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Abstract

Numerical analysis of the analytic model of an experimental procedure to determine the 

crack length, the compliance and the energy release rate has been developed. As a first 

step, bending tests at different spans have been numerically simulated with the purpose 

of obtaining the flexural and out-of-plane shear moduli of the material. Then the crack 

length has been determined from the numerical compliance, considering the material 

properties previously obtained. The critical energy release rate has also been 

determined analytically and numerically. There is agreement between the numerical 

results and those obtained from the analytic model of the experimental procedure.
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Nomenclature

a, Δa crack length and crack increment, respectively

A cross sectional area

AR, BR, CR third order regression coefficients

b beam or specimen width

C, Cnum, Csys specimen, numerical and system compliance, respectively
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E1, E2, E3 longitudinal, in-plane and out-of-plane elastic moduli, respectively

Ef flexural modulus

G12 in-plane shear modulus

G13, G23 out-of-plane shear moduli

GI, GIc strain energy release rate and critical fracture toughness, respectively

h beam thickness or thickness of the cracked arm

I second moment of area

k spring constant

L beam length

m slope of the load-displacement curve

M, Q bending moment and shear force, respectively

P applied load

q10, q30 distributed forces of the linear elastic foundation

U, U* strain energy and complementary strain energy, respectively

x1, x2, x3 parameters of the linear elastic foundation

β1, β2, β3, β4 x1, x2 and x3 dependent parameters

δ, δ3 beam displacement and crack tip beam displacement, respectively

θ3 crack tip beam bending angle

ν12, ν13, ν23 Poisson’s ratios

1. Introduction

Carbon Fibre Reinforced Polymer composites (CFRP) are interesting due to the 

combination of being lightweight and having high specific strength. Nevertheless, when 

interlaminar cracks appear their stiffness and strength may be significantly reduced. 

Delamination is considered as the most frequent damage mechanism in laminated 

composites. Thus, the study of interlaminar fracture toughness is one of the main 

aspects in CFRP. The Double Cantilever Beam (DCB) test is widely used in order to 

determine interlaminar failure in laminated composites. The DCB test has been 

standardized for CFRP [1,2].
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As a first approach, each arm was considered as a cantilever beam in pure bending, 

fixed at the crack tip. It is evident that this is not the actual case, because the beam 

ahead of the delamination front is not infinitely stiff and therefore, the beam will have a 

shear deformation and a root rotation. The approach was improved assuming that the 

interaction between both arms could be considered as an elastic foundation. The effect 

of root flexibility was first studied by Kanninen [3,4], who proposed an improved beam 

model for isotropic DCB specimens. Whitney [5] and Williams [6] extended the 

analysis to orthotropic material. 

In the DCB standards [1,2] an equivalent crack length is defined in order to include the 

non null rotation at the crack tip. Thus, the crack length optically determined at the 

specimen edge is corrected, obtaining a greater crack length. Different data reduction 

methods for achieving the critical energy release rate were compared by Hashemi et al. 

[7]. This research concluded the necessity of correcting the crack length in the methods 

based on the beam theory, since the beam is not perfectly clamped. This correction of 

the crack length based on a compliance calibration method was named Corrected Beam 

Theory (CBT). The case of great displacements was considered including a linear 

springs’ elastic foundation [8].

Olsson [9] proposed to compute the overall compliance based on classical beam theory 

corrected for shear deformation and taking into account transverse compliance in the 

un-cracked part and the Saint Venant effects ahead of the crack front. In this work the 

analytic results were compared with those obtained by means of the Finite Element 

Method (FEM). More analytical and experimental analyses have been carried out [10-

23] and a comparative analysis of the different elastic foundation models can be found 

in [24].

The Virtual Crack Closure Technique (VCCT) and the Cohesive Zone Model (CZM) 

are among the most widely used methods for the research of interlaminar fracture 
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toughness via FEM. VCCT was introduced by Rybicki and Kanninen [25] and is 

efficient to determine the energy release rate [26-36]. CZM is mainly used for 

analysing crack propagation [37-44].

Recently, Huang et al. have provided an analytical expression for an elastic-plastic 

bilinear cohesive law of DCB specimens [45] and a research taking into account the 

finite length of DCB specimens has also been developed [46]. Xu and Guo have 

proposed a double compliances method [47]. The first compliance is achieved from the 

initial slope of the load-displacement curve and the second from the unloading test. 

These compliances are linked to the initial and final measures of the crack length, 

respectively. These values are substituted into the compliance equation and, therefore, 

an expression to determine the crack length is obtained. Consequently, the energy 

release rate can also be calculated.

A method for obtaining the interlaminar fracture toughness of DCB specimens without 

optically measuring the crack length has been introduced recently by De Gracia et al. 

[48]. They proposed a linear elastic foundation with three linear parts. The initial linear 

parts are adopted based on their similitude to the solutions of linear elastic foundations. 

In that approach it is shown that the distances where compressive stresses act depend 

on material properties and that the distance where tensile stresses act depends on the 

previous ones and on the thickness of the specimen.

On the basis of that model, an experimental procedure to determine the crack length 

based on the compliance of the specimen has been proposed. In that way, the 

determined crack length includes all the sources of change of the compliance. It is 

worth noting that the experimental procedure also proposes the way to discount the 

compliance of the system. Having determined the crack length for each pair of 

experimental values of load and displacement given by the testing machine, the energy 

release rate is determined point by point, obtaining the R-curve of the test. 
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The aim of the present work is to carry out a virtual test, including the determination of 

the out-of-plane shear modulus and the flexural modulus by the same procedure that is 

used experimentally. This procedure is based on [49] and includes the effects of 

flexural, shear and local effects. The three characteristic parameters are obtained by 

performing three-point bending tests at different spans. In order to validate numerically 

the experimental procedure proposed in [48] the crack length is determined based on 

the compliance of the system and adopting the previously calculated values of the 

flexural and out-of-plane shear moduli in the FEM analysis. Furthermore, the strain 

energy release rate GI has been determined via FEM by different methods. Finally, 

results obtained from virtual tests are compared with those achieved from the analytic 

based data reduction method.

2. Analytical basis of the experimental procedure

2.1. DCB tests and specimens

The DCB test configuration shown in Fig. 1 is the most popular method used to 

evaluate mode I interlaminar fracture toughness. In this test a pre-cracked specimen is 

loaded at one edge with loading blocks or piano hinges. The standardized procedure 

requires the measurement of the delamination length a, as the load is applied. The main 

drawback of this procedure is the requirement of measuring the crack length during the 

test.

P

a

L

h

P

h

Fig. 1. Configuration of the DCB specimen.
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A method to determine the crack length based on the compliance of the specimen has 

been proposed recently [48]. The basis of this analytical approach is a simplified model 

of the stress distribution on the un-cracked part of the specimen as shown in Fig. 2. 

Once the elastic properties relative to the specimen have been obtained, the crack 

length is determined without optical measurements, based on the compliance.

q30
q10

ax3x2x1

P
31 2

Fig. 2. Distributed force along the beam.

Applying Engesser-Castigliano’s theorem [48,51,52], the displacement of the half of 

the specimen at the loading point can be determined as follows:

(1)
3

3 3
13

6
3 5f

Pa Paa
E I G A

     

Being P the applied load at the end point, a the length of the crack, Ef the flexural 

modulus, G13 the out-of-plane shear modulus, I the second moment of area, A the cross 

sectional area, δ3 the displacement at the crack tip and θ3 the bending angle at the crack 

tip. Those two last terms are:

(2)3 4 2 3 3 1
3

( )     ( 3 )  
12 f

hP Pa a
E b E I

        

Being E3 the out-of-plane Young’s modulus, b the width of the specimen and h the 

thickness of each arm. The parameters β are dependent only on the distances x1, x2 and 

x3 that were determined in [48]:
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Taking into account Eq. (1) and that the compliance is the ratio of opening 

displacement of the crack mouth 2δ to the applied load P at the end point, the 

compliance of the DCB specimen can be determined from the following expression:

(4)
23

31 2 4

13 3 3

2 22 2 62
3 4 5 12f f f

a h haC a
P E I E I G A bE E I bE

    
        

 

In experimental practice, if the displacement given by the testing machine is used, it is 

necessary to apply the correction related to the system compliance [48].

The strain energy release rate GI, which is a measure of fracture toughness, is obtained 

differentiating the compliance with respect to the crack length [53]. Considering linear 

elastic behaviour:

(5)
2

2I
P CG

b a





Replacing Eq. (4) in Eq. (5), GI can be expressed as follows:

(6)
22 22 2 2

31 2
2 2

13 3

6
2 5 12I

f f f

PP a hPP a PG
bE I bE I b hG b E bE I

 
    

Since the objective is to determine the crack length by means of Eq. (4), it is necessary 

to have the values of the flexural and out-of-plane shear moduli. These are calculated 

following the experimental procedure using FEM, as it is explained in the next section.

2.2. Determination of Ef and G13

In experimental practice, previous to a DCB test, bending tests are performed in order 

to determine the flexural and the out-of-plane shear moduli of the material. Mujika [49] 
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proposed a procedure to determine the flexural modulus and shear modulus by 

performing three-point bending tests at different spans. The experimental displacement 

given by the testing machine was used and therefore local deformation effects were 

taken into account. Those effects include the deformation of the specimen in the 

thickness and the inherent deformability of components of the test setup.

In this work three-point bending tests are simulated via FEM and a similar procedure to 

that described in [49] is followed in order to obtain the flexural and out-of-plane shear 

moduli. The equations differ because in this approach the support rollers have not been 

considered and half of the beam is analysed due to symmetry. The reaction point is 

approached by a linear spring in order to take into account local deformations. Indeed, 

the loads considered in the virtual tests are concentrated; as a consequence, a local 

deformation occurs in the mesh near the load application, in a similar way as in actual 

experiments. Thus, local deformation effects are present in actual experiments and 

FEM analysis, even though there is no relationship between both effects. In both cases, 

experimental and numerical, all deformation effects not related to the bending and 

shear behaviour of the specimen are referred to as local deformation effects and are 

included in a stiffness term represented by a spring in the analytic approach. In the 

numerical case, the local deformation depends on mesh size. The model used in the 

analytical approach is shown in Fig. 3. Furthermore, the coordinate system, boundary 

conditions, loading and mesh of the FEM model are shown in Fig. 4.

P
k

L
h

Fig. 3. Model of the three-point bending test including local deformation effects.
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x

z

Fig. 4. Finite element model coordinate system, discretization, loading and boundary conditions.

The complementary strain energy of the cantilever beam considering bending, shear 

and local deformation is given by:

(7)
2 2 2

*

13

6
2 5 2 2L L

f

M Q PU dl dl
E I G A k

   

Where M is the bending moment, Q is the shear force, P is the force at the support, Ef is 

the flexural modulus, G13 is the out-of-plane shear modulus, I is the moment of inertia, 

A is the cross sectional area and k is the spring constant or local deformation stiffness.

The displacement δ of the loading point can be determined according to the theorem of 

Engesser-Castigliano [51]:

(8)
* 3

3
13 13

6 4 6
5 5L L

f f

U MM QQ PP PL PL Pdl dl
P E I G A k E bh G bh k


  

      
  

Rearranging terms, it results:

(9)
2 33

3
13

4 31
10 4

f f

f

E E bPL h t
E bh G L k L


          

     

Eq. (9) can be written as:

(10)
2 33

3
13

4 31
10 4

f f
f

E E bmL h hE
bh G L k L

          
     

Where m = P/δ is the slope of the load-displacement curve. Terming:

(11)
3

0 3

4mLE
bh



Eq. (10) results:
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(12)
2 3

1 1
0

13

31
10 4

f f
f

E E bh hE E
G L k L

 
          

     

Eq. (12) can be written as:

(13)2 3
R R Ry A B x C x  

Where:

(14)
1

1 1 1
0 13

3 1,    x= ,    ,    ,    
10 4R f R R

h ky E A E B G C
L b


         

 

Once n numerical values concerning to n FEM analyses relative to different spans are 

obtained, the coefficients AR, BR and CR in Eq. (13) can be determined using the 

minimum squares method as explained in [49]. After obtaining those coefficients, Ef, 

G13 and k are:

(15)1 1 1
13

3,    ,    
10 4f R R R

bE A G B k C    

It is worth pointing out that the value of the local deformation stiffness k has not been 

introduced in the numerical models. This value is a result of using concentrated loads in 

the FEM analyses, as stated above.

3. Numerical results

3.1. Flexural tests at different spans

In the numerical virtual tests a unidirectional composite of Hexcel Composites AS4-

3501-6 carbon/epoxy has been considered. The mechanical properties that have been 

used are shown in Table 1 [54].

Table 1 Mechanical properties of the AS4-3501-6 composite

E1 (GPa) E2, E3 (GPa) G12, G13 (GPa) G23 (GPa) 12, 13 23

147.0 10.3 7.0 3.7 0.27 0.54

The width of the specimens was of b = 15 mm. The numerical tests have been 

performed for specimen thicknesses of h = 3 mm and h = 6 mm and four different 
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spans for each thickness (L in mm): 30, 40, 60, 80. In the FEM analyses, a fixed 

displacement has been imposed at the load point of the cantilever beam and 

displacement-to-span ratio has been kept constant, being δ/L = 0.02. As stated 

previously, in these FEM virtual tests the mechanical properties given in Table 1 have 

been introduced as input values.

The models have been implemented in ABAQUS software [55], considering plane 

strain and using two dimensional continuum elements with incompatible modes 

(CP4EI). These elements have been selected for their improved bending behaviour in 

comparison to regular displacement elements [56]. The beams have been discretized 

into rectangular elements that were 1 mm wide and 0.25 mm high.

The numerical output of the flexural tests has been the reaction at the load point P, for 

each span. With each reaction value, the slope m and the term E0 given in Eq. (11) are 

known and therefore, the flexural Ef and the out-of-plane shear moduli G13 of the 

material and the local deformation coefficient k are obtained as explained in the 

previous section.

In the FEM simulations, the possible difference between the compressive and tensile 

longitudinal modulus has not been taken into account. Therefore, , 1 1 1c t fE E E E  

namely, the longitudinal modulus E1 shown in Table 1 is also the flexural modulus Ef.

In the case of plane strain, the flexural modulus Ef’ has to be multiplied by  in  13 311  

order to determine the actual modulus:

(16) '
13 311f fE E   

Fig. 5 shows the values of the flexural modulus obtained for h = 3 mm and h = 6 mm 

beam thicknesses.
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Fig. 5. Regression and FEM flexural modulus relative to h = 3 mm and h = 6 mm.

The values of the flexural Ef and the out-of-plane shear moduli G13 and the local 

deformation coefficient k obtained from the numerical analyses and relative to 3 and 6 

mm thickness beams are shown in Table 2. The elastic properties obtained from FEM 

without taking into account k are also included. If local deformations included in the 

term k are considered, the results show good agreement with the input values. In 

contrast, if local deformations are not taken into account the errors with respect to input 

values are much greater: in the case of G13 the relative error when h = 6 mm increases 

from 4 % to 34 %; when h = 3 mm the relative error increases from 5 % to 13 %. 

Therefore, to consider the local deformation coefficient k is necessary in order to 

determine the elastic properties of the material via FEM.

Table 2 Flexural and out-of-plane shear moduli corresponding to h = 3 mm and h = 6 mm.

Considering k Without considering k

h (mm) h (mm)

Input FEM 3 6 3 6

E1 (MPa) 147000 147000 147000 147246 149764
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E3 (MPa) 10300

G13 (MPa) 7000 7363 7307 6056 4593

v13 0.27

k (N/mm) 47424 34386

3.2. Crack length

After determining Ef and G13, a DCB virtual test has been carried out by FEM using 

ABAQUS software, as shown in Fig. 6. As in the previous FEM analyses, two 

dimensional continuum plane strain elements with incompatible modes have been 

employed. In order to include the effect of the concentrated load application, the system 

compliance has been obtained using FEM, applying the same loading configuration as 

in the DCB test to non-cracked specimens. Therefore, the compliance of the specimen 

is:

(17)2
num sys sysC C C C

P


   

In the studied cases, as the results concerning crack length are not affected by the 

system compliance, the correction of Eq. (17) is not necessary.

a

2

L

2h

x

z

Fig. 6. Finite element model boundary conditions and detail of mesh near the crack tip.
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The total length of the specimen has been L = 150 mm, the crack length a = 50 mm, the 

width b = 15 mm and two thickness values have been used in the numerical analyses: h 

= 1.5 mm and h = 3 mm. The values of Ef and G13 in the “Considering k” column 

presented in Table 2 have been used in the FEM models as input parameters. The 

beams have been discretized into rectangular elements, 1 mm wide and 0.25 mm high. 

Smaller elements have been used around the crack tip due to the stress concentration. A 

fixed displacement of 1 mm has been imposed.

The crack length has been calculated by means of an iterative method and for different 

approaches of the DCB specimen’s compliance. As a first approach, the initial 

expression of references [9,48] has been used, which corresponds to the approximate 

equation of the compliance obtained from beam theory, including shear effects:

(18)
3

13

2 12
3 5f

a aC
E I G A

 

As a second approach, the crack length has been calculated by means of the expression 

for the compliance proposed in [48] that is given in Eq. (4). 

The results obtained with these formulas have been compared with those achieved by 

means of the expressions given in references [5,6,9]. The results are shown in Table 3.

Table 3 Crack length in mm for h = 1.5 mm and h = 3.0 mm.

a (mm)

h (mm) 1.5 3.0

Eq. (18) 52.2 54.5

Eq. (4) 49.5 49.1

Whitney 49.7 49.5

Williams 50.2 50.5

Olsson 49.5 49.3
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The results of crack length obtained using the equation proposed in [48] show good 

agreement with the theoretical crack length of the FEM models. These values are better 

in the case of small thicknesses.

3.3. Interlaminar normal load distribution ahead of the crack tip

The analytical load distribution near the crack tip has been compared with the 

distribution obtained by FEM analysis in Fig. 7. The comparison has been carried out 

for both arm thicknesses: h = 1.5 mm and h = 3.0 mm for the displacement that 

corresponds to the critical value of the energy release rate.

(a)
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(b)
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Fig. 7. Comparison of the analytical and numerical load distributions; a) h = 1.5 mm; b) h = 3.0 mm.

The areas of tensile and compressive sides determined analytically and numerically 

agree in both cases. Furthermore, the length of both distributions also agree, increasing 

when the thickness increases.

3.4. Energy release rate

In this section the energy release rate GI has been calculated analytically and 

numerically.

According to Coronado et al. [21], the critical strain energy release rate GIc of AS4-

3501-6 carbon/epoxy unidirectional composite is GIc = 130 J/m2. With this value the 

maximum load Pc can be estimated by Eq. (6). The displacement at the loading point is 

obtained from Eq. (4) being 2δ = 3.24 mm when h = 1.5 mm and 2δ = 1.25 mm when h 

= 3 mm. Taking into account Eq. (5) and Eq. (18) and replacing Pc, Ef, G13 and a = 50 

mm, GIc is determined from beam theory with shear effects. Replacing in Eq. (6) Pc, Ef 

and G13 of Table 2 and the crack length shown in Table 3, GIc is determined from the 

analytical approach.

The displacements obtained previously have been imposed in the FEM model. The 

energy release rate GIc is given by [57]:
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(19)1
Ic

UG
b a 

     

Where U is the total strain energy, b is the width, a is the crack length and δ means that 

constant displacement conditions apply.

GIc can be obtained numerically by different methods: taking into account the strain 

energy change for a small crack advance Δa and applying Eq. (19); by VCCT method 

[25]; using the Two-step extension method (TSEM) [58] and applying the area method. 

Those methods have been applied in the numerical model and as the results obtained 

are the same for the precision used, only one column of FEM results has been included 

in Table 4.

The energy release rate has been determined for three different increases in 

delamination length Δa. The analytical and numerical results of GIc are shown in Table 

4. The analytical values obtained from Eq. (6) [48] are in good agreement with 

numerical results. Otherwise, the values of GIc determined using beam theory with 

shear effects, using Eq. (5) and Eq. (18), differ significantly from those obtained from 

Eq. (6) and from FEM analyses, as this approach does not include crack tip rotation.

Table 4 Analytical and numerical critical strain energy release rate in J/m2.

GIc (J/m2) Analytical expressions

Beam theory De Gracia et al.
FEM

h = 1.5 mm

Δa = 0.1 mm 119.1 130.3 129.3

Δa = 0.2 mm 119.3 130.4 129.0

Δa = 0.5 mm 119.8 130.8 128.1

h = 3.0 mm

Δa = 0.1 mm 107.8 128.8 127.7

Δa = 0.2 mm 108.0 129.0 127.4

Δa = 0.5 mm 108.5 129.4 126.6
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4. Conclusions

This study deals with the numerical assessment of an experimental procedure used to 

reduce data in DCB tests. Two main conclusions can be inferred:

 If the virtual three-point bending tests at different spans are carried out taking 

into account local deformation effects, the flexural and shear moduli of the 

material obtained after data reduction show good agreement with the input 

values. On the contrary, when local deformations are not considered the errors 

with respect to input values are significantly greater. Therefore, to determine the 

flexural and shear moduli from finite element analysis, it is necessary to include 

the local deformation effects.

 The results obtained for the crack length, the load distribution and the critical 

energy release rate from DCB virtual tests are in good agreement with those 

analytical. Thus, the experimental procedure introduced by De Gracia et al. 

based on an analytic approach has been validated numerically.
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