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Abstract

The different compressive and tensile moduli of fibre reinforced composites have been 

considered in the analysis of the flexural and shear moduli of I-beams. Firstly, the 

neutral axis has been determined analytically and then, assuming that location of the 

neutral axis, the analytical flexural modulus of I-beams has also been obtained. In order 

to assess the proposed procedure, virtual pure bending and three-point bending tests at 

different spans have been carried out using the finite element method. The compressive 

and tensile moduli have been taken into account by defining two parts in the numerical 

models. The numerical flexural and shear moduli have been determined by reducing the 

data obtained in the virtual tests. Analytical and numerical results are in good 

agreement. Therefore, the flexural modulus determined by the proposed analytical 

approach can be introduced as a material property in the finite element method.
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1. Introduction

In unidirectional fibre reinforced composites the compressive and tensile moduli in the 

longitudinal direction are different. In particular, the tensile modulus is greater than the 

compressive modulus. The flexural modulus of the full-section is an intermediate value 

between the tensile and compressive moduli [1-4].

The dissimilar compressive and tensile performance of Carbon Fibre Reinforced Plastic 

(CFRP) composites has been analyzed in the last years [5-7]. According to Meng et al. 

[5] the increase of the repercussion of the unequal compressive and tensile moduli of 

CFRP composites is coupled with the growth of the thickness of the laminate. 

Furthermore, when the aforementioned moduli are not equal, the most accurate failure 

predictions are provided by strain failure criteria. Serna-Moreno et al. [6,7] focused on 

the three-point bending test of CFRP unidirectional and cross-ply laminates, 

respectively. These researches applied the homogenized section technique in order to 

obtain the analytical expressions which consider the different compressive and tensile 

moduli of the material.

Lee et al. [8] studied the difference of flexural and tensile moduli of FR4 substrates, 

which consist of woven-glass fabric and epoxy resin binder. This research determined 

the flexural modulus of flexible FR4 substrates using three-point bending tests, 

considering several span-to-depth ratios and the effect of temperature. The tensile 

modulus of the FR4 substrates was measured by means of direct tensile tests, through 

Digital Image Correlation (DIC) technique. The tensile modulus was greater than the 

flexural modulus.
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When analyzing the bending performance of Fibre Reinforced Plastics (FRP), the 

inequality of compressive and tensile moduli has not frequently been taken into account. 

The flexural and shear behaviour of FRP pultruded profiles without considering the 

influence of the different compressive and tensile moduli has been widely analyzed [9-

17].

Bank studied [9] the flexural and shear moduli of Glass Fibre Reinforced Plastic 

(GFRP) pultruded Wide Flange (WF) and I-beams concerning their full section by 

defining equivalent flexural and shear moduli. The shear coefficient was incorporated in 

the full section shear modulus. Then both equivalent moduli were obtained 

experimentally from three-point bending tests applying a linear regression. In this study 

the usage of Timoshenko beam theory was suggested in the design of thin-walled GFRP 

beams, in order to better estimate beam deflections and cost savings. Furthermore, 

experimental, analytical and numerical evaluations of the flexural stiffness of GFRP 

pultruded WF profiles were carried out by Neto and La Rovere [10]. Under those 

circumstances, the authors concluded that in the design of this type of beams 

Timoshenko beam theory, with mechanical properties estimated by Classical 

Lamination Theory (CLT), can be applied for the evaluation of the beam stiffness and 

for the verification of the deflections due to service loads. The shear modulus of 

pultruded FRP material and profiles obtained in several research papers was reviewed 

by Mottram [11]. In addition, a theoretical micromechanical modelling was developed 

in order to present an explanation of the great dispersion observed in the shear modulus 

values. Zhou and Hood [12] reported the bending behaviour concerning CFRP 

laminated I-beams. This research inferred that the web in-plane shear limited the correct 

experimental estimation of the sectional shear modulus. Additionally, Hayes and Lesko 
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[13,14] performed experimental and numerical tests in order to analyze the effect of 

warping and of transverse compressibility in the measurement of the Timoshenko shear 

stiffness of a simple solid beam and a pultruded double web beam. The influence of 

shear warping was found to be negligible whereas the boundary and loading conditions 

were shown to significantly affect the shear stiffness, since a decrease of the effective 

shear stiffness was observed at short spans.

The aforementioned investigations [9,11-14] were focused on symmetric three- and 

four-point bending tests of single-span pultruded GFRP beams. Recently, the flexural 

response of pultruded GFRP continuous beams has been analyzed by Turvey [15]. In 

this study closed-form shear deformation equations for forces and displacements of two-

span continuous beams have been determined to predict the mid-span deflections, 

support rotations and surface strains. Furthermore, the predicted values have been 

compared with experimental ones.

Singh and Chawla [16] have recently evaluated pultruded FRP WF and I-beams 

material properties. The estimation of the elastic properties of such beams was 

performed experimentally and analytically. The shear coefficient was considered in the 

analysis and was determined by an approximate equation. Then, those properties were 

adopted in the Finite Element (FE) numerical models for comparison purposes.

Furthermore, DIC technique was implemented for the characterization of shear 

deformation of FRP composite beams by Berube et al. [17]. The objective of this study 

was to simultaneously measure the flexural and shear moduli of FRP beams during 

bending tests. In particular, marine-grade FRP composites reinforced with woven 
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roving E-glass fabric with several span-to-thickness and width-to-thickness ratios were 

tested.

The aim of this study is to assess the analytic models used to reduce experimental data 

of mechanical tests in the case of I-beams, concerning two aspects. On the one hand, the 

approach that considers different tensile and compressive moduli and their relationship 

with the flexural modulus. On the other hand, the analytic approach used for reducing 

flexural data at different spans, in order to obtain flexural and out-of-plane shear 

moduli. Thus, virtual bending tests have been carried out using the finite element 

method. The elastic properties introduced in the models are determined by virtual 

bending tests and reducing data by analytic equations. Those equations include the local 

deformation effects related to point load application in the model [18], bending, shear 

and the difference between tensile and compressive moduli. Mujika et al. [19] proposed 

a method to obtain tensile, compressive and flexural moduli by flexural tests. A strain 

gage was placed on the surface of the specimen and it was tested in four-point bending 

far of failure loads. Carrying out two tests with the strain gage on the compressive and 

then on the tensile side, the relation between the tensile and compressive modulus was 

obtained. Based on the present study, a similar experimental procedure can be used in I 

beams for checking the influence of the difference between tensile and compressive 

moduli.

2. Analytical approach

2.1. Relationship between tensile, compressive and flexural moduli

The relationship between flexural, tensile and compressive moduli of a beam of 

rectangular cross-section was analyzed by Mujika et al. in [19].
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Considering the I-beam cross-section shown in Fig. 1, the longitudinal normal strain εx 

at a distance z from the middle plane can be determined as:

(1) x NAz z  

Where is the curvature, z is the coordinate measured from the middle plane and zNA is 

the coordinate of the neutral axis, both being positive downwards, as shown in Fig. 1.
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Fig. 1. (a) I-beam cross-section and coordinate reference system; (b) subareas in compression and 

tension; (c) half of the I-beam cross-section

Consequently, the longitudinal normal stresses can be defined as:

(2)   ,x i xE i c t  

Where Ei is the longitudinal modulus relative to the compressive side when i = c and 

relative to the tensile side when i = t.

Since in pure bending the axial resultant force is zero, replacing stress-strain 

relationships from Eq. (2), it results: 

(3)   0
c t

x c NA c t NA t
A A A

dA E z z dA E z z dA        

Where Ac and At are the subareas in compression and in tension, respectively.
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Defining the ratio between the tensile and compressive moduli as , Eq. (3) t cE E 

can be written as:

(4)    0
c t

NA c NA t
A A

z z dA z z dA    

The integrands in Eq. (4) are the first moments of area of the compression and tension 

surfaces with respect to the neutral axis.

Eq. (4) can be written as:

(5)0c c t tA z A z 

Where and  are the coordinates of the centres of gravity of the subareas in cz tz

compression and in tension, respectively, in the reference system shown in Fig. 1.

Additionally, the first moments of area can be defined as:

(6)
2

1 1

2
1 1

2

2

c c NA

t t NA

bA z A z z

bA z A z z

  

 

Being A1 half the surface of the cross-section and z1 the coordinate of the gravity centre 

of the half of the I-beam cross-section, as shown in Fig. 1c.

The subareas under compression and tension can be expressed as:

(7)1

1

c NA

t NA

A A bz
A A bz

 
 

Taking into consideration Eqs. (5) to (7), Eq. (4) results:

(8)     2
1 1 1

1 1 1 1 0
2 NA NAb z z A A z       

Solving for zNA in Eq. (8):
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(9) 
 

22
1 1 1

122

12 4 81 1
2 1 1NA

A A Az z
b b b


 

    
  

The first summand tends to ∞ when λ → 1. Therefore, only the negative sign has sense. 

Then, the coordinate of the neutral axis can be determined from:

(10)
2

1 1 1
1

1 1 2
1 1NA

A A Az z
b b b

 
 

           

According to Eq. (10) , as expected.
1

lim 0NAz




Eq. (10) can be applied to the particular case of a rectangular section:

(11)
1

1

1
2

4

A bh

hz





Replacing Eq. (11) in Eq. (10), it results:

(12)
1

2 1NA
hz 







The result of Eq. (12) is the same as that obtained in [5].

On the other hand, taking into account that the resultant moment of the normal stresses 

is the bending moment M:

(13)
c t

x x c x t
A A A

M zdA zdA zdA      

Replacing stress-strain relationships from Eq. (2) into Eq. (13):

(14)   
c t

c NA c t NA t
A A

M E z z zdA E z z zdA     

Rearranging terms, Eq. (14) results:
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(15)2 2

c c t t

c NA c t NA t
c A A A A

M z dA z zdA z dA z zdA
E




 
    

  
   

Since the integrands in Eq. (15) are the second and first moments of area of the 

compression and tension surfaces with respect to the neutral axis, Eq. (15) can be 

written as:

(16)c t
y NA c c y NA t t

c

M I z A z I z A z
E




     

Where

(17)
3

1

3
1

1
3
1
3

c
y y NA

t
y y NA

I I bz

I I bz

 

 

 and  are the second moment of area of the compression surface and the tensile c
yI t

yI

surface, respectively. Being

(18)1
1
2y yI I

where Iy is the second moment of area of the whole section.

According to Classical Beam Theory (CBT), the curvature is given by:

(19)
f y

M
E I



Where Ef is the flexural modulus.

Comparing Eqs. (16) and (19):

(20)
c f y

M M
E B E I



Where .c t
y NA c c y NA t tB I z A z I z A z      



10

Therefore, when the tensile and compressive moduli are different, the flexural modulus 

Ef can be obtained analytically from Eq. (20) as:

(21)c
f

y

E BE
I



The expression given in Eq. (21) is valid also for the case of a rectangular section, as 

expected:

(22)
 2

4

1
f cE E






According to Eq. (22) the flexural modulus does not depend on the dimensions of the 

rectangular section. After a parametric study, it can be seen that in the case of an I-beam 

the dependence on the dimensions of Fig. 1 is small. Moreover, the values are close to 

those obtained for a rectangular section.

2.2. Determination of the flexural modulus in pure bending

The procedure followed to determine the flexural modulus in pure bending is described 

in this section.

M0

R

Lx δx

δy

θ

R

L

L
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Fig. 2. Original and deformed shape of the beam subjected to pure bending

In pure bending, the elastic curve is a circumference, as shown in Fig. 2. Therefore, the 

horizontal and vertical displacements of the beam, δx and δy, respectively, can be 

defined as:

(23)
 

sin
1 cos

x

y

L R
R

 
 

 

 

Where L is the length of the beam, R is the radius of curvature and θ is the rotation 

angle. If δx and δy are known, the radius of curvature and the rotation angle, can be 

calculated by solving Eq. (23). Taking into account that the curvature is the inverse of 

the radius of curvature, the next expression is fulfilled:

(24)0
f

y

M RE
I



2.3. Determination of the flexural and shear moduli in three-point bending

Mujika [18] proposed a procedure for determining the flexural and out-of-plane shear 

moduli carrying out three-point bending tests at different spans. The experimental 

displacement given by the testing machine was used and consequently local 

deformation effects were incorporated. Those effects include the deformation of the 

specimen in the thickness and the inherent deformability of components of the test 

setup. It has been seen that the main dependence is related to the load cell stiffness [20]. 

The resultant equation of the displacement was a third order polynomial. When the 

displacement is directly measured in the specimen by an external device, the local 

deformation effects have not influence and a linear regression can be used [9].
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In the present study, virtual tests have substituted experiments. The goal of these virtual 

tests is to replicate the procedure followed in experimental practice. Thus, in the FE 

models, loads are concentrated and consequently a local deformation occurs in the 

thickness direction of the mesh near the load application, in a similar manner as in 

actual experiments, as it can be seen in Fig. 3. In the case of the numerical model, the 

local deformation depends on the mesh size. Therefore, local deformation effects are 

present in both cases, actual experiments and FE analyses, although there is no 

relationship between both effects. Indeed, in the experimental case those effects include 

also the inherent deformability of the test setup. In both cases, numerical and 

experimental, all deformation effects that are not related to the bending and shear of the 

specimen are named local deformation effects and are included in a stiffness term 

represented by a spring in the analytic approach.

Fig. 3. Local deformation on the I-beam

Considering the symmetry conditions of the three-point bending test, half of the beam 

has been modelled, as shown in Fig. 4. In the analytic model, a spring has been 

incorporated in order to consider the local deformation effects of the FE mesh, 

presented in Fig. 3.
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Fig. 4. Model of the three-point bending test including local deformation effects

If bending, shear and the spring are considered, the complementary strain energy U* of 

the cantilever beam with a point load can be determined as:

(25)
2 2 2

*

132 2 2L L
f y

M V PU dl dl
E I G A k

   

Where M is the bending moment, V is the shear force, P is the force at the support, Ef is 

the flexural modulus, G13 is the out-of-plane shear modulus, Iy is the second moment of 

area, A is the cross-sectional area, χ is the shear correction factor and k is the stiffness of 

the numerical model that includes local deformation effects. These effects are similar to 

those present in experiments, even though the numerical stiffness has no relation with 

the experimental stiffness that depends on the specimen and the testing system 

characteristics.

The shear correction factor is a coefficient that depends on the geometry of the section 

and comes from the fact that the shear stress distribution is parabolic [4]. It is given by:

(26)
2

2 2
y

A
y

QA dA
I w

  

being Qy the first moment of area and w the width, which is variable in the case of the I 

section and w = b in the case of the rectangular section.
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According to the theorem of Engesser-Castigliano [21], the displacement δ of the 

loading point section is:

(27)
* 3

3
13 13

4
L L

f y f I A

U MM VV PP PL PL Pdl dl
P E I G A k E h G h k

  
 

  
      

  

Being the parameters in Eq. (27):

(28)
 

  3 3

2 1 2

11 2
12

A f w f A

I w f y I

b t A h

b b t I h

   

  

    

     

Where A is the area of the cross-section, Iy is the second moment of area, , b f ft h 

is the width of the flanges, h is the height and tf  and tw are the flange and web 

thicknesses, respectively, as shown in Fig. 1. When a rectangular cross-section is 

concerned .1  and 6 5f A I b       

Rearranging terms, it results:

(29)
2 33

3
13

4 1
4 4

f f II

f I A

E EPL h h
E h G L k L


 

          
     

Eq. (29) can be written as:

(30)
2 33

3
13

4 1
4 4

f f II
f

I A

E EmL h hE
h G L k L


 

          
     

Where  is the slope of the load-displacement curve.m P 

Eq. (30) can be expressed as:

(31)
2 3

1 1
0

13

1
4 4

f f II
f

A

E Eh hE E
G L k L




 
          

     

where 
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(32)
3

0 3

4

I

mLE
h



Eq. (31) is equivalent to a polynomial of third order:

(33)2 3
R R Ry A B x C x  

Where:

(34)1 1 1 1
0 13,    x= ,    ,    ,    

4 4
I I

R f R R
A

hy E A E B G C k
L

 


      

The subindex R in Eqs. (33) and (34) is related to regression.

When n numerical values of the slope m concerning different spans are achieved, the 

minimum squares method is employed in order to determine the coefficients AR, BR and 

CR of Eq. (33) [18]. Once those coefficients have been obtained, Ef, G13 and k are:

(35)1 1 1
13,    ,    

4 4
I I

f R R R
A

E A G B k C 


    

It is worth noting that the value of k is not introduced directly in the numerical analysis 

models. It is a result due to the use of concentrated loads in the finite element method as 

shown in Fig. 3.

3. Numerical analysis

3.1. Input data

A rectangular cross-section beam and an I-beam have been modelled. The geometrical 

features considered are those shown in Fig. 5. The I-beam cross-section has a total 

height of 120 mm, the width of the flanges is of 60 mm and the thickness for both, web 

and flanges, is of 6 mm. In the case of the rectangular cross-section beam the width is of 

10 mm and the thickness of 6 mm, in representation of a coupon of the I-beam.
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The mechanical properties considered in the FE numerical analyses, which are shown in 

Table 1, correspond to a GFRP pultruded beam [22].

Table 1. Mechanical properties of GFRP pultruded beam

Et

(GPa)

Ec

(GPa)

E2, E3

(GPa)

G12, G13

(GPa)

G23

(GPa) 12, 13 23

39.9 25.3 8.3 3.6 3.7 0.27 0.11

The neutral axis location has been determined analytically according to Eq. (10). This 

value has been taken into consideration when defining the corresponding cross-section 

in the FE model. With this aim, the beams have been modelled adopting two different 

parts. In the upper part or the subarea in compression, the compressive modulus Ec, and 

in the lower part or the subarea in tension, the tensile modulus Et, have been introduced. 

The two subareas are represented in Fig. 5. In the FE models, the symmetry conditions 

have been taken into account and, consequently, all the displacements have been 

restricted in x = 0 section.

Eight-node linear solid elements with incompatible modes (C3D8I) have been 

employed in ABAQUS Standard [23]. These elements have been selected due to the 

improvement of the results when shear influence is important [24]. The approximate 

size of the elements has been of 1 x 0.25 x 1 mm in the rectangular section and of 3 x 3 

x 5 mm in the I-beam. As far as pure bending virtual tests are concerned, the number of 

C3D8I elements of the rectangular section beam model has been of 96000 and in the 

case of the I-beam of 63720. In the three-point bending models, the minimum number 

of C3D8I elements when the rectangular cross-section is concerned has been of 4800 

and the maximum of 14400, due to the shorter length of the beams. In the case of the I-

beam model, the minimum number of C3D8I elements has been 18240 and the 
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maximum 66576. In the case of pure bending the convergence was reached with greater 

element sizes, nevertheless, it has been necessary to use the aforementioned element 

sizes in order to obtain adequate values of the shear modulus.

3,3 mm

10 mm
60 mm

69,7 mm

(a) (b)

6 mm

6 mm

6 mm

2,7 mm

50,3 mm

Fig. 5. Dimensions, loading and mesh with different compressive and tensile moduli; a) rectangular cross-

section; b) I cross-section

3.2. Results of pure bending

A rectangular cross-section beam and I-beam have been modelled in pure bending in 

order to compare the numerically obtained flexural modulus to that calculated 

analytically.

On the one hand, the flexural modulus has been obtained analytically, from Eq. (21). On 

the other hand, a pure bending test has been numerically simulated, as seen in Fig. 6. 

The numerical displacements have been achieved in section 1 shown in Fig. 6, since in 

this section the effect of the point load application is considered negligible. The number 

of C3D8I elements and the longitudinal dimensions used in the models are shown in 

Table 2. In the case of the I-beam the longitudinal dimension of the elements has been 
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increased progressively from section 1 towards the campled section from 5 mm to 20 

mm.

L1

h

z

x

1
P

P

L2 L3

Fig. 6. Scheme of the pure bending model

Table 2. Length of the beams and number of elements considered in the FE models

L1 (mm) L2 (mm) L3 (mm) Number of elements
Rectangular cross-section 250 100 50 96000
I cross-section 2500 1000 500 63720

The radius of curvature R and the rotation angle θ have been determined with the 

horizontal and vertical displacements δx and δy of section 1 obtained numerically from 

FE analyses (Fig. 2). Then, the flexural modulus has been achieved from Eq. (24).

The values of the flexural modulus concerning the rectangular cross-section and the I-

beam are shown in Table 3, where the analytically predicted and numerically calculated 

values are very similar. Indeed, the relative error between the analytical and the 

numerical values is lower than 1 %. In addition, the flexural modulus determined 

according to the analytical procedure described in this work and defined in Eq. (21) has 

been introduced directly as an input value, for both parts, in FE models and it has been 

verified that the output flexural modulus has been the same as the input value.

Table 3. Analytical and numerical values of the flexural modulus

Ef (MPa)
Analytical Numerical Difference (%)

Rectangular cross-section 31364 31449 0.27
I cross-section 31213 31264 -0.16
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3.3. Results of three-point bending

Three-dimensional models of rectangular and I-beam cross-sections have been 

implemented in ABAQUS standard. After symmetry considerations, half of the beam 

has been modelled and, hence, a cantilever beam has been analyzed. In order to take 

into account the unequal compressive and tensile moduli, the implemented models 

include the aforementioned two parts, the upper part with compressive elastic modulus 

and the lower part with tensile elastic modulus.

As far as the geometrical features are concerned, they are the same as those stated in 

section 3.1, which are shown in Fig. 5. In this case, five different beam lengths have 

been considered. When modelling the rectangular cross-section the following lengths 

have been implemented L = 20, 24, 30, 40 and 60 mm with the dimensions shown in 

Fig. 5. Those are the semi-spans of the simulated tests, since due to symmetry half of 

the beam has been modelled. These spans were selected with the condition that the 

differences between the independent variables of the regression (h / L) were kept 

constant. With regard to the I-beam the five semi-spans analyzed in the FE models are L 

= 600, 750, 1000, 1500 and 3000 mm. As the length of the beams is variable, the 

number of C3D8I elements of the FE models is also different for each case. As far as 

the rectangular section is concerned, the minimum number of elements has been of 4800 

and the maximum of 14400. In the case of the I-beam the minimum number of elements 

considered has been of 18240 and the maximum of 66576.

The shear correction factor concerning this I-beam section has been determined 

according to Eq. (26):
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(36)web flanges    1.96  0.08  2.04      

According to Eq. (36), the main contribution to the shear correction factor comes from 

the web. It is worth noting that usually the shear factor is incorporated into the shear 

modulus. The modulus so obtained is defined as the “section modulus” [9]. In the 

present study, as the shear modulus is introduced in the model as a material property, 

the suitability of the shear factor is also checked.

A fixed displacement of value L / 50 has been imposed at the free end of the beam in the 

FE models. For each of the different lengths, the slope of the load-displacement curve 

has been determined as the reaction force divided by the fixed displacement. E0 has 

been obtained according to the expression shown in Eq (32) and a third order regression 

has been applied to the five values.

The values of E0 obtained by FE and the regression curves are shown in Fig. 7 for both 

sections. According to Eq. (29), the whole displacement of the end point of the beam is 

due to bending, shear and local deformation. Fig. 8 shows the variation of the 

percentage of shear and local effects related to the total flexural displacement, for the 

five semi-spans considered in the analysis.
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Fig. 7. Variation of E0 with respect to the semi-span; a) rectangular cross-section, b) I cross-section
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Fig. 8. Percentage of shear and local effects rate relative to the total of flexural displacement of the beam 

versus the semi-span; a) rectangular cross-section, b) I cross-section

Finally, the flexural and shear moduli and system stiffness values obtained by FE and 

third order regression concerning both rectangular cross-section and I-beam are shown 

in Table 4. FE input values of tensile and compressive longitudinal and out-of-plane 

shear moduli and the flexural modulus obtained according to Eq. (21) are also included. 

The agreement between the input and numerical values is better for the I-beam than for 

the rectangular cross-section beam, probably due to the greater influence of shear in that 

case, as seen in Fig. 8. The system stiffness is greater in the rectangular cross-section 

beams, due to the greater load application length, as seen in Fig. 5.

Table 4. Flexural and shear moduli obtained via FE and third order regression considering different 

compressive and tensile moduli

Input FE Analytical Virtual experiments
Et 

(MPa)
Ec 

(MPa)
G13 

(MPa)
Ef 

(MPa)
Ef 

(MPa)
G13 

(MPa)
k 

(N/mm)
Rectangular cross-section 39900 25300 3600 31364 31412 3836 20762
I cross-section 39900 25300 3600 31213 31222 3567 11208

Then the flexural modulus obtained analytically has been introduced in the numerical 

models in order to carry out virtual experiments with a unique part using the flexural 

modulus instead of two parts with the compressive and tensile moduli. The relative 



22

difference between the analytical values of both moduli and those obtained from the 

virtual experiments is shown in Table 5. This difference is greater in the case of the out-

of-plane shear modulus than in the case of flexural modulus and is maximum in the 

rectangular section case. The I-beam analytical and numerical results show very good 

agreement.

Table 5. Difference between the flexural and shear moduli input values and those obtained numerically 

via FE and third order regression considering only the flexural modulus

Input
Ef 

(MPa)

Numerical
Ef 

(MPa)

Difference

(%)

Input
G13 

(MPa)

Numerical
G13 

(MPa)

Difference

(%)
Rectangular cross-section 31364 31411 0.15 3600 3828 6.33
I cross-section 31213 31223 0.03 3600 3566 -0.94

4. Summary and conclusions

The flexural modulus of FRP I cross-section beams has been analyzed taking into 

consideration the inequality of compressive and tensile moduli. The location of the 

neutral axis and the flexural modulus have been determined analytically as a function of 

the relation between tensile and compressive moduli.

Then finite element analyses have been carried out, not only concerning pure bending 

but also regarding three-point bending at different spans. Compression and tension parts 

have been defined depending on the neutral axis position determined from the analytic 

approach. The shear factor has been determined analytically and the numerical data 

have been reduced by applying the analytical approaches of pure bending and three-

point bending.

Results have shown that the flexural modulus determined analytically and numerically 

are in good agreement in both pure and three-point bending. The shear modulus 
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resulting from the virtual three-point bending tests at different spans is also in good 

agreement with that introduced as input value. In that case, it is important to include the 

local deformation effects, related to the application of concentrated loads in the finite 

element model.

Therefore, in order to determine accurately the flexural and out-of-plane shear moduli, 

the importance of performing flexural tests at different spans and of considering the 

local effects has been shown. Additionally, when the tensile and compressive moduli 

are known, the flexural modulus determined applying the analytical procedure described 

in this paper can be directly introduced as a material property in the finite element 

analysis of bending dominated problems.

From an experimental point of view, if two tests are performed placing one strain gage 

on the compressive side and then on the tensile side, the relationship between the 

compressive and tensile modulus can be obtained. Using the equations of the approach 

proposed in the current study, it would be enough to use a single strain gage to 

determine the compressive, tensile and flexural moduli of I-beams in a simple manner.
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