ = ∅ and with Lemma
2.3 otherwise, then we extend it to en−1 with Lemma 2.2 if en−1 ∩ ω̃ = ∅ and
with Lemma 2.3 otherwise, etc. In this extension we must proceed as follows
for i = n, n − 1, . . . , 1:
• If ei ∩ ω̃ = ∅ and vi is identified with 0, then we use Lemma 2.2 with p = 0
and R = η(vi ).

• If ei ∩ω̃ = ∅ and vi is identified with Le, then we use Lemma 2.2 with p = Le

and R = η(vi ).
• If ei ∩ ω̃ 
= ∅ and vi is identified with 0, then we use Lemma 2.3 with

R1 = η(vi ) and R2 = 0.
• If ei ∩ω̃ 
= ∅ and vi is identified with Le, then we use Lemma 2.3 with R1 = 0

and R2 = η(vi ).
4. The degree of all the vertices are at least 2 and there is one vertex with degree

at least 3.
Then, we have two possibilities, not necessarily disjoint:

(a) There is a cycle v1v2 . . . vn such that d(v1) ≥ 3 and d(vi ) = 2 for all i =
2, . . . , n. Let us now distinguish two subcases:
i. If d(v1) ≥ 4, let us define ei = vivi+1 for i = 1, . . . , n − 1, and

en = vnv1 (see Fig. 6 for an example). We consider the subgraphs G′ =
({v1, . . . , vn}, {e1, . . . , en}) and G′′ = (V\{v2, . . . , vn}, E\{e1, . . . , en}).
As the degree of v1 is at least 2, we have v1 ∈ V0(G2). Thus, both G′ and G′′
satisfy the inductive hypothesis with the restriction of u, so we can define
an auxiliary function η1 and η2 in each graph, respectively. With these
functions we can define a function η in G which is globally continuous:

η(x) =
{

η1(x), x ∈ {e1, . . . , en},
η2(x) − η2(v1) + η1(v1), x ∈ E\{e1, . . . , en}.

ii. If d(v1) = 3 (see Fig. 7 for an example), then we consider the following
two graphs:

G′ = ({v1, . . . , vn}, {e1, . . . , en}),
and

G′′ = (V\{v2, . . . , vn} ∪ {v∗}, (E ∪ {v1v∗})\{e1, . . . , en}
)
,

for v∗ and additional vertex that we define, which we joint to v1 by the
new edge v1v

∗. Clearly, G′ satisfies Hypothesis 1 with u|{e1,...,en}, so we
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Figure 6. An example for Case 4(a)i, where the domain ω̃ is repre-
sented by the dashed edges. The tail and head of each arrow denotes
the vertices identified with 0 and Le respectively. For this example,
we define η1 in G′ = {{v1, v2, v3, v4}, {e1, e2, e3, e4}} and η2 in
G′′ = {{v1, ṽ1, ṽ2, ṽ3}, {ẽ1, ẽ2, ẽ3, ẽ4}} with the inductive hypothe-
sis. With that, we define η as follows:

η(x) =
{

η1(x), x ∈ e1 ∪ e2 ∪ e3 ∪ e4,

η2(x) − η2(v1) + η1(v1), x ∈ ẽ1 ∪ ẽ2 ∪ ẽ3 ∪ ẽ4.

can define there a function η1. In addition, G′′ satisfies Hypothesis 1 with
ω̃ replaced by ω̃ ∪ {v1v∗} and with indexing function u|(E∪{v1v∗})\{e1,...,en}.
Thus, as G′′ has less edges than G′, we can define a function η2 in G′′. With
these two functions, we can define the auxiliary function for G:

η(x) =
{

η1(x), x ∈ {e1, . . . , en},
η2(x) − η2(v1) + η1(v1), x ∈ E\{e1, . . . , en}.

(b) There is a path v−mv−m+1 . . . v0v1 . . . vn for some m ≥ 0 and n ≥ 1 such
that d(v−m) ≥ 3, d(vn) ≥ 3, v−m 
= vn and d(vi ) = 2 for −m < i < n
and such that the edge joining v0 and v1 verifies v0v1 ∩ ω̃ 
= ∅. Again,
we define ei = vi−1vi (see Fig. 8 for an example). Then, the network
G′ = (V\{v−m+1, . . . , vn−1}, E\{e−m+1, . . . en}) satisfies Hypothesis 1, and
we can define an auxiliary function η there. Thus, we just have to prolong
η to {e−m+1, . . . , en}. The process consists of prolonging η to the edges
e−m+1, . . . , e0 and e1, . . . , en with one boundary constraint, which can be
done with Lemmas 2.2 and 2.3 as in Case 3, and to e1 with two boundary
constraints, which can be done with Lemma 2.3 as e1 ∩ ω̃ 
= ∅.
Cases 4a and 4b include all the instances ofCase 4. Indeed,we have to consider

an edge e such that e∩ ω̃ 
= ∅. We call v0 and v1 the ends of e. If d(v0) ≥ 3 and
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Figure 7. An example for Case 4(a)ii, where the domain ω̃ is
represented by the dashed edges. The tail and head of each
arrow denotes the vertex identified with 0 and Le respec-
tively. Here G is all the vertices except v∗ and all the edges
except v1v

∗. Using the inductive hypothesis, we define a func-
tion η1 in G′ = {{v1, v2, v3, v4}, {e1, e2, e3, e4}} and η2 in
G′′ = {{v∗, v1, ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6}, {ẽ1, ẽ2, ẽ3, ẽ4, ẽ5, ẽ6, ẽ7}}
with the inductive hypothesis. With that, we define η as follows:

η(x) =
{

η1(x), x ∈ e1 ∪ e2 ∪ e3 ∪ e4,

η2(x) − η2(v1) + η1(v1), x ∈ ∪7
i=1ẽi .

Figure 8. An example for Case 4b, where the domain ω̃

is represented by the dashed edges. The tail and head
of each arrow denotes the vertices identified with 0 and
Le respectively. For this example, we define η in G′ =
{{v−1, ṽ1, ṽ2, ṽ3, v2, v̂1, v̂2, v̂3}, {ẽ1, ẽ2, ẽ3, ẽ4, ê1, ê2, ê3, ê4}}
thanks to the inductive hypothesis. Then, with Lemma 2.2 we
prolong it to e0 with p = 0 and R = η(v−1) and to e1 considering
p = Le and R = η(v2). Finally, we prolong it to e1 using Lemma
2.3 with R1 = η(v0) and R2 = η(v1)
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d(v1) ≥ 3, we are in Case 4b. If d(v1) = 2, then, there is a sequence v1v2 · · · vn
such that d(vi ) = 2 for i = 2, . . . , n−1, and d(vn) ≥ 3. Similarly, if d(v0) = 2,
there is a sequence v0v−1v−2 · · · v−m such that d(v−i ) = 2 for i = 1, . . . ,m−1,
and d(v−m) ≥ 3. So, if v−m = vn we are in Case 4a (here d(vn) > 2 as G is
connected and have a vertex of degree at least 3), and otherwise in Case 4b.

�

2.2. A new Carleman inequality

The auxiliary function constructed in the previous section allows us to define the
usual Fursikov–Imanuvilov weights:

α(t, x) := e6λ‖η‖∞ − eλ(4‖η‖∞+η(x))

t (T − t)
, ∀ (t, x) ∈ (0, T ) × E

ξ(t, x) := eλ(4‖η‖∞+η(x))

t (T − t)
, ∀ (t, x) ∈ (0, T ) × E, (2.1)

where η is defined in Proposition 2.1 for ω̃ an open domain compactly included in
ω such that e ∩ ω̃ = ∅ if and only if e ∩ ω = ∅ for all e ∈ E , and for δ > 0 a
sufficiently small parameter to be defined later on in the proof of Proposition 2.5 for
absorbing boundary terms. Bearing this in mind, we state and prove the next Carleman
inequality:

Proposition 2.5. (A new Carleman inequality) Let a, μ ∈ W 1,∞((0, T ); L∞(E)) ∩
L∞((0, T );W 1,∞

pw (E)) such that inf a, inf μ > 0, h ∈ L∞((0, T ) × V0) and g ∈
L2(Q). Then, there is C > 0 depending onG,ω, a, andμ such that for all ϕT ∈ L2(E),
λ ≥ C and s ≥ C(T + T 2) the following inequality is satisfied:

s3λ4
∫∫

Q
e−2sαξ3|ϕ|2 dx dt ≤ C

(

s3λ4
∫∫

Qω

e−2sαξ3|ϕ|2 dx dt

+
∫∫

Q
e−2sα|g|2 dx dt

)

, (2.2)

for α and ξ the weights defined in (2.1), and ϕ the solution of:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−a∂tϕ − μ∂2xxϕ = g, in (0, T ) × E,

ϕ = 0, on (0, T ) × V∂ ,

ϕei = ϕe j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂neϕ
e = hϕ, on (0, T ) × V0,

ϕ(T, ·) = ϕT , in E .

(2.3)

In the proof we denote by o(J (s, λ)) a function depending on s, λ such that for all
ε > 0 there isC > 0 depending onG,a,μ andω such that ifλ ≥ C and s ≥ C(T+T 2),
then |o(J (s, λ))| < ε J (s, λ). Throughout the proof, we denote Q := (0, T ) × E and
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Qω := (0, T ) × ω, and the constants c,C > 0 depend on G, a, μ and ω and their
value may be different from line to line.

Proof. As in [35], we consider the change of variables ψ = e−sαϕ. From (2.3), we
obtain that ψ satisfies the equation:

L1ψ + L2ψ = L3ψ, (2.4)

where:

⎧
⎪⎪⎨

⎪⎪⎩

L1ψ := −2sλμξ∂xη∂xψ + a∂tψ,

L2ψ := s2λ2μ|∂xη|2ξ2ψ + μ∂2xxψ + sa∂tαψ,

L3ψ := sλμ∂2xxηξψ + sλ2μ|∂xη|2ξψ − e−sαg.

(2.5)

Indeed, from the equality:

e−sα(a∂t + μ∂2xx )(e
sαψ) = −e−sαg,

we get that:

a∂tψ + as∂tαψ + μ∂2xxψ + 2sμ∂xα∂xψ + sμ∂xxαψ + s2μ(∂xα)2ψ = −e−sαg.

(2.6)

Now, combining (2.6) with ∂xα = −λ∂xηξ and ∂2xxα = −λ∂2xxηξ − (λ∂xη)2ξ , we
obtain that ψ satisfies (2.4).

We nowproceed as in [5]. Themain differences are on how to dealwith the boundary
terms at junctions and that the observation domain is in the interior. As usual, we denote
by (Liψ) j the j-th term in the expression of Liψ given above, for i ∈ {1, 2, 3} and
j ∈ {1, 2, 3}. From (2.4), we get:

‖a−1/2L1ψ‖2L2(Q)
+ ‖a−1/2L2ψ‖2L2(Q)

+ 2
∑

i=1,2
j=1,2,3

(a−1/2(L1ψ)i , a
−1/2(L2ψ) j )L2(Q)

= ‖a−1/2(L1ψ + L2ψ)‖2L2(Q)
= ‖a−1/2L3ψ‖2L2(Q)

. (2.7)

As usual, we estimate the scalar product to obtain the Carleman inequality, which is
done in steps 1 and 2, and we then conclude in step 3 by using (2.7).

Step 1: Estimates in the interior. In this step we perform integrations by parts in the
spirit of [5,35], but keeping track of the boundary terms appearing at the junctions.
This part of the proof is standard and is presented here for the sake of completeness.
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To begin with, we compute:

(a−1/2(L1ψ)1, a
−1/2(L2ψ)1)L2(Q)

= −2s3λ3
∫∫

Q
a−1μ2|∂xη|2∂xηξ3ψ∂xψ dx dt

= 3s3λ4
∫∫

Q
a−1μ2|∂xη|4ξ3|ψ |2 dx dt

−s3λ3
∑

v∈V

∑

e∈E(v)

∫ T

0
(ae)−1(μe)2|∂xηe|2∂ne(v)η

e(ξ e)3|ψe|2(t, v) dt

︸ ︷︷ ︸
=:I1

+ o

(

s3λ4
∫∫

Q
ξ3|ψ |2 dx dt

)

. (2.8)

Secondly, integration by parts (with respect to the time variable) yields, for λ ≥ C
and s ≥ C(T + T 2),

(a−1/2(L1ψ)2, a
−1/2(L2ψ)1)L2(Q)

= s2λ2
∫∫

Q
μ|∂xη|2ξ2ψ∂tψ dx dt = o

(

s3λ4
∫∫

Q
ξ3|ψ |2 dx dt

)

. (2.9)

In addition,

(a−1/2(L1ψ)1, a
−1/2(L2ψ)2)L2(Q) = −2sλ

∫∫

Q
a−1μ2∂xηξ∂2xxψ∂xψ dx dt

= sλ2
∫∫

Q
a−1μ2|∂xη|2ξ |∂xψ |2 dx dt

−sλ
∑

v∈V

∑

e∈E(v)

∫ T

0
(ae)−1(μe)2∂ne(v)η

eξ e|∂xψe|2(t, v) dt

︸ ︷︷ ︸
=:I2

+ o

(

sλ2
∫∫

Q
ξ |∂xψ |2 dx dt

)

. (2.10)

Moreover, we can prove that:

(a−1/2(L1ψ)2, a
−1/2(L2ψ)2)L2(Q)

=
∫∫

Q
μ∂tψ∂2xxψ dx dt =

∑

v∈V

∑

e∈E(v)

∫ T

0
μe∂ne(v)ψ

e∂tψ
e(t, v) dt

︸ ︷︷ ︸
=:I3

+ o

(

s−1
∫∫

Q
ξ−1|ψt |2dxdt + sλ2

∫∫

Q
ξ |∂xψ |2dxdt

)

.
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(2.11)

Finally,

(a−1/2L1ψ, a−1/2(L2ψ)3)L2(Q) = −s2λ
∑

v∈V

∑

e∈E(v)

∫ T

0
μe∂ne(v)η

e∂tα
eξe|ψe|2(t, v) dt

︸ ︷︷ ︸
=:I4

+ o

(

s3λ4
∫∫

Q
ξ3|ψ |2 dx dt

)

. (2.12)

Step 2: Estimation of the boundary terms. In this part of the proof we estimate
the boundary terms I1, I2, I3 and I4. The exterior vertices, if any, can be treated as
in [35], since those terms appear when studying the heat equation in a segment with
Dirichlet boundary conditions. However, the boundary terms at junctions require new
more precise computations:
Step 2.1: Estimation of I1 and I4. To begin with, let us deal with the boundary term

I1 and I4, in (2.8) and (2.12) respectively. By using the Dirichlet boundary conditions
of ψ on V∂ we have that:

− s3λ3
∑

e∈E(v)

∫ T

0
(ae)−1(μe)2|∂xηe|2∂ne(v)η

e(ξ e)3|ψe|2(t, v) dt

− s2λ
∑

e∈E(v)

∫ T

0
μe∂ne(v)η

e∂tα
eξ e|ψe|2(t, v) dt = 0 ∀v ∈ V∂ .

(2.13)

Let us now, estimate the terms in V0. For each interior node v ∈ V0 as the function ξ

and ψ are continuous at junctions we get that:

−s3λ3
∑

e∈E(v)

∫ T

0
(ae)−1(μe)2|∂xηe|2∂ne(v)η

e(ξ e)3|ψe|2(t, v) dt

≥ cs3λ3
∫ T

0
ξ3|ψ |2(t, v) dt ∀v ∈ V0. (2.14)

Indeed, if v 
∈ Range(u), ∂ne(v)η
e = −1 for all e ∈ E(v) and (2.14) is straightfor-

ward. Otherwise, we have to use that ∂nẽ(v)η
ẽ(v) = δ for the edge ẽ = u−1(v) and

∂ne(v)η
e(v) = −1 for all e ∈ E(v)\ẽ, so we obtain (2.14) by choosing δ small enough

just depending on ae, μe and on the number of edges adjacent to each junction (see
Item 2 of Hypothesis 1). Moreover, since

−s2λ
∑

e∈E(v)

∫ T

0
μe∂ne(v)η

e∂tα
eξ e|ψe|2(t, v) dt

= o

(

s3λ3
∫ T

0
ξ3|ψ |2(t, v)dt

)

∀v ∈ V0, (2.15)
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combining (2.13)–(2.15), we obtain that:

I1 + I4 ≥ cs3λ3
∑

v∈V0

∫ T

0
ξ3|ψ |2(t, v) dt. (2.16)

Step 2.2: Estimation of I2. To continue with, let us study the boundary term I2
given in (2.10) for each v ∈ V , i.e.

−sλ
∑

e∈E(v)

∫ T

0
(ae)−1(μe)2∂ne(v)η

eξ e|∂ne(v)ψ
e|2(t, v) dt.

If v 
∈ Range(u), then ∂ne(v)η
e = −1 for all e ∈ E(v) by Proposition 2.1. Conse-

quently, we have the estimate:

−sλ
∑

e∈E(v)

∫ T

0
(ae)−1(μe)2∂ne(v)η

eξ e|∂ne(v)ψ
e|2(t, v) dt

≥ csλ
∑

e∈E(v)

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v)dt ∀v 
∈ Range(u). (2.17)

Note that this includes all v ∈ V∂ , as Range(u) ⊂ V0. Otherwise, let us denote
ẽ = u−1(v). From Proposition 2.1 we have that ∂nẽη

ẽ(v) = δ and ∂neη
e(v) = −1 for

all e ∈ E(v)\{ẽ}. Thus, we have that:

−sλ
∑

e∈E(v)

∫ T

0
(ae)−1(μe)2∂ne(v)η

eξ e|∂ne(v)ψ
e|2(t, v) dt

= sλ
∑

e∈E(v)\{ẽ}

∫ T

0
(ae)−1(μe)2ξ e|∂ne(v)ψ

e|2(t, v) dt

−δsλ
∫ T

0
(aẽ)−1(μẽ)2ξ ẽ|∂nẽ(v)ψ

ẽ|2(t, v) dt

≥ csλ
∑

e∈E(v)\{ẽ}

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v) dt

−δsλ
∫ T

0
(aẽ)−1(μẽ)2ξ ẽ|∂nẽ(v)ψ

ẽ|2(t, v) dt. (2.18)

So, we have to absorb the boundary term of the edge ẽ. For that, we differentiate
ψ = ϕe−sα and use Cauchy-Schwarz inequality to get:

δsλ
∫ T

0

(
aẽ

)−1
(μẽ)2ξ ẽ|∂nẽψ ẽ|2(t, v) dt

≤ 2δs3λ3
∫ T

0

(
aẽ

)−1
(μẽ)2|∂nẽηẽ|2(ξ ẽ)3|ψ ẽ|2(t, v) dt

+ 2δsλ
∫ T

0

(
aẽ

)−1
ξ ẽe−2sαẽ |μẽ∂nẽϕ

ẽ|2(t, v) dt

= I5 + I6. (2.19)
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We can absorb I5 by (2.14) if δ is sufficiently small. As for the second one, using the
continuity of ξ , α and ψ on the junctions, the condition on the junctions (2.3)4, the
facts that ∂xα = −λ∂xηξ , e−sα∂neϕ

e = ∂neψ
e+s∂neαψe, and that (x1+· · ·+xn)2 ≤

n(x21 + · · · + x2n ) for all n ∈ N and x1, . . . , xn ∈ R (we shall use this for n = |E(v)|):

I6 = 2δsλ
∫ T

0
(aẽ)−1ξ ẽe−2sαẽ

∣
∣
∣
∣
∣
∣

∑

e∈E(v)\ẽ
μe∂neϕ

e − hϕe

∣
∣
∣
∣
∣
∣

2

(t, v) dt

≤ 2|E(v)|δsλ
∫ T

0
(aẽ)−1

∑

e∈E(v)\ẽ
ξ e(μe)2

∣
∣
∣e−sαe

∂neϕ
e
∣
∣
∣
2
(t, v) dt

+ 2|E(v)|‖h‖2L∞((0,T )×V0)
δsλ

∫ T

0
(aẽ)−1ξ |ψ |2(t, v) dt

≤ 4|E(v)|δsλ
∑

e∈E(v)\ẽ

∫ T

0
(aẽ)−1ξ e(μe)2

∣
∣∂neψ

e
∣
∣2 (t, v) dt

+ 4|E(v)|δs3λ3
∑

e∈E(v)\ẽ

∫ T

0
(aẽ)−1|∂neηe|2(ξ e)3(μe)2

∣
∣ψe

∣
∣2 (t, v) dt

+ 2|E(v)|‖h‖2L∞((0,T )×V0)
δsλ

∫ T

0
(aẽ)−1ξ |ψ |2(t, v) dt. (2.20)

Taking δ small enough and using the continuity of ξ and ψ on junctions, we can
absorb the second and third term on the right-hand side of (2.20) by (2.14). As for the
first term in the right-hand side of (2.20), by taking δ small enough it can be absorbed
by the first term in the right hand side of (2.18).

Summing up, from (2.16)–(2.20) we obtain that:

I1 + I2 + I4 ≥ cs3λ3
∑

v∈V0

∫ T

0
ξ3|ψ |2(t, v) dt

+ csλ
∑

v 
∈Range(u)

∑

e∈E(v)

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v)dt

+ csλ
∑

v∈Range(u)

∑

e∈E(v)\u−1(v)

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v) dt.
(2.21)

Step 2.3: Estimation of I3. Let us study the boundary term I3 in (2.11). If v ∈ V∂ ,
then ∂tψ = 0 because of the Dirichlet boundary conditions; that is:

∑

e∈E(v)

∫ T

0
μe∂neψ

e∂tψ
e(t, v) dt = 0 ∀v ∈ V∂ .
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Otherwise, if v ∈ V0, from ∂neψ
e = −s∂neαeψ + e−sαe

∂neϕ
e, (2.3)4, from that ∂tψe

is continuous on junctions, and from ∂tξ ≤ sξ2 we obtain:

∑

e∈E(v)

∫ T

0
μe∂neψ

e∂tψ
e(t, v) dt

= sλ
∑

e∈E(v)

∫ T

0
μe∂neη

eξ eψe∂tψ
e(t, v) dt +

∫ T

0
hψ∂tψ(t, v) dt

= − sλ

2

∑

e∈E(v)

∫ T

0
∂t (μ

e∂neη
eξ e)|ψe|2 dt − 1

2

∫ T

0
∂t h|ψ |2 dt

= o

(

s3λ3
∫ T

0
ξ3|ψ |2(t, v) dt

)

∀v ∈ V0. (2.22)

We can absorb both terms by (2.14) integrating by parts the time variable, as μe and h
belongs toW 1,∞((0, T )×V0). Consequently, from (2.21) and (2.22) we have proved
that for δ small enough, s ≥ C(T + T 2) and λ ≥ C the following estimate holds:

cs3λ3
∑

v∈V0

∫ T

0
ξ3|ψ |2(t, v) dt + csλ

∑

v 
∈Range(u)

∑

e∈E(v)

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v)dt

+ csλ
∑

v∈Range(u)

∑

e∈E(v)\u−1(v)

∫ T

0
ξ e|∂ne(v)ψ

e|2(t, v) dt ≤
4∑

i=1

Ii ,

and, in particular,

4∑

i=1

Ii ≥ 0. (2.23)

Step 3: Conclusion of the proof. Combining (2.8)–(2.23) and taking into account
that inf

E\ω̃
|∂xη| > 0, we obtain the following estimate:

sλ2
∫∫

Q
ξ |∂xψ |2 dx dt + s3λ4

∫∫

Q
ξ3|ψ |2 dx dt

≤ (L1ψ, L2ψ)L2(Q) + s3λ4
∫∫

Qω̃

ξ3|ψ |2 dx dt + sλ2
∫∫

Qω̃

ξ |∂xψ |2.
(2.24)

From (2.24), it is classical to obtain (2.2) as in [35]: we add 1
2 (‖L1ψ‖2

L2(Q)
+

‖L2ψ‖2
L2(Q)

) at both sides of (2.24); we consider that ‖L1ψ + L2ψ‖2
L2(Q)

=
‖L3ψ‖2

L2(Q)
; we absorb (L3ψ)1 and (L3ψ)2; we estimate the terms on ∂tψ and

∂2xxψ by considering (2.5)1 and (2.5)2 respectively; we then estimate the local term
of the gradient and, finally, we revert the transformation by using that ϕ = esαψ . �
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As an easy consequence of Proposition 2.5, we have the following result:

Corollary 2.6. (Observability of the heat equation on networks with loops) Let
G = (V, E) be a network satisfying Hypothesis 1, a, μ ∈ W 1,∞((0, T ); L∞(E)) ∩
L∞((0, T );W 1,∞

pw (E)) such that inf a, inf μ > 0, b ∈ L∞((0, T );W 1,∞
pw (E)),

c ∈ L∞((0, T ) × E) and γ ∈ L∞((0, T ) × V). Then, there exists C > 0 such
that for all ϕT ∈ L2(E) we have the inequality:

‖ϕ(0, ·)‖L2(E) ≤ C‖ϕ‖L2(Qω),

for ϕ the solution of (1.2).

3. Applications of the Carleman inequality and open problems

In this section we show some applications of the Carleman inequality proved in
Proposition 2.5. Notably, in Sect. 3.1 we show the controllability of (1.1) and prove
Theorems 1.4 and 1.5, in Sect. 3.2 we estimate the potential and prove Theorem 1.6
and, finally, in Sect. 3.3 we present some problems that remain open.

3.1. The controllability problem

We start this section giving the proof of Theorem 1.4.

Proof of Theorem 1.4. Theorem 1.4 follows from Corollary 2.6 and the Hilbert
Uniqueness Method (see [35,49,50]), which assures that the null controllability is
equivalent to prove an observability inequality for the adjoint equation (in our case
(1.2)). �

We now prove the result that provides a feedback control for the simplified case of
system (1.1).

Proof of Theorem 1.5. Let y0 ∈ H1
0 (E) and the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∂t y − μ∂2xx y = 1ωv, in (0, T ) × E,

y = 0, on (0, T ) × V∂ ,

yei = ye j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne y
e = γ y, on (0, T ) × V0,

y(0, x) = y0(x), in E,

(3.1)

where v ∈ L2(0, T ; L2(E)). Due to the fact y0 is in H1
0 (E), we know that for each

v ∈ L2(0, T ; L2(E)), there exists a unique solution y ∈ C((0, T ]; H1
0 (E)) to (3.1).

Now, we can rewrite (3.1) in this way:
{
y′(t) = a−1(μyxx (t) + 1ωv(t)), t ∈ (0, T ),

y(0) = y0.



J. Evol. Equ. Observability and control of parabolic equations Page 27 of 33 37

We establish the next optimal control problem:

min

{ ∫ T

0
||v(t)||2L2(E)

dt; y′ = a−1(μyxx + 1ωv), y(0) = y0, y(T ) = 0

}

,

(3.2)

and the Riccati equation (1.3). Then, using [58, Theorem 2.1, (ii)], its proof and
the null controllability result for the parabolic system (1.1) we obtained in The-
orem 1.4 with b = c = 0, we deduce that there exists a unique mild solution
P ∈ CS([0, T );∑+

(L2(E))) to problem (1.3) for A = a−1μ∂2xx and B = a−11ω. In
addition, due to [58, Lemma 2.1], we can conclude that v(t) = −a−11ωP(t)y(t) is
the optimal feedback control to problem (3.2). �

3.2. The inverse problem

Let us now prove Theorem 1.6. For that, we follow the steps in [38], which uses the
technique of obtaining the inverse problem result from a Carleman inequality dating
back to paper [39] in 1998:

Proof of Theorem 1.6. By a change of variables, it suffices to prove the result for
t0 = T/2. Let us define:

z[q, y0] = y[p, y0] − y[q, y0],

which we shorten to z. Then, z is a solution of:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t z − μ∂2xx z + qz = (q − p)y[p, y0], in (0, T ) × E,

z = 0, on (0, T ) × V∂ ,

zei = ze j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne z
e = γ z, on (0, T ) × V0,

z(0, ·) = 0, in E .

This implies that ∂t z is a solution of:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (∂t z) − μ∂2xx (∂t z) + q(∂t z) = (q − p)∂t (y[p, y0]), in (0, T ) × E,

∂t z = 0, on (0, T ) × V∂ ,

∂t zei = ∂t ze j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne (∂t z
e) = γ (∂t z), on (0, T ) × V0,

∂t z(0, ·) = (q − p)y0, in E .

(3.3)
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To continue, by applying Proposition 2.5 to the solution of (3.3) we obtain that:
∫∫

Q
e−2sα(

(sξ)−1|∂t t z|2 + sλ2ξ |∂t x z|2 + s3λ4ξ3|∂t z|2
)
dx dt

≤ C

(∫∫

Q
e−2sα(|∂t z|2 + |(q − p)∂t (y[p, y0])|2) dx dt + s3λ4

∫∫

Qω

e−2sαξ3|∂t z|2 dx dt
)

,

which implies that for s large enough:

∫∫

Q
e−2sα(

(sξ)−1|∂t t z|2 + sλ2ξ |∂t x z|2 + s3λ4ξ3|∂t z|2
)
dx dt

≤ C

(∫∫

Q
e−2sα|(q − p)∂t (y[p, y0])|2 dx dt + s3λ4

∫∫

Qω

e−2sαξ3|∂t z|2 dx dt
)

.

(3.4)

Since lim
t→0

e−2sα = 0, we obtain from (3.4) that:

∫

E
e−2sα(T/2,x)

∣
∣
∣
∣∂t z

(
T

2
, x

)∣
∣
∣
∣

2

dx

=
∫ T/2

0

∂

∂t

(∫

E
e−2sα(t,x) |∂t z (t, x)|2 dx

)

dt

≤ C
∫∫

Q
e−2sα(s−1λ−2ξ−1|∂t t z|2 + s2λ2ξ2|∂t z|2) dx dt

≤ C

λ2

∫∫

Q
e−2sα|(q − p)∂t (y[p, y0])|2 dx dt

+ Cs3λ2
∫∫

Qω

e−2sαξ3|∂t z|2 dx dt.

Next, we consider that, because of (1.5),
∫

E
e−2sα(T/2,x)(q(x) − p(x))2 dx

≤ C
∫

E
e−2sα(T/2,x)|(q(x) − p(x))y[p, y0](T/2, x)|2 dx

≤ C
∫

E
e−2sα(T/2,x)

∣
∣
∣
∣∂t z

(
T

2
, x

)∣
∣
∣
∣

2

dx + C

∥
∥
∥
∥z

(
T

2
, ·

)∥
∥
∥
∥

2

H2
pw(E)

≤ Cs3λ2
∫∫

Qω

e−2sαξ3|∂t z|2 dx dt + C

∥
∥
∥
∥z

(
T

2
, ·

)∥
∥
∥
∥

2

H2
pw(E)

+ C

λ2

∫∫

Q
e−2sα|(q − p)∂t (y[p, y0])|2 dx dt. (3.5)
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Thus, by considering s ≥ C(T + T 2) and λ ≥ C large enough and by estimating the
weight α we obtain (1.6) from (3.5). �

3.3. Open problems

We highlight the following problems that remain open and may be considered for
future work:

• Bang-bang controls and semi-linear heat equation. One of the main applica-
tions of the Carleman parabolic inequalities are bang-bang controls and, with
that, the controllability of the semi-linear heat equation. Indeed, in parabolic
equations whose domains are smooth manifolds it is known that if the non-
linearity grows smoothly, then the system is controllable to trajectories (see, for
example, [19,26,28,32,33] and, more recently, [27,45]). An open problem is
whether or not our results may be applied to obtain the controllability of the
following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∂t y − μ∂2xx y + G(y,∇ y) = f 1ω, in (0, T ) × E,

y = 0, on (0, T ) × V∂ ,

yei = ye j , on (0, T ) × V0, ∀ei , e j ∈ E(v),
∑

e∈E(v)

μe∂ne y
e = γ y, on (0, T ) × V0,

y(0, ·) = y0, in E,

for G ∈ C1 satisfying the same growth hypothesis as in [19]. Indeed, we should
be careful as regularity results on networks are not as powerful as in segments,
as regular solutions belong to L2(0, T ; H2

pw(E)) instead of L2(0, T ; H2(E)).
• Minimum number of edges on which the control acts.Another open problem
is the characterizationof theminimumnumber of edgeswhere the control domain
has to be positioned so that the system (1.1) is controllable. The construction of
algorithms for that purpose also remains an open problem.

• Non-controllable cases.The counterexamples in Remarks 1.1 and 1.2 show that
system (1.1) is not controllable for arbitrary coefficients, but it suggests that such
problems only arise for some critical coefficients when the quantity of controls is
small. Since Carleman inequalities do not depend on the coefficients, it is likely
that it is not the right tool for approaching this problem. A possible approach
is to use spectral-oriented results, like those in [8,10]. Additionally, a possible
solution is to use the characterization of controllability obtained in [41].

• Less regular coefficients. To obtain controllability results with less regular
coefficients, for instance, when they all belong to L∞. This may be done, for
instance, using the techniques presented in [29,30].



37 Page 30 of 33 J. Apraiz and J. A. Bárcena- Petisco J. Evol. Equ.

Acknowledgements

Both authors are supported by supported by theGrant PID2021-126813NB-I00 funded
byMCIN/AEI/10.13039/501100011033 and by “ERDFAway ofmakingEurope” and
by the grant IT1615-22 funded the Basque Government.

Funding Information Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] C. Altafini and F. Ticozzi. Modeling and control of quantum systems: An introduction. IEEE T.
Automat. Contr., 57(8):1898–1917, 2012.

[2] J. Apraiz and L. Escauriaza. Null-control and measurable sets. ESAIM: COCV, 19(1):239–254,
2013.

[3] J. Apraiz and L. Escauriaza. Observability inequalities and measurable sets. J. Eur. Math. Soc.,
16(11):2433–2475, 2014.

[4] J. A. Bárcena-Petisco. Null controllability of the heat equation in pseudo-cylinders by an internal
control. ESAIM: COCV, 26(122):1–34, 2020.

[5] J. A. Bárcena-Petisco, M. Cavalcante, G. M. Coclite, N. de Nitti, and E. Zuazua. Control of hyper-
bolic and parabolic equations on networks and singular limits. hal-03233211, 2021.

[6] M. Bellassoued and M. Yamamoto. Carleman estimates and applications to inverse problems for
hyperbolic systems. Springer, 2017.

[7] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-dimensional
heat equation with a discontinuous coefficient and applications to controllability and an inverse
problem. J. Math. Anal. Appl., 336(2):865–887, 2007.

[8] K. Bhandari, F. Boyer, and V. Hernández-Santamaría. Boundary null-controllability of 1-D coupled
parabolic systems with Kirchhoff-type conditions. Math. Control Signal, pages 1–59, 2021.

[9] V. D. Blondel, E. D. Sontag, M. Vidyasagar, and J. C. Willems. Open Problems in Mathematical
Systems and Control Theory. Communication and Control Engineering Series. Springer, London,
1999.

[10] F. Boyer and G. Olive. Boundary null-controllability of some multi-dimensional linear parabolic
systems by the moment method. hal-03175706, 2021.

[11] J. Brouwer, I. Gasser, and M. Herty. Gas pipeline models revisited: Model hierarchies, non-
isothermal models and simulations on networks. Multiscale Model. Simul., 9:601–623, 2011.

[12] P.Cannarsa,A.Duca, andC.Urbani. Exact controllability to eigensolutions of the bilinear heat equa-
tion on compact networks. Discret. Contin. Dyn. S. - S, 15(6): 1377–1401, 2022. arXiv:2111.02250

[13] S. Chen and I. Lasiecka. Feedback exact null controllability for unbounded control problems in
Hilbert space. J Optim. Theory App., 74(2):191–219, 1992.

[14] J.-M. Coron. Control and nonlinearity. Number 136. American Mathematical Society, 2007.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2111.02250


J. Evol. Equ. Observability and control of parabolic equations Page 31 of 33 37

[15] R. Dager and E. Zuazua.Wave propagation, observation and control in 1-d flexible multi-structures,
volume 50 of Mathematics & Applications. Springer Verlag, Berlin, 2006.

[16] J. Dardé and S. Ervedoza. On the reachable set for the one-dimensional heat equation. SIAM J.
Control and Optim., 56(3):1692–1715, 2018.

[17] J. Dardé and S. Ervedoza. On the cost of observability in small times for the one-dimensional heat
equation. Anal. and PDE, 12(6):1455–1488, 2019.

[18] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan. Quantum feedback control and
classical control theory. Phys. Rev. A, 62:012105, 2000.

[19] A. Doubova, E. Fernández-Cara, M. González-Burgos, and E. Zuazua. On the controllability of
parabolic systems with a nonlinear term involving the state and the gradient. SIAM J. Control.
Optim., 41(3):798–819, 2002.

[20] A. Doubova, A. Osses, and J.-P. Puel. Exact controllability to trajectories for semilinear heat equa-
tions with discontinuous diffusion coefficients. ESAIM: COCV, 8:621–661, 2002.

[21] H. Egger and N. Philippi. On the transport limit of singularly perturbed convection-diffusion prob-
lems on networks. Math. Methods Appl. Sci., 44, 2021.

[22] K. Egger and T. Kugler. Damped wave systems on networks: exponential stability and uniform
approximations. Numer. Math., 138(4):839–867, 2018.

[23] S. Ervedoza and E. Zuazua. Observability of heat processes by transmutation without geometric
restrictions. Math. Control Related F., 1(2):177–187, 2011.

[24] L. Escauriaza, S. Montaner, and C. Zhang. Observation from measurable sets for parabolic analytic
evolutions and applications. J. Math. Pure. Appl., 104(5):837–867, 2015.

[25] L. Escauriaza, S. Montaner, and C. Zhang. Analyticity of solutions to parabolic evolutions and
applications. SIAM J. Control and Optim., 49(5):4064–4092, 2017.

[26] C. Fabre, J.-P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation.
Proc. R. Soc. E. A.-Ma., 125(1):31–61, 1995.

[27] L. A. Fernández. Controllability properties for some semilinear parabolic PDE with a quadratic
gradient term. Appl. Math. Lett., 25(12):2184–2187, 2012.

[28] L. A. Fernández and E. Zuazua. Approximate controllability for the semilinear heat equation involv-
ing gradient terms. J. Optim. Theory Appl., 101(2):307–328, 1999.

[29] E. Fernández-Cara, M. González-Burgos, S. Guerrero, and J.-P. Puel. Null controllability of the
heat equation with boundary Fourier conditions: the linear case. ESAIM:COCV, 12(3):442–465,
2006.

[30] E. Fernández-Cara and S. Guerrero. Global Carleman estimates for solutions of parabolic systems
defined by transposition and some applications to controllability. Appl. Math. Research Express,
2006:75090, 2006.

[31] E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: the
linear case. Adv. Differential Equ., 5(4-6):465–514, 2000.

[32] E. Fernández-Cara and E. Zuazua. Null and approximate controllability for weakly blowing up
semilinear heat equations. Ann. I. H. Poincare-An., 17(5):583–616, 2000.

[33] E. Fernández-Cara. Null controllability of the semilinear heat equation. ESAIM: COCV, 2:87–103,
1997.

[34] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of non-linear systems: Intro-
ductory theory and examples. Int. J. Control, 61(6):1327–1361, 1995.

[35] A. V. Fursikov and O. Y. Imanuvilov. Controllability of evolution equations, volume 34 of Lec-
ture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis
Research Center, Seoul, 1996.

[36] M. González-Burgos and L. de Teresa. Some results on controllability for linear and nonlinear heat
equations in unbounded domains. Adv. Differential Equ., 12(11):1201–1240, 2007.

[37] F. M. Hante, G. Leugering, A. Martin, L. Schewe, and M. Schmidt. Challenges in optimal control
problems for gas and fluid flow in networks of pipes and canals: From modeling to industrial
applications. In Industrial mathematics and complex systems, pages 77–122. Springer, 2017.

[38] L. Ignat, A. F. Pazoto, and L. Rosier. Inverse problem for the heat equation and the Schrödinger
equation on a tree. Inverse Prob., 28(1):015011, 2011.

[39] O. Y. Imanuvilov and M. Yamamoto. Lipschitz stability in inverse parabolic problems by the Car-
leman estimate. Inverse Prob., 14:1229–1245, 1998.



37 Page 32 of 33 J. Apraiz and J. A. Bárcena- Petisco J. Evol. Equ.

[40] O. Y. Imanuvilov and M. Yamamoto. Global Lipschitz stability in an inverse hyperbolic problem
by interior observations. Inverse Prob., 17(4):717, 2001.

[41] S. Iwasaki. Observability for the heat equation in equilateral metric graphs. In 2021 60th Annual
Conference of the Society of Instrument and Control Engineers of Japan (SICE), pages 1270–1275.
IEEE, 2021.

[42] R. E. Kalman. Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana, 5:102–119,
1960.

[43] L. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt. Modeling, Analysis and Control of Dynamic
Elastic Multi-Link Structures, volume 19 of Systems Control: Foundations Applications. Springer
Science+Business Media, New York, 1994.

[44] B. Laroche, P. Martin, and P. Rouchon. Motion planning for the heat equation. Int. J. Robust
Nonlinear Control, 10(8):629–643, 2000.

[45] K. Le Balc’h. Global null-controllability and nonnegative-controllability of slightly superlinear heat
equations. J. Math. Pure. Appl., 135:103–139, 2020.

[46] J. Le Rousseau and L. Robbiano. Local and global Carleman estimates for parabolic operators with
coefficients with jumps at interfaces. Invent. Math., 183(2):245–336, 2011.

[47] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Commun. Part. Diff. Eq.,
20(1):335–356, 1995.

[48] P. Lin. Global blowup controllability of heat equation with feedback control. Commun. Contemp.
Math., 20(5):1750062–1–11, 2018.

[49] J. L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1,
Contrôlabilité exacte. With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch, volume
8 of Recherches en Mathématiques Appliqués. Masson, Paris, 1988.

[50] J. L. Lions. Exact controllability, stabilization and perturbations for distributed systems. SIAM
Review, 30(1):1–68, 1988.

[51] P. Martin, L. Rosier, and P. Rouchon. Null controllability of the heat equation using flatness. Auto-
matica, 50(12):3067–3076, 2014.

[52] V. Mehandiratta, M. Mehra, and G. Leugering. Optimal control problems driven by time-fractional
diffusion equations on metric graphs: optimality system and finite difference approximation. SIAM
J. Control and Optim., 59(6):4216–4242, 2021.

[53] L. Miller. Geometric bounds on the growth rate of null-controllability cost for the heat equation in
small time. J. Differ. Equation, 204(1):202–226, 2004.

[54] L. Miller. The control transmutation method and the cost of fast controls. SIAM J. Control and
Optim., 45(2):762–772, 2006.

[55] M. Newman, A. L. Barabási, and D. J. Watts. The Structure and Dynamics of Networks, volume
19 of Princeton Studies in Complexity. Princeton University Press, 2011.

[56] G. Notarstefano and G. Parlangeli. Controllability and observability of grid graphs via reduction
and symmetries. IEEE T. Automat. Contr., 58(7):1719–1731, 2013.

[57] D. L. Russell. A unified boundary controllability theory for hyperbolic and parabolic partial differ-
ential equations. Stud. Appl. Math., 52(3):189–211, 1973.

[58] M. Sîrbu. A Riccati equation approach to the null controllability of linear systems. Comm. Appl.
Anal., 164–177(2), 2002.

[59] M. Sîrbu and G. Tessitore. Null controllability of an infinite dimensional sde with state and control-
dependent noise. Syst. Control Lett., 385–394(44), 2001.

[60] G. Tenenbaum and M. Tucsnak. New blow-up rates for fast controls of Schrödinger and heat
equations. J. Differ. Equations, 243(1):70–100, 2007.

[61] A. Thosar, A. Patra, and S. Bhattacharyya. Feedback linearization based control of a variable air
volume air conditioning system for cooling applications. ISA Transactions, 47:339–349, 2008.

[62] G. Wang. L∞-null controllability for the heat equation and its consequences for the time optimal
control problem. SIAM J. Control and Optim., 47(4):1701–1720, 2008.

[63] W. M. Wonham. Linear Multivariable Control, a Geometric Approach, volume 10 of Applications
of Mathematics. Springer-Verlag, 1985.

[64] M. Yamamoto. Carleman estimates for parabolic equations and applications. Inverse Prob.,
25(12):123013, 2009.



J. Evol. Equ. Observability and control of parabolic equations Page 33 of 33 37

[65] C. Zhang. An observability estimate for the heat equation from a product of two measurable sets.
J. Math. Anal. Appl., 396(1):7–12, 2012.

[66] J. Zhao and X. Zhang. Inverse tangent functional nonlinear feedback control and its application to
water tank level control. Processes, 8(3: 347), 2020.

Jone Apraiz and Jon Asier Bárcena-Petisco
Department of Mathematics
University of the Basque Country UPV/EHU
Barrio Sarriena s/n
48940 Leioa
Spain
E-mail: jonasier.barcena@ehu.eus

Jone Apraiz
E-mail: jone.apraiz@ehu.eus

Accepted: 15 March 2023


	Observability and control of parabolic equations on networks with loops
	Abstract
	1. Introduction
	1.1. Presentation of the problem and state of the art
	1.2. Basic definitions
	1.3. The controllability result
	1.4. Application to the resolution of inverse problems

	2. The observability problem
	2.1. Construction of the auxiliary function
	2.2. A new Carleman inequality

	3. Applications of the Carleman inequality and open problems
	3.1. The controllability problem
	3.2. The inverse problem
	3.3. Open problems

	Acknowledgements
	REFERENCES




