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ABSTRACT 

This paper shows the use of the Dual Integrated Force Method in Finite Elements 
Method and its application to composite materials. This method was developed by 
S.N. Patnaik in isotropic materials, considering not only the equilibrium equations but 
also the compatibility conditions. In the Dual Integrated Force Method, the principal 
unknowns are the displacements and the structure of governing equation is similar to 
the stiffness method. It is shown that the governing equation of the Dual Integrated 
Force Method is the same than in the case of the hybrid method of Pian. The method 
is applied to two examples: A cantilever beam of orthotropic material loaded at the 
end and one off-axis tensile test in a unidirectional composite specimen. The results of 
this method have been compared with the ones obtained from the application of the 
Stiffness Method and with analytical results. 

Keywords: Dual Integrated Force Method; Hybrid element; Unidirectional composite; 
Stiffness method 

1. INTRODUCTION

The Stiffness Method (SM) or displacement method applied to the Finite Element 
Method (FEM) is one usual calculation procedure in structural mechanics and 
mechanics of solids [1]. This method is based on the equilibrium equations of each 
element, relating the forces acting on the nodes with displacements at the same nodes. 
The equilibrium equations are derived from the principle of virtual work.  

The Integrated Force Method (IFM) was developed by Patnaik, who published an 
article in 1973 about this Method on discrete structures [2]. In that work it appears the 
idea of using not only the equilibrium equations, but also the compatibility conditions. 
A comparison between IFM and the Force Method (FM)[3] based on Airy’s and 
Beltrami-Michell’s formulations was carried out. In 1986, he developed a variational 
functional for the IFM [4] based on the principles of virtual work and complementary 
virtual work. In Elasticity, Patnaik et al. applied these principles in order to complete 
the Beltrami-Michell’s formulation and finally, he obtained the equations of IFM in 
continuous systems [5,6]. 

Patnaik et al. developed a systematic way to get the compatibility equations applied to 
both discrete and continuous systems [7,8] and then he applied the IFM to FEM [9]. 
They generated the IFM governing matrix of various elements in two dimensions [10] 
and three dimensions [11], assuming isotropic materials. 
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The IFMD was also developed by Patnaik [12] from the same formulation than the 
IFM, being the structure of the governing equation similar to SM, i.e., their primary 
unknowns being displacements. The IFM and IFMD have similar governing 
equations, equivalent formulations and provide identical solutions for stresses and 
displacements.  
 
Fraeijs de Veubeke [13] showed that the SM and FM are lower and upper bounds of 
the actual solution. SM is based on the assumption of a compatible displacement field. 
The application of the Principle of Virtual Work (PVW) ensures the fulfilment of 
equilibrium equations as a function of the nodal displacements. Since all the 
admissible displacements of the system are not included, the system is more 
constrained than in reality is and the solution is over-stiff, being its energy a lower 
bound [14]. On the other hand, FM is based on the assumption of an equilibrated 
stress field. The application of the Principle of Complementary Virtual Work (PCVW) 
ensures that equations of compatibility are satisfied as a function of the assumed stress 
parameters. Since all the admissible stresses of the system are not present, the system 
has fewer constraints than in the actual case, it is more flexible and the energy is an 
upper bound. As a consequence, Fraeijs de Veubeke proposed a dual analysis based 
on the alternate use of displacement and equilibrium modes for obtaining a 
quantitative estimate of the convergence to the true solution, by comparison of the 
upper and lower bounds obtained. 
 
Otherwise, in 1964, the hybrid stress element was formulated by Pian based on the 
principle of stationary complementary energy [15]. Later he formulated that element 
by the application of the Hellinger- Reissner principle [16], assuming independent 
stress and displacement fields. The term hybrid element is defined as the one which is 
formulated by multifield variational functional, yet the resulting matrix equations 
consist of only the nodal values of displacements as unknown. [17]. 
 
A disadvantage of the hybrid method is the additional computational cost of the 
inversion of the flexibility matrix required to construct the stiffness matrix. This 
disadvantage has been solved by Zhang et al. [18,19] by means of the diagonalization 
of the flexibility matrix. 
 
In the present work the formulation concerning SM, based on the PVW and IFMD, 
based on both PVW and on the PCVW, are summarized. Then, it is shown that the 
hybrid formulation of Pian and IFMD are equivalent. Finally, IFMD is applied to two 
examples of unidirectional composites in plane stress state and results are compared 
with SM. 
 

2. THE STIFFNESS METHOD 

 
The SM is achieved by applying the PVW. In this principle, the virtual work done by 
the external forces is equal to the virtual work of the stresses, that is: 
 

        TT i i

v

dv a P    (1) 
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Where V is the volume of the element; {} and {ai} are virtual variations of strain 
and nodal displacement vectors, respectively; {} is the stress vector; and {Pi} is the 
equivalent nodal forces vector. 
 
The displacements at any point of the element are obtained from the nodal 
displacements by means of interpolation functions. In matrix form it results: 
 
     iu N a  (2) 

 
Where {u} is the vector of displacements at any point of the element and [N] is the 
matrix of displacement interpolation functions. The displacements in the element {u} 
are related to the strains    through the matrix of the differential operators [L]:  
 
     L u   (3) 

 
Combining equation (2) and (3) the strains at any point of the element are obtained by 
means of the nodal displacements, being: 
 
         i iL N a B a    (4) 

 
Where [B] is the nodal displacement-strain matrix. Stresses {} and strains    are 
related by the constitutive matrix of the material [D]: 
 
     D   (5) 

 
Replacing equations (4) and (5) in equation (1) it results: 
 

              TT Ti i i i

v

a B D B dv a a P 
 

 
 
  (6) 

 
As {ai} are arbitrary, the governing equation of SM is: 
 
     i iK a P  (7) 

 
Where [K] is the stiffness matrix given by: 
 

       T

v

K B D B dv   (8) 

 
The stiffness matrix of the structure is obtained by assembling the stiffness matrices of 
the elements. 
 
According to this formulation, equation (7) represents the fulfilment of equilibrium 
equations by the application of the PVW. Stresses are obtained from equations (5), (3) 
and (2) as a function of nodal displacements and they satisfy equilibrium equations in 
the element.  
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3. DUAL INTEGRATED FORCE METHOD 

3.1 EQUILIBRIUM MATRIX 

 
Stresses at any point of the element are expressed as: 
 
     jY F   (9) 

 
Where    is the vector of stress components; [Y] is the matrix of force interpolation 

function, that satisfy equilibrium equations [20]; and  jF  are the vector of stress 

parameters. Index j is used instead of i, due to the number of independent forces is 
lesser that the number of independent displacements. Then, replacing equation (9) in 
equation (1) it results: 
 

            T TTi j i i

v

a B Y dv F a P 
 

 
 
  (10) 

 
Then, the principle of virtual work can be written in the following alternative form 
[21]: 
 
     j iE F P  (11) 

 

Where      T

v

E B Y dv  is defined as the equilibrium matrix. 

 

3.2 DEFORMATION DISPLACEMENT RELATION 

 
This relation is obtained by the equality between the internal energy (IE) stored in the 
structure and the work (W) done by external loads [7,22]. In lineal elastic behaviour, 
the internal energy stored in the structure is derived from the internal forces and the 
deformations caused by these forces, being 
 

     1

2

Tj jIE F   (12) 

 
Where { j} is the vector of deformations linked to internal forces. For instance, in the 
case of a beam, the deformation for the axial force is the extension and for the bending 
moment it is the curvature. The work done by external loads (W) is derived from the 
external loads and from displacements caused by these loads. For liner elastic 
behaviour: 
 
    1

2

Ti iW P a  (13) 

 
Equating equations (12) and (13) it results: 
 
        T Tj j i iF P a   (14) 
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Replacing equation (11) in equation (14): 
 
          T T Tj j j iF F E a   (15) 

 

Equation (15) can be written as: 
 

          0
T Tj i jF E a    (16) 

 
As {Fi}T are independent, the deformation-displacements relation (DDR) is given by: 
 

      Tj iE a   (17) 

 

3.3 FORCE- DEFORMATION RELATION 

 
By applying the PCVW, internal forces and deformations are related by means of the 
flexibility matrix [21,23]. This principle states that: 
 

        T Ti i

v

dv P a     (18) 

 
Replacing equation (9) into (18) gives 
 

         T Tj i i

v

F Y dv P a    (19) 

 
The stresses and strains are related by the compliance matrix [S], being 
 
     S   (20) 

 
Replacing equations (9), (11) and (20) into (19) gives 
 

               T TT Tj j j i

v

F Y S Y dv F F E a 
 

 
 
  (21) 

 
And from equation (17) 
 

             T TTj j j j

v

F Y S Y dv F F  
 

 
 
  (22) 

 
As {Fj} are arbitrary, equation (21) gives: 
 

         T j j

v

Y S Y dv F   (23) 

 
Thus, Force Deformation Relation (FDR) is  
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     j jG F   (24) 

 
Being [G] the flexibility matrix given by 
 

       T

v

G Y S Y dv   (25) 

 

3.4 GOVERNING EQUATION OF THE DUAL INTEGRATED FORCE 
METHOD 

 
The IFMD formulation is derived eliminating { j} from FDR in equation (24) and 
DDR in equation (17), resulting in: 
 

       Tj iG F E a  (26) 

 
Extracting {Fj} from equation (26), internal forces and displacements are related by: 
 

        1 Tj iF G E a


  (27) 

 
Replacing equation (27) into (11), the governing equation of IFMD is: 
 

          1 T i iE G E a P


  (28) 

 
Equation (28) can be written as: 
 

     i iK a P  (29) 

 
Where [K] is the Stiffness Matrix of IFMD: 
 

        1 T
K E G E


  (30) 

 
The Stiffness Matrix of the structure is obtained by following standard assembly 
procedure, in the same manner than in SM. 
 

Nodal displacements  ia  are obtained from equation (29) and replacing them in 

equation (27) the vector of stress parameters  jF  is obtained. It is worth noting that, 

according to equation (30), the equilibrium matrix [E] obtained from the PVW and the 
flexibility matrix [G] obtained from the PCVW are included in the stiffness matrix 
[K]. Since displacements parameters that stiffen the system and stress parameters that 
make the system more flexible are included in the formulation, it is expected that the 
solution obtained will be between the upper and lower bounds that correspond to SM 
and FM, respectively. 
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4. EQUIVALENCE OF IFMD AND THE HYBRID STRESS ELEMENT OF 
PIAN. 

 
In 1964, Pian developed a method to obtain the element stiffness matrix by an 
assumed stress distribution [15]. Initially, the variational method for the formulation 
of the hybrid stress finite element was based on the principle of stationary 
complementary energy, but it was realized that is more convenient to construct the 
element stiffness matrices by using the Hellinger-Reissner functional [16].  
 
In a solid with surface tractions prescribed on ST and in absence of prescribed 
displacements, the stress distribution over the element can be determined by the 
Hellinger - Reissner variational principle [17, 24]. The functional is: 
 

                   1
2

T T TT

HR v s

v ST

S L u u F dv u F ds           (31) 

 
Where {u} is the displacement vector, [L] is the matrix of differential operators, [S] is 
the compliance matrix, {Fv} is the vector of body forces and {Fs} is the vector of 
surface forces.  
 
Replacing equations (2) and (9) into (31), 
 

 

                 

         

1
2

T TT T ij j j
HR

v v

T T Ti
v s

v ST

dv dvS NY Y Y L aF F F

F dv F dsN Na


   

      
   

 
   

 

 

 

 (32) 

 
And then, 
 

              1
2

T T Tj j j i i i

HR F G F F T a a P      (33) 

 
Where [G] is the flexibility matrix of equation (25), [T] is the leverage matrix and 
{Pi} is the vector of equivalent nodal forces. In this functional, the independent 
variables subjected to variation are {Fj} and {ai}. From the partial stationary condition 
respect to {Fj}, the relation between assumed stress coefficients {Fj} and nodal 
displacements {ai} is, 
 
      j iG F T a  (34) 

 
and extracting {Fj}, 
 

       1j iF G T a


  (35) 

 
Now, substituting equations (35) into (33), 
 

             1
1
2

T TTi i i i

HR a T G T a a P 
   (36) 
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By the partial stationary condition with respect to {ai}, the governing equation of the 
element is obtained. 
 

         1
0

T i iT G T a P


   (37) 

 
And then,  

     i iK a P  (29) 

 
In equations (26) and (34) it can be seen that the transpose of the leverage matrix of 

Pian [16,25] is the equilibrium matrix of IFMD, that is,    TT E .Therefore, both 

methods have the same analytical expression and the equilibrium equation (11) can be 
written as:  
 

      T j iT F P  (38) 

 
Further analysis verifying the validity of the method for general quadrilaterals has 
been carried out by Pian and Sumihara [26].  
 

5. APLICATION OF IFMD TO RECTANGULAR MEMBRANE ELEMENT 

5.1 MATRIX OF ELEMENT EQUILIBRIUM [E] 

 
The four nodes rectangular membrane element [27] of figure 1, is used as example for 
implementing IFMD. 
 
The same lineal Lagrange polynomials than in SM are used as displacement 
interpolation functions for this element [1], as follows: 
 

              5 71 3

1
, 1 1 1 1 1 1 1 1

4
u x y X X X X                     (39) 

              2 4 6 8

1
, 1 1 1 1 1 1 1 1

4
v x y X X X X                    (40) 

 
Where = x/a and =y/b; and X1, X2... X8 are the eight displacement degrees of 
freedom of the element.  
 
The selected force interpolation functions [3,20] have been derived from the Airy 
stress functions, using a complete polynomial of third order, being: 
 

 
1 0 0 0
0 0 1 0
0 0 0 0 1

Y



 
     
  

  (41) 

 
Using equation (41), equation (9) can be written as:   
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1

2

3

4

5

1 0 0 0
1 1

0 0 1 0
0 0 0 0 1

x x

y y

xy xy

F
FN
FN

t t
FN
F

 
 


 
                 

      
               

  

   (42) 

 
Where Nx, Ny, Nxy are forces per unit length; F1, F2... F5 are independent internal 
forces per unit length. Then, by differentiation of the displacement interpolation 
functions, the displacement-strain matrix [B] of equation (4) is given by: 
 

[B] =

       

       

               

1 1 1 1
1 0 1 0 1 0 1 0

1 1 1 1 1
0 1 0 1 0 1 0 1

4
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

a a a a

b b b b

b a b a b a b a

   

   

       

      
 

       
            
  

 (43) 
 
In this case, as thickness is constant along the element, equilibrium matrix is extended 
to the surface of the element, being 
 

      T

s

E B Y ds   (44) 

 
Applying equation (44), [E] of a four nodes rectangular membrane element is  
 

  

0 03

0 0 3

0 03

0 0 3

0 03

0 0 3

0 03

0 0 3

bb a

aa b

bb a

aa b
E

bb a

aa b

bb a

aa b

  
 
   
   
  

  
 
 
 
 

 
 
   

 (45) 

 

4.2 FLEXIBILITY MATRIX [G] 

 
The compliance matrix of a unidirectional off-axis composite is [28,29]: 
 

 [ ]
xx xy xs

yx yy ys

sx sy ss

S S S

S S S S

S S S

 
 
 
 
  

  (46) 
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Where the compliance coefficients are: 
 

 

   
   

4 2 2 4 2 2
11 12 22 66

2 2 2 2 2 2 2 2
11 22 12 66

4 2 2 4 2 2
11 12 22 66

3 3 3 3 3 3
11 12 22 66

3 3 3 3 3 3
11 12 22 66

2 2 2
11

2

2

2 2 2

2 2 2

4 8

xx

xy

yy

xs

ys

ss

S m S m n S n S m n S

S m n S m n S m n S m n S

S n S m n S m S m n S

S m nS mn nm S n mS mn nm S

S n mS nm mn S m nS nm mn S

S m n S m

   

    

   

     

     

   22 2 2 2 2
12 22 664n S m n S m n S  

 (47) 

 
Where cosm  and sinn  being  the fibre orientation angle. The compliance 
coefficients in the principal directions of orthotropy 1, 2 are: 
 

11 11S E , 12 12 1S E  , 22 21S E  66 121S G  
 
Where E1 is the Young modulus in the fiber direction, E2 is the modulus in the 
transverse direction; G12 is the in-plane shear modulus; and 12 is the major Poisson 
ratio.  
 
As in the case of the equilibrium matrix [E], the flexibility matrix of equation (24) is 
extended to the surface of the element, being: 
 

       T

S

G Y S Y ds   (48) 

 
Then, from equations (41), (46) and (48), flexibility matrix expression is obtained: 
 

 
1
3

1
3

0 0
0 0 0 0

4 0 0
0 0 0 0

0 0

xx xy xs

xx

xy yy ys

yy

xs ys ss

S S S
S

ab S S SG
t

S
S S S

 
 
 
     
 
 
 

  (49) 

 
Replacing Equilibrium matrix (45) and Flexibility matrix (49) in equation (30) the 
stiffness matrix of the element is obtained. The stiffness matrix of the structure is 
obtained by assembling the stiffness matrices of the elements, in the same manner 
than in SM.  
 
After knowing the nodal displacements, replacing the Flexibility matrix (49) and 
Equilibrium matrix (45) in the equation (27), the stress parameters of each element are 
obtained. Finally, by means of equation (42) the stresses in any point of the element 
are determined. 
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5. EXAMPLES OF APLICATION 

5.1 CANTILEVER BEAM. ORTHOTROPIC MATERIAL 

 
An IFMD analysis of the cantilever beam shown in Fig 2 has been done. The fibers 
are in longitudinal direction. The unidirectional material analyzed is a carbon/epoxy 
composite being the elastic properties: E1=142GPa; E2=8.9GPa; 12=0.28; 
G12=4.8GPa.  
 
Displacements and stresses obtained by IFMD have been compared with those 
obtained by SM and the analytical approach related to Timoshenko beam theory, 
which includes transverse shear effects. The vertical displacement at any point of the 
middle line is given by: 
 

 
2

3

1 12

6 3

3 5

Px x Px
v L

E t h G ht
     
 

 (50) 

 
Otherwise, maximum stress is: 
 

  2

6
x

P
L x

th
     (51) 

 
The dimensions and the load are: L = 100mm; h = 4mm; t = 2mm and P = 10N. Thus, 
maximum displacement and stress are: 
 

 max 2.232

187.5x

v mm

MPa



 (52) 

 
Figure 3 shows the displacements obtained by IFMD and SM in comparison with 
those obtained with the analytical approach from equation (50). In IFMD analysis, the 
results obtained with four and eight elements are very similar to the ones obtained 
from equation (50). However, in SM analysis, the displacements are much lower than 
the analytical values. 
 
Figure 4 shows the stress distribution in IFMD and SM analysis in comparison with 
the theoretical distribution from equation (51). The error in the maximum stress by 
means of IFMD with eight elements is around 6%. The stresses obtained by IFMD 
and SM are uniform along the length of the element. In the case of IFMD, the average 
values of the nodes agree with the values of Equation (51) except at the ends. In the 
case of SM, the maximum difference occurs at the clamped end. 
 
The results obtained in IFMD are better than in SM because in IFMD the PVW and 
the PCVW have been applied to obtain stresses as displacements. However, in SM the 
displacements are obtained by applying the PVW and then, stresses are obtained by 
differentiation of the displacements. 
 
Figure 5 shows the theoretical values of maximum displacement and maximum stress 
and the results obtained by means of IFMD and SM varying the number of elements. 
In IFMD, the maximum displacement value converges faster to the analytic solution 
than that obtained by SM.  
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5.2 OFF-AXIS TENSILE TEST. ANISOTROPIC MATERIAL 

 
The example of Figure 6 shows a beam of the same unidirectional composite material 
than in the previous case subjected to an off-axis tensile test. The orientation of the 
fiber with respect to the longitudinal direction of the beam is 10º. The results 
corresponding to IFMD and SM are compared with the analytical approach proposed 
by Mujika [30]. 
 
Horizontal and vertical displacements u and v, respectively, in the lowest line of the 
specimen are: 
 

 

 

 

1

2

6
51 2 3

xx xs

xx ss xs

Px
u S S k

A

S x S x S Px
v k P x L

I A A

 

 
     

 

 (53) 

 
Where A ht  and 32

3I th . The stresses x and s in the lowest line of figure 6 are 
given by 
 

  
   0 1max

1 3

0
x

s

k c 



 


 (54) 

 
Where 0 P th  is the applied nominal stress. The parameter k1 depends on the 
compliance coefficients and on the length-to-width ratio c, being: 
 

 1 2 1,2
xs

xx ss

S
k

S c S





 (55) 

 
Figure 7 shows the horizontal and vertical displacements of the lowest line obtained 
from equations (53) and the ones obtained by SM and IFMD with 8 elements. The 
agreement between SM and IFMD is much better than in the previous example. This 
is attributed to the fact that external constrains of the tensile case reduce the 
admissible displacements of the system. Therefore, displacement results obtained by 
SM are better when the system is more constrained.  
 
Figure 8 shows the values of x in the lowest line obtained by equation (54) in 
comparison with the average values obtained by IFMD and SM with 4 and 8 elements. 
The agreement with analytic results is better in the case of IFMD. In the case of SM, 
the difference with respect to analytic results is similar in the case of 4 and 8 elements, 
being maximum at the ends of the specimen. This fact is attributed to the differences 
between analytic and numeric slopes of displacements of Figure 7 that are maxima at 
the ends of the specimen in both cases. As strains in SM are obtained by 
differentiation, the errors of strains and stresses are maxima at the ends. Nevertheless, 
stresses in IFMD are obtained directly without differentiation. Therefore, the results of 
SM can be attributed to the process of differentiation of displacements. 
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6. SUMMARY AND CONCLUSIONS 

 
The Finite Element Method is implemented in four node membrane elements using 
two different formulations: The SM based on the PVW and the IFMD based on the 
PVW and on the PCVW. It is shown that the resulting method is equivalent to the 
hybrid method of Pian, based on the Hellinger-Reissner stationary principle. 
 
Two examples concerning unidirectional composites have been solved and compared 
with analytical approaches: An orthotropic cantilever beam and an off-axis tensile 
test. The results obtained show that displacements and stresses obtained by IFMD 
agree better with analytical results than the ones obtained by SM. This is due to both 
factors: 
 

– Taking into account that the PVW is equivalent to equilibrium equations and 
that the PCVW is equivalent to compatibility conditions, IFMD satisfy the 
conditions of the problem better than the SM based only on the PVW.  

– While stresses in IFMD are obtained directly from displacements, in SM it is 
necessary the differentiation of displacements. 

 
The cantilever beam has less deformation restrictions than the tensile specimen that is 
clamped at both ends. The displacements of both examples show that the results 
obtained by SM are better when the constraints of the system increase. Otherwise, 
differences in stresses obtained by SM and IFMD are significant in the second 
example at the ends of the specimen, in spite of the differences between displacements 
are not. This is due to the differentiation of displacements needed in SM for obtaining 
stresses. 
 
NOMENCLATURE 
 
[K]  = Stiffness Matrix 
{ai}  = Nodal displacements vector 
{Pi}  = External forces vector  
[K]Ifmd  = IFMD stiffness matrix 
{Fj} = Stress parameters vector 
IE  = Internal energy 
W  = Work of the external forces 
{ j} = Deformations vector 
[G]  = Flexibility matrix 
[E]  = Equilibrium matrix 
FDR  = Flexibility relation (Forces- displacements relation) 
DDR  = Deformations - displacements relation 
[Y]  = Matrix of forces interpolation functions 
[N]  = Matrix of displacements interpolation functions 
[L]  = Matrix of differential operators 
[B]  = Displacement- strain matrix  
{u}  = Vector of displacements at any point in the element  
Ue  = Strain energy 
{Nx, Ny, Nxy} = Vector of forces per unit length at any point in the element  
[S] = Compliance matrix of the material 
[D] = Stiffness matrix of the material  
{}  = Strain field vector 
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{}  = Stress field vector 
{ai}  = Virtual displacement 
{Fj}  = Virtual internal force 
[T] = Leverage matrix 
u = Horizontal displacement 
v = Vertical displacement 
 = Fiber orientation angle with respect to the longitudinal direction of the beam 
m = cos  
n = sin  
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FIGURE CAPTIONS 

 
Figure 1. Four nodes rectangular element. 
Figure 2. Cantilever beam with two tip forces at the end.  
Figure 3. Vertical displacements of the cantilever beam: a/ 4 elements. b/ 8 elements. 
Figure 4. Stress distribution of the cantilever beam: a/ 4 elements. b/ 8 elements. 
Figure 5. Maximum values depending on discretization: a/ Displacement; b/ Stress. 
Figure 6. Off-axis tensile test. 
Figure 7. Displacements in the off-axis tensile specimen: a/ Horizontal displacements, u; b/ 

Vertical displacements, v. 
Figure8. Stress distribution in the lowest line of the off-axis tensile test: a/ 4 elements; b/ 8 

elements. 
 
 



Figure 1. Four nodes rectangular element 
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Figure 2. Cantilever beam with two tip forces at the end. 
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Figure 3. Vertical displacements of the cantilever beam:  
a/ 4 elements; b/ 8 elements. 
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Figure 4. Stress distribution of the cantilever beam: 
a/ 4 elements; b/ 8 elements. 
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Figure 5. Maximum values depending on discretization: 
a/ Displacement; b/ Stress. 
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Figure 6. Off-axis tensile test. 
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Figure 7. Displacements in the off-axis tensile specimen: 
a/ Horizontal displacements, u; b/ Vertical displacements, v. 
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Figure8. Stress distribution in the lowest line of the off-axis tensile test: 
a/ 4 elements; b/ 8 elements. 
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