
1. Introduction

The static stability curve represents the values of GZ arms for
the different heeling angles. However, the stability booklet
usually provides GZ arms for every ten or fifteen degrees of
heeling angles. This means that the rest of righting arms have
to be obtained by drawing the static transversal stability curve
passing through the known data. In this way, the global cubic
splines seems to be one of the most suitable methods to define
the static stability curve since the same have to pass through
some control points. The local splines pass also through the
control points, although its degree of smoothness is lower than
the global splines. On the other hand, the B-splines would not
be suitable because the curve would not pass through the con-
trol points. Consequently, the GZ arms obtained by global
cubic spline interpolation appear to be appropriate enough. 

The ends of spline curve are usually free under this inter-
polation method. However, the slope of the static stability
curve for the heel of 0º (when the vessel is up righted) is known
specifically, it is equal to the metacentric height divided by the
value of one radian in degrees. Therefore, it is possible to fix
the initial end of the static stability curve to make the GZ arms

within the initial stability more precise and, taking into ac-
count that the angle of loll is usually small; its calculation
would be suitable by means of non-free end cubic spline
method.

When the ship is ‘wall-sided’ the approximate formula in
(1) may be enough to calculate the angle of loll (Barrass and
Derret, 2012). However, this method of calculation would not
be suitable for those ships that have very fine bowlines and
stern contours. Even in the case of box shaped ships the angle
of loll calculated by this formula is not as accurate as that ob-
tained graphically from the static stability curve. For this rea-
son, the method presented in this paper takes advantage of the
graphic definition of the static stability curve by cubic spline
to obtain the angle of loll by the cross of this curve and the ab-
scissa axis. 

(1)

2. Static stability curve definition by cubic spline

The static stability curve defined by global cubic splines is
made up of different portions of curves connected in control
points called knots which coincide with the known data.
Therefore the curve is a piece-wise function defined by mul-
tiple subfunction in the form of the equation in (2), n being
the total data provided in the cross stability curves.

Angle of Loll Calculation By Cubic Spline
I. Basterretxea1,2,*, I. Sotés1,3, A. López1,4 and I. Alcedo1,5

© SEECMAR / All rights reserved

Several years ago the Basque Government supported the programming of the software ARKITSAS in order to provide
all existing vessels with a specific software to calculate stability, cargo and longitudinal strength data. The aim of this
article is to present the part of that research concerning the definition of the static stability curve by cubic spline in its
initial end when the metacentric height is negative. Taking into account that the slope at initial end is known, the pre-
cision of the results for low heeling angles may be improved and, in this way, the accuracy in the calculation of loll
should be enhanced. This method of calculation is compared to other traditional methods used for wall-sided ships by
the application to three different ships. 

Article history: 
Received 28 February 2013;
in revised form 12 March 2013;
accepted 25 May 2013

Keywords:
Static stability curve, Cubic splines,
Free and fixed end, Angle of loll.

A B S T R A C TA R T I C L E  I N F O

1 University of Basque Country. María Díaz de Haro, 68. 48920 Portugalete. Spain. 
2 Professor, Email: imanol.basterrechea@ehu.es, Tel. +0034946014792, Fax. 34946017700.
3 Professor, Email: iranzu.sotes@ehu.es, Tel. 34946014848, Fax. 34946017700. 
4 Professor, Email: alberto.lopeza@ehu.es, Tel. 34946014832, Fax. 34946017700. 
5 Professor, Email: inaki.alcedo@ehu.es, Tel. 34946014840, Fax. 34946017700. 
* Corresponding Author. 

JOURNAL OF MARITIME RESEARCH

ISSN: 1697-4040,      www.jmr.unican.es

Vol. X. No. 2 (2013), pp. 21 - 26



(2)

Obviously, the adjoining subfunctions coincide in value at
knots and, moreover, the slope and the curvature at knots is
the same for the adjoining subfunctions, which makes the
whole curve smooth. Therefore, the following conditions have
to be fulfilled (Borse, 1991):

1st condition: the value of a cubic subfunction at initial knot
is known.

(3)

2nd condition: the value of two different adjoining subfunc-
tions at common knot is the same.

(4)

3rd condition: the slope of two different adjoining subfunc-
tions at common knot is the same, which means that the deriv-
ative of both subfunctions is the same as well at common knot.

(5)

4th condition: the curvature of two different adjoining sub-
functions at common knot is the same, which means that the
second derivative of both subfunctions is the same as well.

(6)

The definition of a curve by global cubic splines is related
to the task carried out in the past at the shipyards by the
draughtsmen who used a flexible strip of metal for drawing
curve lines. The strip was fixed at the points or nodes through
which the curve had to pass and the ends of the strip were left
free. Bearing this in mind, the ends of a curve defined by global
cubic spline may be left free if the curvature is nil at the ends.
Thus, another additional condition may be added for the ends
of the curve:

(7)

Nevertheless, as has been mentioned before, the end of the
first curve segment is fixed in the case of the static stability
curve, since the slope at the end is known (Rawson, 2001). 

(8)

All these conditions will let us calculate the coefficients of
the different cubic subfunctions. Thus, the coefficients Ci can
be obtained either by substitution, if the GZ data are equidis-
tant, or by Gauss-Siedel. As the cross stability data may not be
equidistant, the method of Gauss-Siedel seems to be the most
adequate. Therefore, the coefficients Ci are obtained by the
equation in (9).

(9)

where:

To solve the equation 9, it is necessary to give an initial
value to the coefficients Ci and to apply an iterative process
until convergence criteria is reached or a maximum of itera-
tions is exceeded, depending on the degree of accuracy. In first
instance the coefficients Ci at the ends of the curve (C0 and Cn)
would be equal to zero by application of the formulae in (7).

The coefficient Bi is calculated by the formula in (16),
which is obtained from the first four conditions.

(10)

The coefficients Di are obtained by the equation in (11)
that it is reached from the fourth condition. 

(11)

Once, all the coefficients have been obtained, the initial
end of the curve has to be fixed by giving new values to B0 and
C0. The coefficient B0 will be equal to the slope at the first end
and C0 will be obtained from the equations in (10) and (11).

(12)

(13)
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If these new coefficients B0 and C0 are applied to the first
four conditions, the values of 

A1,1 and R1 will also vary. 
(14)

(15)

Taking into account the new values obtained from the for-
mulae (9) to (15), the equation in (9) is applied again to calcu-
late the values of Ci and the rest of coefficients. Thus, the first
end of the static stability curve will be fixed.

3. Angle of loll determination by spline

As the angle of loll is usually small, it may be considered in-
cluded within the first segment of the spline curve or, what is
the same, within the first subfunction. Given that the GZ is
equal to zero when the ship is up righted [GZ0(0º)=0] and
when the ship is heeled the angle of loll [GZ0(φloll)=0], the
equation in (2) is applied to obtain the angle of loll as follows:

Bearing in mind that φ0=0º, the angle of loll is obtained
from the second grade equation:

(16)

The coefficients B0, C0 and D0 are obtained from the equa-
tions in (11), (12) and (13).

In the improbable case that the angle of loll was located in
the second subfunction, it will have to be calculated from the
equation in (17).

(17)

The coefficients A1, B1, C1 and D1 would be obtained from
the equations in (3), (10), (9) and (11).

4. Practical application

In this chapter the angle of loll is calculated by means of the
spline method for three different types of vessels. The values

so obtained will be compared to those calculated by the ap-
proximate formula in (1). Obviously, the ships are unstable in
all cases to get a negative GM. On the other hand, the static
stability curve is drawn by cubic splines either fixing the ends
or leaving them free. 

FIRST CASE.-  16,600 dwt bulk-carrier (wall-sided).

Table 1: 16,600 dwt bulk-carrier hydrostatic data

Source: Authors.

Table 2: GZ arms for 16,600 dwt bulk-carrier, draft 10 meters 
and GM 0.043(-) meters.

Source: Authors.

Taking into account the hydrostatic data and the GZ arms
from the table 1 and 2, respectively, the coefficients are ob-
tained for the first spline subfunction.

B0 = -7.5044∙10-4

C0 = 6.7556∙10-5

D0 = 3.7487∙10-6

The angle of loll is thus calculated from the equation
in (16).

φloll = 7.76°

On the other hand, the angle of loll is also obtained from
the formula in (1).

φloll = 7.96°

Figure 1: GZ curve for 16,600 dwt bulk-carrier (wall sided).

Draft 10 meters
TKM (vertical distance from keel to transversal 
metacentre) 9.707 meters
GM (metacentric height) 0.043 (-)
VCB (vertical center of buoyance) 5,305 meters
BM (metacentric radious) 4.402 meters  

φ 0° 10° 20 30° 40° 50° 60° 75°
GZ 0.000 0.003 0.028 0.089 0.262 0.263 0.020 -0.574
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Figure 2: Small angles’ detail of the GZ curve for 16,600 dwt bulk-
carrier (wall sided).

SECOND CASE.-  150,000 dwt tanker (wall-sided)

Table 3: 150,000 dwt tanker hydrostatic data.

Source: Authors.

Table 4: GZ arms for 16,600  dwt bulk-carrier, draft 15.9 meters 
and GM 0.02(-) meters.

Source: Authors.

In case that the hydrostatic data and the GZ arms are those
showed in table 3 and 4, respectively, the coefficients of first
spline subfunction are expressed below.

B0 = -3.4904∙10-4

C0 = -2.4409∙10-4

D0 = 5.0899∙10-5

The angle of loll is thus calculated from the equation in (16).
φloll = 5.95°
On the other hand, the angle of loll obtained from the for-

mula in (1).
φloll = 3.33°

Table 5: Sailing yacht hydrostatic data.

Source: Authors.

Table 6: GZ arms for sailing yacht, draft 2.71 meters and GM 0.05(-) meters.

Source: Authors.

Figure 3: GZ curve for 150,000 dwt tanker (wall-sided).

Figure 4: Small angles’ detail of the GZ curve for 150,000 dwt 
tanker (wall-sided).

THIRD CASE.- Sailing yacht (round-shaped)

The coefficients obtained from the hydrostatic data and
the GZ arms from the table 5 and 6, respectively, are shown
below:

B0 = -8.7260∙10-4

C0 = 1.9003∙10-4

D0 = -6.7682∙10-7

The angle of loll obtained from the equation in (16).
φloll = 4.67°
On the other hand, the angle of loll obtained from the for-

mula in (1).
φloll = 14.9°

Draft 15.9 meters
TKM (vertical distance from keel to transversal 
metacentre) 20.08 meters
GM (metacentric height) 0.02 (-)
VCB (vertical center of buoyance) 8.25 meters
BM (metacentric radious) 11.83 meters

φ 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

GZ 0 0.023 0.055 -0.55 -1.52 -2.805 -4.239 -5.664 -6.979 -8.108

Draft 2.71 meters
TKM (vertical distance from keel to transversal
metacentre) 3.35 meters
GM (metacentric height) 0.05 m. (-)
VCB (vertical center of buoyance) 1.94 meters
BM (metacentric radious) 1.41 meters

φ 0° 10° 20° 30° 40° 50° 60°

GZ 0 0.0096 0.032 0.02 -0.015 -0.1246 -0.244
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5. Conclusions

The results obtained in the practical application show that the
approximate formula is not accurate enough for round-shaped
ships, although it may be useful for wall-sided ships. The re-
sults of the applications of both methods in the 16,600 dwt
bulk-carrier In the case of the 150,000 dwt tanker, there is a
difference of almost three degrees between both methods of
calculation, which seems to be excessive for a box-shaped ship
with small block coefficient; nevertheless, it must be taken into
account that the ship’s conditions to reach a negative meta-
centric height have been forced too much. This is due to the
fact that the shape and hydrostatic particulars of that type of
ship provide her with excessive stability. Therefore the height
of the centre of gravity estimated for the tanker in the practical
case is hypothetical and out of the possible stability criteria in
the construction of this type of ships (Riola and Pérez, 2009).
In the case of the sailing yacht, the difference of the results be-
tween both methods is bigger than ten degrees, which means

that the approximate formula is not valid for non wall-sided
ships.

The global cubic splines let us obtain graphically and ana-
lytically the angle of loll in an accurate way. However, it is es-
sential to fix the end where the slope of the static stability
curve is known. Otherwise, there may be an error of more than
three degrees. Therefore, it is advisable to fix the end when a
math program such as Matlab or Mathematica is used to de-
fine the static stability curve.
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Figure 6: Small angles’ detail of the GZ curve for sailing yacht (round-shaped).Figure 5: GZ curve for sailing yacht (round-shaped).




