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1. Introduction

This paper continues our program initiated in [6, 7] of implementing
tensor products of complete lattices into fuzzy set theory and, in particular,
into many-valued topology. We are concerned with developing a new codo-
main for continuous functions in many-valued topology which would pro-
vide a common generalization of I-valued functions, I(L)-valued functions,
I(I(L))-valued functions, and M -valued functions, where I is the real unit
interval, L is a complete lattice, M is a completely distributive lattice, and
I(L) is the fuzzy unit interval of Hutton [11]. This has to do with second
order fuzziness in the sense of Rodabaugh [25].

As observed in [7], I(L) can on the algebraic level be viewed as a tensor
product I ⌦ L. It is therefore felt that a suitable candidate for the new
codomain is the tensor product M ⌦ L, for besides the order isomorphism
I(L) ⇠= I ⌦ L we also have M ⌦ 2 ⇠= M and 2⌦L ⇠= L. The tensor product
M ⌦ L is in this paper chosen – as in Shmuely [26] – to be the complete
lattice of all join-reversing maps from M to L under pointwise order.

Extending the original Hutton’s interval L-topology of I(L) to M ⌦ L
requires certain assumptions on the first factor M . We assume that M
is a completely distributive lattice and that L is a complete lattice with
an order-reversing involution. As in the case of I(L), our tensor product
M ⌦ L is appropriately endowed with three L-topologies: the upper, the
lower, and the interval L-topology. The appropriateness of these L-topolo-
gies is confirmed by the fact that the upper, lower, and interval 2-topologies
on M ⌦2 coincide with the traditional upper, lower, and interval topologies
on M , respectively.

Our investigations sometimes led to a few new insights into complete
distributivity of lattices (including atomic Boolean algebras).

When proving Urysohn lemma and Tietze-Urysohn extension theorem
for (M ⌦ L)-valued functions, we choose M to be C-separable — i.e. it has
a countable join base which is free of supercompact elements. There are
many examples of such lattices to choose from, for C-separability is closed
under tensor products and under countable Cartesian products.

There have already been made various attempts to generalize I(L) (cf.
[7]). In particular, Zhang and Liu [28] considered the set of all join-preserving
maps from M to L, and called it the L-fuzzy modification of M , thereby not
respecting the original antitone variant of I(L). The relationship of M ⌦ L
to the L-fuzzy topological modification of M is discussed.
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Some deeper aspects of the tensor products are used to show that the
recursive construction I(L), I(I(L)), . . . terminates, thereby answering an
open question of [16].

2. Preliminaries

We refer to the Compendium [5] for lattice-theoretic concepts not defined
herein. Completeness of lattices M and L is assumed from the beginning.
Members of L are denoted a, b, c, and members of M are denoted t, s, r, q,
etc. The latter notation is because in this paper the real unit interval is a
source example of M . No confusion will arise when using 0 and 1 to denote
the universal lower and upper bounds of any complete lattice. In particular,
the two point lattice {0, 1} is denoted 2. Given a set X, the family LX of
all maps from X to L is a complete lattice under pointwise order:

f  g in LX i↵ f(x)  g(x) for all x 2 X.

2.1. Basics on tensor products of complete lattices

The material below is developed in great detail in the the forthcoming
book [4] to which we refer for all the details and proofs (see also [6]).

A map � of LM is called join-preserving if

�(
W
T ) =

W
�(T ) for all T ✓ M.

The category of all complete lattices and their join-preserving maps is de-
noted Sup.

The Cartesian productM ⇥ L is a complete lattice under componentwise

order. LetK be a further complete lattice. A mapM ⇥ L
�
�! K is separately

join-preserving (or a bimorphism in Sup) if

�(t,
W
A) =

W
a2A

�(t, a) and �(
W
T, a) =

W
t2T

�(t, a)

for all t 2 M , A ✓ L, T ✓ M , and a 2 L.

Definition 2.1. A tensor product of M and L in the category Sup is – by
definition – a complete lattice N together with a separately join-preserving
map M ⇥ L

↵
�! N satisfying the following universal property : for every

3
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separately join-preserving map M ⇥ L
�
�! K there exists a unique join-

preserving map N
'�
��! K such that the following diagram is commutative:

M ⇥ L N

K

�

↵

'�

In this context ↵ is called the universal bimorphism.

As usually it follows from the universal property of the tensor product is
unique up to an order isomorphism. The tensor product of M and L will be
denoted M ⌦ L. Similarly, the corresponding universal bimorphism ↵ will

be written as M ⇥ L
⌦
�! M ⌦ L.

We now proceed to describe a construction of a tensor product of M and
L which suits our purposes best. It has for the first time been described by
Shmuely [26]. To this end, define a map � 2 LM to be join-reversing if

�(
W
T ) =

V
�(T ) for all T ✓ M.

Let us keep in mind that such a � is order-reversing and �(0) = 1. The
family of all join- reversing maps from M to L is a complete lattice under
the pointwise order inherited from LM (as arbitrary meets are pointwise
meets). By some abuse of ideology and notation, already at this point we
let

M ⌦ L := {� 2 LM
| � is join-reversing}

(for historical reason we note that the above family in the context of fuzzy
sets has already been considered in [9, 20]). Given (t, a) 2 M ⇥ L, define a

map M
t⌦a
���! L by

(t⌦ a)(s) =

8
><

>:

1 if s = 0,

a if 0 6= s  t,

0 if s ⇥ t.

Then t⌦ a is in M ⌦ L and the map M ⇥ L
⌦
�! M ⌦ L defined by (t, a) 7!

t⌦ a is the universal bimorphism. The universal bounds 0 and 1 of M ⌦ L
have the following form

0(t) =

(
1 if t = 0,

0 if t 6= 0,
and 1(t) = 1 for all t 2 M

4
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All this can be summarized as follows (we refer to [4] or [22] for categorical
terminology):

Theorem 2.2. Let M and L be complete lattices. Then

M ⌦ L = {� 2 LM
| � is join-reversing}

together with the bimorphism M ⇥ L
⌦
�! M ⌦ L is the tensor product of M

and L in the category Sup and ⌦ makes Sup into a symmetric monoidal

closed category.

Elements of M ⌦ L are called tensors and t⌦ a is called an elementary

tensor. It is not hard to see that if � is a tensor of M ⌦ L, then t⌦ a  � i↵
a  �(t). From this immediately follows that each tensor � has the following
decomposition:

� =
W

t2M
t⌦ �(t). (2.2)

Remark 2.3 (Lattice embeddings of M and L to M ⌦ L). Both M and L

completely embed into M ⌦ L. Namely, M
eM
��! M ⌦ L is given by

eM (t) = t⌦ 1,

and L
eL
��! M ⌦ L is given by

eL(a) = 1⌦ a

(this notation may cause problems if M = L but we never consider such a
case explicitly).

2.2. Classic L-topological terminology

Here we explain which sort of many-valued topologies are going to be
used in this paper. Namely, a family T ✓ LX is an L-valued topology (cf.
[10, Section 5.2]) or short an L-topology on X, members of T are open,
and (X, T ) is an L-valued topological space or short an L-topological space
if T is closed under finite meets and arbitrary joins formed in LX . A map

(X, TX)
f
�! (Y, TY ) is continuous if, given a V in TY , the map V � f belongs

to TX . Obviously, L-topological spaces and continuous maps form a category
Top(L) which is topological over Set. Finally, if we identify a subset U of X
with its characteristic function 1U , then the category of topological spaces
is isomorphic to a coreflective and full subcategory of Top(L).

Given A in LX , we let IntA =
W
{U 2 T | U  A}. If L has an order-

reversing involution (·)0, then K of LX is closed if K 0 is open where K 0(x) =
K(x)0 for each x 2 X. Then A =

V
{K 2 LX

| A  K and K is closed}.

5
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Notation. A complete lattice L with an order-reversing involution (·)0 is
written as (L, 0) and is called a complete De Morgan algebra.

An L-topology T on X is generated by a subbase S ✓ LX if T is the
intersection of all the L-topologies on X which contain S. The subbase

characterization of continuity states that for W a subbase of TY , a map

(X, TX)
f
�! (Y, TY ) is continuous if and only if W �f 2 TX for all W 2 W(see

[13, p. 282] for historical remarks). The point here is that L is an arbitrary

complete lattice and not a frame. A subset Z of X becomes a subspace of
X with L-topology consisting of restrictions U |Z for all U 2 T . Hence the
subspace L-topology on Z is the initial L-topology with respect to the set-
inclusion of Z into X. The Cartesian product XJ is L-topologized by the
subbase {U � ⇡j | U is open and j 2 J} where ⇡j is the jth projection. A

continuous injective map (X, TX)
f
�! (Y, TY ) is an L-topological embedding

if the initial L-topology with respect to f and TY coincides with TX . Finally,
let us assume that (L, 0) is a complete De Morgan algebra. Then an L-to-
pological space (X, T ) is called normal if, whenever K is closed, U is open,
and K  U , there exists an open V such that K  V  V  U .

3. On complete distributivity and C-separability

A completely distributive lattice is a complete lattice M in which for
every family {Tj}j2J of subsets of M the following holds:

V
j2J

W
Tj =

W
�2

Q
j2J Tj

V
j2J

�(j). (3.1)

Instead of using (3.1), we shall use Raney’s [23] characterization of complete
distributivity in terms of the totally below relation C (cf. [1] and [4, Sub-
section 2.1.2]). Namely, if M is a complete lattice and s, t 2 M , then the
symbol

s C t

means that

t 
W
T with T ✓ M implies s  r for some r 2 T.

For all r, s, t and u in M we have the following properties:

(1) s C t implies s  t,

(2) r  s C t  u implies r C u,

6
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Moreover, M is completely distributive if and only if C is approximating —
i.e.

t =
W
{s 2 M | s C t} for all t 2 M.

In this situation, this means that if M is completely distributive, the inser-
tion property of C is satisfied:

(3) If s C t, then there exists q 2 M such that s C q C t holds.

(Cf. [5, p. 204] and [23] where C is denoted by ⇢).

We shall freely make use of these three properties. In particular, the
insertion property implies that for any subset T of a completely distributive
lattice M we have:

s C W
T i↵ s C t for some t 2 T. (3.2)

Notation. For each t 2 M we write

+t = {s 2 M | s C t} and *t = {s 2 M | t C s}.

Note that +0 = ? and *0 = M \ {0} (cf. [5, IV-2.29 (i)]). As always, we
write #t = {s 2 M | s  t} and "t = {s 2 M | t  s}.

Example 3.1. Let M be a completely distributive lattice and L be a com-
plete lattice. Then the totally below relation of the tensor product M ⌦ L
can be characterized on elementary tensors as follows (cf. [4, Lemma 2.1.21]).
If t, s 2 M and a, b 2 L with s 6= 0 and b 6= 0, then

s⌦ b C t⌦ a i↵ s C t and b C a. (3.3)

In [4], property (3.3) is responsible for the non-trivial “if” part of the follow-
ing equivalence: M ⌦ L is completely distributive i↵ M and L are completely

distributive. The “only if” part follows from the complete embeddings of M
and L into M ⌦ L (cf. Remark 2.3). For historical reasons we note that the
“if” part of the above equivalence has already been proved by Shmuely [26]
by a direct use of the complete distributivity law (3.1).

Remark 3.2. This is a good place to mention that some lattice properties
of I ⌦ L have been proved quite long before they were proved for I(L).
Examples include complete distributivity and continuity of I(L) (cf. [19] and
[15], respectively). As has already been mentioned, complete distributivity
comes from Shmuely [26], while continuity comes from Bandelt [2].

7
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A subset Q ✓ M is called a join base of a complete lattice M (in short:
base) if each member of M is a join of a subset of Q. Equivalently, if
t =

W
{q 2 Q | q  t} for all t 2 M .

Remark 3.3. If Q and B are bases of M and L, respectively, then the
subset

{q ⌦ b | q 2 Q and b 2 B}

is a base of M ⌦ L.

The next fact gives a characterization of a base in the framework of
completely distributive lattices.

Fact 3.4. For a subset Q of a completely distributive lattice M the following

assertions are equivalent :

(1) Q is a base for M .

(2) Given s C t in M , there is a q 2 Q such that s C q C t.

(3) t =
W
{q 2 Q | q C t} for all t 2 M .

Proof. It is shown in [8, Fact 2.1] that (1) and (2) are equivalent. The
implication (3) =) (1) is obvious. To see that (2) implies (3), we use the
approximation and insertion properties of C:

t =
W
sCt

s 
W
sCt

W
{q 2 Q | s C q C t} 

W
{q 2 Q | q C t}  t.

The relation s C t allows for the possibility that s and t might be equal.
Elements which fail to have this property will play a crucial role in Section 4.

3.1. An important corollary of complete distributivity

As a first step we present a further characterization of complete distribu-
tivity. It may be that this characterization is not new, but we have never
seen it in print. For later purposes we begin with a very useful lemma.

Lemma 3.5. Let M be a complete lattice. Then for every t 2 M there

exists an element st 2 M such that *t = M \ #st holds.

Proof. If t 2 M is given, then we define st 2 M as follows:

st =
W
{s 2 M | t 6 s}. (3.4)

Since *0 = M \ {0} and s0 = 0, the assertion is obvious in the case of t = 0.
Hence it is su�cient to consider the case t 6= 0. If the inclusion *t ✓ M \#st

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

fails to hold, then there exists some r 2 M with t C r  st and so there
exists s 2 M such that t  s and t 6 s which is a contradiction. On the
other hand, if we choose r 2 M such that t is not totally below r, then there
exists a subset T of M such that the following relation holds:

r 
W
T and t 6 s for all s 2 T.

Hence the definition of st implies r 
W

T  st. Consequently M \ *t ✓ #st
follows.

Comment 3.6. For historical reasons we point out that the equivalence
t C r if and only if r 6 st already appears in an equivalent formulation in
[24, p. 422], where st is determined by (3.4). The statement of the previous
lemma is closely related to [8, Proposition 5.2].

Proposition 3.7. Let M be a complete lattice. Then M is completely dis-

tributive if and only if for every t 2 M the following property holds:

M \ #t ✓
S
s 6t

*s. (3.5)

Proof. Let us assume that M is completely distributive — i.e. the totally
below relation C is approximating. Then for r, t 2 M with r 6 t the
following relation holds:

r =
W
sCr

s =
� W
sCr, st

s
�
_
� W

sCr, s⇥t

s
�
 t _

� W

sCr, s⇥t

s
�
.

Since r 6 t, the last join is a non-empty join — i.e. there is an s 2 M with
s C r and s ⇥ t. Thus r 2

S
s⇥t *s, and the relation (3.5) is verified.

Conversely, let us assume that (3.5) holds for all t 2 M . Then for every
t 2 M we define an element bt by

bt =
W
{r 2 M | r C t}  t.

In order to show that C is approximating, it is su�cient to prove t  bt.
Let us assume the contrary t 6 bt. Then in the case of bt we apply (3.5) and
obtain:

t 2 M \ #bt ✓
S

s 6bt
*s.

Hence there exists s 2 M such that s 6 bt and s C t — i.e. a contradiction
to the definition of bt. Hence C is approximating.

9
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Corollary 3.8. In every completely distributive lattice M the following re-

lation holds for all t 2 M :

M \ #t =
S
s 6t

*s.

Proof. Since in any complete lattice M the relation
S

s 6t *s ✓ M \ #t is
satisfied, the assertion follows immediately from Proposition 3.7.

As an application of Proposition 3.7 we here present the non-trivial part
of Tarski’s theorem (see [3, p. 119, Theorem 17] and [18, Example (i)]).

Corollary 3.9. Every completely distributive complete Boolean algebra is

atomic.

Proof. Let M be a complete Boolean algebra, t be an element of M and t0

be its complement. Then

st =

8
><

>:

0 if t = 0,

t0 if t is an atom,

1 otherwise,

and

*t =

8
><

>:

M \ {0} if t = 0,

"t if t is an atom,

? otherwise.

If we assume that M is not atomic, then there exists t 2 M with t 6= 0
such that the element t =

W
{s 2 M | s  t, s an atom} satisfies the

condition t 6 t. Referring to the previous constructions it is easily seen that
the relation M \ #t 6✓

S
s 6t *s holds. Hence Proposition 3.7 implies the

non-complete distributivity of M .

Having described these preliminary properties of the totally below rela-
tion we illustrate the situation by the following examples.

Examples 3.10. (1) Let M be a complete chain and t be an element of
M . Referring to (3.4), we have st =

W
((#t) \ {t}), and so we conclude from

Lemma 3.5 that t C t if and only if
W
((#t) \ {t}) < t — i.e. if and only if

t is isolated from below. In the particular case of the real unit interval I,
st = t for each t 2 I, and so the totally below relation C coincides with the
strictly less-than relation <.
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(2) As a further illustration let us consider the cartesian product M ⇥L
of two complete lattices M and L endowed with the componentwise order,
and (t, a) be an element of M ⇥ L. Then

s(t,a) =

8
><

>:

(1, sa) if t = 0, a > 0,

(st, 1) if t > 0, a = 0,

(1, 1) if t > 0, a > 0,

and

*(t, a) =

8
><

>:

M ⇥ (*a) if t = 0, a > 0,

(*t)⇥ L if t > 0, a = 0,

? if t > 0, a > 0.

Hence

(t, a) C (s, b) i↵ (t = 0 and a C b) or (a = 0 and t C s).

Consequently M ⇥L is completely distributive if and only if both M and L
are completely distributive.

(3) Let M be the usual topology on R and let u be a non-empty open
set in M . Then

su =
W
{v 2 M | u 6 v} =

S
{v 2 M | u 6✓ v} = R

and so *u = ?. Hence if u is a non-empty open set in M di↵erent from R,
then M \ #u 6=

S
v 6u *v = ? and M fails to be completely distributive.

(4) LetH be a Hilbert space with 2  dim(H). Then the complete lattice
M of all closed linear subspaces of H is atomic. Referring to (3.4), for every
atom u — i.e. for every 1-dimensional linear subspace — we define:

su =
W
{v 2 M | u 6 v} = top. closure

�
lin. hull

�S
{v 2 M | u 6✓ v}

��
.

Since su coincides with the given Hilbert space — i.e. su = H, the proof
of Lemma 3.5 shows that *u is empty. Hence for every non-trivial closed
linear subspace w of H we have *w = ?. To sum up, we have shown that
the totally below relation coincides with the trivial relation — i.e. u C v if
and only if u = 0 and v 6= 0.
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3.2. C-Separability

Let M be a complete lattice. An element t 2 M is called supercompact

(also known as: completely join irreducible or completely coprime) if

t C t.

We recall that 0 is never supercompact.

Definition 3.11 ([8]). We say that a completely distributive lattice M
is C-separable if it has a countable base Q which is free of supercompact
elements — i.e.

q 6 q for every q 2 Q.

Proposition 3.12. (1) Let M be a completely distributive lattice and L be a

complete lattice. Then an elementary tensor t⌦a in M ⌦ L is supercompact

if and only if t and a are supercompact.

(2) Let M and L be completely distributive lattices. If M is C-separable

and L has a countable base or L is C-separable and M has a countable base,

then the tensor product M ⌦ L is a C-separable.

Proof. (1) Since supercompact elements of complete lattices never coincide
with the universal lower bound, the equivalence in (1) follows immediately
from the characterization of the totally below relation C in Example 3.1.

(2) Since M and L are completely distributive, their tensor product
M ⌦ L is also completely distributive (cf. Example 3.1). Further, if Q and
B are countable bases of M and L respectively, then the subset

{q ⌦ b | q 2 Q, b 2 B}

is a countable base of M ⌦ L (see Remark 3.3). On this background the
assertion (1) implies immediately the assertion (2).

Since the real unit interval I is a C-separable completely distributive lat-
tice in which the rationals of I form a countable base without supercompact
elements (cf. Example 3.10 (1)), we also have the following

Corollary 3.13. Let L be a completely distributive lattice with a countable

base. Then I(L), I(I(L)), and so on, are C-separable completely distributive

lattices.

Corollary 3.14. If M is a C-separable completely distributive lattice, then

the countable product MN
of M is again completely distributive and C-se-

parable.
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Proof. Let P(N) be the power set of the natural numbers. The tensor
product

M ⌦ P(N)

is completely distributive and order isomorphic to MN (cf. [12, p. 10] or [4,
Example 2.1.9]). Hence the assertion follows from Proposition 3.12 (2).

Remark 3.15. The Hilbert cube is a prominent example of Corollary 3.14.
The proof of Corollary 3.14 provides an alternative argument (based on
tensor products) for a special case of a statement of Proposition 3.5 in [8]
which states that the Cartesian product of an arbitrary countable family of
C-separable completely distributive lattices is again C-separable.

4. Three L-topologies on M ⌦ L

Before defining some L-topologies on M ⌦ L we give an alternative de-
scription of members of M ⌦ L with M a completely distributive lattice.

Definition 4.1. Let M be completely distributive. A map M
�
�! L is called

left-continuous if

�(t) =
V
{�(s) | s C t} for all t 2 M .

Checking that � is left-continuous may be a useful alternative to verifying
that � is a tensor, for the following holds.

Lemma 4.2. Let M be completely distributive lattice and L be a complete

lattice. Then a map M
�
�! L is a tensor of M ⌦ L if and only if � is left-

continuous.

Proof. Since the relation C is approximating on M , it follows that every

tensor of M ⌦ L is left-continuous. On the other hand, if M
�
�! L is left-

continuous, then we apply (3.2) and obtain for T ✓ M :

�
�W

T
�
=
V
{�(s) | s C W

T} =
V� S

t2T
{�(s) | s C t}

�
=

V
t2T

�(t).

Hence � is a tensor of M ⌦ L.

Given an order-reversing map M
�
�! L, let

�+(t) =
W
tCs

�(s) for all t 2 M.

Clearly, �+ is order-reversing and �+
 �. Further properties of �+ are

presented in the following:
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Lemma 4.3. Let M be a completely distributive lattice with a base Q, and

let L be a complete lattice. For each � 2 M ⌦ L and t 2 M the following

hold, where q stands for a member of Q:

(1) �+(t) =
W

tCq �
+(q).

(2) �+(t) =
W

tCq �(q).

(3) �(t) =
V

qCt �(q).

(4) �(t) =
V

qCt �
+(q).

Proof. Referring to Fact 3.4 (2) we infer from the definition of �+ that

�+(t) =
W
tCs

�(s) =
W
{�(s) | t C q C s for some q 2 Q} =

W
tCq

�+(q).

Hence �+ satisfies (1). Since �+
 �, the property (1) implies (2). The

property (3) follows from the properties that Q is a base of M and � is join-
reversing. With regard to (4) we argue as follows. By definition of �+ the
relation �(t) 

V
qCt �

+(q) holds. The reverse inequality follows from (3)

and �+
 �.

We are now prepared for an L-topologization of M ⌦ L.

Definition 4.4. Let M be a completely distributive lattice and let (L, 0)
be a complete De Morgan algebra. For every t 2 M , consider the maps

M ⌦ L
Rt
��! L and M ⌦ L

Lt
��! L determined by

Rt(�) = �+(t) and Lt(�) = �(t)0.

Then we define three L-topologies on M ⌦ L as follows:

(a) the upper L-topology RM⌦L generated by {Rt | t 2 M},

(b) the lower L-topology LM⌦L generated by {Lt | t 2 M},

(c) the interval L-topology IM⌦L generated by {Rt, Lt | t 2 M}.

Note that R0 = L0 is a constant map with value 0.

Remark 4.5. If I is the real unit interval, then the tensor product I ⌦ L
coincides with Lowen’s [21] simplification of the original Hutton’s I(L). For
details see [7].

The following is a restatement of Lemma 4.3 in terms of the maps Rt

and Lt.

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Lemma 4.6. Let M be a completely distributive lattice with a base Q, and

let L be a complete lattice. For each t 2 M the following hold, where q
stands for a member of Q:

(1) Rt =
W

tCq Rq.

If (L, 0) is a complete De Morgan algebra, then:

(2) Rt =
W

tCq L
0
q.

(3) Lt =
W

qCt Lq.

(4) Lt =
W

qCtR
0
q.

In the remaining of this section, we discuss L-topological embeddings
of M into M ⌦ L. We recall that every complete lattice M carries three
intrinsic topologies: the upper topology ⌫(M) generated by all the sets
M \ #t, the lower topology !(M) generated by all the sets M \ "t, and the
interval topology ◆(M) generated by all the sets M \ #t and M \ "t. The
next proposition follows from Lemma 3.5 and Proposition 3.7:

Proposition 4.7. Let M be a completely distributive lattice. Then the upper

topology ⌫(M) is generated by the family {*t | t 2 M}.

Remark 4.8. Let M be an arbitrary completely distributive lattice and
L = 2. Since 2 is the unit object of Sup (cf. Theorem 2.2), it follows

immediately that the embedding M
eM
��! M ⌦ 2 is an order isomorphism.

Because of
�
Rt � eM (s)

�
(t) = (s ⌦ 1)+(t) the relation Rt � eM = 1

*t holds.
Hence we conclude from Proposition 4.7 that the upper 2-topology on M⌦2

coincides with the traditional upper topology ⌫(M) onM . Similarly, we have
Lt � eM = 1M\"t, so that the lower 2-topology on M ⌦ 2 coincides with the

traditional lower topology on !(M).

We refer again to Lemma 3.5, Proposition 3.7 and Remark 4.8 and ob-
serve that in the case of a completely distributive lattice M and a complete
De Morgan algebra (L, 0) the embedding M ⌦ 2 ⇠= M

eM
��! M ⌦ L is L-to-

pological in three senses. Therefore we record the following fact.

Fact 4.9. Let M be a completely distributive lattice and let (L, 0) be a com-

plete De Morgan algebra. The map M
eM
��! M ⌦ L is an L-topological

embedding of (M, ⌫(M)), (M,!(M)), and (M, ◆(M)) into (M ⌦ L,RM⌦L),
(M ⌦ L,LM⌦L), and (M ⌦ L, IM⌦L), respectively. In this context it is

worthwhile to mention that RM⌦L and the first embedding is independent of

the order-reversing involution (cf. Comment 6.1).
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We finish this section with a discussion which explains the role of com-
plete distributivity in Definition 4.4.

Remark 4.10. It is evident that in Definition 4.4 the three L-topologies
RM⌦L,LM⌦L and IM⌦L do not require the complete distributivity of M .
Therefore it is interesting that in the case of complete lattices M the 2-to-
pology LM⌦2 coincides with the lower topology !(M), while the 2-topology
RM⌦2 may be strictly coarser than the upper topology ⌫(M) (cf. Lem-
ma 3.5). For example, if H is a Hilbert space with 2  dim(H) and M is
the complete lattice of all closed linear subspaces of H, then we conclude
from Example 3.10 (4)) that the 2-topology RM⌦2 has the following form
{?, M \ {0}, M} where 0 is the trivial linear subspace of H.

5. Urysohn lemma and Tietze–Urysohn extension theorem for

(M ⌦ L)-valued functions

If M is a C-separable completely distributive lattice and Q is a base
that witnesses the C-separability of M , then – by definition – the transitive
relation C is irreflexive when restricted to Q⇥Q. This way we have arrived
at the following.

Lemma 5.1 ([8, Definition 6.1 + Lemma 6.3]). Let K be an arbitrary com-

plete lattice endowed with a relation b satisfying the following conditions for

all elements a, b, c 2 K:

(1) a b b implies a  b,
(2) a  b b c  d implies a b d,
(3) a, b b c implies a _ b b c,
(4) a b b, c implies a b b ^ c,
(5) a b b implies a b c b b for some c 2 K.

Let J be an arbitrary countable set endowed with a transitive and irreflexive

relation �. Let {aj | j 2 J} and {bj | j 2 J} be families of K satisfying the

following :

j � i implies

8
><

>:

ai  aj ,

ai b bj ,

bi  bj .

Then there exists a family {cj | j 2 J} such that

j � i implies

8
><

>:

ai b cj ,

ci b cj ,

ci b bj .
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Remark 5.2. Let (L, 0) be a complete De Morgan algebra, let X be an
L-topological space, and let K = LX . Given A,B 2 LX , we let

A b B i↵ A  IntB. (5.1)

Then b satisfies (1)–(4) above, and b satisfies (5) i↵ X is normal.

In what follows, M ⌦ L is endowed with its interval L-topology.

Theorem 5.3 (Urysohn lemma for (M ⌦ L)-valued functions). Let M be

a C-separable completely distributive lattice and let (L, 0) be a complete

De Morgan algebra. For X an L-topological space the following statements

are equivalent :

(1) X is normal.

(2) If K 2 LX
is closed, U 2 LX

is open, and K  U , then there exists

a continuous function X
f
�! M ⌦ L such that

K  L0
1 � f  R0 � f  U.

Proof. Let Q be a countable base of M consisting of non-supercompact
elements. In what follows q, r and s stand for members of Q. To show (2)
implies (1), we follow the standard Urysohn’s technique based on a special
case of Lemma 5.1 in which J = Q, in which C plays the role of �, and in
which aj = K and bj = U for all j.

Conversely, let X be normal and b stand for the relation of (5.1). By
Lemma 5.1, there is a family {Fq | q 2 Q} of elements of LX such that
K b Fr b Fq b U whenever q C r. In particular

Fr  IntFq if q C r. (5.2)

For each x 2 X we let

�x(t) =
V
qCt

Fq(x) for every t 2 M.

We check it is left-continuous. Indeed,

�x(t) =
V
qCt

Fq(x) =
V
sCt

V
qCs

Fq(x) =
V
sCt

�x(s),

i.e. �x 2 M ⌦ L. Define X
f
�! M ⌦ L by the formula f(x) = �x. Thus

f(x)(t) =
V
qCt

Fq(x). (5.3)
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We now show f is continuous by using the subbasic characterization of
continuity — i.e. we are going to show that Lt � f and Rt � f are open for
each t 2 M . For each t 2 M we have

Lt � f =
W
qCt

F 0
q (5.4)

and
Rt � f =

W
tCq

Fq. (5.5)

Clearly, (5.4) is a restatement of (5.3). To show (5.5), we use (2) of Lem-
ma 4.6 and (5.3) to obtain

Rt � f =
W
tCq

L0
q � f =

W
tCq

V
rCq

Fr �
W
tCq

W
qCr

Fr =
W
tCr

Fr.

For the reverse inequality notice that

Rt � f =
W
tCq

V
rCq

Fr 
W
tCr

Fr,

so that (5.5) is verified. By (5.2), we obtain that

Lt � f =
W
qCt

F 0
q =

W
qCt

Fq
0

and
Rt � f =

W
tCq

Fq =
W
tCq

IntFq.

are open.
Finally, since K  Fq  U for all q 2 Q, hence

K 
V
qC1

Fq = L0
1 � f  R0 � f =

W
0Cq

Fq  U,

which completes the proof.

Theorem 5.4 (Tietze–Urysohn extension theorem for (M ⌦ L)-valued func-
tions). Let M be a C-separable completely distributive lattice and let (L, 0) be
a complete De Morgan algebra. Let X be a normal L-topological space and

let Z ✓ X be such that 1Z 2 LX
is closed. Then every continuous function

Z
g
�! M ⌦ L has a continuous extension to the whole X.
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Proof. Let Q be a countable base of M which is free of supercompact ele-
ments. In what follows p, q, r and s stand for members of Q. We follow the
technique of Proof 2 of Theorem 4.10 of [14]. For every q there exist open
Vq and Wq in X such that

Lq � g = Wq|Z and Rq � g = Vq|Z .

Let
Kq = W 0

q ^ 1Z and Uq = Vq _ 1X\Z .

Then Kq is closed, Uq is open for all q 2 Q, and for each x 2 Z and s C r
in Q we have

Kr(x) = W 0
r(x) = Lr(g(x))

0 = g(x)(r)

 g(x)+(s) = Rs(g(x)) = Vs(x) = Us(x).

Hence
Kr  Us if s C r.

Let b be the relation of (5.1): A b B i↵ A ✓ IntB. Since X is normal, the
families K = {Kq | q 2 Q} and U = {Uq | q 2 Q} satisfy the following:

s C r implies

8
><

>:

Kr  Ks,

Kr b Us,

Ur  Us.

By Lemma 5.1, there exists a family F = {Fq | q 2 Q} such that

s C r implies

8
><

>:

Kr b Fs,

Fr b Fs,

Fr b Us.

(5.6)

As in the proof of Theorem 5.3, define a function X
f
�! M ⌦ L by the

formula
f(x)(t) =

V
qCt

Fq(x).

Then f is continuous by the same argument as in the proof of Theorem 5.3.
It remains to check that f = g on Z. Let x 2 Z. Clearly, f(x)(0) = 1 =
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g(x)(0). Let t 6= 0. We have W 0
q(x) = Kq(x), hence, by (3) of Lemma 4.6,

g(x)(t) =
�
L0
t � g

�
(x)

=
V
qCt

�
L0
q � g

�
(x)

=
V
qCt

Kq(x)


V
qCt

Fq(x) = f(x)(t)

where the inequality holds by (5.6). Likewise, since Uq(x) = Vq(x), we have

f(x)(t) =
V
qCt

Fq(x)


V
qCt

Uq(x)

=
V
qCt

(Rq � g)(x)

=
�
L0
t � g

�
(t) = g(x)(t).

We have shown that g(x) = f(x) for all x 2 Z.

Remark 5.5. Theorems 5.3 and 5.4 provide common generalizations of
results in three di↵erent situations. Because of Fact 4.9, if M = [0, 1] and
L = 2, then Theorems 5.3 and 5.4 become the Urysohn lemma and Tietze–
Urysohn extension theorem for usual topological spaces, respectively. If
M = [0, 1] and (L, 0) is a complete De Morgan algebra, then these theorems
reduce to the L-topological versions of the Urysohn lemma and Tietze–
Urysohn extension theorem (cf. [11] and [14]). With L = 2 we arrive at [8,
Theorem 6.5 (4) and (5)].

6. The relationship of M ⌦ L to the L-fuzzy topological modifi-

cation of M

As has already been mentioned, as a generalization of I(L), Zhang and
Liu [28] considered the collection of all join-preserving maps from M to L
and called it the L-fuzzy modification of M . Roughly speaking, in our paper,
the relation C plays the role of the relation < of I, while in [28] < is replaced
by ⇤. Due to the fact that I(L) = I ⌦ L, the Zhang-Liu’s construction will
be denoted here by M [L] (and not by M(L) as is in [28]). We observe that
if L has an order-reversing involution (·)0, then

� 2 M ⌦ L i↵ �0
2 M [L]
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and �  µ in M ⌦ L i↵ µ0
 �0 in M [L]. Hence the map M ⌦ L

h
�! M [L]

given by h(�) = �0 is an order-reversing bijection. For each t 2 M define

two maps M [L]
rt
��! L and M [L]

lt
�! L by

rt(µ) =
V

s⇥t

µ(s) and lt(µ) = µ(t)0.

In [28], two L-topologies have been introduced on M [L]. Here we shall
discuss only the L-topology �L which is generated by the family {r0

t, l
0
t |

t 2 M}.

We now proceed to show that (M [L], �L) and (M⌦L, IM⌦L) are homeo-
morphic. For this we need an alternative, but equivalent, description of the
upper L-topology RM⌦L on M ⌦ L.

Comment 6.1. In our paper, as in [11], the use of join-reversing maps shows
that the upper L-topology is independent of the order-reversing involution,
while in [28] all the subbasic elements depend on it.

Proposition 6.2. Let M be a completely distributive lattice and let L be a

complete lattice. For each t 2 M we define M ⌦ L
rt
�! L by

rt(�) =
W

s⇥t

�(s).

Then the family
�
rt | t 2 M

 
is a subbase for the L-topology RM⌦L.

Proof. Denote by R the L-topology on M ⌦ L generated by {rt | t 2 M}.
For every t 2 M and � 2 M ⌦ L we have

rt(�) =
W

s⇥t

W
sCr

�(r) =
W

s⇥t

�+(s) =
W

s⇥t

Rs(�),

where the first equality holds on account of Corollary 3.8. This shows the
inclusion R ✓ RM⌦L. To show the reverse inclusion, fix t 2 M . By Lem-
ma 3.5, there exists an st 2 M such that *t = M \ #st. Hence Rt = rst .

Corollary 6.3. Let M be completely distributive and let (L, 0) be a complete

De Morgan algebra. Then (M [L], �L) and (M⌦L, IM⌦L) are homeomorphic.

Proof. Let us consider the bijection (M ⌦ L, IM⌦L)
h
�! (M [L], �L) given

by h(�) = �0. Since by Proposition 6.2 the relations l0t � h = L0
t 2 LM⌦L

and r0
t � h = rt 2 RM⌦L hold, h and h�1 are continuous — i.e. h is a

homeomorphism.
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Remark 6.4 (Brouwer fixed point theorem). LetM and (L, 0) be completely
distributive lattices. Further, let m be a cardinal and let (M ⌦ L)m be the
L-topological product of m copies of M ⌦ L with its interval L-topology.
In [17] it is shown that M [L]m has the fixed point property — i.e. each
continuous selfmap of M [L]m has a fixed point (when M = I and L = 2 it
becomes the Brouwer fixed point theorem for an arbitrary cube Im). Since
the L-topological spaces M [L] and M ⌦ L are homeomorphic, we conclude
that (M ⌦ L)m has the fixed point property, too.

Appendix: Iterating the construction of I(L)

This section requires a good command of symmetric monoidal closed
categories. All the material needed is elaborated in detail in [4].

In [16, Question 17], it is asked whether the recursive construction I(L),
I(I(L)), and so on, terminates. Now, if we know that I(L) is the tensor
product of I and L, we have a solution by a categorical argument applied
to the monoidal closed category Sup. Let us first recall what is the tensor
product of morphisms of Sup.

If M
↵
�! M1 and L

�
�! L1 are join-preserving maps, then the tensor

product ↵⌦ � of ↵ and � is the unique join-preserving map from M ⌦ L
into M1 ⌦ L1 making the following diagram commutative:

M ⇥ L M ⌦ L

M1 ⇥ L1 M1 ⌦ L1

⌦

↵⇥� ↵⌦�

⌦

In particular, ↵ ⌦ � coincides with the unique join preserving extension of
the bimorphisms (t, a) 7�! ↵(t)⌦�(a) from M⇥L to M⌦L. Given a tensor
� of M ⌦ L, the formula for (↵⌦ �)(�) is obtained by using (2.2) and the
fact that ↵⌦ � is join-preserving.

Now, define

In =

(
L if n = 0,

I ⌦ In�1 if n � 1,

and In fn+1,n
����! In+1 by

fn+1,n =

(
eL if n = 0,

idI ⌦ fn,n�1 if n � 1,
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where eL is the embedding of L into I ⌦ L (see Remark 2.3). Then
�
In, fm,n

�
n�0

is a direct system in Sup where fm,n = fm,m�1 � · · · � fn+1,n (n < m). Since
Sup is cocomplete, the direct limit I1 of the considered direct system exists.
Further, we conclude from the symmetry and closedness of Sup that the
endofunctor I ⌦ of Sup has a right adjoint functor. Hence I ⌦ I1 and I1
are isomorphic — i.e. the sequence

I(L), I(I(L)), I(I(I(L))), . . .

stops.

References

[1] B. Banaschewski, E. Nelson, Tensor products and bimorphisms, Canad.
Math. Bull. 19 (1976) 385–402.

[2] H.-J. Bandelt, The tensor product of continuous lattices, Math. Z. 172
(1980) 89–96.

[3] G. Birkho↵, Lattice Theory, Amer. Math. Soc. Colloquium Publications
Vol. XXV, Amer. Math. Soc., Providence RI 1979.
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