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Abstract

This paper deals with the Orienteering Problem, which is a routing problem. In the Orienteering
Problem each node has a profit assigned and the goal is to find the route that maximizes the total
collected profit subject to a limitation on the total route distance. To solve this problem, we propose
an evolutionary algorithm, whose key characteristic is to maintain unfeasible solutions during the
search. Furthermore, it includes a novel solution codification for the Orienteering Problem, a
novel heuristic for node inclusion in the route, an adaptation of the Edge Recombination crossover
developed for the Travelling Salesperson Problem, specific operators to recover the feasibility of
solutions when required, and the use of the Lin-Kernighan heuristic to improve the route lengths.
We compare our algorithm with three state-of-the-art algorithms for the problem on 344 benchmark
instances, with up to 7397 nodes. The results show a competitive behavior of our approach
in instances of low-medium dimensionality, and outstanding results in the large dimensionality
instances reaching new best known solutions with lower computational time than the state-of-the-
art algorithms.

Keywords: Orienteering Problem, Travelling Salesperson Problem, Evolutionary Algorithm,
Combinatorial Optimization

1. Introduction

The Orienteering Problem (OP), also called the Selective Travelling Salesperson Problem or
the Maximum Collection Problem, is a well known NP-hard combinatorial optimisation problem
[13]. The origin of the problem is a sports game, where the participants are given a topographical
map with detailed control points with rewards. The participants try to visit the points in order to
maximise the total prize obtained; however, there is a time limitation. Therefore, the OP is basically
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a routing problem with profits and it can be seen as a combination between the Knapsack Problem
and the Travelling Salesperson Problem (TSP) [26]. Many practical problems have been modeled
as an OP, some examples are the following: TSP without enough time to visit all the cities [25], the
home fuel delivery problem [13], and the most recent tourist trip design problem [20, 21, 28, 30], or
the mobile-crowdsourcing problem [33]. In addition, many variants of the OP have been analysed:
the classical ones being the team OP, the OP with time windows or the time dependent OP; more
recently new variants have been introduced, such as the stochastic OP, the generalized OP, the arc
OP, the multi-agent OP or the clustered OP, among others. See [2, 22, 24, 27] and [14] for a recent
survey.

Since the first publications appeared, many algorithms have been developed to solve the basic
OP. A classification of the exact algorithms is presented in [8], where the branch-and-cut [10]
should be highlighted. Plenty of heuristic approaches have also been proposed, such as tabu search
[12], artificial neural networks [29], ant colony optimisation [16], variable neighbourhood search [3],
two-parameter iterative algorithm [20] or a greedy randomised adaptive search procedure with and
without path relinking [6].

There are several Evolutionary Algorithms (EA) proposed in the literature to solve OP and
TOP [5, 9, 17, 18, 23], among others. In all of these approaches the solutions are initialized with
constructive methods which add a new node to the route while the distance limitation constraint
is satisfied and codified based on the visiting sequence of nodes. The tour lengths are improved
using the 2-opt heuristic and general purpose genetic operators are adapted for the evolutionary
part. Particularly, all of them use an adaptation of the single-point crossover or its generalization,
the n-point crossover. Approaches [5, 9, 17] and [23], have been tested in the benchmark instances
proposed by [7] (40 instances involving up to 66 nodes) and [23] (49 instances involving up to 33
nodes). Approach [18] has been tested in 90 TSPLib-based instances and 15 VRP-based instances
proposed by [10].

The OP can be defined by a 5-tuple 〈G, d, s, v1, d0〉, where G = 〈V,E〉 is a graph with node
set V = {v1, . . . , vn} (vertices, cities, customers, locations) and edge set E; d = (di,j)

n
i,j=1 is the

non-negative distance (time or weight) matrix between vertices, i.e., di,j is the distance from node
vi to node vj ; and s = (s1, . . . , sn) is a non-negative vector that represents scores, i.e., si is the
score of node vi. The OP goal is to determine a route starting and ending at v1 (depot) under the
distance limitation, d0, that maximises the sum of the scores of the visited nodes. The mathematical
formulation of the OP can be found in [14].

The remainder of the paper is organised as follows. In Section 2, the new evolutionary algorithm
is described. The experimental results with a comparison with the most competitive heuristics and
the exact algorithms in the literature are presented in Section 3. Conclusions and the future work
are presented in Section 4. Appendix A shows the detailed results for the instances and algorithms
tested.

2. Evolutionary Algorithm for the Orienteering Problem

In this paper, we propose a population-based evolutionary optimisation technique whose main
characteristic is to maintain unfeasible solutions during the search process. Essentially the algorithm
follows the steady-state genetic algorithm schema [31] with the difference that, at some generations,
we perform a tour-improving procedure followed by node dropping and adding strategies, for
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feasibility conversion and path tightening respectively. The pseudocode is described in Algorithm
1.

Our approach, in addition to the common parameters of any genetic algorithm (population size,
mutation probability), uses a specific parameter, d2d, that controls the frequency of the feasibility
and improving phase.

Algorithm 1 Evolutionary Algorithm
Inputs: G, d, s, v1, d0.

Build initial population (2.2);
Tour improvement (2.4);
Drop operator (2.5);
Add operator (2.6);

i=0;
while not ( stopping criteria are satisfied and mod(i,d2d) = 0 ) do
i=i+1;
if mod(i, d2d) 6= 0 then
Select two parents (2.3.1);
Crossover (2.3.2);
Mutation (2.3.3);
if child better than worst in the population then
Insert the child in the place of the worst individual;

end if
else
Tour improvement (2.4);
Drop operator (2.5);
Add operator (2.6);

end if
end while

Output: A route starting and finishing in v1.

2.1. Individual codification

A solution to the problem can be seen as a sequence defined by a subset of nodes (route).
In order to codify that solution, a permutation of the whole set of nodes has been considered,
π = (π1, . . . , πn). In this permutation, πi represents the next node visited after vertex i in the
route. The nodes in the route form a cycle in the permutation and a node which is not in the route
is codified as a fixed point, i.e, π(i) = i. Figure 1 shows a solution of an OP whose associated
codification is the following permutation, π = (6, 2, 3, 4, 8, 7, 5, 1). Note that the nodes in the
solution route {1, 6, 7, 5, 8, 1} form a cycle in the permutation π, while those nodes off the route
{2, 3, 4} are fixed points in the permutation.
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π = (6, 2, 3, 4, 8, 7, 5, 1)

Figure 1: Example of a solution in an eight-node graph and its corresponding codification as a permutation.

Note that not every possible permutation is a valid solution of the problem: first, the route
length limitation constraint may not be satisfied; secondly, sub-routes may also appear. However,
this route codification has been chosen for implementation reasons. On one hand, a fixed length
codification was desirable; on the other hand, some operations over the solutions, such as checking
if a node is contained in the route, can be efficiently implemented using this codification. A similar
codification was previously proposed for the Prize Collecting TSP [4].

Notice that v1 is always included on the route. When v1 is the only node on the route, this is
a special case whose solution is codified by the identity permutation.

2.2. Initial population

Algorithm 2 shows a pseudocode for generating npop individuals for the initial population. An
individual is generated in two steps. In the first step, a subset of nodes is randomly chosen, where
each node is sampled with probability p. In the second step, a route passing through the subset of
nodes is randomly created and codified as described in Section 2.1.

Algorithm 2 Initial population
for i = 1 to npop do
v1 node is included in the subset of nodes;
for j = 2 to n do
vj node is included in the subset of nodes with probability p;

end for
Construct a tour by randomly ordering the selected nodes;

end for

The probability p is a parameter of the algorithm, where n · p determines the expected number
of visited nodes of each generated individual. In addition, note that the obtained initial individuals
could be unfeasible.

2.3. Genetic Operators

In this section we will describe the genetic operators - parent selection, crossover and mutation
- that are used to evolve the population. While the chosen parent selection operator is a general
purpose selection procedure, the crossover and mutation operators have been specifically developed
or adapted for the OP problem.
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2.3.1. Parents selection

Our selection operator is a kind of hybridisation between tournament and roulette wheel
selection, see Algorithm 3. In the first step, ncand candidates are uniformly at random selected
from the population. In the second step, the roulette wheel selection is carried out, based on
the individual fitness (i.e., its objective function or total score), where a correction is performed
(subtraction of the minimum fitness) in order to point out the fitness quality differences between
candidates.

Algorithm 3 Parents selection
Select uniformly at random ncand candidates from the population, C = {I1, . . . , Incand} ⊂
{1, . . . , npop};
Compute m := minIi∈C(fIi), where fIi is the objective function value of Ii ∈ C;
Compute ri := fIi −m+ 1, i = 1, . . . , ncand;
Compute pi := ri∑

ri
, Ii ∈ C;

Sample twice with the distribution (p1, . . . , pncand) to obtain two parents;

2.3.2. Crossover operator

The crossover produces a new child solution from a given pair of parents solutions by using an
adaptation of the well-known Edge Recombination operator [32]. In the OP, we are interested in
inheriting two main characteristics from the parents related with the nodes and the edges. Regarding
the visited nodes, we want to maintain all the nodes that are common to both parent solutions, to
include, with a probability, the nodes that belong to only one parent, and to exclude the nodes that
do not belong to any parent solution. Regarding the route length, we want to use as many edges
of the parents as possible in order to pass on the maximum amount of information and decrease
length quality losses in the new child solution.

The original ER crossover [32] was designed for problems where the solution space consists
of Hamiltonian cycles; now we have extended it for a larger set of sequencing/ordering problems,
where the solution space consists of simple cycles which do not necessarily contain all the nodes.
This generalisation does not use the information of the associated cost of the edges and, therefore,
it is possible to produce unfeasible solutions for the OP.

The operator uses the so-called edge map, which is a summary of parental information, to guide
the procedure. The edge map contains, for each common node of the parental graph, its degree,
connected nodes and intermediate paths. Representing the route of the first and second parent
as the graphs G1 = (V1, E1) and G2 = (V2, E2) respectively, the parental graph consists of all
vertices and edges arising in the solutions of the two parents, i.e., PG = (V1 ∪ V2, E1 ∪ E2). A
node u is a common node of the parental graph if that vertex belongs simultaneously to both
parents, u ∈ V1 ∩ V2. A node u is a connected node of a node v if u and v are common nodes
and there exists a path over the parental graph connecting both nodes which does not contain a
third common node. The degree of a common node is the number of nodes which are connected
to it. An intermediate path between two common nodes u and v is any path from u to v, which
is inside the parental graph with no more common nodes.

The ER crossover operator builds the child route as follows (see Algorithm 4): first, the edge
map is constructed, and the starting node v1 is assigned to be the current node. Each time the
current node is reassigned, it is removed from the edge map, and the degree of each non-visited
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Figure 2: Example of a crossover. (a) Parental graph. The route of the first parent is represented by dotted line, the
route of the second parent with dashed line. The common nodes are filled in gray. (b) Child after the crossover.

common node is recomputed. At each step we will decide which the next common node to visit is
by selecting from the set of the non-visited connected nodes of the current node the one that has
the lowest degree, where ties are broken randomly. If we reach a node whose all connected common
nodes are already visited, we will choose the next node randomly from the set of non-visited common
nodes. A intermediate path between the current node and next node is randomly chosen and its
nodes incorporated to the route. The process finishes when there are no more common nodes left
to visit.

Note that the operator does not make sense when there is a unique common node, v1, or when
the solution routes are equal. In any of these cases, the crossover procedure is skipped, and one of
the parent solutions is cloned.

In Figure 2, two parents solutions are shown (a) and the child (b) produced after the ER
crossover application. Table 1 shows the associated edge-map and Figure 3 shows some illustrative
steps of the operator. The algorithm starts at common starting node 1. Both of its connected
nodes, 4 and 9, have degree two - we have already removed the node 1 from the edge map-, so
the algorithm will make a random choice. Assume that the common node 4 is chosen, and again
randomly we choose one of the possible paths to reach the node 4, in this case we assume that the
path chosen is (1, 2, 4), see first step in Figure 3. The candidates for the next common node are 6
and 10. Both have degree 2 so randomly choose one, assume that 6 is chosen. There is a unique
path to choose that goes from 4 to 6, the one that passes through node 5, see second step. In the
last step, all the common nodes have been visited so the algorithm will join node 11 and 1.
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Figure 3: Illustration of the crossover operator. The left and center figures show the results of two consecutive steps
of the crossover algorithm, while the right figure represents the last step before closing the route.

Table 1: Example of an edge map

Common Node Connected Nodes Degree Intermediate paths

1 4 2 (1,4), (1,2,4)
9 (1,9), (1,8,9)

4
1

3
(4,1), (4,2,1)

6 (4,5,6)
10 (4,10)

6
4

3
(6,5,4)

7 (6,7), (6,3,7)
11 (6,11)

7 6 2 (7,6), (7,3,6)
12 (7,12), (7,13,12)

9
1

3
(9,1), (9,8,1)

10 (9,10)
12 (9,15,16,12)

10
4

3
(10,4)

9 (10,9)
11 (10,11), (10,14,11)

11
6

3
(11,6)

10 (11,10), (11,14,10)
12 (11,12)

12
7

3
(12,7), (12,13,7)

9 (12,16,15,9)
11 (12,11)
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Algorithm 4 ER crossover operator
Initialize current node to v1;
while there are non-visited common nodes do
Remove all the occurrences of current node from the connected nodes of edge map;
if at least one connected node of the current node is not visited then
Update next node as the connected node with the smallest degree, ties are broken randomly;

Choose randomly an intermediate path between current node and next node. Insert the path
after the current node;
Rename the next node as the current node;

else
if there are non-visited common nodes then
Select randomly a non-visited common node and insert it on the route after the current
node;
Call it the current node;

end if
end if

end while

2.3.3. Mutation operator

At each generation, after the crossover operator has been applied, a mutation is performed,
see Algorithm 5. To perform the mutation, we will choose a node uniformly at random from
{v2, . . . , vn}. If the node is on the route, the node is dropped and its adjacent nodes are connected.
If the node is not on the route, it is inserted in the best place - using the same heuristic explained
later in the add operator 2.6.

Algorithm 5 Mutation operator
Select uniformly at random a node from {v2, . . . , vn};
if the node is on the route then
Remove the node from the route and connect the adjacent nodes;

else
Insert the node on the route, using the heuristic explained in Section 2.6;

end if

2.4. Tour improvement operator

The feasibility of a solution closely depends on the order of the visiting nodes. A set of nodes
could belong to a feasible or an unfeasible solution, depending just on the ordering of them on the
route. The aim of this operator is to decrease the length of the routes as much as possible. In
this manner, first, unfeasible solutions are attempted to convert to feasible solutions, second, the
lengths of the feasible solutions are decreased in order to insert new nodes during the add operator
2.6.

Finding the shortest route for a subset of nodes is equivalent to solving a TSP for that set of
nodes. In the extensive literature that has the TSP, there is a vast quantity of heuristic approaches
that can be used for the OP. We are particularly interested in those local search techniques that
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provide a high quality solution in a reasonable time due to the fact that the tour improvement is
applied many times during the algorithm. In this paper we have considered three alternatives, the
2-opt, 3-opt and Lin-Kernighan [1, 15].

2.5. Drop operator

Improving the tour length might not be enough to convert an unfeasible solution to a feasible
one, it could still continue violating the route length limitation constraint. In this case, in order to
obtain a feasible solution, it is necessary to delete nodes from the solution until it fits the distance
limitation.

To that end, we sort the nodes contained in the route considering both the cost in terms of length
and the fitness gain for visiting each node. Namely, we want to drop the nodes that concurrently
have a low contribution to the fitness and are costly to visit. Let us define the value for sorting
the visited nodes as drop(vi) = si

dip,i+di,in−dip,in
where vip and vin nodes are the previous and next

nodes to vi, respectively (see the drop operator in Algorithm 6 and the example in Figure 4).
Thereby, at each step of the drop operator the node with the lowest drop value is removed from

the solution. The algorithm stops once it obtains a feasible solution.

drop(v5) = 3/(2 + 1−
√
5) ∼ 3.93

drop(v6) = 3/(
√
2 +
√
2− 2) ∼ 3.62

drop(v7) = 4/(
√
2 + 1−

√
5) ∼ 22.45

drop(v8) = 2/(1 + 2−
√
5) ∼ 2.618

1

6
s6 = 3

7
s7 = 4

5
s5 = 3

8
s8 = 2 √

2

√
2

1

2

1

√
5 2
√
5
√
5

Figure 4: Drop operator example. After evaluating the drop value of each node, the node 8 is removed from the tour.

Algorithm 6 Drop operator
while not distance limitation constraint is satisfied do
Order nodes according to drop index and remove the one with the lowest value;
Update route length and fitness;

end while

2.6. Add operator

Once the individual has been made feasible, we apply an improvement mechanism to it. It
consists of the addition of new nodes to the current route. This operator is applied for node
inclusion while the distance limitation constraint is satisfied, see Algorithm 7.

When dealing with node insertion, we have to set some criteria in order to select the most
suitable node to add to the route and, then, to decide where the insertion should be made.

Before defining the insertion criteria, let us define an associated value, addcost(vi), for each
non-visited node, vi, that approximates the increase of the route length when inserting it to the
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route. A common heuristic that appears in the literature in order to calculate the addcost value is
to evaluate the cost of each possible insertion in the route and to take the minimum value [6, 20]. If
m represents the number of visited nodes, then the computational cost of selecting the candidate to
insert at each step of this approach is O((n−m) ·m) ≤ O(n2). Using the information calculated in
the first step, i.e., the insertion position and the addcost of each non-visited candidate, it is possible
to decrease the computational cost of selecting a candidate for the rest of the steps. This way we
have O((n−m) ·m) for the first step and O(n−m) for the rest of the steps.

Although the previous method is quadratic, a faster node insertion method is still desirable,
since a large amount of queries of this type are made during the algorithm. Therefore, we propose
a new heuristic method for node insertion, one that speeds up the process at the expense of the
quality of the addcost approximation.

To evaluate the inserting cost of a non-visited node, we start by finding the three nearest visited
nodes. If two of these three nearest nodes are adjacent in the route, the addcost value is the cost
of inserting the candidate node between these two nodes (see Figure 5). When there are more than
two pairwise adjacent nodes in the 3-nearest set, the addcost value is determined by the choice
that minimises the adding cost. Otherwise, if none of the three nearest nodes are adjacent to each
other, calculate the cost of inserting the candidate node between the contiguous nodes of the three
nearest nodes. There are six different options, so we choose the one with the minimum value for
the addcost.

Because of the design of the proposed minimum cost insertion heuristic, when the distance
matrix is given by spatial points, the computational cost can be decreased using a data structure
to accelerate the proximity queries. In our case, we have used a k-d tree, which is built once in the
whole algorithm.

Finally, the addvalue is defined to set the inserting preference of a non-visited node using the
addcost and the score of the node. The inserting preference of a non-visited node depends whether
the insertion is feasible or not. When the insertion is feasible, i.e., the current length plus the
addcost value is not greater than the route length limit, the inserting preference is defined as
addvalue(vi) = si/addcost(vi). When the insertion is not feasible, the inserting preference of the
node is set to 0. If the maximum value of addvalue is positive, the node which maximizes the
addvalue is inserted in the route, and the process is repeated. The add operator stops when adding
any of the non-visited nodes leads to an unfeasible solution, i.e., when all the addvalues are 0.

With this new heuristic, the computational cost of selecting the candidate for the first iteration
of each application of the addcost is O((n − m) · log(m)) when nodes are spatial points, and
O((n −m) ·m) otherwise. Moreover, for the rest of the iterations, as we only need to compare if
the last inserted node is closer than the previous three nearest nodes, the computational cost of
selecting a candidate would be O(n−m) regardless of whether the nodes are spatial points or not.
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Figure 5: Example of an evaluation of the cost of inserting a node in the route. Node v3 is the node to evaluate
and the rest of nodes are part of the route (solid line). In this case, the best position for the node v3 in the route is
between the adjacent nodes v1 and v5.

In Figure 5 we represent the calculation of the heuristic to obtain the addcost of the non-visited
node v3. First, we search the three nearest nodes from v3 on the route, in this case v1, v2 and v5.
Given that v1 and v5 are adjacent in the route, we assign to v3 the increase of the distance route if
v3 is added between v1 and v5, i.e., addcost(v3) = d1,3 + d3,5 − d1,5.

Algorithm 7 Add operator
while not stop do

for node vi not in route do
Get the three nearest nodes in the route for vi, V i

3 = {vi1, vi2, vi3};
if at least two nodes of V3 are adjacent in the route then
Find the pair (vprev, vnext) where vprev, vnext ∈ V3 that are adjacent in the route that
minimizes dprev,i + di,next − dprev,next;

else
Let us define:
V ∗3 = {(vi1, vi1next

), (vi2, v
i
2next

), (vi3, v
i
3next

)} ∪ {(vi1prev , v
i
1), (v

i
2prev , v

i
2), (v

i
3prev , v

i
3)}

Find the pair (vprev, vnext) ∈ V ∗3 that minimizes dprev,i + di,next − dprev,next;
end if
addcost(vi) = dprev,i + di,next − dprev,next;
if route length + addcost(vi) ≤ d0 then
addvalue(vi) = si/addcost(vi);

else
addvalue(vi) = 0;

end if
end for

Select the node, vi, which maximizes addvalue;
if addvalue(vi) > 0 then
Include the selected node in the route;
Update route length and fitness;

else
Stop;

end if
end while
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2.7. Stopping criteria

There are two main stopping criteria for our evolutionary algorithm. The first one is based on
the distribution of the population fitness. Specifically, the algorithm stops when a certain proportion
of the solutions has the same fitness as the best solution of the population. The second one is a
limitation on the execution time.

These criteria are evaluated after the feasibility of the solutions is checked and the add operator
is performed, particularly, when the generation number is a multiple of d2d.

3. Computational Experiments

This section presents the results of the computational experiments carried out for testing
the evolutionary algorithm explained in the previous section. The proposed approach has been
compared with the exact branch-and-cut algorithm (B&C) [10] and three state-of-the-art heuristics:
GRASP with Path Relinking (GRASP-PR) [6], tabu search (TS) [12] and the two-parameter
interactive algorithm (2-P IA) [20]. Results for TS are not reported because they were not
competitive compared with the rest of the approaches, but they are available upon request from
the authors. The benchmark instances have been generated from those obtained from TSPLib
repository. We have split up the instances into two groups: medium-sized instances, up to 400
nodes and large-sized ones, up to 7397 nodes. As detailed in the literature, three generations are
classified according to the definition of scores. A fourth generation has been created with the most
difficult instances for the exact methodology.

The solution quality and the computational cost have been analysed. The solutions have been
measured in terms of the quality gap (gap), defined as the relative difference in percentage between
the best known or optimal solution (opt) and the solution of the corresponding algorithm (best),
i.e., gap = 100 · opt−bestopt . The computational cost in seconds is measured via time consumption.

The computational experiments are reported as follows: Section 3.1 presents the instances
we have experimented with. Section 3.2 details the parameter selection. The validation of the
proposed algorithm components is carried out in Section 3.3. Section 3.4 shows the performance
of the evolutionary algorithm versus the exact B&C and two state-of-art heuristics: GRASP-PR
and 2-P IA. In Section 3.5 we discuss the contributions of the proposed algorithm. The detailed
numerical results are shown in Appendix A. Supplementary results and extended material of the
experiments can be obtained from https://github.com/bcamath-ds/paper-sm-ea4op2017.

3.1. Benchmark instances

We have considered the TSPLib-based test instances proposed in [10]. In that paper, the authors
described three methods of generating scores for OP instances from TSPLib. For all of these three
generations the distance limitation is set as a half of the TSP solution, d0 = d0.5 · v(TSP )e.

In addition to that, we have extended the benchmark in two directions. On the one hand, we
have defined a new generation method (generation 4) involving instances with d0 6= d0.5 · v(TSP )e.
With that in mind, we have considered the instances with scores of generation 2 and created all the
cases with d0 = dα · v(TSP )e, where α ∈ {0.05, 0.10, . . . , 0.45, 0.55, . . . , 0.95}. From these 18
cases we have chosen the most difficult instance for the B&C. When all the problems finish before
the time limitation for the B&C, we choose the α whose solution takes the longest time. Otherwise,
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when at least one problem reaches the time limitation, we choose the α whose solution takes the
longest separation time at the end of the time limitation for the B&C .

On the other hand, we have extended the set of benchmark instances to larger size problems.
So far, instances up to 400 nodes of the TSPLib had been evaluated in the OP literature; we have
considered also the ones involving up to 7397 nodes. Altogether, the experiments have been made
on a set of 344 instances. The benchmark instances set is summarized in Table 2.

Table 2: Generations for instances based on TSPLib.

Generation Score for the ith node, i ∈ [n] α
# medium-sized # large-sized

n ≤ 400 n > 400

Gen1 1 0.5 45 41
Gen2 1 + (7141 · (i− 1) + 73) mod 100 0.5 45 41
Gen3 1 + b99 · d1,i/maxj∈[n] d1,jc 0.5 45 41
Gen4 1 + (7141 · (i− 1) + 73) mod 100 α∗ 45 41

α∗ : α of the hardest instance for the B&C.

All the instances used for the computational experiments, including the best routes obtained
by the EA4OP, are available in https://www.github.com/bcamath-ds/OPLib. The original
TSPLib instance set proposed by [19] can be obtained in http://comopt.ifi.uni-heidelberg.
de/software/TSPLIB95/tsp/. In both instance sets the distances between the nodes are integers.

3.2. Parameter and heuristic selection

In order to perform the parameter and heuristic selection, we have selected five medium-sized
instances of generation 2, involving the largest amount of nodes without repeating the “family”
(gil262, a280, lin318, pr299 and rd400). We have chosen instances from generation 2 precisely
because, contrary to the other generations, here the scores are pseudo-randomly generated.

3.2.1. Solution initialization parameters

As explained in Section 2.2, an initial solution is generated in two steps: the first one consists
of randomly selecting a subset of nodes to be visited; the second one consists of constructing the
tour involving the selected nodes, i.e., giving an order in the selected subset of nodes. It is desirable
that the average number of selected nodes in a solution, n · p, is close to the number of nodes
in the optimal solution. A straightforward choice is to select p as the proportion between the
distance limit and the TSP solution, i.e., p = d0/v(TSP ). However, the results achieved by the
B&C in [10] show that the optimal solution tends to visit a higher number of nodes than expected.
Therefore, we have decided to overestimate the number of initial nodes using p =

√
d0/v(TSP ).

To approximate the TSP value, Lin-Kerninghan heuristic has been used and this computational
time has been considered in the global time of the algorithm.

In order to get an idea of the influence of the parameter p on the population initialization and on
EA4OP, we have tested three different choices of p: α2, α and

√
α where α = d0/v(TSP ). The rest

of the parameters have been set as detailed in Section 3.2.2. The experiments show that the best
mean gap either for the initialization or for the EA4OP is obtained using p =

√
α. Furthermore,
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in the initialization, the closest solutions to the optimum in terms of visited number of nodes are
obtained using the parameter value mentioned. However, it is interesting to note that the higher
the value of p used, the longer the time that is needed to initialize the population, due to the higher
amount of nodes included in TSP problems that are solved during the initialization, see details in
supplementary material.

3.2.2. Genetic operator parameters

The parameters value selection for the algorithm (ncand, npop, d2d and pmut) has been
performed using non-parametric statistical tests: Friedman test for multiple (more than two) mean
comparisons, Wilcoxon signed-rank test for two mean comparisons and Finner post-hoc test for
pairwise comparisons [11]. For all of these tests, 0.05 has been used as significance level.

Taking into account that, depending on the target (gap or time), the selected values for the
parameters might differ, gap has been prioritized over time. Therefore, the analysis is performed
in two steps: in the first step, a Friedman test on the gap is carried out for each parameter. If it
does not find significant differences for the parameter values, all of the values are considered for the
next step. Otherwise if it finds significant differences between the achieved gaps by the different
values, we continue with Finner post-hoc tests to select the values that obtain the best gaps. Those
values which are not significantly different from the best gap are considered for the second step.
If all values have significant differences with the best, this is the value chosen and the procedure
finishes here for that parameter. In the second step, previously selected values are considered and
the procedure detailed for the gap is repeated now for the time. In the case that there are several
parameter values with no significant differences with the value that obtains the best mean time,
the value with the lowest mean gap is chosen.

For each parameter, the following set of values has been considered: ncand ∈ {5, 7, 10},
npop ∈ {10, 20, 50, 100}, pmut ∈ {0.01, 0.05, 0.1} and d2d ∈ {5, 10, 20, 50} where d2d < npop.
For each parameter a univariate analysis has been conducted, except for npop and d2d - for which
a bivariate analysis has been carried out. The values (npop, d2d)=(100, 5) and (100, 10) have been
excluded from the analysis because those configurations require an excessive amount of time. Each
combination of the parameters has been run 10 times.

Table 3 details the mean gaps, the mean times and the p-values of the tests obtained during
the selection procedure. For instance, based on this information, we have set pmut parameter to
0.01. In the first step, using Friedman test we obtained that there are no significant differences in
terms of gap between the values of pmut, therefore, all the values were considered for the next step.
Regarding the time, Friedman test gave that there exist significant differences between the pmut
values, so we proceed with the Finner post-hoc test. Finally, parameter value 0.01 is selected since
comparing the gap between pmut values with no significant differences in terms of computation
times it obtains the lowest gap. After the statistical tests, the following parameter values were
chosen for the computational experiments: ncand = 10, npop = 100, d2d = 50 and pmut = 0.01.

3.2.3. Tour improvement operator

Preliminary experiments in the 5 instances of the previous training set with 2-opt, 3-opt and
Lin-Kernighan approaches showed that the Lin-Kernighan technique as TSP local search was the
most suitable. We appreciated that the solutions obtained for the OP using this method were
better than with the rest of the techniques, while the time needed to accomplish the search was not
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Table 3: Statistical hypothesis testing for parameter selection

Gap Time

Post Hoc Post Hoc
Friedman corrected Friedman corrected

Parameter Value Mean p-value p-value Mean p-value∗ p-value

ncand
10 5.184

< 2 · 10−16
- 5.287

7 5.521 6.5 · 10−04 5.941
5 6.209 < 2 · 10−16 6.262

(npop, d2d)

(100, 20) 2.559

< 2 · 10−16

- 6.910
5.7 · 10−14(100, 50) 2.732 0.280 4.403

(50, 5) 4.281 8 · 10−07 5.146
(50, 10) 4.326 4 · 10−08 2.863
(50, 20) 4.390 1 · 10−09 1.949
(20, 5) 8.243 < 2 · 10−16 0.811
(20, 10) 8.577 < 2 · 10−16 0.485
(10, 5) 16.56 < 2 · 10−16 0.157

pmut
0.01 5.583

0.57
5.692

4.4 · 10−03
-

0.05 5.725 5.8702 0.583
0.1 5.606 5.9279 6 · 10−03

*: Wilcoxon signed-rank test has been used to compare (100,20) and (100,50).

substantially larger.

3.2.4. Stopping criteria

As explained in Section 2.7, there are two stopping criteria. The first one, which is based on
the distribution of the fitness, stops the algorithm when the first quartile of the population’s fitness
is the same as the best solution fitness. The second one, which is a time limitation, stops the
algorithm when the execution time exceeds 5 hours.

3.3. EA4OP components validation

In this section, we verify that all the components in the EA4OP are necessary to obtain high
quality solutions. We have implemented three algorithms in order to evaluate the contribution of
the components in the EA4OP algorithm.
• Algorithm 3.3.1: This algorithm builds a large random population and applies the drop and

add operators to each individual. We have considered the average number of solutions used by
the EA4OP to set the size of the population, npop, for Algorithm 3.3.1, for each instance and
generation. As we are using a steady-state algorithm, the amount of solutions used in a run
of the EA4OP is equal to the initial population size plus the number of iterations. Algorithm
3.3.1 is used to evaluate the contribution of the evolution process of our algorithm.
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• Algorithms 3.3.2 and Algorithm 3.3.3: In these algorithms, we consider a EA4OP but without
the crossover. Instead of selecting two parents and crossing them, we select only one parent
using the procedure of the parents selection operator and applying the mutation operator.
Two different versions of this algorithm have been tested, both of which differ in the relaxation
of the stopping criteria. Algorithm 3.3.2 stops when all the solutions of the population have
the same fitness. Since Algorithm 3.3.2 obtains lower computation times than EA4OP, we
have also considered Algorithm 3.3.3, which is similar to Algorithm 3.3.2 but stops when the
computation time reaches the mean time used by EA4OP. Algorithms 3.3.2 and 3.3.3 are used
to evaluate the contribution of the ER crossover operator.

In order to perform the comparison of these algorithms, all of them have been configured with
the same parameters used in EA4OP ( ncand = 10, npop = 100, d2d = 50 and pmut = 0.01),
except the parameter npop for Algorithm 3.3.1, which has been explained above. These algorithms
have been run in five medium-sized and five large-sized instances of each generation, which have
been selected using the same criteria as in Section 3.2.

Table 4: Comparison between the results of Algorithm 3.3.1, Algorithm 3.3.2, Algorithm 3.3.3 and EA4OP.

Algorithm 3.3.1 Algorithm 3.3.2 Algorithm 3.3.3 EA4OP

Generation Size Gap Time Gap Time Gap Time Gap Time

Gen1 Medium 13.75 10.40 10.71 1.81 9.63 4.64 1.76 4.54
Large 15.19 15468.30 10.07 1527.96 7.44 5501.40 0.00 5500.71

Gen2 Medium 13.20 11.96 9.01 1.75 8.43 5.05 1.21 4.93
Large 16.33 16887.87 10.80 1721.30 5.93 6397.23 0.00 6397.06

Gen3 Medium 14.58 12.46 11.32 1.95 10.08 5.45 3.69 5.04
Large 17.15 17635.65 10.94 1719.08 7.95 6241.82 0.00 6241.36

Gen4 Medium 2.16 6.89 1.28 1.79 1.24 5.66 0.07 5.14
Large 16.75 17095.59 10.82 1490.95 7.23 3498.83 0.00 3498.29

The results are summarized in Table 4. They show that building a large random population
needs a large amount of time while it does not obtain competitive results in terms of solution
quality. This large amount of time is due to the requirements for making a random population
feasible. It can be concluded that the proposed evolution speeds up the generation of individuals.
Furthermore, it is essential to obtain high quality solutions.

Table 4 also shows that in most of the instances Algorithm 3.3.3 improves the gap results of
Algorithm 3.3.2, however they are still not competitive with those obtained by EA4OP. Therefore,
it can be assumed that the proposed adaptation of the ER crossover operator has an important
contribution in the EA4OP.

In view of these results, we assume that the contribution of the evolutionary part and,
specifically, the proposed adaptation of the ER crossover are essential in the overall algorithm.
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3.4. Comparison with state-of-the-art algorithms

The experiments have been run on a workstation with Intel(R) Xeon(R) CPU E5-2609 v3 @
1.90GHz processor using a single thread and a maximum of 4 GB RAM.

The evolutionary algorithm for OP (EA4OP) was implemented in C language. We have reused
the code from the Concorde TSP solver for the routines related to dynamic k-d trees and the
Lin-Kernighan TSP method. The source code has been published with a GPLv3 license, except
the third-party code mentioned above, which has an academic license. The code is available at
https://github.com/bcamath-ds/compass.

For comparison purposes, the following algorithms have been tested: the exact B&C algorithm
from [10] and two heuristics: GRASP-PR [6] and 2-P IA [20]. For each heuristic, 10 runs have
been performed at each instance, while the exact algorithm has been run once. All the experiments
have been performed under the same conditions: the same machine, the same language (C) and
the same compiler (gcc 4.8.5) with the same flags (-O3).

For a fair comparison in terms of computational time, the results of the B&C algorithm have
been obtained with CPLEX 12.5.0 instead of the original LP solver CPLEX 3.0. Note that the
papers [6] and [20] considered the results published in [10].

New optimal solutions have been obtained with the updated execution of the B&C algorithm
for all the instances that stopped after 5 hours in [10]: two in generation 1 (ts225, pr226), four in
generation 2 (pr266, pr299, lin318, rd400) and four in generation 3 (pr144, pr299, lin318, rd400).
The optimal solution for score generation 2 are 6662, 9182, 10923 and 13652, respectively, while in
the paper, the mentioned solutions after 5 hours of computation were 6615, 9161, 10900 and 13648,
respectively. However, the bounds published for score generation 1 and 3 in the original paper
are higher than the values obtained with the updated software. We conjecture that, incidentally,
upper bounds were published instead of the best known solutions. For the instances of generation
1, results 125 and 134 appeared in the original paper, and solutions 124 and 126 are now reported,
respectively. For the ones of generation 3, old results 3809, 10358, 10382 and 13229 are different
from new results 3745, 10343, 10368 and 13223.

The parameters used in the compared heuristic algorithms where those reported by default in
the respective papers. However, we have increased two B&C parameters to take advantage of the
resources of the current machines. We have experimentally checked that the updated parameters
improve the results of the originals parameters. The parameters considered in the runs are as
follows:
• B&C: In the cutting plane phase, 200 variables (instead of 100) can be added at each round of

pricing up. Additionally, we resort to branching whenever the upper bound did not improve
by at least 0.001 in the last 20 (instead of 10) cutting-plane iterations of the current branching
node.
• 2-P IA: number of iterations without improvement before termination is 4500, number of

nodes to choose from each iteration of route initialization and the number of nodes removed
from each iterative change are 4.
• GRASP-PR: greediness parameter is 0.2, number of solutions is 100, constructive methods

combine C1 and C2.
Next, the summary results and a comparative analysis is shown for medium-sized instances and

large-sized instances. The detailed numerical results can be seen in Appendix A.
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3.4.1. Comparison for medium-sized instances

The TSPLib instances of medium dimensionality contain 45 problems with 48 to 400 nodes.
The Table 5 summarises the average quality gap (Gap) and time consumption (Time) for the four
generations according to the size ranges, the best results between heuristics are highlighted in bold.
See also performance by generation in Figure 6.
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Figure 6: Average gap and time by range in medium-size instances.

Table 5: Algorithms comparison by range in medium-sized instances.

B&C 2-P IA GRASP-PR EA4OP

Range # Gap Time Gap Time Gap Time Gap Time

(0,50] 12 * 13.97 0.05 0.10 * 0.16 0.06 0.25
(50,100] 56 * 67.24 0.24 0.36 0.10 0.66 0.25 0.58
(100,150] 44 * 297.23 0.67 0.77 0.38 2.03 0.67 1.54
(150,200] 24 * 213.34 2.52 1.90 1.12 4.40 0.50 2.85
(200,250] 20 * 897.83 2.40 2.45 1.05 10.06 0.74 5.47
(250,300] 16 * 730.80 3.58 4.33 2.66 11.61 2.18 3.71
(300,350] 4 * 4854.90 3.04 7.46 3.42 19.90 0.75 7.42
(350,400] 4 * 1429.30 3.80 13.05 4.56 19.35 1.17 7.68

All 180 * 427.32 1.31 1.67 0.80 4.32 0.63 2.23
*: optimal solution achieved

Note that all the instances can be solved up to optimality by B&C. However, the execution
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time is extremely high for this exact approach. In terms of gap, GRASP-PR performed better in
generations 1, 3 and 4, while 2-P IA obtained better averages in generation 2, as reported in Tables
A.1, A.3, A.5 and A.7. Taking into account all the medium-sized instances, GRASP-PR obtains
the best average gap. In terms of Time, 2-P IA obtains the best results in all the generations.
However, EA4OP shows competitive results, obtaining similar execution times to those of 2-P IA
in the smallest instances and better time results in the biggest instances.

Table 6 shows the performance of EA4OP versus 2-P IA and GRASP-PR. The table summarizes
the following information: Gap, number of instances in which an algorithm’s solution is higher than
the other one’s; Time, number of instances in which an algorithm’s execution time is lower than
the other one’s; Pareto, number of instances in which an algorithm dominates the other algorithm.
Pareto efficiency criterion states that a solution dominates the other one if it obtains better results
in at least one of the objectives while not degrading any of the others (in our case the objectives
are gap and time). Ties are computed in an additional column.

Table 6: Comparison against state-of-the-art heuristics in terms of quality, time and Pareto efficiency in medium-sized instances.

Gen1 Gen2 Gen3 Gen4

2-P IA tie EA4OP 2-P IA tie EA4OP 2-P IA tie EA4OP 2-P IA tie EA4OP

Gap 4 21 20 14 9 22 15 9 21 8 11 26
Time 39 0 6 26 0 19 29 0 16 31 0 14
Pareto 24 0 6 16 0 15 17 0 10 15 0 12

GRASP-PR tie EA4OP GRASP-PR tie EA4OP GRASP-PR tie EA4OP GRASP-PR tie EA4OP

Gap 6 30 9 13 10 22 15 8 22 9 10 26
Time 11 0 34 23 0 22 13 0 32 24 0 21
Pareto 11 0 29 13 0 16 7 0 20 11 0 16

In terms of Gap, EA4OP obtained better solutions than 2-P IA in all four generations, whereas
in terms of Time and Pareto, 2-P IA obtains better solutions in all four generations. When we
compare EA4OP with GRASP-PR, in terms of Gap and Pareto, EA4OP is better than GRASP-
PR in all four generations. In terms of Time, EA4OP obtains better results in generations 1 and
3, and little worse results in generations 2 and 4.

3.4.2. Comparison for large-sized instances

The TSPLib instances of large dimensionality contain 41 problems within 417 and 7397
nodes. Table 7 summarises the quality of solutions (Gap) and execution time (Time) for the
four generations according to the size ranges. The number of solved instances is detailed in an
extra column for B&C and GRASP-PR. The average gap was calculated excluding the missing
solutions, whereas the average times were calculated considering 18000 seconds for problems in
which the time limit was reached. The best results between heuristics are highlighted in bold. See
also performance by generation in Figure 7.

Most of these instances (130 of 164) can not be solved up to optimality by B&C. Furthermore,
B&C finished unexpectedly for 52 of the instances, not obtaining any solution. Globally, EA4OP
obtained better solutions than B&C in 96 of the 164 cases. Compared with the rest of heuristic
algorithms, EA4OP obtained better quality solutions in all the generations. Additionally, in this
large-sized instance set, EA4OP shows the best performance in execution time compared with the
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Figure 7: Average gap and time by problem size in large-sized instances.

Table 7: Comparison of algorithms by range in large-sized instances.

B&C 2-P IA GRASP-PR EA4OP

Range # # Gap Time Gap Time # Gap Time Gap Time

(400,800] 60 55 0.16 9040.89 4.39 29.15 60 4.33 224.37 1.33 35.95
(800,1200] 20 12 1.24 16910.62 6.09 169.50 20 6.63 1254.55 1.29 67.61
(1200,1600] 28 15 5.65 16955.71 7.19 352.83 28 6.48 4889.35 0.57 219.35
(1600,2000] 16 11 15.50 - 4.66 931.49 16 6.27 7271.88 * 496.68
(2000,2400] 16 12 10.79 - 5.33 1341.13 15 6.21 8332.97 0.16 733.63
(2800,3200] 4 3 8.59 - 6.05 3339.27 3 6.60 - * 804.96
(3600,4000] 4 1 10.92 - 7.61 7052.71 0 NA - * 3859.71
(4400,4800] 4 1 1.16 - 4.86 7527.78 0 NA - * 2455.06
(5600,6000] 8 1 0.06 - 7.01 15681.39 0 NA - * 5745.60
(7200,7600] 4 1 25.47 - 15.94 15750.76 0 NA - * 14662.28

All 164 112 4.21 13343.85 5.73 1899.47 142 5.54 5226.42 0.76 990.42
*: best known solution achieved
-: time limit of 5 hours exceeded
NA: solution not available after time limit exceeded

rest of the heuristics in all the generations. Note that GRASP-PR was not able to return any
solution in 22 instances after the execution time was exceeded.

Table 8 shows that in large-sized instances EA4OP obtains much better solutions in terms of
quality, time and Pareto efficiency, compared with 2-P IA and GRASP-PR for all the generations.
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Table 8: Comparison against state-of-the-art heuristics in terms of quality, time and Pareto efficiency in large-sized instances.

Gen1 Gen2 Gen3 Gen4

2-P IA tie EA4OP 2-P IA tie EA4OP 2-P IA tie EA4OP 2-P IA tie EA4OP

Gap 3 1 37 1 0 40 3 0 38 2 0 39
Time 16 0 25 8 1 32 9 1 31 9 0 32
Pareto 3 0 25 1 0 33 0 0 29 1 0 31

GRASP-PR tie EA4OP GRASP-PR tie EA4OP GRASP-PR tie EA4OP GRASP-PR tie EA4OP

Gap 4 0 37 0 1 40 1 0 40 1 0 40
Time 0 0 41 0 1 40 0 1 40 0 0 41
Pareto 0 0 37 0 0 41 0 0 40 0 0 40

3.5. EA4OP contributions

The computational experiments have shown that several characteristics are essential in the
effectiveness of the EA4OP. Probably the most relevant feature is the use of unfeasible solutions
during the search process. It allows us to obtain high quality solutions without being penalized in
terms of computational time, as shown in Section 3.2.2. Furthermore, the parameter d2d helps to
strike a balance between the solution quality and the computational time.

To our knowledge, the initialization technique of the solutions used in the EA4OP is also novel
for the OP. In the proposed initialization, the solutions are built based on the relation between the
distance limit and the TSP value of the whole set of nodes (the Lin-Kerninghan approximation of
this value). This relation is used to estimate the amount of nodes in the optimal solution and then
the solutions are built randomly based on this information. This initialization might be useful,
mainly, for population-based algorithms for the variations of the OP to provide diversity to the
initial population.

We consider the adaptation of the ER crossover as a contribution to the solution of the OP
and routing problems in general. In addition to the problems that consist of permutations, this
adaptation also allows us to deal with a wider range of problems whose solution space consists of
simple cycles. Moreover, as shown in Section 3.3, the proposed crossover turns out to be an effective
technique to mix solutions in the OP.

Another contribution that we find remarkable for routing problems is the proposed approach
to find the minimum cost insertion in the add operator. When the distance matrix is given by
spatial points, its design allows the use of a data structure, i.e., k-d tree, that strongly reduces the
computational cost, improving the overall results.

All in all, the EA4OP proves to be an efficient algorithm for the OP. Not only does the
EA4OP obtain competitive results in medium-sized instances in comparison to the state-of-the-art
algorithms, but it also achieves outstanding results in terms of quality in an even lower execution
time.

4. Conclusions and future work

We have presented an efficient evolutionary algorithm for the OP. Essentially, the algorithm
follows the steady-state genetic algorithm schema. It differs in that the proposed method maintains
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unfeasible solutions during the search and considers specific operators to recover it when required.
An Edge Recombination crossover has been adapted for the OP, a novel method for node inclusion
has been proposed and the Lin-Kerninghan heuristic has been used to improve route lengths.

We have tested the EA4OP in 344 instances based on TSPLib. We have found the EA4OP
competitive in medium-sized instances (up to 400 nodes). Comparing the EA4OP in terms of
Pareto efficiency, we have found that from the 180 instances of the medium-sized set, EA4OP
gets 43 Pareto optimums while 2-P IA does so for 72 instances. Also, EA4OP obtains 81 Pareto
optimums, while the GRASP-PR does so for 42 instances. As for the medium-sized instances, B&C
has been run again with an updated LP solver in a modern machine, and 10 new optimal solutions
were found: two in generation 1, four in generation 2 and four in generation 3 (for these instances,
execution in [10] stopped because the time limit was reached).

The computational results on large-sized instances (up to 7397 nodes) are excellent for the
EA4OP in terms of quality and time. Moreover, the EA4OP algorithm found higher solutions
than the ones returned by the exact approach after five hours of computation. Additionally, the
execution time is lower than the ones of the rest of the compared techniques. Particularly, from the
164 instances of the large-sized set, EA4OP obtained the Pareto optimum in 118 instances, while
the 2-P IA, which turns out to be the most competitive heuristic algorithm, did it for 5 instances.

Ordering the algorithms in terms of average quality gap, we have obtained the following results:
for medium-sized instances, B&C (0.00%), EA4OP (0.63%), GRASP-PR (0.80%) and 2-P IA
(1.31%); and for large-sized instances, EA4OP (0.76%), B&C (4.21%), 2-P IA (5.73%) and GRASP-
PR (5.54%).

Ordering the algorithms in terms of average time consumption, we have obtained the following
results: for medium-sized instances, 2-P IA (1.67 sec), EA4OP (2.23 sec), GRASP-PR (4.32 sec)
and B&C (427.32 sec); and for large-sized instances, EA4OP (990.42 sec), 2-P IA (1899.47 sec),
GRASP-PR (5226.42 sec) and B&C (13343.85 sec).

In order to obtain better quality solutions or decrease time consumption, it would be interesting
to advance developing new operators or adapt the ones developed for other routing problems.
Additionally, it could be revelant to build better quality initial populations. Giving a different a
priori probability to each node might contribute to this aim. Furthermore, it would be challenging
to consider the very large-sized instances, in particular, 26 TSPLib instances left with nodes from
11849 to 85900. Another point of particular interest would be the application of the EA4OP to solve
classical variants of OP (such as the team OP, the OP with time windows or the time dependent OP)
as well as recent ones (such as the stochastic OP, the generalized OP, the arc OP, the multi-agent
OP or the clustered OP).
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Appendix A. Detailed results

In this Appendix the numerical results are detailed for the four algorithms (B&C, 2-P IA,
GRASP-PR and EA4OP) and the full classification, that is, eight tables. Table A.1 shows the
results for generation 1 and medium-sized instances, Table A.2 for generation 1 and large-sized
instances, Table A.3 for generation 2 and medium-sized instances, Table A.4 for generation 2
and large-sized instances, Table A.5 for generation 3 and medium-sized instances, Table A.6 for
generation 3 and large-sized instances, Table A.7 for generation 4 and medium-sized instances and
Table A.8 for generation 4 and large-sized instances. The headings are as follows: instance, name
codification of the instance; best, best known solution of the corresponding algorithm; gap, quality
gap with respect to the global best known solution; time, average time (in seconds) of 10 runs. In
the last row, average summary for gap and time are shown. The symbols mean the following: ∗,
best known solution achieved (or optimum solution achieved for instances in which B&C finishes
before time limit ); −, execution stopped because 5-hour time limit was exceeded; NA, solution
not available after time limit exceeded; “ . ”, the code finished unexpectedly. The best results for
each instance among heuristics are in bold, in terms of quality solution and time. In the last row
of the tables, average gap and average time are computed, considering 18000 seconds for problems
that did not finish in that time. The averages are calculated excluding missing values.
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Table A.1: Generation 1, n ≤ 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

att48 5314 0.50 31 31 * 0.00 31 * 0.07 31 * 0.15 31 * 0.25
gr48 2523 0.50 31 31 * 0.00 31 * 0.07 31 * 0.13 31 * 0.13
hk48 5731 0.50 30 30 * 0.00 30 * 0.10 30 * 0.19 30 * 0.24
eil51 213 0.50 29 29 * 0.00 29 * 0.10 29 * 0.06 29 * 0.24

berlin52 3771 0.50 37 37 * 0.00 37 * 0.09 37 * 0.22 37 * 0.30
brazil58 12698 0.50 46 46 * 0.00 46 * 0.10 46 * 0.32 46 * 1.00

st70 338 0.50 43 43 * 0.10 43 * 0.19 43 * 0.29 43 * 0.32
eil76 269 0.50 47 47 * 0.10 46 2.13 0.19 47 * 0.20 46 2.13 0.32
pr76 54080 0.50 49 49 * 0.10 49 * 0.19 49 * 0.94 49 * 0.61
gr96 27605 0.50 64 64 * 0.10 64 * 0.37 64 * 1.91 64 * 1.44
rat99 606 0.50 52 52 * 0.40 51 1.92 0.22 52 * 0.48 52 * 0.66

kroA100 10641 0.50 56 56 * 0.40 56 * 0.27 56 * 1.33 55 1.79 0.34
kroB100 11071 0.50 58 58 * 95.40 58 * 0.35 58 * 1.57 57 1.72 0.63
kroC100 10375 0.50 56 56 * 0.40 56 * 0.41 56 * 1.12 56 * 0.48
kroD100 10647 0.50 59 59 * 0.10 59 * 0.30 59 * 1.56 58 1.69 0.65
kroE100 11034 0.50 57 57 * 159.20 55 3.51 0.28 57 * 1.42 57 * 0.50

rd100 3955 0.50 61 61 * 0.20 61 * 0.38 61 * 1.32 61 * 0.74
eil101 315 0.50 64 64 * 0.10 63 1.56 0.37 64 * 0.48 64 * 0.79
lin105 7190 0.50 66 66 * 0.30 66 * 0.26 66 * 2.77 66 * 1.42
pr107 22152 0.50 54 54 * 0.30 54 * 0.21 54 * 0.73 54 * 0.93
gr120 3471 0.50 75 75 * 0.10 74 1.33 0.48 75 * 2.29 74 1.33 1.20
pr124 29515 0.50 75 75 * 0.30 75 * 0.31 75 * 5.20 75 * 1.11

bier127 59141 0.50 103 103 * 0.30 103 * 0.44 103 * 3.85 103 * 1.18
pr136 48386 0.50 71 71 * 1.40 69 2.82 0.51 70 1.41 1.31 71 * 0.96
gr137 34927 0.50 81 81 * 1.50 81 * 0.61 81 * 7.10 78 3.70 3.44
pr144 29269 0.50 77 77 * 1.30 73 5.19 0.42 77 * 5.93 77 * 2.61

kroA150 13262 0.50 86 86 * 175.40 85 1.16 0.90 86 * 2.64 86 * 1.17
kroB150 13065 0.50 87 87 * 1.20 86 1.15 0.94 86 1.15 2.90 86 1.15 1.00

pr152 36841 0.50 77 77 * 1.40 76 1.30 0.72 77 * 8.78 77 * 3.64
u159 21040 0.50 93 93 * 3.40 82 11.83 0.86 92 1.08 5.20 92 1.08 1.11

rat195 1162 0.50 102 102 * 2.60 99 2.94 1.01 99 2.94 2.62 99 2.94 1.78
d198 7890 0.50 123 123 * 3.20 120 2.44 1.46 122 0.81 11.62 123 * 6.68

kroA200 14684 0.50 117 117 * 1.20 112 4.27 2.04 117 * 6.53 117 * 1.74
kroB200 14719 0.50 119 119 * 14.10 117 1.68 1.68 118 0.84 7.73 119 * 1.66

gr202 20080 0.50 145 145 * 12.70 140 3.45 2.17 145 * 11.84 145 * 6.89
ts225 63322 0.50 124 124 * 10216.30 124 * 1.45 124 * 6.08 124 * 1.28

tsp225 1958 0.50 129 129 * 94.40 117 9.30 1.61 126 2.33 7.76 127 1.55 2.29
pr226 40185 0.50 126 126 * 166.20 121 3.97 1.20 126 * 21.55 126 * 6.61
gr229 67301 0.50 176 176 * 0.90 174 1.14 2.76 174 1.14 63.24 176 * 8.81
gil262 1189 0.50 158 158 * 0.90 150 5.06 3.06 151 4.43 9.56 156 1.27 2.84
pr264 24568 0.50 132 132 * 21.20 132 * 1.16 132 * 24.77 132 * 5.62
a280 1290 0.50 147 147 * 13.60 133 9.52 2.20 143 2.72 11.19 143 2.72 3.00
pr299 24096 0.50 162 162 * 111.50 154 4.94 3.71 158 2.47 25.32 160 1.23 3.12
lin318 21015 0.50 205 205 * 22.40 194 5.37 5.36 200 2.44 42.09 202 1.46 7.15
rd400 7641 0.50 239 239 * 37.40 218 8.79 9.62 225 5.86 30.23 234 2.09 6.59

average * 248.05 2.15 1.14 0.66 7.66 0.62 2.12
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Table A.2: Generation 1, n > 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

fl417 5931 0.50 228 228 * - 227 0.44 5.67 226 0.88 308.91 224 1.75 11.84
gr431 85707 0.50 350 350 * 139.90 343 2.00 12.32 346 1.14 479.25 349 0.29 32.84
pr439 53609 0.50 313 313 * 833.30 310 0.96 14.48 305 2.56 626.66 310 0.96 9.92

pcb442 25389 0.50 251 251 * 14.90 235 6.37 8.37 235 6.37 44.02 244 2.79 6.93
d493 17501 0.50 320 320 * 347.30 297 7.19 18.88 312 2.50 539.47 315 1.56 19.10

att532 13843 0.50 363 363 * 593.00 340 6.34 16.23 351 3.31 597.00 347 4.41 23.14
ali535 101170 0.50 424 . . . 416 1.89 23.60 417 1.65 793.08 424 * 73.03
pa561 1382 0.50 356 356 * 2103.60 340 4.49 17.74 330 7.30 134.50 348 2.25 23.18
u574 18453 0.50 354 354 * 61.40 316 10.73 17.53 332 6.21 205.07 344 2.82 17.93

rat575 3387 0.50 322 322 * 59.50 293 9.01 19.89 302 6.21 103.68 309 4.04 13.76
p654 17322 0.50 344 327 4.94 - 344 * 26.68 343 0.29 1611.23 336 2.33 28.89
d657 24456 0.50 386 386 * 715.70 344 10.88 20.41 367 4.92 240.25 377 2.33 23.24
gr666 147179 0.50 503 503 * 634.20 474 5.77 29.49 490 2.58 855.40 497 1.19 109.54
u724 20955 0.50 439 439 * 1077.10 358 18.45 35.04 415 5.47 374.33 429 2.28 27.77

rat783 4403 0.50 438 438 * 594.30 391 10.73 43.91 407 7.08 273.84 422 3.65 34.59
dsj1000 9329844 0.50 632 . . . 562 11.08 136.57 604 4.43 4123.41 632 * 81.20
pr1002 129523 0.50 604 604 * - 516 14.57 118.87 558 7.62 1864.39 572 5.30 45.92
u1060 112047 0.50 627 . . . 577 7.97 85.97 607 3.19 3026.01 627 * 90.04

vm1084 119649 0.50 777 777 * 4927.40 726 6.56 170.98 744 4.25 6309.60 770 0.90 56.29
pcb1173 28446 0.50 633 . . . 590 6.79 174.26 613 3.16 2244.38 633 * 60.65

d1291 25401 0.50 684 . . . 684 * 173.44 670 2.05 - 646 5.56 434.87
rl1304 126474 0.50 766 . . . 627 18.15 228.75 694 9.40 4790.58 766 * 102.45
rl1323 135100 0.50 811 811 * - 674 16.89 327.32 706 12.95 6345.53 782 3.58 89.68

nrw1379 28319 0.50 771 . . . 740 4.02 351.37 747 3.11 4934.80 771 * 106.97
fl1400 10064 0.50 1043 909 12.85 - 935 10.35 477.51 950 8.92 - 1043 * 518.25
u1432 76485 0.50 738 . . . 697 5.56 249.66 693 6.10 1252.50 738 * 121.46
fl1577 11125 0.50 880 . . . 813 7.61 442.40 837 4.89 - 880 * 286.47
d1655 31064 0.50 846 . . . 820 3.07 566.47 800 5.44 7889.11 846 * 757.70

vm1748 168278 0.50 1246 873 29.94 - 1195 4.09 647.09 1219 2.17 - 1246 * 178.50
u1817 28601 0.50 879 . . . 865 1.59 771.89 864 1.71 - 879 * 975.58
rl1889 158268 0.50 1167 890 23.74 - 1051 9.94 1291.33 1081 7.37 - 1167 * 269.81
d2103 40225 0.50 1069 . . . 1018 4.77 993.63 1000 6.45 - 1069 * 951.27
u2152 32127 0.50 1048 . . . 1021 2.58 1721.31 1019 2.77 - 1048 * 1350.23
u2319 117128 0.50 1167 . . . 1145 1.89 730.20 1165 0.17 3669.11 1167 * 423.26
pr2392 189016 0.50 1292 1140 11.76 - 1159 10.29 1461.82 NA NA - 1292 * 402.29

pcb3038 68847 0.50 1572 . . . 1492 5.09 1732.09 NA NA - 1572 * 681.94
fl3795 14386 0.50 1815 . . . 1776 2.15 5120.78 NA NA - 1815 * 2994.90

fnl4461 91283 0.50 2350 . . . 2245 4.47 5286.82 NA NA - 2350 * 2462.65
rl5915 282765 0.50 3358 . . . 2868 14.59 12111.74 NA NA - 3358 * 5361.54
rl5934 278023 0.50 3145 . . . 2925 7.00 9815.39 NA NA - 3145 * 5382.25

pla7397 11630364 0.50 5141 . . . 3692 28.19 9003.06 NA NA - 5141 * 15981.78

average 3.96 7433.41 7.43 1329.29 4.55 7893.56 1.17 990.82
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Table A.3: Generation 2, n ≤ 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

att48 5314 0.50 1717 1717 * 0.00 1717 * 0.08 1717 * 0.16 1717 * 0.32
gr48 2523 0.50 1761 1761 * 0.20 1750 0.62 0.13 1761 * 0.15 1749 0.68 0.20
hk48 5731 0.50 1614 1614 * 0.10 1614 * 0.11 1614 * 0.14 1614 * 0.16
eil51 213 0.50 1674 1674 * 0.40 1674 * 0.20 1674 * 0.14 1668 0.36 0.18

berlin52 3771 0.50 1897 1897 * 93.40 1897 * 0.10 1897 * 0.19 1897 * 0.35
brazil58 12698 0.50 2220 2220 * 0.10 2220 * 0.17 2220 * 0.31 2218 0.09 1.52

st70 338 0.50 2286 2286 * 19.40 2285 0.04 0.35 2286 * 0.35 2285 0.04 0.31
eil76 269 0.50 2550 2550 * 0.10 2540 0.39 0.31 2550 * 0.35 2550 * 0.43
pr76 54080 0.50 2708 2708 * 0.40 2708 * 0.32 2708 * 0.52 2708 * 0.48
gr96 27605 0.50 3396 3396 * 1.70 3394 0.06 0.51 3396 * 0.72 3394 0.06 1.44
rat99 606 0.50 2944 2944 * 0.90 2932 0.41 0.55 2944 * 0.47 2944 * 0.49

kroA100 10641 0.50 3212 3212 * 0.90 3212 * 0.69 3212 * 0.69 3212 * 0.57
kroB100 11071 0.50 3241 3241 * 6.70 3239 0.06 0.50 3241 * 0.62 3238 0.09 0.52
kroC100 10375 0.50 2947 2947 * 85.60 2947 * 0.53 2909 1.29 0.59 2931 0.54 0.60
kroD100 10647 0.50 3307 3307 * 45.00 3295 0.36 0.56 3307 * 0.72 3307 * 0.65
kroE100 11034 0.50 3090 3090 * 230.10 3090 * 0.57 3082 0.26 0.64 3082 0.26 0.50

rd100 3955 0.50 3359 3359 * 0.20 3351 0.24 0.52 3351 0.24 0.70 3359 * 0.50
eil101 315 0.50 3655 3655 * 153.00 3636 0.52 0.50 3643 0.33 0.62 3655 * 0.82
lin105 7190 0.50 3544 3544 * 67.30 3536 0.23 0.56 3544 * 1.12 3530 0.40 1.10
pr107 22152 0.50 2667 2667 * 0.60 2667 * 0.40 2667 * 0.55 2667 * 1.05
gr120 3471 0.50 4371 4371 * 35.80 4358 0.30 0.74 4371 * 0.84 4356 0.34 1.37
pr124 29515 0.50 3917 3917 * 0.50 3917 * 0.54 3901 0.41 1.96 3899 0.46 1.34

bier127 59141 0.50 5383 5383 * 58.80 5328 1.02 1.08 5331 0.97 2.12 5381 0.04 1.71
pr136 48386 0.50 4309 4309 * 2.10 4244 1.51 1.02 4228 1.88 1.03 4309 * 1.15
gr137 34927 0.50 4286 4286 * 196.90 4281 0.12 0.87 4270 0.37 1.79 4099 4.36 3.09
pr144 29269 0.50 4003 4003 * 90.40 3963 1.00 0.74 4003 * 2.54 3965 0.95 3.02

kroA150 13262 0.50 4918 4918 * 241.40 4913 0.10 1.80 4842 1.55 1.05 4902 0.33 1.26
kroB150 13065 0.50 4869 4869 * 24.80 4853 0.33 1.32 4853 0.33 1.08 4869 * 1.19

pr152 36841 0.50 4279 4279 * 2.20 4269 0.23 1.38 4227 1.22 3.47 4245 0.79 3.47
u159 21040 0.50 4960 4960 * 192.20 4938 0.44 1.90 4889 1.43 1.83 4941 0.38 1.44

rat195 1162 0.50 5791 5791 * 128.80 5666 2.16 1.99 5612 3.09 1.64 5703 1.52 1.55
d198 7890 0.50 6670 6670 * 74.20 6622 0.72 2.10 6625 0.67 4.39 6660 0.15 7.33

kroA200 14684 0.50 6547 6547 * 68.70 6461 1.31 2.67 6279 4.09 2.76 6534 0.20 1.71
kroB200 14719 0.50 6419 6419 * 34.70 6328 1.42 2.69 6282 2.13 2.16 6278 2.20 1.97

gr202 20080 0.50 7789 7789 * 85.70 7703 1.10 2.13 7659 1.67 4.99 7789 * 8.77
ts225 63322 0.50 6834 6834 * 6.60 6749 1.24 1.68 6743 1.33 2.75 6819 0.22 1.47

tsp225 1958 0.50 6987 6987 * 174.50 6936 0.73 2.60 6818 2.42 2.94 6936 0.73 1.87
pr226 40185 0.50 6662 6662 * 74.10 6646 0.24 2.67 6621 0.62 4.96 6658 0.06 7.29
gr229 67301 0.50 9177 9177 * 182.60 9111 0.72 3.33 9046 1.43 11.59 9174 0.03 13.19
gil262 1189 0.50 8321 8321 * 89.60 8100 2.66 5.20 7907 4.98 3.15 8175 1.75 3.47
pr264 24568 0.50 6654 6654 * 23.00 6244 6.16 4.01 6654 * 8.14 6173 7.23 5.94
a280 1290 0.50 8428 8428 * 103.80 8269 1.89 5.61 8021 4.83 4.60 8304 1.47 2.85
pr299 24096 0.50 9182 9182 * 426.50 9060 1.33 5.45 8846 3.66 9.35 9112 0.76 3.23
lin318 21015 0.50 10923 10923 * 862.40 10724 1.82 9.39 10424 4.57 9.77 10866 0.52 8.29
rd400 7641 0.50 13652 13652 * 293.50 13255 2.91 15.66 12617 7.58 11.09 13442 1.54 6.80

average * 92.89 0.76 1.92 1.19 2.48 0.63 2.38
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Table A.4: Generation 2, n > 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

fl417 5931 0.50 11894 11894 * - 11873 0.18 9.40 11787 0.90 105.45 11787 0.90 16.73
gr431 85707 0.50 18318 18318 * 969.50 18112 1.12 20.07 17908 2.24 174.86 18287 0.17 51.38
pr439 53609 0.50 16171 16171 * 1298.30 15505 4.12 24.62 15698 2.92 230.64 16085 0.53 11.77

pcb442 25389 0.50 14484 14484 * 6259.10 13895 4.07 17.77 13595 6.14 15.03 14273 1.46 6.83
d493 17501 0.50 16729 . . . 16450 1.67 19.50 16355 2.24 103.18 16729 * 17.15

att532 13843 0.50 19598 19598 * - 18755 4.30 36.95 18903 3.55 109.26 19265 1.70 23.43
ali535 101170 0.50 21954 21954 * 2099.70 21394 2.55 37.79 21202 3.43 175.15 21910 0.20 95.05
pa561 1382 0.50 19576 19576 * 1487.10 18279 6.63 29.36 17904 8.54 32.39 18894 3.48 23.45
u574 18453 0.50 19351 19351 * 612.50 18809 2.80 36.86 17785 8.09 36.94 18966 1.99 16.33

rat575 3387 0.50 18251 18251 * 931.10 17670 3.18 30.94 17293 5.25 32.20 17705 2.99 14.97
p654 17322 0.50 17821 17160 3.71 - 17182 3.59 37.39 17358 2.60 457.42 17821 * 42.82
d657 24456 0.50 21503 21503 * 2682.40 19969 7.13 43.01 19253 10.46 49.17 21162 1.59 22.90
gr666 147179 0.50 26336 . . . 26064 1.03 52.93 25657 2.58 351.18 26336 * 136.48
u724 20955 0.50 24223 24223 * 5830.50 23311 3.77 53.95 22852 5.66 69.00 23793 1.78 28.71

rat783 4403 0.50 24861 . . . 24098 3.07 62.44 23617 5.00 88.40 24861 * 32.36
dsj1000 9329844 0.50 35772 35772 * - 33354 6.76 142.94 32630 8.78 409.18 34463 3.66 83.34
pr1002 129523 0.50 31746 27066 14.74 - 30440 4.11 95.47 29416 7.34 219.21 31746 * 46.19
u1060 112047 0.50 35110 . . . 34061 2.99 138.50 32184 8.33 367.08 35110 * 77.78

vm1084 119649 0.50 40687 40687 * - 38642 5.03 267.85 37699 7.34 758.46 40308 0.93 55.67
pcb1173 28446 0.50 35826 . . . 33992 5.12 204.88 33096 7.62 370.54 35826 * 69.94

d1291 25401 0.50 35153 . . . 31880 9.31 304.48 33781 3.90 1735.53 35153 * 289.25
rl1304 126474 0.50 40561 . . . 38654 4.70 422.77 35268 13.05 732.29 40561 * 97.68
rl1323 135100 0.50 43347 43347 * - 37905 12.55 326.45 35908 17.16 799.79 41459 4.36 89.78

nrw1379 28319 0.50 45602 . . . 42693 6.38 273.21 42690 6.39 694.02 45602 * 117.51
fl1400 10064 0.50 56258 53222 5.40 - 53329 5.21 567.33 49614 11.81 4025.94 56258 * 794.15
u1432 76485 0.50 44810 . . . 41791 6.74 248.94 41956 6.37 716.32 44810 * 100.91
fl1577 11125 0.50 45505 . . . 37061 18.56 510.23 44675 1.82 15494.72 45505 * 334.28
d1655 31064 0.50 47211 . . . 44895 4.91 551.08 44080 6.63 1548.97 47211 * 683.17

vm1748 168278 0.50 66685 . . . 65106 2.37 1536.33 62818 5.80 15203.11 66685 * 195.85
u1817 28601 0.50 50366 . . . 47606 5.48 589.37 47196 6.29 2025.62 50366 * 734.39
rl1889 158268 0.50 60084 52047 13.38 - 57552 4.21 1612.05 53798 10.46 4273.16 60084 * 286.07
d2103 40225 0.50 57202 . . . 50715 11.34 1038.20 53128 7.12 6370.31 57202 * 682.28
u2152 32127 0.50 60211 53976 10.36 - 56556 6.07 1184.77 55250 8.24 4063.42 60211 * 1164.38
u2319 117128 0.50 78102 72790 6.80 - 73848 5.45 1915.20 74799 4.23 3624.98 78102 * 447.06
pr2392 189016 0.50 71018 64577 9.07 - 67711 4.66 1828.25 65111 8.32 6519.53 71018 * 440.57

pcb3038 68847 0.50 91842 83951 8.59 - 85176 7.26 4158.91 85813 6.56 - 91842 * 820.37
fl3795 14386 0.50 103397 . . . 92086 10.94 9148.20 NA NA - 103397 * 4788.96

fnl4461 91283 0.50 140424 . . . 134030 4.55 8559.91 NA NA - 140424 * 2618.15
rl5915 282765 0.50 176678 . . . 164345 6.98 - NA NA - 176678 * 5512.40
rl5934 278023 0.50 171649 . . . 161816 5.73 - NA NA - 171649 * 5757.80

pla7397 11630364 0.50 272452 . . . 229543 15.75 - NA NA - 272452 * -

average 3.27 11644.10 5.67 2198.50 6.48 4389.82 0.63 1093.37
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Table A.5: Generation 3, n ≤ 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

att48 5314 0.50 1049 1049 * 38.50 1049 * 0.13 1049 * 0.18 1049 * 0.26
gr48 2523 0.50 1480 1480 * 0.20 1480 * 0.07 1480 * 0.20 1480 * 0.13
hk48 5731 0.50 1764 1764 * 0.00 1764 * 0.09 1764 * 0.14 1764 * 0.22
eil51 213 0.50 1399 1399 * 0.20 1399 * 0.12 1399 * 0.17 1398 0.07 0.22

berlin52 3771 0.50 1036 1036 * 124.70 1036 * 0.19 1036 * 0.30 1034 0.19 0.64
brazil58 12698 0.50 1702 1702 * 0.00 1702 * 0.13 1702 * 0.33 1702 * 0.71

st70 338 0.50 2108 2108 * 0.40 2108 * 0.24 2108 * 0.37 2108 * 0.31
eil76 269 0.50 2467 2467 * 0.40 2461 0.24 0.30 2462 0.20 0.44 2467 * 0.36
pr76 54080 0.50 2430 2430 * 0.20 2430 * 0.26 2430 * 0.56 2430 * 0.57
gr96 27605 0.50 3170 3170 * 61.50 3170 * 0.39 3153 0.54 1.07 3166 0.13 1.41
rat99 606 0.50 2908 2908 * 4.90 2896 0.41 0.47 2881 0.93 0.80 2886 0.76 0.78

kroA100 10641 0.50 3211 3211 * 63.30 3211 * 0.30 3211 * 1.16 3180 0.97 0.38
kroB100 11071 0.50 2804 2804 * 0.60 2804 * 0.46 2804 * 1.34 2785 0.68 0.51
kroC100 10375 0.50 3155 3155 * 1.50 3155 * 0.38 3149 0.19 0.86 3155 * 0.44
kroD100 10647 0.50 3167 3167 * 10.70 3123 1.39 0.65 3167 * 1.18 3141 0.82 0.58
kroE100 11034 0.50 3049 3049 * 1.50 3027 0.72 0.56 3049 * 1.48 3049 * 0.47

rd100 3955 0.50 2926 2926 * 113.20 2924 0.07 0.62 2924 0.07 0.90 2923 0.10 0.48
eil101 315 0.50 3345 3345 * 29.80 3333 0.36 0.46 3322 0.69 0.76 3345 * 0.56
lin105 7190 0.50 2986 2986 * 51.90 2986 * 0.54 2986 * 1.89 2973 0.44 2.09
pr107 22152 0.50 1877 1877 * 660.90 1877 * 0.29 1877 * 1.15 1802 4.00 0.82
gr120 3471 0.50 3779 3779 * 1.50 3736 1.14 0.96 3745 0.90 1.15 3748 0.82 1.36
pr124 29515 0.50 3557 3557 * 1021.50 3517 1.12 0.62 3549 0.22 2.41 3455 2.87 0.88

bier127 59141 0.50 2365 2365 * 79.90 2356 0.38 1.08 2332 1.40 2.07 2361 0.17 2.62
pr136 48386 0.50 4390 4390 * 86.70 4390 * 0.93 4380 0.23 2.56 4390 * 1.13
gr137 34927 0.50 3954 3954 * 8.60 3928 0.66 1.13 3926 0.71 1.89 3954 * 1.88
pr144 29269 0.50 3745 3745 * 112.60 3633 2.99 0.77 3745 * 3.36 3700 1.20 2.41

kroA150 13262 0.50 5039 5039 * 330.70 5037 0.04 1.26 5018 0.42 3.06 5019 0.40 1.07
kroB150 13065 0.50 5314 5314 * 107.60 5267 0.88 1.31 5272 0.79 2.31 5314 * 1.04

pr152 36841 0.50 3905 3905 * 1122.40 3557 8.91 0.80 3905 * 4.07 3902 0.08 3.62
u159 21040 0.50 5272 5272 * 52.20 5272 * 1.33 5272 * 4.46 5272 * 0.94

rat195 1162 0.50 6195 6195 * 49.90 6174 0.34 2.22 6086 1.76 3.06 6139 0.90 2.00
d198 7890 0.50 6320 6320 * 286.10 5985 5.30 1.86 6162 2.50 5.86 6290 0.47 7.14

kroA200 14684 0.50 6123 6123 * 122.30 6048 1.22 2.73 6084 0.64 4.64 6114 0.15 1.72
kroB200 14719 0.50 6266 6266 * 40.10 6251 0.24 2.79 6190 1.21 5.46 6213 0.85 1.77

gr202 20080 0.50 8616 8616 * 224.80 8111 5.86 2.05 8419 2.29 9.12 8605 0.13 10.45
ts225 63322 0.50 7575 7575 * 171.20 7149 5.62 1.47 7510 0.86 6.15 7575 * 1.14

tsp225 1958 0.50 7740 7740 * 150.30 7353 5.00 2.38 7565 2.26 5.04 7488 3.26 2.58
pr226 40185 0.50 6993 6993 * 32.60 6652 4.88 1.97 6964 0.41 15.50 6908 1.22 8.01
gr229 67301 0.50 6328 6328 * 10.20 6190 2.18 4.42 6205 1.94 9.03 6297 0.49 11.65
gil262 1189 0.50 9246 9246 * 133.40 8915 3.58 5.68 8922 3.50 6.07 9094 1.64 3.94
pr264 24568 0.50 8137 8137 * 20.70 7820 3.90 3.98 7959 2.19 17.88 8068 0.85 3.62
a280 1290 0.50 9774 9774 * 213.30 8719 10.79 4.53 9426 3.56 9.42 8684 11.15 3.22
pr299 24096 0.50 10343 10343 * 363.60 10305 0.37 6.07 10033 3.00 19.61 9959 3.71 3.95
lin318 21015 0.50 10368 10368 * 534.80 9909 4.43 7.57 9758 5.88 12.18 10273 0.92 6.33
rd400 7641 0.50 13223 13223 * 293.20 12828 2.99 14.49 12678 4.12 16.46 13088 1.02 7.74

average * 149.66 1.69 1.80 0.96 4.18 0.90 2.31
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Table A.6: Generation 3, n > 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

fl417 5931 0.50 14220 14220 * 6227.60 12792 10.04 12.49 13709 3.59 73.99 14186 0.24 12.45
gr431 85707 0.50 10911 10911 * 1046.90 10735 1.61 17.18 10500 3.77 103.88 10817 0.86 54.50
pr439 53609 0.50 15160 15160 * - 13006 14.21 15.35 14694 3.07 153.19 15097 0.42 10.96

pcb442 25389 0.50 14819 14819 * - 14446 2.52 11.57 14206 4.14 31.56 14522 2.00 6.58
d493 17501 0.50 25167 25167 * - 21458 14.74 15.15 23362 7.17 197.43 24981 0.74 19.18

att532 13843 0.50 15498 15498 * 933.20 15178 2.06 23.23 14573 5.97 75.56 15342 1.01 22.75
ali535 101170 0.50 9328 . . . 8884 4.76 26.04 8672 7.03 162.88 9328 * 94.09
pa561 1382 0.50 14482 14482 * 10543.80 13662 5.66 35.44 13271 8.36 36.99 14034 3.09 21.35
u574 18453 0.50 20064 20064 * 1409.30 19368 3.47 34.05 18747 6.56 44.60 19691 1.86 19.77

rat575 3387 0.50 20109 20109 * 1426.50 19669 2.19 33.87 19007 5.48 47.82 19879 1.14 18.03
p654 17322 0.50 24492 24492 * - 22303 8.94 30.94 24221 1.11 284.87 24130 1.48 18.54
d657 24456 0.50 24562 24562 * 4053.30 22401 8.80 32.94 21893 10.87 69.62 23772 3.22 21.89
gr666 147179 0.50 17020 17020 * - 15561 8.57 46.77 15545 8.67 227.61 16902 0.69 143.87
u724 20955 0.50 28348 28348 * 5870.60 27072 4.50 58.19 26665 5.94 150.49 27932 1.47 29.26

rat783 4403 0.50 27566 27566 * 7232.30 26870 2.52 80.85 25591 7.16 153.06 26797 2.79 30.64
dsj1000 9329844 0.50 30943 . . . 30043 2.91 183.75 28822 6.85 781.25 30943 * 79.18
pr1002 129523 0.50 39449 39449 * - 37244 5.59 115.38 35808 9.23 485.46 38762 1.74 47.30
u1060 112047 0.50 36570 . . . 35649 2.52 179.48 34873 4.64 689.68 36570 * 75.88

vm1084 119649 0.50 37653 37653 * - 36170 3.94 167.56 36121 4.07 813.15 37508 0.39 54.21
pcb1173 28446 0.50 40069 . . . 38284 4.45 301.94 37506 6.40 477.29 40069 * 66.16

d1291 25401 0.50 38132 30106 21.05 - 36419 4.49 212.23 36063 5.43 1288.60 38132 * 299.87
rl1304 126474 0.50 41214 40478 1.79 - 37562 8.86 362.55 37859 8.14 1000.74 41214 * 81.11
rl1323 135100 0.50 46641 44458 4.68 - 43029 7.74 323.11 42990 7.83 904.51 46641 * 93.53

nrw1379 28319 0.50 43972 . . . 42412 3.55 418.50 40170 8.65 870.77 43972 * 124.75
fl1400 10064 0.50 57226 54792 4.25 - 57131 0.17 471.99 55269 3.42 7075.68 57226 * 599.81
u1432 76485 0.50 46657 . . . 45806 1.82 305.25 45084 3.37 1291.16 46657 * 138.02
fl1577 11125 0.50 45692 . . . 44188 3.29 428.11 44062 3.57 9751.32 45692 * 295.62
d1655 31064 0.50 58728 51168 12.87 - 55771 5.04 600.91 54121 7.84 3487.68 58728 * 674.25

vm1748 168278 0.50 70958 68979 2.79 - 67785 4.47 1280.00 68976 2.79 6251.95 70958 * 225.29
u1817 28601 0.50 63639 52186 18.00 - 60751 4.54 738.77 59783 6.06 4171.11 63639 * 1302.35
rl1889 158268 0.50 68422 43374 36.61 - 64660 5.50 1260.33 62538 8.60 5535.04 68422 * 244.97
d2103 40225 0.50 78084 76035 2.62 - 78084 * 1585.02 73034 6.47 - 77333 0.96 1168.90
u2152 32127 0.50 73400 52091 29.03 - 71469 2.63 1326.63 68152 7.15 9579.31 73400 * 1619.61
u2319 117128 0.50 79351 79351 * - 78319 1.30 1210.42 76250 3.91 6496.30 78113 1.56 569.76
pr2392 189016 0.50 84094 60225 28.38 - 79704 5.22 1496.23 78364 6.81 8624.02 84094 * 422.73

pcb3038 68847 0.50 104667 96356 7.94 - 100660 3.83 4491.30 97596 6.76 - 104667 * 917.39
fl3795 14386 0.50 97707 . . . 95675 2.08 6867.61 NA NA - 97707 * 3158.89

fnl4461 91283 0.50 164201 . . . 158654 3.38 11047.56 NA NA - 164201 * 3248.64
rl5915 282765 0.50 199336 . . . 189096 5.14 15139.79 NA NA - 199336 * 5593.23
rl5934 278023 0.50 207385 . . . 198428 4.32 16384.22 NA NA - 207385 * 5881.87

pla7397 11630364 0.50 320744 . . . 303425 5.40 - NA NA - 320744 * -

average 5.86 13749.78 4.80 2082.26 6.02 4814.36 0.63 1109.93
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Table A.7: Generation 4, n ≤ 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

att48 6909 0.65 1870 1870 * 106.00 1870 * 0.12 1870 * 0.16 1870 * 0.52
gr48 4037 0.80 2264 2264 * 22.40 2264 * 0.14 2264 * 0.15 2264 * 0.40
hk48 9169 0.80 2177 2177 * 0.20 2177 * 0.14 2177 * 0.13 2177 * 0.15
eil51 384 0.90 2490 2490 * 82.10 2481 0.36 0.13 2486 0.16 0.14 2490 * 0.24

berlin52 4526 0.60 2089 2089 * 115.00 2085 0.19 0.13 2089 * 0.23 2085 0.19 0.48
brazil58 11428 0.45 2070 2070 * 132.00 2070 * 0.18 2070 * 0.29 2060 0.48 1.08

st70 574 0.85 3316 3316 * 127.70 3314 0.06 0.33 3314 0.06 0.33 3314 0.06 0.42
eil76 458 0.85 3646 3646 * 45.10 3638 0.22 0.37 3632 0.38 0.33 3646 * 0.52
pr76 75712 0.70 3361 3361 * 1047.70 3358 0.09 0.31 3358 0.09 0.52 3361 * 0.62
gr96 52449 0.95 4851 4851 * 212.30 4851 * 0.36 4851 * 0.33 4851 * 0.37
rat99 727 0.60 3502 3502 * 16.00 3488 0.40 0.72 3488 0.40 0.50 3502 * 0.60

kroA100 20218 0.95 4999 4999 * 187.10 4999 * 0.54 4999 * 0.60 4999 * 0.36
kroB100 9964 0.45 2935 2935 * 34.40 2935 * 0.53 2935 * 0.62 2935 * 0.61
kroC100 7263 0.35 1962 1962 * 261.60 1962 * 0.60 1950 0.61 0.44 1955 0.36 0.46
kroD100 4259 0.20 1212 1212 * 11.80 1212 * 0.30 1212 * 0.23 1212 * 0.41
kroE100 17655 0.80 4635 4635 * 203.40 4631 0.09 0.54 4635 * 0.82 4616 0.41 0.69

rd100 4747 0.60 3815 3815 * 164.60 3815 * 0.57 3815 * 0.76 3808 0.18 0.75
eil101 409 0.65 4308 4308 * 90.80 4294 0.32 0.70 4300 0.19 0.59 4306 0.05 0.83
lin105 5033 0.35 2455 2455 * 1020.60 2455 * 0.38 2455 * 1.00 2453 0.08 0.81
pr107 13291 0.30 2072 2072 * 159.00 2072 * 0.35 2072 * 0.92 2072 * 1.95
gr120 5901 0.85 5830 5830 * 236.70 5817 0.22 0.81 5814 0.27 1.14 5830 * 1.25
pr124 17710 0.30 2036 2036 * 163.80 2036 * 0.37 2036 * 0.78 1937 4.86 1.18

bier127 53227 0.45 5068 5068 * 278.40 5045 0.45 1.19 5046 0.43 2.28 5067 0.02 2.28
pr136 33871 0.35 2860 2860 * 6303.60 2831 1.01 0.87 2833 0.94 0.90 2820 1.40 0.74
gr137 55883 0.80 6523 6523 * 203.10 6513 0.15 1.04 6500 0.35 2.17 6516 0.11 2.52
pr144 40976 0.70 5641 5641 * 357.90 5611 0.53 0.95 5624 0.30 2.71 5639 0.04 4.53

kroA150 19893 0.75 6858 6858 * 415.90 6835 0.34 1.28 6828 0.44 2.17 6855 0.04 1.69
kroB150 20904 0.80 7023 7023 * 303.00 6987 0.51 1.50 7011 0.17 2.20 7020 0.04 1.16

pr152 51578 0.70 5823 5823 * 483.60 5201 10.68 1.30 5819 0.07 2.64 5820 0.05 5.21
u159 14729 0.35 3147 3147 * 1145.20 3147 * 1.41 3147 * 1.81 3147 * 0.92

rat195 2207 0.95 9753 9753 * 205.40 9724 0.30 3.73 9630 1.26 2.36 9750 0.03 1.69
d198 6312 0.40 4661 4661 * 492.70 4589 1.54 1.91 4642 0.41 3.40 4654 0.15 4.95

kroA200 26432 0.90 9892 9892 * 340.30 9829 0.64 2.52 9862 0.30 4.89 9892 * 2.73
kroB200 26494 0.90 9849 9849 * 253.20 9796 0.54 2.50 9796 0.54 4.33 9842 0.07 1.62

gr202 6025 0.15 1071 1071 * 376.10 1071 * 0.63 1071 * 0.47 995 7.10 1.47
ts225 113979 0.90 11002 11002 * 3524.60 10827 1.59 2.74 10885 1.06 3.90 11002 * 1.87

tsp225 3525 0.90 10972 10972 * 706.70 10952 0.18 4.70 10912 0.55 4.40 10972 * 2.52
pr226 32148 0.40 4893 4893 * 1183.10 4868 0.51 2.16 4879 0.29 5.81 4890 0.06 4.83
gr229 121142 0.90 11482 11482 * 563.10 11451 0.27 4.79 11430 0.45 4.02 11482 * 6.46
gil262 357 0.15 2031 2031 * 1770.50 2029 0.10 1.88 2031 * 2.88 2030 0.05 1.35
pr264 34395 0.70 10253 10253 * 277.50 9808 4.34 4.13 9858 3.85 13.97 10166 0.85 6.42
a280 1935 0.75 12064 12064 * 351.80 11810 2.11 5.83 11731 2.76 7.12 12048 0.13 3.39
pr299 45782 0.95 14986 14986 * 7771.90 14894 0.61 6.71 14898 0.59 12.67 14980 0.04 3.46
lin318 35725 0.85 15132 15132 * - 15049 0.55 7.52 15012 0.79 15.57 15119 0.09 7.91
rd400 14517 0.95 20107 20107 * 5093.10 20004 0.51 12.42 19973 0.67 19.62 20101 0.03 9.61

average * 1218.69 0.65 1.83 0.41 2.96 0.38 2.09
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Table A.8: Generation 4, n > 400

Branch-&-Cut 2-Parameter IA GRASP with PR EA4OP

instance d0 α opt best gap time best gap time best gap time best gap time

fl417 10082 0.85 20496 20496 * - 20438 0.28 11.82 20366 0.63 82.41 20494 0.01 39.61
gr431 51425 0.30 13976 13976 * - 13652 2.32 18.13 13499 3.41 165.40 13969 0.05 50.29
pr439 75052 0.70 19613 19613 * 3936.10 19435 0.91 23.59 19139 2.42 177.81 19510 0.53 13.61

pcb442 10156 0.20 5839 5839 * - 5749 1.54 9.47 5600 4.09 9.50 5650 3.24 3.40
d493 24502 0.70 21740 21740 * - 21357 1.76 28.72 20856 4.07 74.96 21674 0.30 21.00

att532 26302 0.95 26728 26728 * - 26570 0.59 19.12 26526 0.76 73.04 26728 * 17.20
ali535 40468 0.20 13520 13520 * 15739.60 13393 0.94 29.43 13102 3.09 406.85 13442 0.58 73.07
pa561 2487 0.90 27719 27712 0.03 - 27228 1.77 31.85 26822 3.24 40.43 27719 * 24.14
u574 35060 0.95 28823 28823 * - 28545 0.96 24.81 28446 1.31 70.59 28822 0.00 26.03

rat575 6096 0.90 28364 28364 * - 27995 1.30 43.23 27664 2.47 39.55 28334 0.11 24.68
p654 27715 0.80 31814 31814 * - 31657 0.49 40.11 31383 1.35 514.38 31717 0.30 123.82
d657 44021 0.90 32548 32548 * 13485.10 32059 1.50 52.01 31927 1.91 123.96 32534 0.04 33.00
gr666 103026 0.35 21013 21013 * - 20369 3.06 39.13 20412 2.86 511.53 20901 0.53 132.65
u724 35624 0.85 34988 34988 * - 34169 2.34 57.31 33923 3.04 108.86 34921 0.19 40.93

rat783 1321 0.15 7829 7829 * - 7459 4.73 23.26 7203 8.00 32.23 7548 3.59 13.35
dsj1000 6530891 0.35 27357 27357 * - 24840 9.20 127.16 25113 8.20 573.23 25352 7.33 48.13
pr1002 90666 0.35 23527 23527 * - 21029 10.62 180.07 20224 14.04 127.34 22482 4.44 35.67
u1060 190480 0.85 51775 51768 0.01 - 50921 1.65 190.31 50302 2.85 430.51 51775 * 150.58

vm1084 107684 0.45 38678 38678 * - 36455 5.75 201.55 35535 8.13 551.57 38228 1.16 50.34
pcb1173 48359 0.85 56010 55954 0.10 - 53687 4.15 206.44 52559 6.16 469.21 56010 * 77.73

d1291 5081 0.10 4029 4029 * 2335.60 4029 * 35.22 4029 * 71.53 4024 0.12 45.07
rl1304 189711 0.75 57782 57782 * - 53775 6.93 470.54 51258 11.29 1163.85 57545 0.41 112.18
rl1323 243180 0.90 65664 65476 0.29 - 63666 3.04 492.15 61632 6.14 1070.12 65664 * 99.81

nrw1379 53807 0.95 69214 69119 0.14 - 68510 1.02 385.51 68046 1.69 974.63 69214 * 152.00
fl1400 18115 0.90 70488 70476 0.02 - 70444 0.06 177.57 70449 0.06 4573.17 70488 * 287.75
u1432 91783 0.60 54540 54540 * - 49738 8.80 565.02 50150 8.05 910.86 53550 1.82 127.79
fl1577 7788 0.35 33754 22191 34.26 - 25157 25.47 327.70 31740 5.97 10432.87 33754 * 200.71
d1655 21745 0.35 31880 29920 6.15 - 30024 5.82 300.33 30040 5.77 781.57 31880 * 371.31

vm1748 252417 0.75 82126 81778 0.42 - 80623 1.83 776.22 79540 3.15 5491.77 82126 * 265.55
u1817 20021 0.35 36416 31800 12.68 - 33428 8.21 845.38 32142 11.74 891.10 36416 * 418.80
rl1889 237402 0.75 83081 71527 13.91 - 80240 3.42 1536.30 76078 8.43 4799.95 83081 * 363.35
d2103 24136 0.30 34192 31045 9.20 - 29811 12.81 805.24 31176 8.82 1291.98 34192 * 465.36
u2152 28914 0.45 54744 48472 11.46 - 50467 7.81 1587.17 49688 9.24 3227.28 54744 * 906.84
u2319 187405 0.80 110995 110995 * - 108463 2.28 1218.39 107764 2.91 4687.71 110960 0.03 438.26
pr2392 132312 0.35 50902 45407 10.80 - 47791 6.11 1355.53 45506 10.60 3173.63 50902 * 285.26

pcb3038 75732 0.55 101173 91831 9.23 - 93070 8.01 2974.79 94607 6.49 - 101173 * 800.13
fl3795 11509 0.40 80069 71328 10.92 - 67850 15.26 7074.26 NA NA - 80069 * 4496.09

fnl4461 54770 0.30 85088 84098 1.16 - 79110 7.03 5216.83 NA NA - 85088 * 1490.80
rl5915 480701 0.85 279277 279116 0.06 - 264269 5.37 - NA NA - 279277 * 8438.60
rl5934 222418 0.40 137838 . . . 128287 6.93 - NA NA - 137838 * 4037.07

pla7397 5815182 0.25 142399 106131 25.47 - 121860 14.42 - NA NA - 142399 * 6667.36

average 3.66 17087.41 5.04 1987.85 5.07 3807.94 0.60 767.54
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