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1. Introduction

This paper continues our program initiated in [6, 7] of implementing
tensor products of complete lattices into fuzzy set theory and, in particular,
into many-valued topology. We are concerned with developing a new codo-
main for continuous functions in many-valued topology which would pro-
vide a common generalization of I-valued functions, I(L)-valued functions,
I(I(L))-valued functions, and M-valued functions, where I is the real unit
interval, L is a complete lattice, M is a completely distributive lattice, and
I(L) is the fuzzy unit interval of Hutton [11]. This has to do with second
order fuzziness in the sense of Rodabaugh [25].

As observed in [7], I(L) can on the algebraic level be viewed as a tensor
product I ® L. Tt is therefore felt that a suitable candidate for the new
codomain is the tensor product M ® L, for besides the order isomorphism
I(L) =2 I ® L we also have M ®2 = M and 2® L = L. The tensor product
M ® L is in this paper chosen — as in Shmuely [26] — to be the complete
lattice of all join-reversing maps from M to L under pointwise order.

Extending the original Hutton’s interval L-topology of I(L) to M ® L
requires certain assumptions on the first factor M. We assume that M
is a completely distributive lattice and that L is a complete lattice with
an order-reversing involution. As in the case of I(L), our tensor product
M ® L is appropriately endowed with three L-topologies: the upper, the
lower, and the interval L-topology. The appropriateness of these L-topolo-
gies is confirmed by the fact that the upper, lower, and interval 2-topologies
on M ® 2 coincide with the traditional upper, lower, and interval topologies
on M, respectively.

Our investigations sometimes led to a few new insights into complete
distributivity of lattices (including atomic Boolean algebras).

When proving Urysohn lemma and Tietze-Urysohn extension theorem
for (M ® L)-valued functions, we choose M to be <-separable — i.e. it has
a countable join base which is free of supercompact elements. There are
many examples of such lattices to choose from, for <I-separability is closed
under tensor products and under countable Cartesian products.

There have already been made various attempts to generalize I(L) (cf.
[7]). In particular, Zhang and Liu [28] considered the set of all join-preserving
maps from M to L, and called it the L-fuzzy modification of M, thereby not
respecting the original antitone variant of I(L). The relationship of M ® L
to the L-fuzzy topological modification of M is discussed.
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Some deeper aspects of the tensor products are used to show that the
recursive construction I(L), I(I(L)),... terminates, thereby answering an
open question of [16].

2. Preliminaries

We refer to the Compendium [5] for lattice-theoretic concepts not defined
herein. Completeness of lattices M and L is assumed from the beginning.
Members of L are denoted a, b, ¢, and members of M are denoted ¢, s, r, q,
etc. The latter notation is because in this paper the real unit interval is a
source example of M. No confusion will arise when using 0 and 1 to denote
the universal lower and upper bounds of any complete lattice. In particular,
the two point lattice {0,1} is denoted 2. Given a set X, the family LX of
all maps from X to L is a complete lattice under pointwise order:

f<g inL¥ ifft  f(x) <g(z) forallze X.

2.1. Basics on tensor products of complete lattices

The material below is developed in great detail in the the forthcoming
book [4] to which we refer for all the details and proofs (see also [6]).
A map X of LM is called join-preserving if

AMVT)=VXT) forall T C M.

The category of all complete lattices and their join-preserving maps is de-
noted Sup.
The Cartesian product M x L is a complete lattice under componentwise

order. Let K be a further complete lattice. A map M x L i K is separately
join-preserving (or a bimorphism in Sup) if

B(tva) = \/ ﬁ(t7a) and 5(\/Taa) = \/ /B(taa)

acA teT
forallte M, ACL, TCM,anda€ L.

Definition 2.1. A tensor product of M and L in the category Sup is — by
definition — a complete lattice N together with a separately join-preserving
map M x L % N satisfying the following universal property: for every
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separately join-preserving map M x L i K there exists a unique join-

preserving map N %, K such that the following diagram is commutative:

MxLLfN

BJ s
K

K

In this context « is called the universal bimorphism.

As usually it follows from the universal property of the tensor product is
unique up to an order isomorphism. The tensor product of M and L will be
denoted M ® L. Similarly, the corresponding universal bimorphism « will
be written as M x L =5 M & L.

We now proceed to describe a construction of a tensor product of M and
L which suits our purposes best. It has for the first time been described by
Shmuely [26]. To this end, define a map A € LM to be join-reversing if

AMVT)=AXNT) foral T C M.

Let us keep in mind that such a A is order-reversing and A(0) = 1. The
family of all join- reversing maps from M to L is a complete lattice under
the pointwise order inherited from LM (as arbitrary meets are pointwise
meets). By some abuse of ideology and notation, already at this point we
let

M ® L:={\ e LM | X is join-reversing}

(for historical reason we note that the above family in the context of fuzzy
sets has already been considered in [9, 20]). Given (t,a) € M x L, define a

mapM%Lby

1 if s=0,
(t®a)(s)=qa if 0#s<t,
0 if s£t.

Then t ® a is in M ® L and the map M X L2 M ® L defined by (t,a) —
t ® a is the universal bimorphism. The universal bounds 0 and 1 of M ® L
have the following form

1 if ¢t=0
0(t) = ' " and 1(t)=1 forall te M
0 if t+#£0,
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All this can be summarized as follows (we refer to [4] or [22] for categorical
terminology):

Theorem 2.2. Let M and L be complete lattices. Then
M ® L={\ec LM | X is join-reversing}

together with the bimorphism M x L 2y M ® L is the tensor product of M
and L in the category Sup and ® makes Sup into a symmetric monoidal
closed category.

Elements of M ® L are called tensors and ¢t ® a is called an elementary
tensor. It is not hard to see that if A is a tensor of M ® L, then t ® a < X iff
a < A(t). From this immediately follows that each tensor A has the following
decomposition:

A=V t®A{1). (2.2)
teM
Remark 2.3 (Lattice embeddings of M and L to M ® L). Both M and L
completely embed into M & L. Namely, M 4 M @ L is given by

em(t) =t®1,
and L <55 M ® L is given by
er(a)=1®a

(this notation may cause problems if M = L but we never consider such a
case explicitly).

2.2. Classic L-topological terminology

Here we explain which sort of many-valued topologies are going to be
used in this paper. Namely, a family 7 C L¥ is an L-valued topology (cf.
[10, Section 5.2]) or short an L-topology on X, members of T are open,
and (X, T) is an L-valued topological space or short an L-topological space
if 7 is closed under finite meets and arbitrary joins formed in LX. A map

(X, Tx) EN (Y, Ty) is continuous if, given a V in Ty, the map V o f belongs
to Tx. Obviously, L-topological spaces and continuous maps form a category
Top(L) which is topological over Set. Finally, if we identify a subset U of X
with its characteristic function 1y, then the category of topological spaces
is isomorphic to a coreflective and full subcategory of Top(L).

Given A in LX, we let Int A = \/{U € T | U < A}. If L has an order-
reversing involution (-)’, then K of L is closed if K’ is open where K'(z) =
K(z) for each z € X. Then A = A{K € L* | A < K and K is closed}.
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Notation. A complete lattice L with an order-reversing involution (-)" is

written as (L,’) and is called a complete De Morgan algebra.

An L-topology T on X is generated by a subbase S C LX if T is the
intersection of all the L-topologies on X which contain §. The subbase
characterization of continuity states that for YW a subbase of Ty, a map

(X, Tx) EN (Y, Ty) is continuous if and only if Wo f € Tx for all W € W(see
[13, p. 282] for historical remarks). The point here is that L is an arbitrary
complete lattice and not a frame. A subset Z of X becomes a subspace of
X with L-topology consisting of restrictions U|z for all U € 7. Hence the
subspace L-topology on Z is the initial L-topology with respect to the set-
inclusion of Z into X. The Cartesian product X” is L-topologized by the
subbase {U o7, | U is open and j € J} where 7; is the jth projection. A
continuous injective map (X, Tx) TN (Y, Ty) is an L-topological embedding
if the initial L-topology with respect to f and Ty coincides with Tx. Finally,
let us assume that (L,’) is a complete De Morgan algebra. Then an L-to-
pological space (X, 7)) is called normal if, whenever K is closed, U is open,
and K < U, there exists an open V such that K <V <V < U.

3. On complete distributivity and <-separability

A completely distributive lattice is a complete lattice M in which for
every family {7} ;e of subsets of M the following holds:

AVTi= N Ae@). (3.1)

jes Oell,e, Tj J€7

Instead of using (3.1), we shall use Raney’s [23] characterization of complete
distributivity in terms of the totally below relation < (cf. [1] and [4, Sub-
section 2.1.2]). Namely, if M is a complete lattice and s,t € M, then the
symbol

st

means that
t<\VT withT CM implies s<r forsomereT.

For all r, s, t and u in M we have the following properties:

(1) s<t implies s <t,
(2) r<s<t<wu implies r < u,
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Moreover, M is completely distributive if and only if <1 is approzimating —
ie.
t=V{seM|s<t} forallte M.

In this situation, this means that if M is completely distributive, the inser-
tion property of < is satisfied:

(3) If s < t, then there exists ¢ € M such that s < ¢ <t holds.
(Cf. [5, p. 204] and [23] where < is denoted by p).

We shall freely make use of these three properties. In particular, the
insertion property implies that for any subset T of a completely distributive
lattice M we have:

s<aVVT iff s<t forsometeT. (3.2)
Notation. For each t € M we write
WH={seM|s<t} and ft={seM]|t<s}.

Note that |0 = & and 10 = M \ {0} (cf. [5, TV-2.29 (i)]). As always, we
write Jt ={s€ M |s<t}and ft={se M |t < s}.

Example 3.1. Let M be a completely distributive lattice and L be a com-
plete lattice. Then the totally below relation of the tensor product M & L
can be characterized on elementary tensors as follows (cf. [4, Lemma 2.1.21]).
Ift,s € M and a,b € L with s # 0 and b # 0, then

sb<dt®a iff s<tand b < a. (3.3)

In [4], property (3.3) is responsible for the non-trivial “if” part of the follow-
ing equivalence: M ® L is completely distributive iff M and L are completely
distributive. The “only if” part follows from the complete embeddings of M
and L into M ® L (cf. Remark 2.3). For historical reasons we note that the
“if” part of the above equivalence has already been proved by Shmuely [26]
by a direct use of the complete distributivity law (3.1).

Remark 3.2. This is a good place to mention that some lattice properties
of I ® L have been proved quite long before they were proved for I(L).
Examples include complete distributivity and continuity of I(L) (cf. [19] and
[15], respectively). As has already been mentioned, complete distributivity
comes from Shmuely [26], while continuity comes from Bandelt [2].
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A subset Q C M is called a join base of a complete lattice M (in short:
base) if each member of M is a join of a subset of ). Equivalently, if
t=V{qgeQ|q¢<t}foralte M.

Remark 3.3. If ) and B are bases of M and L, respectively, then the
subset
{¢®b|ge @ andbe B}

is a base of M ® L.

The next fact gives a characterization of a base in the framework of
completely distributive lattices.

Fact 3.4. For a subset Q of a completely distributive lattice M the following
assertions are equivalent:

(1) Q is a base for M.
(2) Given s <t in M, there is a ¢ € Q such that s < g < t.

3)t=V{qeQ|qg<t} forallte M.

Proof. Tt is shown in [8, Fact 2.1] that (1) and (2) are equivalent. The
implication (3) = (1) is obvious. To see that (2) implies (3), we use the
approximation and insertion properties of <:

t=Vs<VV{geQ|s<qgat}<\V{geQ|gat}<t. O

st st

The relation s <1 t allows for the possibility that s and ¢t might be equal.
Elements which fail to have this property will play a crucial role in Section 4.

3.1. An important corollary of complete distributivity

As a first step we present a further characterization of complete distribu-
tivity. It may be that this characterization is not new, but we have never
seen it in print. For later purposes we begin with a very useful lemma.

Lemma 3.5. Let M be a complete lattice. Then for every t € M there
exists an element sy € M such that ftt = M \ |s; holds.

Proof. If t € M is given, then we define s; € M as follows:
ss=V{seM|tLs}. (3.4)

Since 110 = M \ {0} and sp = 0, the assertion is obvious in the case of ¢ = 0.
Hence it is sufficient to consider the case t # 0. If the inclusion {1t C M\ |s;
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fails to hold, then there exists some r € M with t << r < s; and so there
exists s € M such that ¢t < s and ¢ £ s which is a contradiction. On the
other hand, if we choose r € M such that t is not totally below r, then there
exists a subset T' of M such that the following relation holds:

r<VT and tLsforallseT.

Hence the definition of s; implies r < \/ T < s;. Consequently M \ it C |s;
follows. [

Comment 3.6. For historical reasons we point out that the equivalence
t < r if and only if » £ s; already appears in an equivalent formulation in
[24, p. 422], where s; is determined by (3.4). The statement of the previous
lemma is closely related to [8, Proposition 5.2].

Proposition 3.7. Let M be a complete lattice. Then M is completely dis-
tributive if and only if for every t € M the following property holds:

M\t C Lﬁjtﬂs. (3.5)

Proof. Let us assume that M is completely distributive — i.e. the totally
below relation < is approximating. Then for r,¢ € M with r £ t the
following relation holds:

r=Vs=( V9V V <tV V )

s4r s<Ir, s<t s<r, st s<r, sgt

Since r £ t, the last join is a non-empty join — i.e. there is an s € M with
s<rand s £t Thusre Us;{t f1s, and the relation (3.5) is verified.

Conversely, let us assume that (3.5) holds for all ¢ € M. Then for every
t € M we define an element tAby

t=V{reM|r<t} <t

In order to show that < is approximating, it is sufficient to prove t < t.
Let us assume the contrary ¢ € ¢t. Then in the case of ¢ we apply (3.5) and
obtain:

te M\t € U s

s€t
Hence there exists s € M such that s £ tand s <1t — i.e. a contradiction
to the definition of t. Hence < is approximating. O
9



QO J oy U WDN B

OO OO OO UTUT U U OO OO DD DDDEDDDWWWWWWWWWWNDNDNDNDNDNDNdDNDNDNNRERRRRRRRRRE
G LWUNDP O OWOJOHUPd WNRPOWOWOJONUd WNEPOOWOJIONUd WNEPPOWOWOJIUdWNE OWOoWwToU »whEHr O

Corollary 3.8. In every completely distributive lattice M the following re-
lation holds for all t € M:

MA Lt = U fs.
st

Proof. Since in any complete lattice M the relation |J szt s © M \ It is
satisfied, the assertion follows immediately from Proposition 3.7. O

As an application of Proposition 3.7 we here present the non-trivial part
of Tarski’s theorem (see [3, p. 119, Theorem 17] and [18, Example (i)]).

Corollary 3.9. FEvery completely distributive complete Boolean algebra is
atomic.

Proof. Let M be a complete Boolean algebra, ¢t be an element of M and t/
be its complement. Then

0 if ¢t=0,
s¢ =<t if tisan atom,

1 otherwise,

and
M\ {0} if t=0,
Mt =q1t if ¢ is an atom,
o) otherwise.

If we assume that M is not atomic, then there exists ¢ € M with ¢ # 0
such that the element ¢ = \/{s € M | s < t, s an atom} satisfies the
condition t £ t. Referring to the previous constructions it is easily seen that
the relation M \ [t & Usgi 1ts holds. Hence Proposition 3.7 implies the
non-complete distributivity of M. Ol

Having described these preliminary properties of the totally below rela-
tion we illustrate the situation by the following examples.

Examples 3.10. (1) Let M be a complete chain and ¢ be an element of
M. Referring to (3.4), we have s; = \/(({¢) \ {t}), and so we conclude from
Lemma 3.5 that ¢ < ¢ if and only if \/(({¢) \ {¢t}) < ¢t — i.e. if and only if
t is isolated from below. In the particular case of the real unit interval I,
s¢ =t for each t € I, and so the totally below relation <1 coincides with the
strictly less-than relation <.

10
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(2) As a further illustration let us consider the cartesian product M x L
of two complete lattices M and L endowed with the componentwise order,
and (t,a) be an element of M x L. Then

(17311) if t=0,a>0,
S(ta) = 4 (81,1) if t>0,a=0,
(1,1) if t>0,a>0,

and
M x (fta) if t=0,a>0,
Mt,a) =< (M) x L if t>0,a=0,
7] if t>0,a>0.
Hence

(t,a) < (s,b) iff (t=0and a<b)or (a=0andt<s).

Consequently M x L is completely distributive if and only if both M and L
are completely distributive.

(3) Let M be the usual topology on R and let u be a non-empty open
set in M. Then

su=V{veM|uLv}=U{veM|uZv} =R

and so ffu = @. Hence if u is a non-empty open set in M different from R,
then M \ Ju # (J,z, v = @ and M fails to be completely distributive.

(4) Let H be a Hilbert space with 2 < dim(?). Then the complete lattice
M of all closed linear subspaces of H is atomic. Referring to (3.4), for every
atom u — i.e. for every 1-dimensional linear subspace — we define:

su=\V{veM|ugZuv}=top. closure (lin. hull (J{v € M |u € v})).

Since s, coincides with the given Hilbert space — i.e. s, = H, the proof
of Lemma 3.5 shows that ffu is empty. Hence for every non-trivial closed
linear subspace w of H we have fw = &. To sum up, we have shown that
the totally below relation coincides with the trivial relation — i.e. u < v if
and only if u = 0 and v # 0.

11
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3.2. <-Separability

Let M be a complete lattice. An element t € M is called supercompact
(also known as: completely join irreducible or completely coprime) if

t<t.

We recall that 0 is never supercompact.

Definition 3.11 ([8]). We say that a completely distributive lattice M
is <-separable if it has a countable base () which is free of supercompact
elements — i.e.

q 4 q forevery g € Q.

Proposition 3.12. (1) Let M be a completely distributive lattice and L be a
complete lattice. Then an elementary tensor t®a in M ® L is supercompact
if and only if t and a are supercompact.

(2) Let M and L be completely distributive lattices. If M is <-separable
and L has a countable base or L is <I-separable and M has a countable base,
then the tensor product M ® L is a <l-separable.

Proof. (1) Since supercompact elements of complete lattices never coincide
with the universal lower bound, the equivalence in (1) follows immediately
from the characterization of the totally below relation <1 in Example 3.1.

(2) Since M and L are completely distributive, their tensor product
M ® L is also completely distributive (cf. Example 3.1). Further, if @ and
B are countable bases of M and L respectively, then the subset

{g@blqge, be B}

is a countable base of M ® L (see Remark 3.3). On this background the
assertion (1) implies immediately the assertion (2). O

Since the real unit interval I is a <1-separable completely distributive lat-
tice in which the rationals of I form a countable base without supercompact
elements (cf. Example 3.10 (1)), we also have the following

Corollary 3.13. Let L be a completely distributive lattice with a countable
base. Then I(L), I(I(L)), and so on, are <-separable completely distributive
lattices.

Corollary 3.14. If M is a <1-separable completely distributive lattice, then
the countable product M™ of M is again completely distributive and <-se-
parable.

12
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Proof. Let P(IN) be the power set of the natural numbers. The tensor
product

M ® P(IN)
is completely distributive and order isomorphic to M™ (cf. [12, p. 10] or [4,
Example 2.1.9]). Hence the assertion follows from Proposition 3.12(2). [

Remark 3.15. The Hilbert cube is a prominent example of Corollary 3.14.
The proof of Corollary 3.14 provides an alternative argument (based on
tensor products) for a special case of a statement of Proposition 3.5 in [§]
which states that the Cartesian product of an arbitrary countable family of
<I-separable completely distributive lattices is again <i-separable.

4. Three L-topologies on M ® L

Before defining some L-topologies on M ® L we give an alternative de-
scription of members of M ® L with M a completely distributive lattice.

Definition 4.1. Let M be completely distributive. A map M 2 Lis called
left-continuous if

At) = N{\(s) | s<t} forallte M.

Checking that A is left-continuous may be a useful alternative to verifying
that A is a tensor, for the following holds.

Lemma 4.2. Let M be completely distributive lattice and L be a complete

lattice. Then a map M 2 L is a tensor of M ® L if and only if \ is left-
continuUous.

Proof. Since the relation < is approximating on M, it follows that every

tensor of M ® L is left-continuous. On the other hand, if M A Lis left-
continuous, then we apply (3.2) and obtain for 7" C M:

AVT)=A{A6s) [saVTY= /\(tLeJT{)\(S) [s<t}) = A D).

teT

Hence X is a tensor of M @ L. O

. . A
Given an order-reversing map M — L, let

AT(t) =\ A(s) forallte M.

t<s

Clearly, AT is order-reversing and A* < \. Further properties of A\* are
presented in the following:

13
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Lemma 4.3. Let M be a completely distributive lattice with a base Q), and
let L be a complete lattice. For each A € M Q@ L and t € M the following
hold, where q stands for a member of Q:

(1) A7) = Vigq A (@)
(2) AT(t) = Vigq Ma)-
(3) A) = Agar Aa)-
(4) A1) = Agar AT ()

Proof. Referring to Fact 3.4 (2) we infer from the definition of A" that

AT () =V A(s) = V{A(s) | t <t ¢ < s for some g € Q} = \/ AT (q).
t<s t<q
Hence AT satisfies (1). Since A™ < A, the property (1) implies (2). The
property (3) follows from the properties that @ is a base of M and A is join-
reversing. With regard to (4) we argue as follows. By definition of A* the
relation A(t) < A,; A*(¢) holds. The reverse inequality follows from (3)
and AT < . O

We are now prepared for an L-topologization of M ® L.

Definition 4.4. Let M be a completely distributive lattice and let (L,")
be a complete De Morgan algebra. For every t € M, consider the maps

M&L 25 L and M®L 25 L determined by
Ri(\) = AT (t) and Li\) = \3).

Then we define three L-topologies on M ® L as follows:

(a) the upper L-topology Rurer generated by {R; |t € M},
(b) the lower L-topology Lyrer generated by {L; |t € M},
(c) the interval L-topology Zyrgr generated by {Ry, Ly |t € M}.

Note that Ry = Lg is a constant map with value 0.

Remark 4.5. If I is the real unit interval, then the tensor product I ® L
coincides with Lowen’s [21] simplification of the original Hutton’s I(L). For
details see [7].

The following is a restatement of Lemma 4.3 in terms of the maps R;
and L;.

14
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Lemma 4.6. Let M be a completely distributive lattice with a base Q), and
let L be a complete lattice. For each t € M the following hold, where q
stands for a member of Q:

(1) Ry = qu Ry.
If (L,") is a complete De Morgan algebra, then:
(2) R =V,qq Ly
(3) Lt = \/qﬂt LQ'
(4) Ly = V4o By

In the remaining of this section, we discuss L-topological embeddings
of M into M ® L. We recall that every complete lattice M carries three
intrinsic topologies: the upper topology v(M) generated by all the sets
M \ lt, the lower topology w(M) generated by all the sets M \ ¢, and the
interval topology ¢(M) generated by all the sets M \ [t and M \ 1t. The
next proposition follows from Lemma 3.5 and Proposition 3.7:

Proposition 4.7. Let M be a completely distributive lattice. Then the upper
topology v(M) is generated by the family {f{t | t € M}.

Remark 4.8. Let M be an arbitrary completely distributive lattice and
L = 2. Since 2 is the unit object of Sup (cf. Theorem 2.2), it follows
immediately that the embedding M % M ® 2 is an order isomorphism.
Because of (R; o en(s))(t) = (s ® 1)T(t) the relation R, 0 epr = Ly, holds.
Hence we conclude from Proposition 4.7 that the upper 2-topology on M ® 2
coincides with the traditional upper topology v(M) on M. Similarly, we have
Lioey = 1M\Tt? so that the lower 2-topology on M ® 2 coincides with the
traditional lower topology on w(M).

We refer again to Lemma 3.5, Proposition 3.7 and Remark 4.8 and ob-
serve that in the case of a completely distributive lattice M and a complete
De Morgan algebra (L,’) the embedding M ® 2 = M 24 M ® L is L-to-
pological in three senses. Therefore we record the following fact.

Fact 4.9. Let M be a completely distributive lattice and let (L,”) be a com-
plete De Morgan algebra. The map M -5 M ® L is an L-topological
embedding of (M,v(M)), (M,w(M)), and (M,.(M)) into (M @ L,RyeL),
(M®L,LyeL), and (M ® L, Iywr), respectively. In this context it is
worthwhile to mention that Ryrgr and the first embedding is independent of
the order-reversing involution (cf. Comment 6.1).

15
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We finish this section with a discussion which explains the role of com-
plete distributivity in Definition 4.4.

Remark 4.10. It is evident that in Definition 4.4 the three L-topologies
Ry, Lrver and Zygr do not require the complete distributivity of M.
Therefore it is interesting that in the case of complete lattices M the 2-to-
pology Lag2 coincides with the lower topology w(M), while the 2-topology
Rag2 may be strictly coarser than the upper topology v(M) (cf. Lem-
ma 3.5). For example, if H is a Hilbert space with 2 < dim(#) and M is
the complete lattice of all closed linear subspaces of H, then we conclude
from Example 3.10 (4)) that the 2-topology Ry/e2 has the following form
{2, M\ {0}, M} where 0 is the trivial linear subspace of H.

5. Urysohn lemma and Tietze—Urysohn extension theorem for
(M ® L)-valued functions

If M is a <-separable completely distributive lattice and @ is a base
that witnesses the <i-separability of M, then — by definition — the transitive
relation < is irreflexive when restricted to @ x (). This way we have arrived
at the following.

Lemma 5.1 ([8, Definition 6.1 + Lemma 6.3]). Let K be an arbitrary com-
plete lattice endowed with a relation € satisfying the following conditions for
all elements a,b,c € K:
(1) a €b implies a <b,
(2) a<bec<d implies aEd,
(3) a,b € c implies aVbEec,
(4) a € b,c implies a €bAc,
(5) a €b implies a €@ c € b for some c € K.
Let J be an arbitrary countable set endowed with a transitive and irreflecive
relation <. Let {aj | j € J} and {b; | j € J} be families of K satisfying the
following:
a; < aj,
j =<1 implies a; € bj,
bi <b;.
Then there exists a family {c; | j € J} such that

a; € ¢y,
j <1 implies ¢i € cj,

c; € bj.

16
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Remark 5.2. Let (L,’) be a complete De Morgan algebra, let X be an
L-topological space, and let K = LX. Given A, B € LX, we let

AeB if A<IntB. (5.1)
Then & satisfies (1)—(4) above, and € satisfies (5) iff X is normal.
In what follows, M ® L is endowed with its interval L-topology.

Theorem 5.3 (Urysohn lemma for (M ® L)-valued functions). Let M be
a <-separable completely distributive lattice and let (L,") be a complete
De Morgan algebra. For X an L-topological space the following statements
are equivalent:

(1) X is normal.
(2) If K € LX is closed, U € LX is open, and K < U, then there exists
a continuous function X ENSYi ® L such that

K<ILjof<Ryof<U.

Proof. Let () be a countable base of M consisting of non-supercompact
elements. In what follows ¢, r and s stand for members of Q. To show (2)
implies (1), we follow the standard Urysohn’s technique based on a special
case of Lemma 5.1 in which J = @, in which < plays the role of <, and in
which a; = K and b; = U for all j.

Conversely, let X be normal and € stand for the relation of (5.1). By
Lemma 5.1, there is a family {F, | ¢ € Q} of elements of LX such that
K € F,. @ I; @ U whenever ¢ < r. In particular

F.<IntF, if g<r. (5.2)
For each x € X we let

Az(t) = N\ Fy(z) for every t € M.
q<t

We check it is left-continuous. Indeed,

As(t) = N\ Fo(z) = N A Fo(z) = A Aal(s),

q<t st g<s st

ie. \p € M ® L. Define X X5 M ® L by the formula f(z) = Ay. Thus

f@)(t) = N Fy(z). (5-3)

q<t

17
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We now show f is continuous by using the subbasic characterization of
continuity — i.e. we are going to show that L, o f and R, o f are open for
each t € M. For each t € M we have

Liof=V\F, (5.4)
q<t
and
Riof =\ F, (5.5)
t<dq

Clearly, (5.4) is a restatement of (5.3). To show (5.5), we use (2) of Lem-
ma 4.6 and (5.3) to obtain

Riof = \/L’of VANE>VVF=\F.

t<dgr<q t<q g<r t<ar

For the reverse inequality notice that

}%toef:: \/ /\ P}fg \/ P)>

t<ig r<q tar

so that (5.5) is verified. By (5.2), we obtain that

Liof = \/F’ \/F

q<t q<t
and
Riof=\ F,=\ IntF,.
t<lq t<q
are open.

Finally, since K < F, < U for all ¢ € @), hence

K< A Fy ::-Li of <Roof=Y\ F, <U,

q<l 0<gq
which completes the proof. 1

Theorem 5.4 (Tietze-Urysohn extension theorem for (M ® L)-valued func-
tions). Let M be a <-separable completely distributive lattice and let (L,") be
a complete De Morgan algebra. Let X be a normal L-topological space and
let Z C X be such that 17 € LX is closed. Then every continuous function
Z L M ® L has a continuous extension to the whole X .

18



QO J oy U WDN B

OO OO OO UTUT U U OO OO DD DDDEDDDWWWWWWWWWWNDNDNDNDNDNDNdDNDNDNNRERRRRRRRRRE
G LWUNDP O OWOJOHUPd WNRPOWOWOJONUd WNEPOOWOJIONUd WNEPPOWOWOJIUdWNE OWOoWwToU »whEHr O

Proof. Let @ be a countable base of M which is free of supercompact ele-
ments. In what follows p, ¢, r and s stand for members of Q. We follow the
technique of Proof 2 of Theorem 4.10 of [14]. For every ¢ there exist open
Vy and W, in X such that

Lyog=Wylz and Ryog=V,z.
Let
Kq:Wq/{/\lz and Uq:‘/;]\/lX\Z

Then K, is closed, Uy is open for all ¢ € @), and for each x € Z and s < r
in Q we have

K, (z) = W(z) = Ly (g(x))' = g(z)(r)
< g(x)"(s) = Rs(g(x)) = Vi(z) = Us(2).

Hence
K. <Us; if s<«r.

Let € be the relation of (5.1): A € B iff A C Int B. Since X is normal, the
families I = {K, | ¢ € Q} and U = {U, | q € Q} satisfy the following:

K, < K,
s <dr implies K, € Us,
U, <Us.

By Lemma 5.1, there exists a family F = {F, | ¢ € Q} such that

K, € Fj,
s <ar implies F, € Fj, (5.6)
F. eUs.

As in the proof of Theorem 5.3, define a function X i> M ® L by the
formula

f@)(t) = N\ Fy(x).

q<t

Then f is continuous by the same argument as in the proof of Theorem 5.3.
It remains to check that f = g on Z. Let x € Z. Clearly, f(x)(0) =1 =
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g(x)(0). Let t # 0. We have W,(x) = K,(z), hence, by (3) of Lemma 4.6,

g(x)(t) = (Li o g)(x)
= A (Lgo9)(@)

q<t

= N Ky()

q<t

< N Fy(z) = f(2)(t)

q<t

where the inequality holds by (5.6). Likewise, since Uy(z) = V;(x), we have

f@)(t) = N Fy(x)

q<it

< A\ Uy(x)

q<t

= N\ (Bqog)(x)

q<it
= (Li o g)(t) = g(=)(®).
We have shown that g(z) = f(x) for all x € Z. O

Remark 5.5. Theorems 5.3 and 5.4 provide common generalizations of
results in three different situations. Because of Fact 4.9, if M = [0,1] and
L = 2, then Theorems 5.3 and 5.4 become the Urysohn lemma and Tietze—
Urysohn extension theorem for usual topological spaces, respectively. If
M =10,1] and (L,’) is a complete De Morgan algebra, then these theorems
reduce to the L-topological versions of the Urysohn lemma and Tietze—
Urysohn extension theorem (cf. [11] and [14]). With L = 2 we arrive at [8,
Theorem 6.5 (4) and (5)].

6. The relationship of M ® L to the L-fuzzy topological modifi-
cation of M

As has already been mentioned, as a generalization of I(L), Zhang and
Liu [28] considered the collection of all join-preserving maps from M to L
and called it the L-fuzzy modification of M. Roughly speaking, in our paper,
the relation < plays the role of the relation < of I, while in [28] < is replaced
by #. Due to the fact that I(L) = I ® L, the Zhang-Liu’s construction will
be denoted here by M[L] (and not by M (L) as is in [28]). We observe that
if L has an order-reversing involution (-)’, then

NeM®L iff Ne M[L]
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and A < pin M @ L iff ¢/ < X in M[L]. Hence the map M®L—h—>M[L]
given by h(\) = )\ is an order-reversing bijection. For each t € M define
two maps M[L] = L and M[L] = L by

() = A pls) o 1) = ()

In [28], two L-topologies have been introduced on M[L]. Here we shall
discuss only the L-topology &y which is generated by the family {Rrj},L; |
te M}.

We now proceed to show that (M[L],dr) and (M ® L,Zy;¢1,) are homeo-
morphic. For this we need an alternative, but equivalent, description of the
upper L-topology Rygr on M & L.

Comment 6.1. In our paper, as in [11], the use of join-reversing maps shows
that the upper L-topology is independent of the order-reversing involution,
while in [28] all the subbasic elements depend on it.

Proposition 6.2. Let M be a completely distributive lattice and let L be a
complete lattice. For eacht € M we define M @ L - L by

tw(A) =V A(s).
sft

Then the family {tt |t e M} is a subbase for the L-topology RysL-

Proof. Denote by PR the L-topology on M ® L generated by {t; | t € M}.
For every t € M and A € M ® L we have

u(A) =V VAr)=VAi(s) =V R(N),
sgt s<Ar s&t sgt

where the first equality holds on account of Corollary 3.8. This shows the
inclusion R C Rygr. To show the reverse inclusion, fix t € M. By Lem-
ma 3.5, there exists an s; € M such that {1t = M \ |s;. Hence Ry =v,,. [

Corollary 6.3. Let M be completely distributive and let (L,”) be a complete
De Morgan algebra. Then (M[L],01) and (M®L,Zy 1) are homeomorphic.

Proof. Let us consider the bijection (M ® L,Zygr) N (M[L],d) given
by h(A) = X. Since by Proposition 6.2 the relations L, o h = L; € L1,
and R, o h = 1; € Ry hold, h and h~! are continuous — i.e. h is a
homeomorphism. 1
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Remark 6.4 (Brouwer fixed point theorem). Let M and (L,’) be completely
distributive lattices. Further, let m be a cardinal and let (M ® L)™ be the
L-topological product of m copies of M ® L with its interval L-topology.
In [17] it is shown that M[L|™ has the fized point property — i.e. each
continuous selfmap of M[L]™ has a fixed point (when M =TI and L = 2 it
becomes the Brouwer fixed point theorem for an arbitrary cube I™). Since
the L-topological spaces M[L] and M ® L are homeomorphic, we conclude
that (M ® L)™ has the fixed point property, too.

Appendix: Iterating the construction of I(L)

This section requires a good command of symmetric monoidal closed
categories. All the material needed is elaborated in detail in [4].

In [16, Question 17], it is asked whether the recursive construction I(L),
I(I(L)), and so on, terminates. Now, if we know that I(L) is the tensor
product of I and L, we have a solution by a categorical argument applied
to the monoidal closed category Sup. Let us first recall what is the tensor
product of morphisms of Sup.

If M % M, and L & Ly are join-preserving maps, then the tensor
product o ® [ of a and f is the unique join-preserving map from M ® L
into M; ® L making the following diagram commutative:

MxL —2 s ML
ax,BJ{ a®B
My xL, —2 5 My® L

In particular, @ ® 8 coincides with the unique join preserving extension of
the bimorphisms (¢, a) — «a(t)®S(a) from M x L to M ® L. Given a tensor
A of M ® L, the formula for (a ® 5)(\) is obtained by using (2.2) and the
fact that @ ® B is join-preserving.

Now, define

" — L if n=0,
It if n>1,

and In JHiny gnd gy

f _Jer if n=0,
T i @ faner i n> 1,
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where ey, is the embedding of L into I ® L (see Remark 2.3). Then

(I", frnn) nso

is a direct system in Sup where fp, n = frm—10+-0 fot1n (B < m). Since
Sup is cocomplete, the direct limit I°° of the considered direct system exists.
Further, we conclude from the symmetry and closedness of Sup that the
endofunctor I ® _ of Sup has a right adjoint functor. Hence I ® I*° and I*°
are isomorphic — i.e. the sequence

(L), I(I(L)), I(I(I(L))), ...

stops.
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