This document is the Accepted Manuscript version of a Published Work that appeared in final form in Studies in Language 46(3) : 647-717 (2022), copyright © 2021 John Benjamins. To access the final edited and published work see https://doi.org/10.1075/sl.20047.sal

A cross-linguistic study of emphatic negative coordination

Iker Salaberri

University of the Basque Country (UPV/EHU) novel insights. It is shown that languages can combine ENC types, and that contact and borrowing are relevant triggers for the emergence of this sort of clause linkage. The article also reveals that there is considerable variety in the etymological sources and grammaticalization paths of ENC markers.

Keywords: negation, clause linkage, typology, language contact, grammaticalization

1. Introduction

Despite the recent, increased interest in the grammatical properties of negation and clause linkage, there is to date no extensive typological study of so-called emphatic negative coordination (ENC), ${ }^{1}$ which combines both functions: contributions to this topic have only been made in passing within broader studies on negation (Payne 1985a, Bernini \& Ramat 1996, Miestamo et al. 2015, De Swart 2020), coordination (Haspelmath 2007, Mauri 2008) and the relationship between negation and clause linkage (Bond 2011). ${ }^{2}$

As a result, this phenomenon is poorly understood: it is unclear whether ENC is

[^0]specific to European languages, or whether it is more widespread (Haspelmath 2007: 17), the connection of ENC to functional motivations has not been explored in depth, and the diachronic developments undergone by ENC are not well-understood either (Haspelmath 2007: 17-19).

In view of the former, this study aims to answer the following questions: (1) how widespread is ENC in the languages of the world? (2) which restrictions (if any) govern the use of ENC? (3) what is the areal distribution of ENC, and how does this function spread under contact? (4) do ENC markers tend to be distinct from markers of standard negation (Miestamo 2005: 42)? (5) do ENC markers tend to be etymologically related to markers of standard negation and, if not, what are their etymological sources?

This study is structured as follows: Section 2 is dedicated to delimiting the object of study of this paper, followed in Section 3 by a layout of the methodology and sampling procedure. Section 4 provides an overview of the generalizations that can be made on the basis of the data, and the grammaticalization paths for ENC markers are discussed in Section 5. Finally, Section 6 presents the conclusions.

2. The domain of inquiry

This paper starts out from the premise that negative coordination and, by extension, emphatic negative coordination are distinct functions whose structural expression can be studied across languages. The following (1-2) are comparative concepts meant to enable cross-linguistic comparison of negative coordination and emphatic negative coordination respectively:
(1) Negative coordination

Negative coordination is a kind of clause linkage
(i) whereby two or more functionally equivalent members are linked together at the same level of structure by an overt or covert linking device,
(ii) and whereby all linked members are under the scope of negation, whether of the same or of distinct negators.
(2) Emphatic negative coordination

Emphatic negative coordination is a kind of clause linkage
(i) whereby two or more functionally equivalent members are linked together at the same level of structure by an overt or covert linking device,
(ii) whereby all linked members are under the scope of negation, whether of the same or of distinct negators,
(iii) and whereby it is emphasized that the coordinated members are part of a coordination structure and are thus considered separately. ${ }^{3}$

These comparative concepts (1-2) are expressed by means of language-specific constructions, morphemes and categories. Some examples of emphatic negative coordination are given in (3a-c):

HUP (Naduhup > Eastern Naduhup, Brazil, Colombia; Epps 2008: 736)

(3) a .	Yikán	né	cokw's̆t	Ptd-nthh-ז p
	over.there	EMPH.NEG	Tucano	speak-NEG-DEP
	nó	potugěc	wit-nth-ṫp	
	EMPH.NEG	Portuguese	understan	G-DEP
	‘There, neither speaking Tucano nor understanding Portuguese (there I arrived) ${ }^{4}$			

BASQUE (Language isolate, France, Spain; Hualde \& Ortiz de Urbina 2003: 563)
b. Ez zituen ez hitz-ak leun-du ez

NEG AUX NEG word-DEF.PL.ABS soften-PFV NEG
gorroto-ak estal-i
hatred-DEF.PL.ABS hide-PFV
'(S)he neither softened her/his words nor hid her/his hatred'
SIRAYAIC (Austronesian > East Formosan, Taiwan PC; Adelaar 2011: 219)
c. Araraw-aw ta ay-ayam ka säwäbix tu
look.at-SBJV.UO NOM RDP-animal LK spread.out LOC

cloud \quad LK $=$ NEG-either AO3.RDP-sow LK=NEG-either
ma-ayam, k'=ăsi-ahaw ma-'lidtu kuvaw
AO1-reap \quad LK $=$ NEG-either AO4-collect LOC barn
3 See Section 4.1 for arguments in favor of emphasis as an inherent property of ENC.
4 Interlinear glosses follow the Leipzig glossing rules (Bickel et al. 2015). 'Look at the birds of the air: they neither sow nor reap nor gather into barns'

In (3a) from Hup, the functionally equivalent members cokw'ว̆t Pìdnthhãp 'not speaking Tucano' and potugĕc wỉnńhz̈p 'not understanding Portuguese' are coordinated by means of the negative marker nó, which also conveys emphasis. Negation is expressed by both instances of née as well as by negative marking on each coordinated verb (-nt́h). This is different from negative coordination, which usually ensues via juxtaposition in combination with negative marking on the verb (Epps 2008: 334), as illustrated by (4).

HUP (Naduhup > Eastern Naduhup, Brazil, Colombia; Epps 2008: 334)
(4) H ̆̌p, căc, wăn, mŏm j’ám păّ-ăhá?
grater hoe knife axe DST.CNTR NEGEX-TAG2
'There used to be no graters, hoes, knives, (or) axes'

In (4), unlike in (3a), there is no presence of the emphatic negative marker né and, in fact, no overt coordinator at all. Negation is marked only once on the verb by means of the prefix p \check{a}-, and all coordinands are under the scope of this negative marker. Therefore, one could argue that in Hup negative coordination (4) and emphatic negative coordination (3a) are distinctly realized.

In (3b) from Basque, the second and third occurrences of the standard negator $e z$ each take scope over the coordinated verb phrases hitzak leundu 'soften words' and gorrotoak estali 'hide hatred', respectively. However, negation is already expressed by the first instance of $e z$, which takes scope over the whole clause. Consequently, one may suggest that the second and third occurrences of $e z$ serve to emphasize that the coordinated members are part of a coordination structure and are thus considered separately. This suggestion is further supported by the fact that two instances of $e z$ (instead of three) are enough to express negative coordination (5a-b):

BASQUE (Language isolate, France, Spain; Hualde \& Ortiz de Urbina 2003: 509, 893)

| (5) a. | Ez | diot | Mikel-i | eman | liburu- a, eta | ez |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | NEG | AUX | Mikel-DAT | give.PFV | book-DEF.ABS and | NEG |

Aitorr-i

Aitor-DAT

'I did not give the book to Mikel, and not to Aitor'
b. Ez=pai-takite batzu-ek nola eskiriba, eta ez

NEG=SUB-know some-ERG.PL how write and NEG
nola irakur
how write
'Because some do not know how to write it, and neither how to read it'

Again, this suggests that negative coordination (5a-b) and emphatic negative coordination (3b) are different functions in Basque and consequently have distinct means of expression. In (3c) from Sirayaic the verb phrases dmadiri 'they sow', maayam 'they reap' and ma'lid 'they collect' are each linked together and negated by one coordinator k 'ăsiahaw, which also emphasizes that the linked members are part of a coordination structure. This is in contrast with negative coordination (6), which is realized by means of the negator ăsi and the additive morpheme =ăpa that attaches to the last coordinated member:

SIRAYAIC (Austronesian > East Formosan, Taiwan PC; Adelaar 2011: 155)
(6) Tawrahey=kamu tu ăsi ka-vana-n ki na sa-sulat err=2PL.NOM LOC NEG V1-know-UO DF PART RDP-write ki lix=ăpa ki Alid
DF power=ADD DF God
'You are mistaken, knowing neither the scriptures nor the power of God'

Thus in (6), unlike in (3c), negation is marked only once (ăsi) and the same is true for coordination (=ăpa). No emphasis seems to be placed on the fact that the coordinands ki na sasulat 'the scriptures' and ki lixăpa ki Alid 'the power of God' belong to a coordination structure and are considered separately. The fact that Sirayaic has two distinct means to express negative coordination (6) and emphatic negative coordination (3c) indicates that these are different functions. ${ }^{5}$

5 The authenticity of k 'ăsiahaw as a marker of ENC is, however, doubtful: Sirayaic is attested in Dutch translations and, therefore, a loan translation of Dutch noch 'neither, nor' cannot be excluded. Details

The examples discussed so far thus illustrate that at least some languages tend to have different formal means in order to encode negative coordination (4, 5a-b, 6) as opposed to emphatic negative coordination (3a-c), and that this contrast might imply a difference in meaning. Instances (3a-c) also show that the comparative concept of ENC materializes variably: depending on the language, this can occur via emphatic negators (Hup), standard negators (Basque) and negative conjunctions (Sirayaic). In short, then, Hup, Basque and Sirayaic present dedicated, language-specific means used to express ENC.

However, there is an issue with this view: having different formal means to express negative coordination vs. emphatic negative coordination is not enough to determine that a given language has dedicated, language-specific ENC markers. Indonesian, for example, encodes the latter kind of clause linkage by means of the conjunctive coordinators baik 'both' and maupun 'and' under the scope of a single negator tidak (7a). By contrast, negative coordination is indicated by means of a single coordinator dan 'and' under the scope of negator tidak (7b):

INDONESIAN (Austronesian > Malayo-Polynesian, Indonesia; Sneddon 1996: 339, 348)

(7) a.	Baik	kepandaian	maupun	kecantikan	tidak	berguna
	both	ability	and	beauty	NEG	useful
	untuk	mencapai	kebahagiaan			
	for	achieve	happiness			

b. Majikan tidak	bisa sembarangan	memperkerjakan				
employer NEG can at.random	engage		dan membayar	pembantu-nya		
:---	:---	:---				
and pay	servant-3					

'An employer cannot employ and pay his servants just as he pleases'

The clause-linkage markers in (7a) and (7b) differ in shape, but (7a) is formally no different from instances of correlative conjunctive coordination (8) other than the fact
that (7a) is negated and (8) is not:

INDONESIAN (Austronesian > Malayo-Polynesian, Indonesia; Sneddon 1996: 339, 348)
(8) Baik di kota maupun di desa sepak bola digemari both in town and in village kick ball be.enjoyed orang
person
'Soccer is enjoyed both in the town and in the village'

Therefore, in Indonesian ENC (7a) and negative coordination (7b) are distinctly realized, but ENC equates to a negated version of correlative conjunctive coordination (8). Accordingly, Indonesian cannot be claimed to have a dedicated means for expressing ENC.

Many languages align with Indonesian in that they formally distinguish negative coordination from ENC yet do not have a dedicated means for the latter. Very often this clause-linkage function ensues via disjunctive coordinators under the scope of negation, as in Warlpiri (9a), and conjunctive coordinators under the scope of negation as in Ewe (9b): ${ }^{6}$

WARLPIRI (Pama-Nyungan > Desert Nyungic, Australia; Bowler 2014: 139)

(9) a. Cecilia	manu Gloria	kula=pala	yanu	
	Cecilia	either Gloria	NEG=3DU.SBJV	go.PST

Lajamanu-kurra

Lajamanu-ALL
'Neither Cecilia nor Gloria went to Lajamanu (lit. either Cecilia or Gloria did not go to Lajamanu)'

EWE (Atlantic-Congo > Volta-Congo, Ghana, Togo; Rongier 2004: 176-177)
b. Tュ-nyè kple nj̀-nyè me-lè do wj̀m ò
father-1SG and mother-1SG NEG-PROG work make NEG
'Neither my father nor my mother are working (lit. my father and my
6 Conjunction and disjunction are here regarded as subtypes of coordination. Conjunction implies that the proposition holds true only if all parts of the proposition, i.e., all conjuncts are true (Bussmann 1998: 231). In turn, disjunction indicates that either one, or more than one, or all of the parts of the proposition are true (Brown \& Miller 2013: 137). mother are not working)'

The Warlpiri example (9a), where the disjunctive coordinator manu 'either, or' combines with negative marking (kula=) on the verb, literally translates as 'either Cecilia or Gloria did not go to Lajamanu'. Thus in Warlpiri the formal means to express ENC corresponds to negated disjunctive coordination. Ewe is a similar case: in example (9b) the coordinator kple co-occurs with the complex negative marker me- ... o. A verbatim translation of the sentence would be 'my father and my mother are not working', i.e., in Ewe ENC is equal to negated conjunctive coordination.

In short, then, languages such as Indonesian, Warlpiri and Ewe do not make a formal distinction between negative coordination and ENC. For the purpose of delimitation, the focus of this study is on languages (i) which make a formal distinction between negative coordination vs. ENC and (ii) where there is no formal overlap between ENC and other clause-linkage functions, such as conjunctive and disjunctive coordination. As stated above, Hup, Basque and Sirayaic fall into this group, whereas Indonesian, Warlpiri and Ewe do not. In accordance with this conception of ENC, the expression 'dedicated, language-specific ENC markers' will be used henceforth to refer to languages where correlative conjunctions encode, when co-occurring together, no more and no fewer of the functions mentioned in (2) above. Whether ENC markers coexpress other functions (such as standard negation or scalar focus) when occurring individually is a different matter whose implications are discussed in Section 5.

A second issue when defining ENC concerns the scope of negators and coordinators involved in clause linkage. The focus of this investigation is on situations where emphasis, negation and coordination are all expressed in the same clause as at least one of the coordinands. Consequently, sentences such as (10) from Tariana, in which negation is marked externally to the clause, have been excluded from the analysis:

TARIANA (Arawakan > Japura-Colombia, Brazil, Colombia; Aikhenvald 2003: 403)

(10)Di-ra, 3SG.NF-drink 3SG.NF-be.drunk	na-na	3pL-OBJ	3SGisa
3i-wf-scold			
3SG	ma-ni-kade-na		
3SG-become.CAUS	NEG-do-NEG-REMP.VIS		

'He did not drink, get drunk, start scolding them (lit. he drank, got drunk, started scolding people - this was NOT the case),

In (10) the forms dira 'he drank', dikama 'he got drunk' and nana dikwisa diwe 'he started scolding people' are all under the scope of a single complex negator ma- ... -kade, which is marked on the final verb. Nonetheless, it is doubtful whether these forms are part of the same clause, since they are separated by pauses -which are indicated by commas - and because they can take constituents of their own, such as nana '3PL.OBJ' (Aikhenvald 2003: 403). Accordingly, examples like (10) have been left out of the discussion.

Moreover, it should be noted that the emphasis on functionally equivalent members being linked together at the same level of structure (cf. (2i) above) excludes other kinds of clause linkage, including subordination and cosubordination, from the definition of ENC. Accordingly, sentences such as (11), where a matrix negative verb ('ikai) takes a clausal complement (ke alu 'a siale), i.e., where a so-called 'higher negative verb' (Payne 1985a: 207-208, Miestamo 2005: 84-85) is involved, fall outside the scope of this study:

TONGA (TONGA ISLANDS) (Austronesian > Malayo-Polynesian, Tonga Islands; Churchward 1953: 56)
(11) Na'e 'ikai ke alu 'a siale PST NEG SBJV go ABS Siale 'Siale did not go'

Finally, the form of coordinators may change depending on the illocutionary force of the utterance (Haspelmath 2007: 3-4). For example, in Mandarin Chinese the disjunctive coordinator háishi is used in questions (12a) and huòzhe in statements (12b):

MANDARIN CHINESE (Sino-Tibetan > Sinitic, China; Li \& Thompson 1981: 654)
$\begin{array}{llllllllll}\text { (12) a. } & \text { Nǐ } & y a ̀ o & \text { wǒ } & \text { bāng } & n \grave{l} & \text { háishi } & \text { yào } & \text { zìjı̌ } & z u o ̀ ~ \\ & 2 \mathrm{SG} & \text { want } & 1 \mathrm{SG} & \text { help } & 2 \mathrm{SG} & \text { or } & \text { want } & \text { self } & \text { do }\end{array}$ 'Do you want me to help you, or do you want to do it yourself?'
b. Wǒmen zài zhèli chī huòzhe chī fàndiàn 1PL at here eat or eat restaurant dōu xing all OK
'We can either eat here or eat out'

For the purpose of delimitation, instances of non-declarative coordination such as (12a) have been excluded from the analysis.

In summary, only those clause-linkage functions that have the properties described in (2) and which fall inside the scope of this study have been considered to instantiate dedicated, language-specific ENC markers. More details on the typological variability concerning the expression of ENC are discussed in Section 4.

3. Language sample: description and analysis

3.1 Choice of sampling method

Language sampling is an integral part within the methodology of linguistic typology, which relies on empirical research of cross-linguistic variation. Depending on the research question(s) of any given typological study, different methods of language sampling might be appropriate. As noted by Rijkhoff et al. (1993: 171), there are essentially two ways to approach this matter: if the aim is to find out potential crosslinguistic frequencies of features and correlations between them, the languages of the sample should be genetically, areally and typologically independent of each other. The reason for this is that one can make statistically valid generalizations only on the basis of independent units, in this case languages. Sampling that relies on languages independent of one another has been labeled probability sampling (Rijkhoff et al. 1993: 171, Miestamo et al. 2016: 233). Methods used to construct probability samples have been put forward in a number of contributions to the topic (Perkins 1989, Dryer 1989).

By contrast, studies aiming to determine all possible realizations of a specific grammatical feature should strive to represent as much variety as possible. Accordingly, for this kind of research representativeness is more important than the genetic, areal and
typological independence of the languages being analyzed. Sampling which aims at representing variety has been labeled variety sampling (Rijkhoff et al. 1993: 171). Furthermore, searching for potential cross-linguistic frequencies of a specific linguistic phenomenon and for possible connections between this phenomenon and other parts of grammar -an aim which favors probability sampling-implies that the feature being studied is fully grasped. However, as mentioned in Section 1, ENC lacks as of yet complete understanding. This means that variety sampling, which relies on representativeness, is better suited for the purposes of this study.

So far two approaches to variety sampling have been defined: the so-called Diversity Value (Rijkhoff et al. 1993, Rijkhoff \& Bakker 1998, Bakker 2011) and GenusMacroarea (Miestamo 2005, Miestamo et al. 2016) methods. The first of these relies on genealogical grouping of the languages selected for the sample. Depending on the internal complexity of each genealogical grouping a diversity value is calculated, which is then used to determine how many languages of each genealogical grouping should be included in the sample. More specifically, this internal diversity measure is computed on the basis of the nodes (the points of intersection internal to language phyla) at the intermediate levels between the top node, that is to say, the name of the language phylum, and the terminal nodes at the bottom end of the genetic language tree, i.e., the individual languages within the phylum. The internal diversity measure or diversity value (DV) of each phylum is calculated based on the width and depth of a genetic language tree. The width of a genetic language tree is equal to the number of nodes at any given level, and its depth is equivalent to the number of nodes between the name of the language phylum and the individual languages. These two values (width and depth) of each phylum are then converted into the DV by calculating the average number of nodes per intermediate level.

When computing the DV , high level nodes are given more importance than low level ones, since the distinguishing power (the genetic distance between languages) is greater in higher than in lower nodes. As an illustrative example, the Eskimo-Aleut phylum is defined by Grimes (1997) as consisting of four nodes in depth (for instance, Naukan Yupik (1) < Siberian Yupik (2) < Yupik (3) < Eskimo (4)) and five in width at the fourth level of depth (Naukan Yupik (1), Sirenik Yupik (2), Alaskan Yupik (3), Inuit (4) and Aleut (5)) (Rijkhoff \& Bakker 1998: 269-270). The second level of depth in this
phylum, which consists of three nodes in width (Yupik (1), Inuit (2) and Aleut (3)), should thus be given more importance than the fourth level of depth because the genetic distance between Yupik and Aleut is greater than, for instance, Naukan Yupik and Siberian Yupik. The DV of each language phylum is then used to calculate the number of languages of that phylum that should be included in a sample, subject to the sample's size. Moreover, each genealogical grouping should be represented by at least one language. Pidgins and creoles taken together count as one genealogical grouping, whereas language isolates each represent one phylum.

As opposed to the Diversity Value method for variety sampling, which relies exclusively on phyla, in the Genus-Macroarea method two levels of stratification are created: a genealogical one at the genus level and an areal one at the macroarea level. Both concepts "genus" and "macroarea" are adopted from Dryer $(1989,1992)$. The first of these refers to a level of genealogical classification with a maximum time depth of 3,500-4,000 years. Genera are conceived as a comparable entity across the world's languages, since this is in most cases the maximal level of grouping whose genealogical relationship is uncontroversial (Miestamo et al. 2016: 239). Examples of genera are, within Indo-European, Iranian, Slavic and Germanic, as well as Berber, Chadic and Semitic within Afro-Asiatic. Similarly to the Diversity Value method, language isolates each constitute one genus, whereas contact languages are usually not considered (Miestamo et al. 2016: 250).

Macroareas refer, in turn, to continent-level linguistic areas that are independent of each other and which comprise typologically relatively similar languages. This resemblance is due either to contact or remote genealogical affinity. Dryer (1989: 268269, 1992: 133-135) distinguishes six macroareas: Africa, Eurasia, Australia-New Guinea, North America, South America and Southeast Asia-Oceania. Despite the fact that macroareas mostly follow geographical divisions, sometimes the boundaries are drawn by genealogical groupings. These exceptions are due to the fact that a given genealogical group can be spread over two continents, while all member languages of that group have typological features that are characteristic of one macroarea. Thus the Chibchan languages of Mesoamerica fall within South America, and the Afro-Asiatic languages of Asia within Africa. In other cases one genealogical grouping is split into two macroareas: the Munda genus is included in Eurasia due to its typological
similarities with other Eurasian languages, whereas the rest of the Austro-Asiatic family is included in the Southeast Asia-Oceania macroarea due to its structural affinity with other languages of that area. ${ }^{7}$

Each of the approaches to variety sampling discussed here has its advantages and disadvantages. Thus the Diversity Value method has been criticized for not encompassing any areal stratification (Miestamo et a. 2016: 245). As pointed out by Bakker (2011: 118), however, areal data can be introduced into the method. In fact, many of the genealogical classifications it can be based on —such as Grimes (1997)already include areal information, e.g., the "Australian", "East Papuan" and "North Caucasian" phyla. Another point of critique concerns the fact that computation of DVs depends to some extent on the genealogical classification that is chosen. Consequently, the proportion of each phylum in same-size samples varies depending on the sources. Nevertheless, these differences cannot be considered significant, since samples based on different sources as discussed by Rijkhoff et al. (1993) and Rijkhoff \& Bakker (1998) have been argued to yield similar results (Croft 2003: 21, though see Miestamo et al. 2016: 245). Finally, the genealogical groupings laid out by the Diversity Value method have been deemed unreliable due to their representing different time depths (Miestamo et al. 2016: 246). Despite these downsides, the Diversity Value approach to variety sampling represents the diversity of the world's genealogical groupings, it is fully explicit and formalized, and it enables reproducible sampling that is comparable across different studies.

In turn, the Genus-Macroarea method accounts for both areal and genealogical stratification, it intends to solve the problem of reliability of genealogical classifications by drawing on genera instead of phyla, and it is likewise explicit and formalized. However, as pointed out by Miestamo et al. (2016: 259) the delineation of genera is problematic, since there is no upper limit to the number of languages per genus. Also, the method based on genera has been argued to overrepresent some phyla, whereas it underrepresents others (Rijkhoff \& Bakker 1998: 300-301). Thus one of the main purported advantages of the Genus-Macroarea over the Diversity Value method - the reliability of genera in comparison to phyla- is undermined by the difficulty to define

7 For details on how the number of languages to be included in a sample is computed based on the concepts "genus" and "macroarea" of the Genus-Macroarea method, see Miestamo et al. (2016: 251258).
the limits of this kind of genealogical grouping. Moreover, drawing on genera excludes contact languages due to their minor time depth. Consequently, part of the world's linguistic diversity is disregarded. Finally, computer simulations have shown that the Diversity Value and Genus-Macroarea methods perform similarly in capturing the variety of the world's languages (Miestamo et al. 2016: 260-270). Due to these reasons the Diversity Value approach to variety sampling has been chosen for this study.

3.2 Sample generation and bias resolution

Concerning the steps taken in the generation of the sample, first of all the ready-made calculations in Rijkhoff \& Bakker (1998: 306-310) were adopted as a basis. As mentioned above, these authors do not offer a preconceived sample, but they do give numbers of languages to be included in the different phyla. Second, the individual languages of each phylum were selected according to Rijkhoff \& Bakker's (1998) calculation for a 250-language sample. This calculation is based on a classification of the world's languages by Ethnologue (Grimes 1997). ${ }^{8}$ In so doing, the availability of grammatical descriptions and dictionaries had to be given priority, since the relevant data are hardly ever discussed outside these kinds of texts.

Therefore, at the lower levels of genealogical grouping, a balancing act was performed between adhering to the methods of selecting individual languages according to Rijkhoff \& Bakker's (1998) method, on the one hand, and the availability of comprehensive descriptions for the languages in question, on the other. For example, these authors argue (Rijkhoff \& Bakker 1998: 308) that a 250 -language sample should include one Katukinan language. So far the Katukinan phylum has been identified as having two members: Katawixi and Katukína-Kanamarí (Adelaar 2007). This implies that, theoretically, both languages are suitable candidates to be included in the sample. However, only Katukína-Kanamarí has been thoroughly described (Groth 1985, Dos Anjos 2011, Ishy de Magalhães 2018). Therefore, by necessity Katukína-Kanamarí was selected over Katawixi.

Another example of involves the Geelvink Bay phylum, which according to Rijkhoff

8 The reader should notice that a much more recent version of Ethnologue is currently available (Eberhard et al. (eds.) 2020). In keeping with Rijkhoff \& Bakker's (1998) sampling method, however, the classification by Grimes (1997) was implemented here.
\& Bakker's (1998: 308) proposal should include two representatives. So far ten languages have been identified as belonging to this phylum: Barapasi, Bauzi, Burate, Demisa, Kofei, Nisa-Anasi, Sauri, Tefaro, Tunggare and Woria (Voorhoeve 1975). Therefore, in principle ten candidates are available to be included in the sample. However, to date only one of these has been thoroughly described, namely Bauzi (Briley 1997). Therefore, Bauzi was selected as the sole representative of the Geelvink Bay phylum. The second slot available to this phylum had to be assigned to another phylum, preferably to the closest one geographically, in this case Hatam, a West Papuan language. Consequently, the Geelvink Bay phylum is underrepresented by one language at the expense of the West Papuan phylum, which is overrepresented by one language according to Rijkhoff \& Bakker's (1998) standards for a Grimes (1997)-based 250language sample. This was, at any rate, the only case in which this procedure was followed. All in all, one might argue that the variety sample created for this study is similar to what Miestamo et al. (2016:250) label a "core sample".

Giving preference to the availability of grammatical descriptions and dictionaries runs the risk of yielding a bibliographically biased sample. Moreover, since some macroareas are better studied than others, bibliographic biases tend to introduce an areal bias as well (Miestamo et al. 2016: 251). Accordingly, a potential areal and bibliographic bias can be mitigated by underrepresenting well-studied areas or, alternatively, by overrepresenting poorly investigated areas. According to Hammarström (2009), Eurasian languages tend to be overrepresented in some typological studies at the expense of Papuan and South American languages. In order to cancel out bias effects, the latter two macroareas have been here overrepresented by 5 languages each at the expense of the Eurasian area, which has been underrepresented by 10 languages. The number of languages and the proportion of each macroarea in the sample are illustrated by Table 1.

Table 1. Number and proportion of sample languages by macroarea

Macroarea	Languages	Proportion of sample languages	Families	Proportion of sample families
Africa	42	16.8%	21	13.8%
Australia-Papua New Guinea	47	18.8%	37	24.3%
Eurasia	31	12.4%	16	10.5%

North America- Mesoamerica	41	16.4%	29	19.1%
South America	47	18.8%	39	25.7%
Southeast Asia- Oceania	42	16.8%	10	6.6%
Total	$\mathbf{2 5 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 5 2}$	$\mathbf{1 0 0 \%}$

A second measure against a bibliographically biased sample involves random selection of subfamilies. When applying the Diversity Value method to sampling not every subfamily can be represented by a language due to the fact that the number of available languages is lower than the number of subfamilies (Rijkhoff \& Bakker 1998: 276-277). This can lead researchers to select only well-described languages. Therefore, randomly distributing languages over subfamilies can avoid creating a bibliographic bias. One way to achieve chance distribution is to assign a number to each subfamily and let a computer program generate random numbers, which is the approach taken here.

For instance, a Grimes (1997)-based 250-language sample created on the basis of the Diversity Value method requires the Uralic phylum to be represented by two languages. However, this phylum is subdivided by Grimes (1997) into seven branches (Finnic, Khantyic, Mari, Mordvin, Permian, Sami and Samoyed), which means that five subdivisions must be left out. By means of random number assignment the Khantyic and Permian subfamilies were selected. In the same vein, one language each was assigned to Central Salish and Interior Salish among the three Salishan subbranches (Central, Interior and Tsamosa).

Despite these measures and concerning the subject matter, grammatical descriptions often fail to specify restrictions on ENC, which are believed to vary from language to language. This limitation should be borne in mind when better than at the time of evaluating the validity of the results, which are presented in Section 4.

3.3 Sample outline and analysis

As mentioned above, the aim of this study is to determine all possible realizations of ENC by drawing on the Diversity Value approach to variety sampling (Rijkhoff \& Bakker 1998). Accordingly, this study is based on a sample of 250 languages, which represent a total of 96 (out of $124,77.4 \%$) linguistic phyla. Because the data have been
drawn from dictionaries and grammatical descriptions, no relevant information could be found for Amto-Musan, Andoque, Arutani, Burmeso, Busa, Caddoan, Cayubaba, Itonama, Karkar-Yuri, Kibiri, Left May, Máku, Mascoian, Pankararú, Pauwi, Puelche, Quileute, Salivan, Ticuna, Tol, Tonkawa, Trumai, Tuxá, Uru-Chipaya, Vilela, Warembori, Yámana and Yale, as these are mostly fragmentarily attested and poorly documented languages whose descriptions do not offer sufficient information concerning the topic at hand. The list of sample languages is included in the Appendix. ${ }^{9}$ Figure 1 shows the geographic distribution of the languages in the sample:

Figure 1. Geographic distribution of the languages under study

[^1]categorical variables, those between discrete variables and those with mixed types. It is essential to point out that each of the contexts requires a tailored set of statistical techniques. For measuring the correlation of continuous variables, Pearson's correlation (Pearson 1895) is typically used, and for mixed types, on the other hand, logistic regression (Wright 1895) or an adaptation of Pearson's Correlation by the name of point biserial correlation (Tate 1954) can be applied.

In what concerns this research, however, all of the considered variables (see further below) exhibit a nominal behavior; therefore, correlation has been quantified by means of Cramer's V (Cramer 1946), which is a correlation technique based on Pearson's chisquared statistic and also sometimes referred to as Cramer's phi. In addition, given the symmetric nature of Cramer's V and the limited size of the database, Theil's U (also known as the uncertainty coefficient) (Theil 1966) has been computed over the set of considered parameters in order to get a clearer and non-symmetric view of the parameter correlations without 'losing' any instances to symmetry.

It is also worth mentioning that there are two major ways in which correlations between discrete variables can be calculated, by so-called distance metrics such as the Manhattan and the Canberra distances (Black 2006) and through contingency table analytics such as the ones implemented in Cramer's V and Theil's U. One of the biggest drawbacks of distance metric techniques is their strong sensitivity to input scale adaptations, making it hard to correctly compare correlation factors across several iterations of corpus extensions. In addition, distance metrics are said not to be easily comparable when correlating variable pairs which can take different numbers of categories. Consequently, correlations have been calculated here by means of contingency tables. Figure 2 represents the results of Cramer's V analysis of the corpus. Figure 3 represents the results of correlation analysis based on Theil's U or uncertainty coefficient.

Figure 2. Results of Cramer's V correlation analysis on the dependent variables in question

GENEALOGICAL_AFFILIATION	Symmetric correlation through Cramer's V					
	1	0.33	0.28	0.13	0.23	
MACRO_AREA	0.33	1	0.46	0.32	0.32	
ENC_AVAILABLE	0.28	0.46	0.98	1	1	
DISTINCT_FROM_SN	0.13	0.32	1	1	0.8	
RELATED_TO_SN	0.23	0.32	1	0.8	1	

Figure 3. Results of Theil's U correlation analysis on the dependent variables in question

GENEALOGICAL_AFFILIATION	Asymmetric correlation through Theil's U				
	1	0.86	0.82	0.83	0.83
MACRO_AREA	0.32	1	0.24	0.22	0.2
ENC_AVAILABLE	0.07	0.06	1	0.87	0.81
DISTINCT_FROM_SN	0.09	0.06	1	1	0.86
RELATED_TO_SN	0.09	0.06	1	0.92	1

Cramer's V is said to be symmetric because the correlation values represented in the Yaxis and the X -axis in Figure 2 are identical. In turn, this does not apply to Theil's U, which is why it is referred to as asymmetric. Symmetric and asymmetric correlation are two different perspectives on the same data. Accordingly, both methods of statistical analysis can be seen as complementing each other. The degree of correlation is represented on a scale from 0 (= no correlation whatsoever) to 1 (= absolute correlation). The intersections between dependent variables are set by default at 1 , except for the variable ENC_AVAILABLE in Cramer's V, which does not reach this number due to error.

The abbreviations in Figures 2 and 3 are short terms for the dependent variables under investigation. Many of them have been discretized in keeping with their subtypes. Accordingly, the following are their denotations:

- GENEALOGICAL_AFFILIATION $=$ the genealogical affiliation of each sample language, i.e., any one of the 152 families listed in the Appendix; - MACRO_AREA $=$ the macroarea each of the sample languages falls into, i.e., Africa (1),

Australia-Papua New Guinea (2), Eurasia (3), North America-Mesoamerica (4), South America (5) and Southeast Asia-Oceania (6);

- ENC_AVAILABLE $=$ whether or not dedicated, language-specific ENC markers are available to each language, according to the definition of ENC laid out in Section 2;
- DISTINCT_FROM_SN = whether or not individual ENC markers are formally distinct from the language's marker of standard negation;
- RELATED_TO_SN = whether or not individual ENC markers are etymologically related to the language's marker of standard negation, to the extent that this can be determined.

The degree of correlation between these dependent variables is discussed in Section 4.2 below. ${ }^{10}$

4. Typological overview of emphatic negative coordination

4.1. Cross-linguistic tendencies of emphatic negative coordination

According to the definition laid out in Section 2, 37/250 (14.8\%) of the languages in the sample have dedicated, language-specific ENC markers. Among these 37 languages four types of ENC markers stand out. First of all, ENC can be expressed by means of bisyndetic/correlative markers, without the addition or support of any other element. This type is here referred to as $\alpha 1$, and it is present $20 / 37$ (54.1\%) of the sample languages with dedicated, language-specific ENC markers, which makes it the most frequent ENC type.

In Brahui for example, the functionally equivalent members bahā kēk 'he sells (them) for money' and xudānā pēnat e ètik 'he gives them for God's sake' are coordinated in (13a) by the correlative elements $n a \ldots n a \ldots$, which also convey negation and emphasis. This is different from negative coordination, which is encoded by the negative suffixes -ta, -pa (13b).

BRAHUI (Dravidian > North Dravidian, Afghanistan, Pakistan; Andronov 2001: 108, Barjasteh 2018: 105)

10 The raw data and other details concerning statistical analysis can be accessed through the following link: https://github.com/IkerSalaberri/catcorrel.

'One fellow has sowed a plantation of melons and watermelons, but he neither sells them for money nor gives them for God's sake'
b. Pābō-ta ki bādšā jōrr aff, pēs
well-NEG that king ready be outdoors tammi-pa-k
go.out-NEG-3SG.PRS
'The king is not well and cannot go out of doors'

In (13b) there is no overt conjunction coordinating the clauses Pābōta ki bādšā jōr aff 'the king is not well' and pēs tammipak 'he cannot go outdoors', i.e., these are juxtaposed clauses, and this is the common means of conjunction in Brahui. According to Andronov (1980: 91), conjunctions are absent as a separate grammatical category from early attestations of Dravidian languages, and their use is largely optional in present-day Brahui. There are no attestations in the sources of na ... na ... being accompanied by conjunctive coordinators such as \bar{o} and a 'and'. Therefore, it is quite safe to assume that the correlative ENC markers are used individually as a rule.

A similar case can be observed in Huangascar-Topara-Yauyos Quechua, where negative coordination is encoded by the conjunctive enclitic -pis, which adheres to each one of the coordinands, in combination with negative marking on the verb by means of negator -chu (14a). As opposed to this, there is ENC, which ensues via the correlative elements $n i \ldots n i$... (14b):
hUANGASCAR-TOPARA-YAUYOS QUEChUA (Quechuan > Quechua I, Peru; Shimelman 2017: 108, 285)
(14) a. Ishpa-ni-pis-chu puqu-chi-ni-pis-chu
urinate-1-ADD-NEG ferment-CAUS-1-ADD-NEG 'I neither urinate nor ferment (urine)'
b. Ni puñu-y ni miku-y

ENCM sleep-INF ENCM eat-INF
'Neither sleeping nor eating'

In (14a) the functionally equivalent coordinands ishpa- 'urinate' and puqu- 'ferment' each take one conjunctive enclitic -pis and one negative marker -chu. By contrast, in (14b) negation, coordination and emphasis are all expressed by the ENC markers without the need of additional conjunctions or negative markers being attached to the coordinands. Therefore, as in Brahui, in Huangascar-Topara-Yauyos Quechua the ENC markers $n i$... $n i$... occur individually.

In contrast to type $\alpha 1$, in other languages dedicated, language-specific ENC markers cannot occur on their own, but must be accompanied by additional elements. In some languages ENC markers must be accompanied by the standard negator. This type is here referred to as $\alpha 2$, and it is present in $5 / 37$ (13.5\%) of the sample languages with dedicated, language-specific ENC markers.

An example of a language with type- $\alpha 2$ ENC is Southern Yukaghir. In this language standard negation ensues via addition of the prefix el- to the finite verb (15a). Apart from the standard negative marker, there is also another prefix n ' e-, which is generally used to create negative quantifiers and adverbials (Maslova 2003: 494-495). Furthermore, when used with nouns in prenominal position n ' e - has a 'not even' meaning (15b). If doubled, $n^{\prime} e-\ldots$ '.. $n^{\prime} e-\ldots$ expresses ENC (15c):

SOUTHERN YUKAGHIR (Yukaghir > Kolymic, Russia; Maslova 2003: 492, 495-496)
(15) a. Tabun-gele tintay towke el-lej
that-ACC that dog NEG-eat.3SG
'That dog did not eat that'
b. Met ahurpe-l juø-de n'e ōž̄

1SG.POSS suffer-ANR see-SS.ITER ENCM water
el-kes'ı̄-jemet
NEG-bring-INTR.2PL
'You saw how I suffered, you did not even bring me some water'
c. N'e touke-pul el-ojī-yi n'e tudel ENCM dog-PL NEG-bark-3PL.INTR ENCM 3SG.M
'Neither dogs barked, not it (the bear)'

Crucially, the correlative ENC marker $n^{\prime} e-\ldots$... n ' $-\ldots$, which in (15c) coordinates the functionally equivalent members toukepul 'dogs' and tudel ' $3 \mathrm{SG} . \mathrm{M}$ ', must co-occur with the standard negative marker el- on the verb. Therefore, Southern Yukaghir contrasts with languages like Brahui and Huangascar-Topara-Yauyos Quechua, which do not require additional negative marking on the verb in order to express ENC. This difference motivates a distinction between types $\alpha 1$ and $\alpha 2 .{ }^{11}$

Another language with type- $\alpha 2$ ENC is Huastec. Here there is a negative particle Piba:, which is used, among others, to negate some transitive verb phrases (16a). Apart from Piba:, there is the negator $n i$, which negates interrogative and locative pronouns as well as adverbs (16b). When used bisyndetically, ni ... ni ... indicates ENC (16c).

HUASTEC (Mayan > Huastecan Mayan, Mexico; Edmonson 1988: 544-545)
(16) a. Pi:b Pin пе२еб

NEG 1 SG go
'I'm not going'
b. Ni hant'ini?

ENCM how
'In no way (lit. not how)'
c. Piba: tin garbiya:mal ni Pu mi:m ni Pu

NEG 3PL visit.PFV ENCM A. 1 mother ENCM A. 1
Pebčal
sister
'Neither my mother nor my sister has visited me'

In (16c) the correlative ENC marker $n i \ldots n i \ldots$, which coordinates the functionally equivalent elements $\langle u$ mi:m 'my mother' and $? u$ Pebčal 'my sister' must be

11 The contrast between type- $\alpha 1$ and type- $\alpha 2$ ENC constructions may be seen as one between languages with negative concord and without. For details see, among others, Jeretič (2018), Čéplö \& Lucas (2020), Van der Auwera (2021) and Van der Auwera et al. (2021).
accompanied by negator Piba:. Therefore, Huastec is like Southern Yukaghir and unlike Brahui and Huangascar-Topara-Yauyos Quechua in the sense that correlative ENC markers must be accompanied by negative marking on the verb.

As opposed to languages with type- $\alpha 1$ and type- $\alpha 2$ ENC, there are other languages in which ENC markers are accompanied by coordinators, which can be either conjunctive or disjunctive. These ENC constructions are here labeled as type $\alpha 3$, and they exist in $3 / 37(8.1 \%)$ of the sample languages with dedicated, language-specific ENC markers. In Turkish, for instance, negative coordination is expressed by means of the standard negative suffix $-m V$ attaching to the verb and negated coordinands being coordinated with the conjunctive coordinator de (17a). By contrast, ENC is conveyed via the correlative, clause-initial ENC marker ne ... ne ..., which can be optionally reinforced with the same conjunctive coordinator $d e$ (17b).

TURKISH (Turkic > Common Turkic, Turkey; Göksel \& Kerslake 2005: 272-273, Kornfilt 2006: 111)

$$
\begin{array}{llllll}
\text { (17) a. Hem } & \text { onları fazla } & \text { meşgul } & \text { et-me-miş } & \text { ol-ur-uz } \\
& \text { also } & \text { 3PL } & \text { much occupied } & \text { make-NEG-PFV } & \text { be-AOR-1PL } \\
& \text { hem } & \text { de } & \text { ziyaret-ler-in-e } & \text { git-me-mis } & \text { ol-ma-ylz } \\
& \text { also } & \text { and } & \text { visit-PL-NMLZ-DAT } & \text { go-NEG-PFV } & \text { be-NEG-1PL } \\
& \text { 'We won't have taken up too much of their time, and on the other hand } \\
& \text { we won't have neglected to visit them' }
\end{array}
$$

b. Ne Hasan iş-e git-ti, ne (de) Ali

ENCM Hasan work-DAT go-PST ENCM and Ali çarşl-ya çık-tı
market-DAT go.out-PST
'Neither did Hasan go to work nor did Ali go shopping'

In (17a) as well as in (17b) functionally equivalent finite clauses are coordinated, yet the conjunctive coordinator $d e$ is required in (17a), whereas it is only optional in (17b). This suggests, on the one hand, that ne ... ne ... is enough on its own as an ENC construction. On the other hand, the fact that de can co-occur with ne ... ne ... suggests that ENC constructions tend to be reinforced with additional elements. More details on the
tendency for ENC constructions to be reinforced are discussed further below as well as in Section 5.

Another language with type- $\alpha 3$ ENC is Sinhala. In this language standard negation is expressed by a negative marker nсесe, which occurs on its own in clause-final position (18a). In addition, when used correlatively and in a position following each of the coordinands, nсесe indicates ENC, as in (18b).

SINHALA (Indo-European > Indo-Iranian, Sri Lanka; Chandralal 2010: 186, 201)

(18) a.	Kolambə	rassaawa-ka-tə	giyot	aye	gamə-tə
	Colombo	job-INDF-DAT	go.COND	again village-DAT	

b. Balla piduru ka-nne-t nсесе gonaa-tə
dog hay eat-NPT.FOC-CNJ ENCM bull-DAT
ka-пnа de-nne-t пкесе
eat-INF give-NPT.FOC-CNJ ENCM
'The dog neither eats hay nor allows the bull to eat it'

In (18b) each of the correlative ENC markers nсесе ... nсесе ... follows the functionally equivalent members balla piduru kannet 'the dog eats hay' and gonaata kanna dennet '(the dog) allows the bull to eat (the hay)' respectively. However, the correlative markers are not enough to express ENC: a conjunction $-t$ must also be added to each coordinated verb (Chandralal 2010: 186). Therefore, in Sinhala ENC markers require the presence of coordinating conjunctions. The difference in comparison to Turkish is that in Sinhala conjunctions must adhere to each coordinated verb instead of occurring just once, and that their presence is obligatory.

So far ENC constructions have been discussed which consist of correlative markers, whether on their own (type $\alpha 1$, as in Brahui and Huangascar-Topara-Yauyos Quechua), or accompanied by negative markers (type $\alpha 2$, as in Southern Yukaghir and Huastec), or in combination with conjunctions (type $\alpha 3$, as in Turkish and Sinhala). A fourth possibility is for ENC to be conveyed by a single (non-correlative) ENC marker in
combination with the standard negator. This type is here referred to as type β, and it is extant in $6 / 37$ (16.2\%) of the sample languages with dedicated, language-specific ENC constructions.

An example of a language with type- β ENC is Iquito. In this language standard negation ensues via a negative particle caa, which precedes all elements of the utterance except topics (19a). In addition, caa can combine with the emphatic negative conjunction nacaaja in order to convey ENC (19b).

IQUITO (Zaparoan > Iquito-Arabela, Peru; Lai 2009: 56, 208)

$$
\begin{array}{llllll}
\text { (19) a. } & \text { Iina } & \text { msaji caa } & n u=\text { niqui-Ø-cura } & \text { iina } & \text { icuani } \\
& \text { DEF } & \text { womanNEG } & 3 \text { SG=see-GNR.PFV-RPST } & \text { DEF } & \text { man } \\
& \text { 'That woman did not see that man (yesterday)' } & &
\end{array}
$$

b. Ca=p=paji-i-Ø amicaáca asaani nacaaja NEG=1PL=can-IPFV-EC one.day.away eat.INF ENCM mayasiini dance.INF
'We can neither eat nor dance tomorrow'

In (19b) the functionally equivalent members asaani 'to eat' and mayasiini 'to dance' are coordinated by a single ENC marker nacaaja in combination with standard negative marking ($c a=$) on the verb. Addition of a second ENC marker is not possible. Therefore, in Iquito ENC markers are not correlative, unlike in languages belonging to types $\alpha 1-3$.

A similar case in point is Kalaallisut. In this language coordination of negative predicates is expressed through the conjunctive coordinator aammalu in combination with the standard negator -nngil- and the presence of a negative verb, in this case an allomorph of juminaat 'to not be good' (20a). In turn, ENC ensues via a different coordinator, namely the clitic $=l u$ 'and', presence of the standard negator -nngil- and, in this case, -rani, a fourth-person singular form of the negative contemporary mood (20b).

Kalaallisut (Eskimo-Aleut > Eskimo, Greenland; Fortescue 1984: 124)

(20) a.	Mattak	mama-nngil-aq	aammalu
	mattak	taste.good-NEG-3SG.IND	also

immiaq
home.made.beer
imi-ruminaap-puq
drink-NEG.good-3SG.IND
'The mattak doesn't taste good, nor is the home-made beer drinkable'
b. Sila ajur-luinna-rani=lu
weather completely.bad-be-4SG.NEG.CONT=and
pitsaa-lluinna-nngil-aq
completely.good-be-NEG-3SG.IND
'The weather was neither completely bad nor good'

Stated differently, in Kalaallisut negative coordination (20a) and ENC (20b) have different means of expression. Moreover, in ENC constructions (20b) there is a single negative marker (-rani) in combination with standard negative marking (-nngil-) on the verb. Addition of a further negative element to the same construction is not possible. Therefore, like in Iquito and unlike in languages belonging to types $\alpha 1-3$, in Kalaallisut ENC markers are not correlative. The difference in comparison to Iquito is that in Kalaallisut conjunction (=lu), negation (-rani) and emphasis (co-occurrence of -nngiland -rani in the same clause) are expressed separately instead of by a single marker, as is the case of Iquito nacaaja.

So far languages have been analyzed which display a single strategy to encode ENC, either by means of correlative (types $\alpha 1-3$) or non-correlative (type β) ENC markers. A final possibility is for the same language to have two or more different strategies. This is the case in $3 / 37(8.1 \%)$ of the sample languages with dedicated, language-specific ENC constructions. In Jamiltepec Mixtec, for example, ENC of noun phrases is realized via the correlative marker $n \bar{l} \ldots n \bar{l} \ldots$, which can be optionally accompanied by the conjunctive coordinator $t \bar{a}$ (21a). By contrast, when coordinating clauses $n \bar{l} \ldots n \bar{l} \ldots$ must co-occur with the standard negator $m \bar{a}$ in each of the coordinands, and $t \bar{a}$ may not be added (21b).

JAMILTEPEC MIXTEC (Otomanguean > Eastern Otomanguean, Mexico; Johnson 1988: 81, 127)

$$
\begin{array}{llllll}
\text { (21) a. } & N \bar{l} & \text { shita } & (t \bar{a}) & n \bar{l} & \tilde{n} \tilde{t} \tilde{t} \\
& \text { ENCM } & \text { tortilla } & \text { and } & \text { ENCM } & \text { salt }
\end{array}
$$

b. $N \bar{l} \quad m \bar{a}$ kāch $\bar{\imath} \quad r a$ $n \bar{l} \quad m \bar{a}$ kusu ENCM NEG POT.eat 3SG.M ENCM NEG POT.sleep ra

3SG.M
'He will neither eat nor sleep'

Therefore, in Jamiltepec Mixtec ENC of noun phrases is realized via type- $\alpha 1$ markers i.e., plain correlative ENC markers, which change into a type- $\alpha 3$ construction if coordinator $t \bar{a}$ is added-, whereas ENC of clauses ensues by type- $\alpha 2$ markers, namely, correlative ENC markers accompanied by markers of standard negation. This suggests that a correlation may exist between kind of coordinand and type of ENC marker.

In fact, a similar contrast between phrasal and clausal uses of ENC markers can be observed in languages outside the sample. In Croatian, for example, the ENC construction $n i \ldots n i \ldots$ can only be used to coordinate noun phrases (22a), whereas it is ungrammatical for clauses. In turn, clauses can only be connected by the ENC markers niti ... niti ... (22b), a possibility that is excluded for noun phrases.

CROATIAN (Indo-European > Balto-Slavic, Croatia; Van der Auwera et al. 2021)

(22) a .	Ni	Iris	$n i$	Lena	nisu		išle	
	ENCM	Iris	ENCM	Lena	NEG.	.PRS.IPF	go.p	P.PST.PL.F
	u	kino						
	to	ciner	a.ACC.S					
'Neither Iris nor Lena went to the cinema'								
b.	Niti	je			Iris	ispekla		kolač,
	ENCM	be.Pr	IPFV. 3		Iris	bake.PT	.SG.F	cake
	niti	je			Lena	kupila		mlijeko
	ENCM	be.Pr	IPFV. 3		Lena	buy.PTC	G.F	milk

'Iris neither baked a cake nor did Lena buy milk'

In (22a) the functionally equivalent noun phrases Iris and Lena are coordinated by the type- $\alpha 2$ ENC markers $n i \ldots n i \ldots$ nisu, whereas the type- $\alpha 1$ ENC elements niti ... niti ...
coordinate the clauses Iris ispekla kolač 'Iris baked a cake' and Lena kupila mlijeko 'Lena bought milk'. Therefore, in Croatian the kind of coordinand determines the type of ENC marker, just like in Jamiltepec Mixtec.

However, languages may also have multiple kinds of ENC markers without them depending on the kind of coordinand at all. In Palula, for example, there is the type- $\alpha 1$ correlative ENC construction $n a \ldots n a \ldots$, which can coordinate noun phrases such as zinaawurá 'wild animal' and ghrastá 'wolf' (23a) as well as clauses like se kasii xaadí dac̣héeni 'she doesn't have a care for anyone's happiness' and (se) kasii marg dac̣héeni '(she) doesn't 'have a care for anyone's sorrow' (23b).

PALULA (Indo-European > Indo-Iranian, Pakistan; Liljegren 2016: 349)

(23) a.	Na	zinaawur-á	tas	the	ga	asár thill-i	
	ENCM	beast-OBL	3SG.ACC	to	what	effect do.PFV-F	
	$d e$	na \quad ghrast-á	thíl- i	de			
	PST	ENCM	wolf-OBL	do.PFV-F	PST		

'No wolf or any other wild animal had touched him'
b. Se na kasii xaadí dac̣h-éen-i

3SG.F.NOM ENCM anyone.GEN happiness look-PRS-F
na kasii marg dac̣h-éen-i
ENCM anyone.GEN death look-PRS-F
'She doesn't have a care for anyone's happiness or sorrow'

At the same time, in Palula there is a different correlative ENC marker, namely type- $\alpha 3$ na ta ... (ee) na ba This element can also coordinate both noun phrases like ṣooíi tarapii ga faaidá 'any benefit from the king's side' and barawulxáanii tarapii ga faaidá 'any benefit from Barawul Khan' (24a) as well as clauses such as tanaám the diti 'they gave them to someone else' and asaám the diti 'they gave them to us' (24b). ${ }^{12}$

PALULA (Indo-European > Indo-Iranian, Pakistan; Liljegren 2016: 350)
(24) a. Méě̌i na ta ṣoo-ií tarap-íi ga

12 A parallel to Palula outside the sample can be found in geographically near but genealogically unrelated Purik-Sham-Nubra, which contrasts ENC markers na ... na ... and hanna ... hanna ... without them correlating with the phrasal-clausal distinction (Zemp 2018: 360-361).
between ENCM CNTR king-GEN direction-GEN any faaidá=ee na ba barawulxáan-ii tarap-íi ga benefit $=$ CNJ ENCM TOP Barawul.Khan-GEN direction-GEN any faaidá
benefit
'There were no benefits attached, neither from the king's side, nor from Barawul Khan'
b. $N a$ ta tanaám the dit-i na ba ENCM CNTR 3PL.ACC to give.PFV-F ENCM TOP asaám the dit-i

1PL.ACC to give.PFV-F
'They didn't give them to us or to anyone else'

The Palula, Croatian and Jamiltepec Mixtec data thus allow for the generalization that, if a language has more than one ENC marker, there may be a division of labor relating to the phrasal vs. clausal distinction of coordinands. This division of labor does not, however, necessarily occur in all languages with more than one ENC marker.

The data enable a few more cross-linguistic generalizations with regard to the properties of ENC constructions. First of all, it is quite rare for ENC markers A and B of correlative (i.e., type- $\alpha 1-3$) ENC constructions to differ in form: this is true of $2 / 31$ (6.5%) sample languages with type- $\alpha 1-3$ ENC constructions. Thus Icelandic has the ENC markers hvorki ... né ... (Einarsson 1949: 175), whereas Maltese has la ... u lanqas ... (Čeplö \& Lucas 2020). In those languages in which ENC markers A and B do differ in form, it is always the second one that is repeated when three or more functionally equivalent elements are coordinated. Thus in English ENC is repeated as neither ... nor ... nor ..., and not as *neither ... neither ... nor ... (Quirk et al. 1985: 766). The same is true of German weder ... noch ... noch ... (Fehringer 2014: 80) and Maltese la ... u lanqas ... u lanqas ...(Čéplö \& Lucas 2020: 192). Moreover, in correlative constructions ENC markers A and B cannot switch positions. This is illustrated by German, where the order weder ... noch ... is possible (25a), whereas noch ... weder ... is ungrammatical (25b).

GERMAN (Indo-European > Germanic, Germany; Fehringer (2014: 80) and native judgments)
(25) a. Es soll weder mir noch dir gehör-en 3SG.N should ENCM 1SG.DAT ENCM 2SG.DAT belong-INF 'It should belong neither to me nor to you (sg.)'
b. *Es soll noch mir weder dir
gehören-en
3SG.N should ENCM 1SG.DAT
ENCM 2SG.DAT belong-INF 'It should belong neither to me nor to you (sg.)'

In addition, there are no Iquito examples in Lai (2009) in which ENC marker nacaaja precedes standard negative marker $c a=$, no Kalaallisut examples in Fortescue (1984) in which negative markers follow standard negator -nngil-, and no Palula examples in Liljegren (2016) where ENC marker B na ba precedes ENC marker A na ta. This suggests that neither ENC types $\alpha 1-3$ nor type β tolerate word order variation.

The data also suggest that in some languages with dedicated, language-specific ENC constructions ENC marker A can be omitted or replaced with a different negative marker, whereas this is never the case of successive ENC markers (i.e., B, C and so on). In French, for example, the first of ENC markers $n i \ldots n i \ldots$ can be left out if preceded by the standard negative marker ne (26a). Alternatively, the position of ENC marker A can be taken up by negator pas (26b). None of those changes is possible for ENC marker B (26c).

FRENCH (Indo-European > Italic, France; Van der Auwera 2021 and native judgments)

(26) a.	Marie n'=aime	(ni)	$l e$	théâtre	$n i$
	Marie NEG=love.3SG.PRS	ENCM	DEF.M	theater	ENCM
	$l '=o p e ́ r a ~$				
	DEF=opera				
	'Marie likes neither theater nor opera'				
b.	Marie n'=aime	pas	$l e$	théâtre	$n i$
	Marie NEG=love.3SG.PRS	NEG	DEF.M	theater	ENCM
	$l '=$ opéra				
	DEF=opera				

'Marie likes neither theater nor opera'
c. Marie n'=aime ni le théâtre *(pas/Ø)

Marie NEG=love.3SG.PRS ENCM DEF.M theater NEG/Ø
l '=opéra
DEF=opera
'Marie likes neither theater nor opera'

A similar case involves Dutch. At least in phrasal uses, the first of ENC markers noch ... noch ... can be omitted even when not preceded by the standard negative marker (27):

DUTCH (Indo-European > Germanic, Belgium, Netherlands; Van der Auwera 2021)
(27) (Noch) oester-s noch mossel-en konden hem

ENCM oyster-PL ENCM mussel-PL could 3SG.OBL
bekor-en
tempt-INF
'Neither oysters nor mussels could tempt him'

In short, then, ENC markers A and B of correlative constructions differ not only in form, but also with respect to word order, the possibility to be repeated in multiple coordination as well as the potential to be omitted or replaced with different negative elements.

Further generalizations are possible concerning the interaction between ENC markers and other negative markers, i.e., whether or not ENC markers trigger so-called negative concord. The details of this interaction are, however, beyond the scope of this study. For more on the topic see, among others, Jeretič (2018), Čeplö \& Lucas (2020), Van der Auwera (2021), Van der Auwera et al. (2021) as well as literature cited therein.

One final abstraction concerns the emphatic nature of ENC. In this sense, first and foremost it should be mentioned that the first author to use the term 'emphatic' in reference to this clause linkage function, namely Haspelmath (2007: 3, 17-19), does not provide arguments in favor of viewing emphasis as an inherent property of enc. In fact, research has been done on this topic without drawing on emphasis (Payne 1985b, Van der Auwera 2021). Nevertheless, a few arguments may be adduced to support the
insight that emphasis is part of the clause linkage function under discussion.
Firstly, as mentioned in Section 2 some languages make a formal distinction between negative coordination and ENC. The functional motivation for this formal distinction is unclear unless it is assumed that ENC provides an additional meaning. In this sense, it has been shown above that most (31/37, 83.8\%) languages with dedicated, languagespecific ENC constructions encode this clause-linkage function by means of correlative markers, which in most ($29 / 31,93.5 \%$) languages consist of formally identical members A and B. Since ENC markers have different meanings -negative, emphatic negative, conjunctive etc., see Section 5- when occurring individually, one may argue that correlative ENC markers are in fact reduplicated elements. Bearing in mind that reduplication often indicates emphasis (Hurch 2005) and under the aforementioned assumption that ENC provides an additional meaning in comparison to negative coordination, one might think that this additional meaning is, in fact, emphasis. Stated differently, if ENC had no emphatic value, then a single (non-correlative) ENC marker would suffice to coordinate and negate. Moreover, languages would not need to formally differentiate negative coordination and ENC.

Secondly, studies on ENC constructions in individual languages have argued that they encode emphasis, and that each coordinand is considered separately. Mairal \& Ruiz de Mendoza (2008: 177-178), for example, argue that in such English sentences as I won't eat that garbage, nor pay for it the construction not ... nor ... indicates that the two clauses I won't eat that garbage and (I won't) pay for it are complementary alternates. In turn, the information that both clauses are alternates is not available in a plain negative coordinated construction like I won't eat that garbage; and I won't pay for it (ibid.).

Jeschull (2004: 259-260) contrasts Chechen negative coordination, which ensues via negated verbs -in this case jaac 'be.NEG.PRS'- and the conjunctive coordinator ' a (28a), with ENC, which is conveyed by correlative markers $j a \ldots$... a, ja ... ' a together with negated verbs -in this case ca weema 'NEG learn.PRS' and ca xae'a 'NEG know.PRS' - (28b).

CHECHEN (Nakh-Daghestanian > Nakh, Russia; Jeschull 2004: 259-260)
(28) a. T'e-j-ucha
on-CL-dress.INF
bedar 'a j-aac,
garment and CL-be.NEG.PRS

'I don't have a garment to put on, a horse to sit down or a weapon to tie around the waist'
b. Ja caarna ghullaq d-an 'a ca
or 3PL.DAT service CL-do.INF and NEG
weema, ja hwuuna caerga i ghullaq
learn.PRS or 2SG.DAT 3PL.ALL this service
тииха d-aita d-ieza 'a ca
how CL-let.make.INF CL-must and NEG
xae'a
know.PRS
'Neither do they learn to do the service, nor do you know how you must let them do this service'

In the same vein as Mairal \& Ruiz de Mendoza (2008: 177-178) claim for English, Jeschull (2004: 263) states concerning Chechen ENC (28b) that "bisyndesis in these cases conveys some kind of contrast". Similarly, Alruwaili \& Sadler (2019) argue that in Turaif Arabic the difference between negative coordination (mā/mu 'NEG' ... w 'and' $m \bar{a} / m u$ 'NEG' ...) vs. ENC ($m \bar{a} / l \bar{a}$ 'NEG/ENCM' ... wala 'ENCM' ...) is that the latter "provides an emphatic or focused alternative". These statements are in line with the general view that emphasis is inherent to ENC and that each coordinand is considered separately (Haspelmath 2007: 15).

The third and final argument in favor of emphasis as an inherent property of this clause linkage function involves the diachronic sources of ENC markers: one of the grammaticalization paths for ENC markers involves emphatic negators, cf. Hup née ... née ... in Section 2. Perhaps more importantly, marker B of ENC constructions seems to show a tendency for renewal by means of strengthening elements, usually adverbs (Van
der Auwera 2021). One may point out, however, that ENC markers are no different from verbal negative markers in having emphatic particles as a source (Croft 1991: 5), and that emphasis may bleach over time (Jespersen 1917: 4). These points are further discussed in Section 5.

4.2. Areal tendencies of emphatic negative coordination

Another matter that relates to the phenomenon under discussion concerns the geographic distribution of each ENC type, i.e., $\alpha 1-3$ and β. This is illustrated by Figure 4 (where black dot $(\bullet)=$ type $\alpha 1$; black square $(\boldsymbol{\bullet})=$ type $\alpha 2$; black diamond $(\bullet)=$ type $\alpha 3$; white $\operatorname{dot}(\circ)=$ type β; gray $\operatorname{dot}\left({ }^{\circ}\right)=$ any combination of the former):

Figure 4. Geographic distribution of ENC types as illustrated by the languages in the sample

A number of generalizations are possible in light of Figure 4. First of all, dedicated, language-specific means for the expression of ENC are conspicuously absent from a number of macroareas including Australia-Papua New Guinea, North America, most of sub-Saharan Africa and large parts of South America. In turn, this kind of clause linkage clusters in very specific areas including Europe (Basque, Eastern Armenian, Hungarian, Icelandic, Kabardian, Karaim, Maltese, Turkish, Udmurt), South Asia (Brahui, Kharia, Khasi, Palula, Sinhala) and Mesoamerica (Comaltepec Chinantec, Jamiltepec Mixtec, Highland Popoluca, Huastec, Pipil, San Dionisio del Mar Huave, Yucatec Maya).

By contrast, ENC types do not seem to be areally distributed. Plain correlative negative junction (type $\alpha 1$) is not only the most frequent ENC strategy as mentioned in Section 4.1, but also the most widespread one: it is found in all macroareas in which dedicated, language-specific ENC markers occur. Instead, correlative negative junction accompanied by the standard negator (type $\alpha 2$) is mostly found in Eurasia (Hungarian, Kabardian, Southern Yukaghir), whereas it is present in a single language in Africa (Midob) and by two in Mesoamerica (Huastec, Jamiltepec Mixtec). The distribution of correlative negative junction together with a coordinating conjunction (type $\alpha 3$) is likewise quite limited, as it is only found in five languages with one or more ENC strategy (Elamite, Palula, Rapanui, Sinhala, Turkish). The combination of negative junction and standard negator (type β) is found in a few languages located far apart from each other (Comaltepec Chinantec, Iquito, Japanese, Kalaallisut, San Dionisio del Mar Huave and Xamtanga), in the same way as a combination of two or more strategies (Basque, Jamiltepec Mixtec and Palula).

The data thus indicate that dedicated ENC markers are not a peculiarity of European languages, as previously suggested (Haspelmath 2007: 17), but are, in any case, most widespread in Eurasia. This is shown by the fact that, apart from European languages, others like Brahui, Kharia, Khasi, Nivkh (Amur) and Southern Yukaghir, which are spoken in different areas of Asia, also display ENC markers. Indeed, the geographic clustering of languages with ENC markers suggests contact in general to be a relatively strong trigger for their development. This is in line with previous claims: as pointed out by Mithun (1988: 351-352), Matras (1998: 285) and Haspelmath (2007: 7-8), coordinating conjunctions are particularly prone to spreading under contact.

The relative impact of contact in the emergence of dedicated, language specific ENC constructions is further supported by documented cases of borrowing that involve ENC markers: Sawknah-Fogaha, a Berber language of Libya, is reported to have acquired the ENC marker la-bâ 'neither, nor' on the basis of the North African Arabic negator $l a$ and the verb form (ma) ba 'will (not)' (Lakfioui \& Brugnatelli 2020: 974, fn. 6). Karaim, a Turkic language spoken in eastern Europe, has apparently adopted the ENC marker ni 'neither, nor' from Slavic ni 'neither, nor' (Musaev 2003: 26-27). Furthermore, Kharia, an Austroasiatic language native to eastern India and Nepal, is claimed to have borrowed the item $n a$, which acts both as a negator and an ENC marker (cf. Section 4.1),
from Indo-Aryan, where it has the same uses (Peterson 2011: 341).
Borrowing of ENC markers often involves contact between colonial and indigenous languages. This is particularly evident in Mesoamerica and parts of South America. Stolz \& Stolz (1996: 100) find that borrowing of conjunctions is prevalent in the area, where nearly 30 languages from different genealogical groupings have each adopted at least one of up to 18 Spanish conjunctions. Of those 30 languages, nine (Huastec, Mayo, Mezontla Popoloca, Papantla Totonac, Pipil, Sierra de Juárez Zapotec as well as different varieties of Mixtec, Nahuatl and Otomi) are reported to have borrowed the Spanish correlative ENC marker ni ... ni To these the following cases should be added: according to Sakel (2004: 332), Mosetén-Chimané, a Bolivian language isolate, adopted the ENC marker ni ... ni ... from Spanish, just the same as San Dionisio del Mar Huave ñing ... ñing ... (Salminen 2017: 99) and Garifuna ní ... ní ... (Munro \& Gallagher 2014: 44). The Hup correlative ENC marker nóe ... ńé ... may likewise be the result of borrowing of the Portuguese conjunction nem 'nor' via Tariana or Eastern Tucanoan (Epps 2008: 736-737).

The fact that conjunctions in general and ENC markers in particular are prone to borrowing does not imply that adopted elements cannot be subject to changes in the borrowing language. In Jamiltepec Mixtec, for example, the borrowed ENC markers $n \bar{n} \ldots$ $n \bar{i} \ldots$ must be obligatorily accompanied by a standard negator ($m \bar{a}$) in each of the clausal coordinands (29), as mentioned in Section 4.1.

JAMILTEPEC MIXTEC (Otomanguean > Eastern Otomanguean, Mexico; Johnson 1988: 127)

(29) $N \bar{l}$	$m \bar{a}$	$k \bar{a} c h \bar{l}$	$r a$	$n \bar{l}$	$m \bar{a}$	$k u s u$	$r a$
ENCM	NEG	POT.eat		3SG.M ENCM	NEG	POT.sleep	3SG.M

'He will neither eat nor sleep'

In (29) the coordinands $k \bar{a} c h \bar{\imath} r a$ 'he will eat' and kusu ra 'he will sleep' are accompanied by one instance of $n \bar{l}$ and one instance of $m \bar{a}$ each, and leaving out any of the two would result in ungrammaticality (Stolz \& Stolz 1996: 94). This is unlike the source language, Spanish, where ni usually stands alone in every coordinand and may be optionally accompanied by the adverb tampoco 'either'. Thus in Jamiltepec Mixtec
the correlative ENC marker $n \bar{l}$ does not replace negation, but is rather reinforced by it, in line with the emphatic nature of ENC.

Furthermore, adoption of foreign ENC markers does not entail the loss of native clause-linkage functions. Instead, original and borrowed structures can coexist and complement each other. This is exemplified by Udmurt, where the native negative coordinating structure that ensues via the disjunct no 'either, or' (30a-b) exists in parallel with the ENC construction based on ne (30c), a borrowing from Russian.

UDMURT (Uralic > Permian, Kazakhstan, Russia; Edygarova 2015: 287)

$$
\begin{aligned}
& \text { (30) a. So kiŗ́a-ni no, ekti-ni no u-g } \\
& \text { 3SG sing-INF either dance-INF either NEG.PRS-3 } \\
& \text { bigati } \\
& \text { can.SG } \\
& \text { '(S)he can neither sing nor dance (lit. she cannot either sing or dance)' }
\end{aligned}
$$

b. Aź-iz no, ber-iz no evel front-3SG either back-3SG either NEG 'It has neither front nor back (lit. it does not have either front or back)'
c. Ńe vań, ńe evel, ne sil, ńe čorig ENCM EX ENCM NEG ENCM meat ENCM fish šu-e 甹uč́ kalik say-PRS.3SG Russian people 'The Russians say: it neither exists nor does not exist, it is neither fish nor meat'

According to Edygarova (2015: 287), the ENC construction based on ńe in (30c) can replace the native negative coordinating function that ensues via no (30a-b), but this is not obligatory.

The insight that the presence of dedicated, language-specific ENC constructions correlates with macroarea can be tested on grounds of the statistical analysis laid out in Section 3.3. A look at the results provides weak support for this view: there is a medium correlation between the dependent variables ENC_AVAILABLE and MACRO_AREA according to Cramer's $V(.46)$, which is, however, quite low in keeping with Theil's U
(.24). The weakness of this correlation can probably be explained by the fact that, despite being most widespread in Eurasian languages, ENC constructions are present to a lesser degree in languages of Africa, North America-Mesoamerica, South America and Southeast Asia-Oceania.

In the same vein, the correlation between the dependent variables ENC_AVAILABLE and GENEALOGICAL_AFFILIATION is quite weak according to Cramer's V (.28). In turn, the results of Theil's U show a very strong correlation (.82) between GENEALOGICAL_AFFILIATION and ENC_AVAILABLE. These apparently contradictory data can be interpreted as follows: the presence of dedicated, language-specific ENC constructions does not presuppose a specific genealogical affiliation for a given sample language. By contrast, being a member of a specific family strongly conditions the likelihood for a sample language to have dedicated ENC markers. Indeed, most (24/37, 64.9%) sample languages with dedicated, language-specific ENC constructions belong to one of ten genealogical groupings: these are Indo-European (Eastern Armenian, Icelandic, Palula, Sinhala), Afro-Asiatic (Maltese, Sawknah-Fogaha, Xamtanga), Austronesian (Rapanui, Sirayaic), Austroasiatic (Kharia, Khasi), Uralic (Hungarian, Udmurt), Otomanguean (Comaltepec Chinantec, Jamiltepec Mixtec), Mayan (Huastec, Yucatec Maya) and Turkic (Karaim, Turkish). There are also three language isolates (Basque, Elamite, Nivkh (Amur)) and two pidgins and creoles (Papiamento, Ternateño).

Further correlations worth mentioning include those between ENC_AVAILABLE and RELATED_TO_SN (Cramer's $\mathrm{V}=1$, Theil's $\mathrm{U}=.81$), ENC_AVAILABLE and DISTINCT_FROM_SN (Cramer's $\mathrm{V}=1$, Theil's $\mathrm{U}=.87$) as well as DISTINCT_FROM_SN and Related_To_SN (Cramer's $\mathrm{V}=.8$, Theil's $\mathrm{U}=.86$). These data imply that, if a language has dedicated ENC markers, they will very likely be diachronically related to and, at the same time, formally identical with markers of standard negation. For further details on this topic, see Section 5.

In summary, the sample data suggest that dedicated, language-specific ENC constructions are widespread among Eurasian languages. By contrast, many instances of this clause-linkage function outside the Eurasian macroarea -as well as some within it - can be traced back to contact between indigenous and colonial languages. This finding is in line with previous claims that conjunctions are prone to spreading in contact situations. Borrowing of ENC markers does not, however, necessarily imply that
native clause-linkage functions are replaced. Rather, both kinds of construction can coexist and even complement each other. Moreover, the properties of adopted ENC constructions do not have to be identical to those of the donor language. Instead, the borrowed structures undergo adaptations specific to the target language.

5. Grammaticalization paths leading to ENC markers

Languages have been observed to exhibit a considerable variety of coordinating constructions emerging as the result of diverse grammaticalization paths (Mithun 1988: 331-349). By extension, one would expect to find different sources of grammaticalization leading to many kinds of ENC markers. Nevertheless, the fact that ENC and negation are semantically close (cf. Section 2) suggests that ENC markers and negators should tend to be related at the formal level as well, which narrows down the potential number of diachronic sources. ${ }^{13}$

The diachronic data laid out in this section have been gathered systematically, i.e., they originate in the 37 sample languages that were argued in Section 4.1 to make use of dedicated, language-specific ENC markers. Furthermore, when discussing specific cases additional information is drawn from languages outside the sample so as to underpin the existence of particular grammaticalization paths.

In line with the aforementioned prediction, the simplest attested diachronic scenario involves coexpression of ENC marker(s) and standard negator. This state of affairs is present in $4 / 37$ (10.8%) of the sample languages with dedicated, language-specific ENC markers (Basque, Eastern Armenian, Elamite, Sinhala). In these languages there is no formal distinction between standard negator and ENC marker, cf. Basque $e z \sim e z \ldots e z \ldots$ (Hualde \& Ortiz de Urbina 2003: 562), Eastern Armenian oč~oč ... oč ... (Dum-Tragut 2009: 289), Elamite in- ~ in- ... in- ... (Khačikjan 1998: 49, 55) and Sinhala nсесе ~ псесе ... псесе ... (Chandralal 2010: 186). Parallels are also found outside the sample, including Gurani $n a \sim n a \ldots n a \ldots$ (Mahmoudveysi et al. 2012: 236) and Northern Tosk Albanian as ~as ... as ... (Camaj 1984: 243). Stilo (2004) mentions ENC marker-standard negator coexpression in three Iranian languages: Vafsi, Persian and Gilaki. Bearing in mind

13 This prediction has been articulated in previous literature: "[the] coding [of ENC markers] is obviously strictly connected with the strategies that languages use to express negation, which is a different, albeit related, notion" (Mauri 2008: 51).
aforementioned Sinhala and Gurani, the formal identity of ENC markers and standard negators thus seems to be particularly prevalent in Indo-Iranian languages.

More frequently, however, standard negators combine with other elements in the process of grammaticalization of ENC markers. These other elements essentially encompass coordinators and adverbs. Among the languages of the sample, 10/37 (27.0\%) (Hungarian, Icelandic, Japanese, Kabardian, Kalaallisut, Karamojong, Maltese, Palula, Sirayaic, Yucatec Maya) have ENC constructions that represent this development. Specifically, negators may join, for example, with adverbs or scalar focus particles which under the scope of negation translate as '(not) even'. An example is Yucatec Maya, whose ENC marker mix is believed to result from blending of standard negator ma 'NEG' and adverb ix 'even' (31b, Bolles \& Bolles 2001: 56). Mix also has a 'not even' meaning outside of coordination (31a):

YUCATEC MAYA (Mayan > Core Mayan, Guatemala, Mexico; Bolles \& Bolles 2001: 56, Yoshida 2011: 125)

```
    (31)a. Mix in u-ohel
    not.even 1SG 1SG-know
    'I don't even know'
    b. Ma' k'-ahóolt-a'an-i', mix ohelt-a'an tu'ux u
    NEG HAB-know-3PL-PART ENCM know-3PL place from
    taal-i'
    come-PART
'(S)he was not well-known, nor did they know where (s)he came from'
```

Beyond the sample of languages a less grammaticalized counterpart of Yucatec Maya $m a+i x>m i x$ is found in Sikkimese. In the latter language, unlike in the former, the standard negative prefix mi-, ma- and the adverb $=j \tilde{a}$: '(not) even' have not univerbated. ${ }^{14}$ Apparently this is because these elements have different hosts: $=j \tilde{a}$: cliticizes to coordinands, whereas $m i-, m a-$ attaches to the verb, i.e., $m e ̀ p<m i-+j \not \partial े$ 'personal existential' (Yliniemi 2019: 459). This can be seen in (32):

14 Lehmann (2020: 205) defines univerbation as "the syntagmatic condensation of a sequence of words recurrent in discourse into one word".

SIKKIMESE (Sino-Tibetan > Bodic, India; Yliniemi 2019: 459)

> Rap=jã:
$m e ̀ r, \quad \quad t^{h} a m a=j a ̃:$
$m e ̀ ?$
supreme=even NEGEX.PER last=even NEGEX.PER
(IIt) is neither first-class nor last (in quality)'

Examples (31a-b) and (32) thus illustrate that adverbs and scalar focus particles meaning '(not) even' also constitute the basis for ENC markers outside European languages. Therefore, this grammaticalization path is more widespread than was previously believed (Haspelmath 2007: 17-18). This state of affairs is moreover in agreement with claims on the diachronic behavior of coordinators, since the grammaticalization of adverbial particles as coordinators seems to be quite frequent (Mithun 1988: 340).

Other elements that may combine with standard negators to produce ENC markers include conjunctive coordinators. For example, Hungarian is believed to have grammaticalized ENC marker sem from the fusion of conjunctive coordinator is 'also' and standard negator nem (33a, Károly 1984: 35). When used monosyndetically, sem has a 'and not, also not' meaning (33b, ibid.):
hUNGARIAN (Uralic > Hungarian, Hungary, Slovakia; De Groot 1994: 155, Kenesei et al. 1998: 117)

| (33) a. | Nem | szabad | sem inni, | sem enni |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | NEG allow | ENCM drink.INF | ENCM eat.INF | |

'It is not allowed to eat nor to drink'
b. Nem olvasta a könyvet Anna sem

NEG read.3SG.PST DEF book.ACC Anna not.also '(In addition to others) Anna too didn't read the book'

ENC markers also stem from the univerbation of negative marker with both scalar focus particle and conjunctive coordinator. In South Bolivian Quechua, for instance, ENC marker nillataj is believed to result from a merger of negative marker $n i$-presumably a Spanish borrowing-, the adverb lla 'just' and a conjunction, taj 'and' (Camp \& Liccardi 1967: 93). The ENC marker is sometimes reduced to nitaj, as illustrated by (34):

SOUTH BOLIVIAN QUECHUA (Quechuan > Quechua II, Argentina, Bolivia; Herrero \& Sánchez de Lozada 1978: 195)

(34) Mana	Jirmin	ni(-lla-)taj	doña	Amelya
NEG Fermín	NEG-just-and doña	Amelya		
mana-pu-ni(-lla-)taj	Damyana	risqan-ku-ču		
NEG-MOD-NEG-just-and	Damyana	look-PL-NONFACT		

'Neither Fermín nor doña Amelya nor Damyana are looking'

The South Bolivian Quechua case is similar to Maltese, where the ENC construction la ... u lanqas ... consists of negator la, conjunction u 'and' and lanqas ($<l a+$ anqas 'less') (Čeplö \& Lucas 2020: 182).

Another possibility illustrated by the sample languages is for non-standard negators to coexpress ENC, either on their own or in combination with other elements. Among the languages of the sample $2 / 37$ (5.4\%) (Hup, Rapanui) represent this situation. As mentioned in Section 2, in Hup correlative emphatic negators nć ... nó ... are used to indicate ENC. In turn, in Rapanui constituent negator ta'e combines with negative coordinator $n i$ in order to encode this kind of clause linkage (35):

RAPANUI (Austronesian > Malayo-Polynesian, Chile; Kieviet 2017: 506)
(35) A Hiero poki ta'e porio ni ta'e pāpaku

PROP Hiero child NEG fat ENCM NEG thin
'Hiero was neither a fat nor a skinny child'

To summarize so far, negators are behind the emergence of dedicated, language-specific ENC markers in 16/37 (43.2\%) of all sample languages with this kind of clause linkage. Depending on the language, standard negators or non-standard negators may participate in grammaticalization, they may coexpress ENC on their own or in combination with other elements, and they may or may not fuse with other elements.

Negators are not, however, an exclusive source of ENC markers. In fact, there is at least another grammaticalization path that involves verbs. Two languages in the sample (2/37, 5.4\%, Comaltepec Chinantec, Midob) represent this development. In Comaltepec

Chinantec for example, there is the stative negative verb ${ }^{2} \dot{o}^{\prime} \mathcal{P}^{L}$ (Anderson 1989: 30). When used on its own, $P Q^{\prime} i^{L}$ negates predications (36a), but "it seems to give more attention to the negation than does the negative prefix" (ibid.). This suggests that ? $\rho^{\prime} P^{L}$ may in fact be used as an emphatic negator. In turn, when combined with the standard negative prefix $h a^{L}$ - and an augmentative suffix -git $t^{\prime H}$? $\dot{q}^{L} ?^{L}$ expresses ENC (36b-c).

COMALTEPEC CHINANTEC (Otomanguean > Western Otomanguean, Mexico; Anderson 1989: 29-30)
(36) a. Zä́np P^{L} Pọq P^{L} so: $:^{L} \quad z i^{L M} \quad P i^{L} \quad z \ddot{a}^{L} \quad n a^{L}$ truly NEG rise heart REL person that 'That man is definitely not mean'
b. $\quad H a^{L}-\sin ^{2 L M}-r \quad k i^{L} n i^{H M} \quad$ pi $i^{L} \quad$ hién $\rho^{L} P Q^{L}-g i^{H} \quad k i^{L} n i^{H M}$

NEG-stand-3 before REL other NEG-AUG before $d i e^{L H}$
god 'They do not stand before another nor before a god'
c. $\quad H a^{L}-n i^{L}-t i u^{L}$
$h m l^{L M}$
$p q^{L}-g i^{\prime}$
Pmor ${ }^{2 H}$ $n i u^{L M}$
NEG-IPFV-pour rain NEG-AUG dew star
'It will neither rain nor will it dew'

In short, then, the stative negative verb $\rho^{\prime} \dot{q}^{\prime}$, which has emphatic negative uses, also encodes ENC in Comaltepec Chinantec. A similar development can be observed in Midob, where the correlative ENC marker ínyén ... inyén ... (37) apparently comes from -in, a variant of the copula stem -an (plural -jûm) 'to be', in its 3rd-person singular continuous subjunctive form:
midob (Nubian > West-Central Nubian, Sudan; Werner 1993: 63)

(37) Àn ittir \quad inyén àn éd | inyén iir-áa-hàm |
| :--- |
| this woman |
| ENCM this man |
| 'Neither this woman nor this man came' |

Stated differently, sentences such as (37) originally translate as 'be it a woman, be it a
man, (s)he did not come'. Following Werner (1993: 67), this implies that this variant of the copula must have taken on an inherently negative meaning as the result of its being reanalyzed as an ENC marker.

In addition to negators $(16 / 37,43.2 \%)$ and verbs $(2 / 37,5.4 \%)$, the languages of the sample illustrate two more diachronic scenarios. The first of these involves borrowing, which as mentioned in Section 4.2 is a recurrent possibility that involves $13 / 37$ (35.2\%) of the sample languages with dedicated, language-specific ENC markers (Highland Popoluca, Huangascar-Topara-Yauyos Quechua, Huastec, Jamiltepec Mixtec, Karaim, Kharia, Papiamento, Pipil, San Dionisio del Mar Huave, Sawknah-Fogaha, Southern Yukaghir, Ternateño, Udmurt). The second possibility refers to ENC markers whose etymology is not straightforward, i.e., $6 / 37$ (16.2\%) languages (Brahui, Iquito, Khasi, Nivkh, Turkish, Xamtanga). Of the latter group, however, Brahui na ... na ..., ney ... ney ... and Turkish ne ... ne ... (de) are conspicuously reminiscent of the Indo-Iranian $n V$... $n V$... ENC marker pattern. Therefore, the possibility that these markers are due to diffusion from the geographically adjacent Indo-Iranian languages cannot be excluded.

A final point worth analysis involves the subsequent diachronic changes undergone by grammaticalized ENC markers and constructions. An argument has been made in Section 4.1 in favor of considering emphasis as an inherent property of ENC. However, emphasis is known to bleach over time, for example in the case of negators (Jespersen 1917: 4), which have also been shown to play an important part in ENC. This observation suggests that ENC markers lose strength over time, and it predicts two possible outcomes: ENC markers can lose emphasis and thus lack a functional motivation to be formally distinguished from negative coordination. Even though no such diachronic change is documented in the sample, this possibility does seem to account for the fact that most (213/250, 85.2\%) sample languages do not discriminate ENC and negative coordination.

Alternatively, languages can implement strengthening mechanisms in order to counterbalance emphasis bleaching. This development is indeed attested: in Spanish ENC marker B of construction ni ... ni ... can be optionally reinforced by means of the adverb tampoco 'either', both with phrasal (38a) and clausal (38b) coordinands.

SPANISH (Indo-European > Italic, Spain; Sánchez 2017: 673, Van der Auwera 2021)
(38) a. Ni Fulanoni (tampoco) Mengano salieron

ENCM Fulano ENCM either Mengano leave.3PL.PST
'Neither Fulano nor Mengano left'
b. Él ni ha escrito una novela ni (tampoco)

3SG.M ENCM AUX write INDEF.F novel ENCM either
quiere \quad escrib-ir $=l a$
want.3SG.PRS write-INF=3SG.F
'He has neither written a novel nor wants to write one'

In French, as well, ENC marker B of construction $n i \ldots n i \ldots$ can be strengthened by non plus 'not either' (39a) and davantage 'either' (39b), as long as the coordinands are phrasal.

FRENCH (Indo-European > Italic, France; Van der Auwera 2021 and native judgments) (39) a. Marie n'=aime pas le théâtre, ni non

Marie NEG=love.3SG.PRS NEG DEF.M theater ENCM NEG
plus l '=opéra
either DEF=opera
'Marie doesn't love theater and not opera either'
b. L'=exclusion sociale ne produit ni plus

DEF=exclusion social NEG produce.3SG.PRS ENCM more
de croissance ni davantage d'=emplois
of growth ENCM either of=employment
'Social exclusion produces neither more growth nor more employment'

Thus in those cases in which an ENC construction is reinforced, it is apparently ENC marker B (ni tampoco, ni non plus) that undergoes strengthening and form renewal, whereas ENC marker A (ni,ni) remains intact. ${ }^{15}$ This is a parallel to Jespersen's Cycle (Jespersen 1917).

The effects of Jespersen's Cycle seem to account for two more features of ENC constructions: on the one hand, strengthening of ENC marker B and preservation of ENC

15 An exception to this generalization may be Jamiltepec Mixtec, which as shown in example (29) strengthens both ENC markers A and B by means of the standard negator $m \bar{a}$.
marker A may be the reason why in some languages the form of ENC markers differs (cf. Section 4.1), i.e., Maltese la ... u lanqas ..., Turaif Arabic mā/lā ... wala ..., Icelandic hvorki ... né .., German weder ... noch ... etc. On the other hand, the tendency for ENC marker B to renovate may explain why the different ENC types do not allow for markers A and B to switch positions (cf. Section 4.1).

In summary, the data collected for this study support the prediction that ENC markers tend to be etymologically related and formally similar to negative markers (Mauri 2008: 51). Nevertheless, negators are far from constituting an exclusive diachronic source of ENC markers. Rather, ENC markers have a sizable number of diachronic sources, and their degree of grammaticalization varies cross-linguistically. This is in accordance with previous claims on the diachronic sources of coordinators (Mithun 1988: 336-349, Haspelmath 2007: 48-49). Furthermore, ENC markers are not diachronically stable, but rather undergo processes of renovation through the addition of strengthening elements.

6. Conclusions

An overview of emphatic negative coordination in a representative sample of 250 languages has revealed that only a reduced number of languages in the world have dedicated, language-specific means to express this clause linkage function. Moreover, ENC strategies can be classified into a limited number of types and subtypes. In spite of these restrictions, languages have been shown to exhibit considerable cross-linguistic variety concerning the number and type of strategies used by each, the kinds of markers that may participate in ENC, and the manner in which different ENC markers are exploited. The existence of ENC marker 'splits' in some languages of the sample thus shows that it is fruitful and necessary to compare the behavior of ENC constructions both within and across languages.

In addition, the areal distribution of ENC types indicates, on the one hand, that dedicated, language-specific ENC constructions are mostly particular to the Eurasian macroarea, and on the other hand, that ENC types tend to cluster geographically. These findings have been considered to signal that contact and borrowing are relevant contributors to the development of dedicated ENC markers, which can be observed in many cases of contact between colonial and indigenous languages. In any case,
borrowed ENC markers do not tend to replace indigenous linkage devices, but rather complement them. In the same vein, genetic affiliation seems to have a considerable impact on the likelihood for a language to present dedicated, language-specific ENC markers.

Finally, a diachronic analysis of ENC markers has revealed that they are related to negation not only on a semantic level, but on a formal level as well, since the majority of ENC markers develop out of and are frequently identical to negators. Furthermore, markers of ENC are often similar to other kinds of coordinators in the sense that they have a considerable number of diachronic sources, and in that their degree of grammaticalization varies cross-linguistically. Typological generalizations such as Jespersen's Cycle can also help account for some features of ENC constructions, i.e., their word order rigidity and their tendency to renovate ENC marker B by means of strengthening elements as a reaction to emphasis bleaching.

Funding

This project received financial support from the research group Diacronia de la animacidad: aproximación tipológica al origen de las marcas animadas headed by Professor Dr. Iván Igartua (University of the Basque Country) and funded by the Spanish Ministry of Science, Innovation and Universities through grant PGC2018-098995-B-I00. This support is gratefully acknowledged.

Acknowledgements

Earlier versions of this paper were presented virtually on 20 November 2020 at the 14th Biennial Conference of the High Desert Linguistics Society organized by the University of New Mexico and on December 15th at the 53rd Annual Conference of the Australian Linguistic Society. I would like to thank the audiences of these conferences, including William Croft, Jens Van Gysel and Yi-Yang Cheng for their valuable comments. Thanks are also due to Camilo Enrique Díaz Romero, Johan van der Auwera, the editors and two anonymous reviewers for constructive criticism, corrections and contributions to earlier versions of this paper. I would also like to express my deepest gratitude to Haritz

Salaberri for indispensable help with regression analysis of the data and for making the corpus accessible publicly. Anne Wolfsgruber and Maitena Duhalde helped me with native judgments on German and French examples, respectively. Any remaining errors are the author's sole responsibility.

References

Adelaar, Alexander. 2011. Siraya: Retrieving the phonology, grammar and lexicon of a dormant Formosan language. Berlin: De Gruyter.
Adelaar, Willem F. H. 2007. Ensayo de clasificación del Katawixí dentro del conjunto Harakmbut-Katukina. In Andrés Romero-Figueroa, Ana Fernández-Garay \& Ángel Corbera Mori (eds.), Lenguas indigenas de América del Sur: Estudios descriptivotipológicos y sus contribuciones para la lingüística teórica, 159-169. Caracas: Universidad Católica Andrés Bello.

Aikhenvald, Alexandra Y. 2003. A grammar of Tariana, from northwest Amazonia. Cambridge: Cambridge Univerity Press.
Alruwaili, Shatha \& Louisa Sadler. 2019. Negative coordination in (Turaif) Arabic. In Miriam Butt \& Tracy H. King (eds.), Proceedings of the LFG'18 conference, 25-45. Stanford: Stanford University.

Anderson, Judi L. 1989. Comaltepec Chinantec syntax. Dallas: Summer Institute of Linguistics, University of Texas at Arlington.

Andronov, Mikhail S. 1980. The Brahui language. Moscow: Academija Nauk.
Andronov, Mikhail S. 2001. A grammar of the Brahui language in comparative treatment. Munich: Lincom.

Bakker, Dik. 2011. Language sampling. In Jae J. Song (ed.), The Oxford handbook of linguistic typology, 100-127. Oxford: Oxford University Press.
Barjasteh, Behrooz. 2018. Two Brahui texts with glossary and grammatical analysis. Iranian Journal of Applied Language Studies 12(1). 89-122.

Bernini, Giuliano \& Paolo Ramat. 1996. Negative sentences in the languages of Europe: A typological approach. Berlin: De Gruyter.
Bickel, Balthasar, Bernard Comrie \& Martin Haspelmath. 2015. Leipzig glossing rules. (Available online at https://www.eva.mpg.de/lingua/resources/glossing-rules.php)

Black, Paul E. 2006. Dictionary of algorithms and data structures. Gaithersburg: National Institute of Standards and Technology.

Bolles, David \& Alejandra Bolles. 2001. A grammar of the Yucatecan Mayan language. Lancaster: Layrinthos Press.
Bond, Oliver. 2011. Negation in clause linkages. In Julia Sallabank (ed.), Language documentation and description, Vol. 9, 77-120. London: School of Oriental and African Studies.

Bowler, Margit. 2014. Conjunction and disjunction in a language without 'and'. In Todd Snider, Sarah D'Antonio \& Mia Weigand (eds.), Proceedings of the 24th semantics and linguistic theory conference, 137-155. Ithaca: Linguistic Society of America.
Briley, David. 1997. Four grammatical marking systems in Bauzi. In Karl J. Franklin (ed.), Papers in Papual Linguistics, Vol. 2, 1-131. Canberra: Australian National University.

Brown, Keith \& Jim Miller. 2013. The Cambridge dictionary of linguistics. Cambridge: Cambridge University Press.

Bussmann, Hadumod. 1998. Routledge dictionary of language and linguistics. London/New York: Routledge.
Camaj, Martin. 1984. Albanian grammar with exercises, chrestomathy and glossaries. Wiesbaden: Otto Harrassowitz.

Camp, Elizabeth L. \& Millicent R. Liccardi. 1967. Quechua. In Esther Matteson (ed.), Bolivian indian grammars, Vol. 2, 27-98. Norman: University of Oklahoma, Summer Institute of Linguistics.
Čéplö, Slavomír \& Christopher Lucas. 2020. Lanqas, negative concord and predicate negation in Maltese. In Slavomír Čéplö \& Jaroslav Drobný (eds.), Maltese linguistics on the Danube, 177-198. Berlin: De Gruyter.
Chandralal, Dileep. 2010. Sinhala. Amsterdam/Philadelphia: Benjamins.
Churchward, Maxwell C. 1953. Tongan grammar. Oxford: Oxford University Press.
Cramer, Harold. 1946. Mathematical methods of statistics. Princeton: Princeton University Press.

Croft, William. 1991. The evolution of negation. Journal of Linguistics 27(1). 1-27.
Croft, William. 2003. Typology and universals, 2nd edition. Cambridge: Cambridge University Press.

Crystal, David. 2008. A dictionary of linguistics and phonetics, 6th edition. London: Blackwell.

De Groot, Casper. 1994. Hungarian. In Peter Kahrel \& René van den Berg (eds.), Typological studies in negation, 143-162. Amsterdam/Philadelphia: Benjamins.
De Swart, Henriëtte. 2020. Double negation readings. In Viviane Déprez \& M. Teresa Espinal (eds.), The Oxford handbook of negation, 479-496. Oxford: Oxford University Press.
Dik, Simon C. 1997. Coordination. In Kees Hengeveld (ed.), The theory of functional grammar, Vol. 2, 189-214. Berlin/New York: De Gruyter.
Dos Anjos, Zoraide. 2011. Fonologia e gramáica katukina-kanamari. Amsterdam: Vrije Universiteit PhD dissertation.
Dryer, Matthew S. 1989. Large linguistic areas and language sampling. Studies in Language 13(2). 257-292.
Dryer, Matthew S. 1992. The Greenbergian word order correlations. Language 68(1). 81-138.
Dum-Tragut, Jasmine. 2009. Armenian: Modern Eastern Armenian. Amsterdam/Philadelphia: Benjamins.
Eberhard, David M., Gary F. Simons \& Charles D. Fennig (eds.). Ethnologue: Languages of the world, 24th edition. Dallas: Summer Institute of Linguistics.
Edmonson, Barbara W. 1988. A descriptive grammar of Huastec (Potosino dialect). New Orleans: Tulane University PhD dissertation.

Edygarova, Svetlana. 2015. Negation in Udmurt. In Matti Miestamo, Anne Tamm \& Beáta Wagner-Nagy (eds.), Negation in Uralic languages, 265-292. Amsterdam/Philadelphia: Benjamins.
Einarsson, Stefán. 1949. Icelandic grammar, text, glossary. Baltimore: The Johns Hopkins Press.
Epps, Patience. 2008. A grammar of Hup. Berlin/New York: De Gruyter.
Fehringer, Carol. 2014. German grammar in context: Analysis and practice, 2nd edition. London/New York: Routledge.
Fortescue, Michael. 1984. West Greenlandic. London/Sydney/Dover: Croom Helm.
Göksel, Aslı \& Celia Kerslake. 2005. Turkish: A comprehensive grammar. London/New York: Routledge.

Grimes, Barbara F. (ed.). 1997. Ethnologue: Languages of the world, 13th edition. Dallas: Summer Institute of Linguistics.
Groth, Christa. 1985. Syntax of the phrase types in Canamari. In David L. Fortune (ed.), Porto Velho workpapers, 93-129. Brasil: Summer Institute of Linguistics.
Hammarström, Harald. 2009. Sampling and genealogical coverage in WALS. Linguistic Typology 13(1). 105-119.
Hammarström, Harald, Robert Forkel, Martin Haspelmath \& Sebastian Bank. 2020. Glottolog 4.3. Jena: Max Planck Institute for the Science of Human History. (Available online at http://glottolog.org, accessed on 24-03-2021.)
Haspelmath, Martin. 2007. Coordination. In Timothy Shopen (ed.), Language typology and syntactic description, Vol. 2, 2nd edition, 1-51. Cambridge: Cambridge University Press.
Herrero, Joaquín \& Federico Sánchez de Lozada. 1978. Diccionario español-quechua: Estructura semántica del quechua cochabambino contemporáneo. Cochabamba: Editorial Universo.

Hualde, José I. \& Jon Ortiz de Urbina. 2003. A grammar of Basque. Berlin/New York: Mouton de Gruyter.
Hurch, Bernhard (ed.). 2005. Studies on reduplication. Berlin/New York: De Gruyter.
Ishy de Magalhães, Priscila H. 2018. Kanamari do Juruá (família katukina): Aspectos fonológicos e morfosintáticos. Campinas: Universidade Estadual de Campinas PhD dissertation.

Jeretič, Paloma. 2018. Hybrid and optional negative concord in Turkish: A unified analysis. Papers in Turkish and Turkic Linguistics 18(2).
Jeschull, Liane. 2004. Coordination in Chechen. In Martin Haspelmath (ed.), Coordinating constructions, 241-266. Amsterdam/Philadelphia: Benjamins.
Jespersen, Otto. 1917. Negation in English and other languages. Copenhagen: Bianco Lunos Bogtrykkeri.
Johnson, Audrey F. 1988. A syntactic sketch of Jamiltepec Mixtec. In Henry Bradley \& Barbara E. Hollenbach (eds.), Studies in the syntax of Mixtecan languages, Vol. 1, 11-150. Dallas: Summer Institute of Linguistics, University of Texas at Arlington.
Károly, Sándor. 1984. Meaning and the changes of the morphological articulation of words and constructions (synthetic and analytic types of changes in Hungarian). Acta

Linguistica Academiae Scientiarium Hungaricae 34(1/2). 27-64.
Kenesei, István, Robert Michael \& Anna Fenyvesi. 1998. Hungarian. London: Routledge.
Khačikjan, Margaret. 1998. The Elamite language. Rome: Consiglio nazionale delle ricerche.

Kieviet, Paulus. 2017. A grammar of Rapa Nui. Berlin: Language Science Press.
Kornfilt, Jaklin. 2006. Turkish. London/New York: Routledge.
Lai, I-Wen. 2009. Time in the Iquito language. Austin: University of Texas PhD dissertation.

Lakfioui, Mena B. \& Vermondo Brugnatelli. 2020. Negation in Berber: Variation, evolution, typology. Linguistics 58(4). 967-1008.
Lehmann, Christian. 2020. Univerbation. Folia Linguistica 54(s41). 205-252.
Li, Charles N. \& Sandra A. Thompson. 1981. Mandarin Chinese: A functional reference grammar. Berkeley/Los Angeles: University of California Press.

Liljegren, Henrik. 2016. A grammar of Palula. Berlin: Language Science Press.
Mahdmoudveysi, Parvin, Denise Bailey, Ludwig Paul \& Geoffrey Haig. 2012. The Gorani language of Gawrajū, a village of West Iran: Texts, grammar, and lexicon. Wiesbaden: Ludwig Reichert.
Mairal, Ricardo \& Francisco Ruiz de Mendoza. 2008. Levels of description and explanation in meaning construction. In Christopher S. Butler \& Javier Martín (ed.), Deconstructing constructions, 153-200. Amsterdam/Philadelphia: Benjamins.

Maslova, Elena. 2003. A grammar of Kolyma Yukaghir. Berlin/New York: De Gruyter.
Matras, Yaron. 1998. Utterance modifiers and universals of grammatical borrowing. Linguistics 36(2). 281-331.
Mauri, Caterina. 2008. Coordination relations in the languages of Europe and beyond. Berlin/New York: De Gruyter.
Miestamo, Matti. 2005. Standard negation: The negation of declarative verbal main clauses in a typological perspective. Berlin/New York: De Gruyter.

Miestamo, Matti, Anne Tamm \& Beáta Wagner-Nagy (eds.). 2015. Negation in Uralic languages. Amsterdam/Philadelphia: Benjamins.
Miestamo, Matti, Dik Bakker \& Antti Arppe. 2016. Sampling for variety. Linguistic Typology 20(2). 233-296.

Mithun, Marianne. 1988. The grammaticization of coordination. In John Haiman \& Sandra A. Thompson (eds.), Clause combining in grammar and discourse, 331-360. Amsterdam/Philadelphia: Benjamins.
Munro, Pamela \& Caitlin E. Gallagher. 2014. Garifuna negatives. In Lev Michael \& Tania Granadillo (eds.), Negation in Arawak languages, 13-53. Leiden/Boston: Brill. Musaev, Kenesbaj M. 2003. Sintaksis karaimskogo jazyka. Moscow: Akademija Nauk. Payne, John R. 1985a. Negation. In Timothy Shopen (ed.), Language typology and syntatic description, Vol. 1, 197-242. Cambridge: Cambridge University Press.
Payne, John R. 1985b. Complex phrases and complex sentences. In Timothy Shopen (ed.), Language typology and syntactic description, Vol. 2, 3-41. Cambridge: Cambridge University Press.
Pearson, Karl. 1895. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 58. 240-242.

Perkins, Revere D. 1989. Statistical techniques for determining language sample size. Studies in Language 13(2). 293-315.
Peterson, John. 2011. A grammar of Kharia: A South Munda language. Leiden/Boston: Brill.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech \& Jan Svartvik. 1985. A comprehensive grammar of the English language. London/new York: Longman.
Rijkhoff, Jan \& Dik Bakker. 1998. Language sampling. Linguistic Typology 2(3). 263314.

Rijkhoff, Jan, Dik Bakker, Kees Hengeveld \& Peter Kahrel. 1993. A method of language sampling. Studies in Language 17(1). 169-203.
Rongier, Jacques. 2004. Parlons éwé: Langue du Togo. Paris: L'Harmattan.
Sakel, Jeanette. 2004. A grammar of Mosetén. Berlin/New York: De Gruyter.
Salminen, Mikko B. 2017. A grammar of Umbeyajts as spoken by the Ikojts people of San Dionisio del Mar, Oaxaca, Mexico. Cairns: James Cook University PhD dissertation.

Sánchez, Cristina. 2017. Coordination and correlatives. In Andreas Dufter \& Elisabeth Stark (eds.), Manual of Romance morphosyntax and syntax, 647-688. Berlin: De Gruyter.
Shimelman, Aviva. 2017. A grammar of Yauyos Quechua. Berlin: Language Science

Press.
Sneddon, James N. 1996. Indonesian: A comprehensive grammar. London/New York: Routledge.
Stilo, Donald. 2004. Coordination in three West Iranian languages: Vafsi, Persian and Gilaki. In Martin Haspelmath (ed.), Coordinating constructions, 269-330. Amsterdam/Philadelphia: Benjamins.
Stolz, Christel \& Thomas Stolz. 1996. Funktionswortentlehnung in Mesoamerika: Spanisch-amerindischer Sprachkontakt (Hispanoindiana II). Sprachtypologie und Universalienforschung 49(1). 86-123.

Tate, Robert F. 1954. Correlation between a discrete and a continuous variable: Pointbiserial correlation. The Annals of Mathematical Statistics 25(3). 603-607.
Theil, Henri. 1966. Applied economic forecasting. Amsterdam/Chicago: North Holland, Rand McNally.

Van der Auwera, Johan. 2021. Quirky negative concord: Croatian, Spanish and French ni's. Jezikoslovlje 22(1).

Van der Auwera, Johan, Motoki Nomachi \& Olga Krasnoukhova. 2021. Connective negation and negative concord in Balto-Slavic. In Peter Arkadiev, Jurgis Pakerys, Inesa Šeškauskienė \& Vaiva Žeimantienė (eds.), Studies in Baltic linguistics: A Festschrift for Axel Holvoet on the occasion of his 65 th birthday. Vilnius: Vilnius University Press.

Voorhoeve, Clemens L. 1975. Languages of Irian Jaya, checklist: Preliminary classification, language maps, wordlists. Canberra: Australian National University.

Werner, Roland. 1993. Tidn-Áal: A study of Midob (Darfur-Nubian). Berlin: Dietrich Reimer.

Wright, Raymond E. 1995. Logistic regression. In Laurence G. Grimm \& Paul R. Yarnold (eds.), Reading and understanding multivariate statistics, 217-244. Washington: American Psychological Association.
Yliniemi, Juha. 2019. A descriptive grammar of Denjongke (Sikkimese Bhutia). Helsinki: University of Helsinki PhD dissertation.
Zemp, Marius. 2018. A grammar of Purik Tibetan. Leiden: Brill.

Non-standard abbreviations

1693	ADD	additive	LK	linker
1694	ANR	action nominalizer	MOD	modal suffix
1695	AO1-4	actor-oriented affixes 1-4	NEGEX	negative existence
1696	AOR	aorist	NF	non-feminine
1697	AUG	augmentative	NONFACT	non-factual
1698	CL	gender-class marker	NPT	non-past tense
1699	CNJ	conjunction	PART	partitive
1700	CNTR	contrast	PER	personal
1701	CONT	contemporative mood	POT	potential mood
1702	DEP	dependent marker	PROP	proper article
1703	DST	distant past	RDP	reduplication
1704	DF	default case marker	REMP	remote past
1705	EC	extended current tense	RPST	recent past
1706	EMPH	emphatic	SS	same-subject marker
1707	ENC	emphatic negative coordination	SUB	subordinator
1708	ENCM	ENC marker	TAG2	interactive tag 2
1709	EX	existential	UO	undergoer voice
1710	GNR	general tense	V1	class 1 verb
1711	HAB	habitual	VIS	visual
1712	ITER	iterative		
1713				

1713
1714 Appendix. Languages of the sample

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?
Abun	kgr	Language isolate	Southeast Asia- Oceania	Berry \& Berry related to SN?		
Amarakaeri	amr	Harakmbut,	South America	Chávez (1984:		
Amarakaeri						

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Bambara	bam	Mande, Western Mande	Africa	Maiga (2001: 72)	No	-	-
Bambassi	myf	Blue Nile Mao, Bambassi	Africa	Ahland (2012: 341)	No	-	-
Bangime	dba	Language isolate	Africa	$\begin{gathered} \text { Hantgan (2013: } \\ 315) \end{gathered}$	No	-	-
Bardi	bcj	1yulanNyulnyulan, Western	Australia-Papua New Guinea	$\begin{gathered} \text { Bowern (2012: } \\ 709-710) \end{gathered}$	No	-	-
Basque	eus	Language isolate	Eurasia	Hualde \& Ortiz de Urbina (2003:	Yes ($\alpha 1+\alpha 2$)	No	Yes
Bauzi	bvz	Geelvink Bay, Bauzi	Australia-Papua New Guinea	Briley (1997: 85)	No	-	-
Bilua	blb	Language isolate	Southeast AsiaOceania	Obata (2003: 234)	No	-	-
Bonan	peh	Mongolic-Khitan, Mongolic	Southeast AsiaOceania	Fried (2010: 95)	No	-	-
Bora	boa	Boran, Boa	South America	Thiesen \& Weber (2012: 527)	No	-	-
Bororo	bor	Bororoan, BororoOtuke	South America	$\begin{aligned} & \text { Nonato }(2008: \\ & 126,131) \end{aligned}$	No	-	-
Brahui	brh	Dravidian, North Dravidian	Eurasia	Andronov (2006: 103)	Yes ($\alpha 1$)	Yes	No
Bullom So	buy	Atlantic-Congo, Mel	Africa	Childs (2011: 144)	No	-	-
Burmese	mya	Sino-Tibetan, Burmo-Qiangic	Southeast AsiaOceania	$\begin{gathered} \text { Soe (1999: 144, } \\ 160-161) \end{gathered}$	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Burushaski (Hunza, Nagar)	bsk	Language isolate	Eurasia	Berger (1998: 183)	No	-	-
Cao Miao	cov	Tai-Kadai, KamTai	Southeast AsiaOceania	Wu (2015: 299)	No	-	-
Cavineña	cav	Pano-Tacanan, Tacanan	South America	Guillaume (2008: 107)	No	-	-
Central Alaskan Yupik	esu	Eskimo-Aleut, Eskimo	North America- Mesoamerica	$\begin{gathered} \text { Miyaoka (2012: } \\ 1460) \end{gathered}$	No	-	-
Central Kalapuya	kyl	Kalapuyan, Central Kalapuya	North AmericaMesoamerica	Banks (2007: 27)	No	-	-
Central Khmer	khm	Austroasiatic, Khmeric	Southeast AsiaOceania	Haiman (2011: 90)	No	-	-
Central Nicobarese	ncb	Austroasiatic, Nicobaric	Southeast AsiaOceania	Man (1889: 62)	No	-	-
Central Tunebo	tuf	Chibchan, Core Chibchan	South America	Headland (1994: 62)	No	-	-
Chimariko	cid	Language isolate	North AmericaMesoamerica	Jany (2009: 177)	No	-	-
Chokwe	cjk	Atlantic-Congo, Volta-Congo	Africa	$\begin{gathered} \text { Martins (1990: } \\ \text { 191) } \end{gathered}$	No	-	-
Chukchi	ckt	ChukotkoKamchatkan	Eurasia	Dunn (1999: 333)	No	-	-
Comaltepec Chinantec	cco	leanOtomanguean, Western	North AmericaMesoamerica	Anderson (1989: 30)	Yes (β)	Yes	No (?)
Coptic (Sahidic)	cop	Afro-Asiatic, Egyptian	Africa	Layton (2000: 178)	No	-	-

$\left.\begin{array}{ccccccc}\hline \text { Language name } & \text { ISO } & \begin{array}{c}\text { Genealogical } \\ \text { affiliation }\end{array} & \text { Macroarea } & \text { Source } & \text { ENC available? } & \begin{array}{c}\text { Distinct from } \\ \text { SN? }\end{array} \\ \hline \text { Cuiba } & \text { cui } & \begin{array}{c}\text { Guahiboan, } \\ \text { Guahibo-Cuiva }\end{array} & \text { South America } & \begin{array}{c}\text { Kerr \& Berg } \\ (2018: 264)\end{array} & \text { No } & - \\ \hline \text { Dakotated to SN? }\end{array}\right]$

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Gaagudju	gbu	Language isolate	Australia-Papua New Guinea	Harvey (2002: 331)	No	-	-
Goemai	abk	Afro-Asiatic, Chadic	Africa	Hellwig (2011: 169)	No	-	-
Gooniyandi	gni	Bunaban, Gooniyandi	Australia-Papua New Guinea	$\begin{gathered} \text { McGregor (1990: } \\ 494,530) \end{gathered}$	No	-	-
Guragone	gge	Maningrida, Burera-Nakara	Australia-Papua New Guinea	Green (1995: 124)	No	-	-
Gwich'in	gwi	1Athabaskan-EyakTlingit,	North AmericaMesoamerica	$\begin{gathered} \text { McDonald (1972 } \\ \text { [1911]: 76) } \end{gathered}$	No	-	-
Halh Mongolian	khk	Mongolic-Khitan, Mongolic	Eurasia	82) Gaunt \& Bayarmandakh	No	-	-
Halkomelem	hur	Salishan, Central Salish	North AmericaMesoamerica	Suttles (2004: 124)	No	-	-
Hatam	had	Hatam-Mansim, Hatam	Australia-Papua New Guinea	$\begin{gathered} \text { Reesink (1999: } \\ 109) \end{gathered}$	No	-	-
Hawaiian	haw	esianAustronesian, Malayo-	Southeast AsiaOceania	Pukui \& Elbert (1986: 488)	No	-	-
Highland Popoluca	poi	Mixe-Zoque, Zoque	North AmericaMesoamerica	$\begin{gathered} \text { De Jong (2009: } \\ 920-921) \end{gathered}$	Yes ($\alpha 1$)	Yes	No
Hills Karbi	mjw	Sino-Tibetan, Kuki-Chin-Naga	Southeast AsiaOceania	Konnerth (2014: 563)	No	-	-
Hokkaido Ainu	ain	Ainu, HokkaidoKuril Ainu	Eurasia	Refsing (1986: 163)	No	-	-
Huambisa	hub	Chicham, Shuaric	South America	Peña (2015: 747)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
iua Huangascar-Topara-Yauyos	qux	Quechuan, Quechua I	South America	Shimelman (2017: 108)	Yes ($\alpha 1$)	Yes	No
Huastec	hus	Mayan, Huastecan Mayan	North America- Mesoamerica	Edmonson (1988: 545)	Yes ($\alpha 2$)	Yes	No
Hungarian	hun	Uralic, Hungarian	Eurasia	Bernini \& Ramat (1996: 102)	Yes ($\alpha 2$)	Yes	Yes
Hup	jup	Naduhup, Eastern Naduhup	South America	$\begin{gathered} \text { Epps (2008: 736- } \\ 737) \end{gathered}$	Yes ($\alpha 1$)	Yes	No
Hurrian	xhu	Hurro-Urartian, Hurrian	Eurasia	Wegner (2000: 162)	No	-	-
Icelandic	isl	Indo-European, Germanic	Eurasia	Einarsson (1949: 175)	Yes ($\alpha 1$)	Yes	No
Ik	ikx	Kuliak, Ik	Africa	Schrock (2014: 581)	No	-	-
Indonesian	ind	esianAustronesian, Malayo-	Southeast AsiaOceania	$\begin{gathered} \text { Sneddon (1996: } \\ 348) \end{gathered}$	No	-	-
Ingush	inh	Jakh NakhDaghestanian,	Eurasia	Nichols (2011: 528)	No	-	-
Iquito	iqu	Zaparoan, IquitoArabela	South America	Lai (2009: 208)	Yes (β)	Yes	Yes (?)
Jamiltepec Mixtec	mxt	reanOtomanguean, Eastern	North America- Mesoamerica	Johnson (1988: 127)	Yes ($\alpha 1 / 2+\alpha 3$)	Yes	No
Japanese	jpn	Japonic, Japanesic	Eurasia	Kaiser et al. (2013: 323)	Yes (β)	Yes	No (?)
Jaqaru	jqr	Aymaran, Tupe	South America	$\begin{aligned} & \text { Hardman (2000: } \\ & \text { 82) } \end{aligned}$	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Jebero	jeb	Cahuapanan, Jebero	South America	Valenzuela (2014: $46,839-840)$	No	-	-
Jingulu	jig	Mirndi, Jingulu	Australia-Papua New Guinea	Pensalfini (1997: 201)	No	-	-
Kabardian	kbd	Abkhaz-Adyghe, Circassian	Eurasia	Kumakhov (2013: 254)	Yes ($\alpha 2$)	Yes	No (?)
Kako	kkj	Atlantic-Congo, Volta-Congo	Africa	Ernst (1992: 151)	No	-	-
Kakua	cbv	Kakua-Nukak, Kakua	South America	$\begin{gathered} \text { Bolaños (2016: } \\ 259) \end{gathered}$	No	-	-
Kalaallisut	kal	Eskimo-Aleut, Eskimo	North America- Mesoamerica	Fortescue (1984: 124)	Yes (β)	Yes	Yes
Kamayurá	kay	Tupian, MawetiGuarani	South America	Seki (2000: 238)	No	-	-
Karaim	kdr	Turkic, Common Turkic	Eurasia	$\begin{gathered} \text { Musaev (2003: } \\ 164-165) \end{gathered}$	Yes ($\alpha 1$)	Yes	No
Karamojong	kdj	Nilotic, Eastern Nilotic	Africa	Bader (2008: 120)	Yes ($\alpha 1$)	Yes	No
Katcha-KadugliMiri	xtc	.Kadugli-Krongo, Central-Western	Africa	Turner (2016: 212)	No	-	-
Katukína- Kanamarí	knm	mamaríKatukinan, Katukína-	South America	Ishy de Magalhães (2018: 371)	No	-	-
Kayardild	gyd	Tangkic, Southern Tangkic	Australia-Papua New Guinea	Evans (1995: 395)	No	-	-
Kelabit	kzi	esianAustronesian, Malayo-	Southeast AsiaOceania	Hemmings (2016: 610)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Ket	ket	eniseianYeniseian, Northern	Eurasia	$\begin{gathered} \text { Dul'zon (1968: } \\ 578) \end{gathered}$	No	-	-
Kharia	khr	Austroasiatic, Mundaic	Eurasia	$\begin{gathered} \text { Peterson (2011: } \\ 341) \end{gathered}$	Yes ($\alpha 1$)	Yes	No
Khasi	kha	Austroasiatic, Khasi-Palaung	Eurasia	Nagaraja (2014b: 1181)	Yes ($\alpha 1$)	Yes	Yes (?)
Kija	gia	Jarrakan, Kija	Australia-Papua New Guinea	Kofod (1996: 121126)	No	-	-
Kilmeri	kih	Border, Bewani	Australia-Papua New Guinea	$\begin{gathered} \text { Gerstner-Link } \\ (2018: 571) \end{gathered}$	No	-	-
Kiowa	kio	Kiowa-Tanoan, Kiowa	North AmericaMesoamerica	Watkins (1984: 216)	No	-	-
Koasati	cku	Muskogean, Alabaman-Koasati	North AmericaMesoamerica	$\begin{gathered} \text { Kimball (1985: } \\ 172) \end{gathered}$	No	-	-
Konai	kxw	East Strickland, Konai	Australia-Papua New Guinea	Årsjö (2016: 54)	No	-	-
Korafe-Yegha	kpr	ər Nuclear Trans rean New Guinea,	Australia-Papua New Guinea	Farr (1999: 157)	No	-	-
Korean	kor	Koreanic, Korean	Eurasia	Yeon \& Brown (2013: 136)	No	-	-
Koreguaje	coe	Tucanoan, Western Tucanoan	South America	Cook \& Criswell (1993: 102)	No	-	-
Kotiria	gvc	Tucanoan, Eastern Tucanoan	South America	$\begin{gathered} \text { Stenzel (2004: } \\ 316) \end{gathered}$	No	-	-
Koyra Chiini Songhay	khq	Jonghay Songhay, Northwest	Africa	$\begin{aligned} & \text { Heath (1999: 260- } \\ & 261) \end{aligned}$	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Kuku-Yalanji	gvn	Pama-Nyungan, Yimidhirr-Yalanji-	Australia-Papua New Guinea	Patz (2012: 113)	No	-	-
Kunama	kun	Language isolate	Africa	Idris (1987: 118)	No	-	-
Kuot	kto	Language isolate	Australia-Papua New Guinea	Lindström (2002: 221)	No	-	-
Kusunda	kgg	Language isolate	Eurasia	Watters (2006: 126)	No	-	-
Kutenai	kut	Language isolate	North AmericaMesoamerica	$\begin{gathered} \text { Morgan (1991: } \\ 513-514) \end{gathered}$	No	-	-
Kwomtari	kwo	Kwomtari-Nai, Kwomtari	Australia-Papua New Guinea	Spencer (2008: 118)	No	-	-
Lao	lao	Tai-Kadai, KamTai	Southeast AsiaOceania	Enfield (2007: 54)	No	-	-
Laven	lbo	Austroasiatic, Bahnaric	Southeast AsiaOceania	Jacq (2001: 283)	No	-	-
Lavukaleve	lvk	Language isolate	Southeast AsiaOceania	Terrill (2003: 461)	No	-	-
Laz (Arhavi)	lzz	Kartvelian, Georgian-Zan	Eurasia	Lacroix (2009: 80)	No	-	-
Limilngan	lmc	Limilngan-Wulna, Limilngan	Australia-Papua New Guinea	Harvey (2001: 101)	No	-	-
Lowland Oaxaca Chontal	clo	al Tequistlatecan, Lowland Oaxaca	North AmericaMesoamerica	O'Connor (2007: 57)	No	-	-
Lumun	lmd	Narrow Talodi, Lumun-Torona	Africa	Smits (2017: 718)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Maba (Chad)	mde	Maban, Mabang	Africa	Weiss (2009: 382)	No	-	-
Maco	wpe	Jodi-Saliban, Saliban	South America	Rosés (2015: 426)	No	-	-
Madi	jaa	Arawan, MadiMadiha	South America	Dixon (2004: 167)	No	-	-
Madurese	mad	esianAustronesian, Malayo-	Southeast AsiaOceania	$\begin{gathered} \text { Davies (2010: } \\ 399) \end{gathered}$	No	-	-
Maltese	mlt	Afro-Asiatic, Semitic	Eurasia	Sutcliffe (1936: 212)	Yes ($\alpha 1$)	Yes	No (?)
Mamaindé	wmd	Nambiquaran, Nambikwara C	South America	Eberhard (2009: 581)	No	-	-
Mamvu	mdi	Central Sudanic, Membi-Mangbutu-	Africa	Blackings \& Fabb (2003: 708)	No	-	-
Manambu	mle	Ndu, Nuclear Ndu	Australia-Papua New Guinea	$\begin{gathered} \text { Aikhenvald (2008: } \\ \text { 190, } 301,305 \text {) } \end{gathered}$	No	-	-
Mangarrayi-Maran	mpc	garrayiMangarrayiMaran,	Australia-Papua New Guinea	Merlan (1989: 38)	No	-	-
Maore Comorian	swb	Atlantic-Congo, Volta-Congo	Africa	Alnet (2009: 262)	No	-	-
Marind	mrz	Anim, Marind-Boazi-Yaqai	Australia-Papua New Guinea	$\begin{aligned} & \text { Olsson (2017: } \\ & 115) \end{aligned}$	No	-	-
Marithiel	mfr	Western Daly, Bringen	Australia-Papua New Guinea	Green (1989: 159)	No	-	-
Mateq	xem	esianAustronesian, Malayo-	Southeast AsiaOceania	$\begin{gathered} \text { Connell (2013: } \\ 152) \end{gathered}$	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Mauwake	mhl	dangNuclear Trans New Guinea,	Australia-Papua New Guinea	$\begin{aligned} & \text { Berghäll (2015: } \\ & 324) \end{aligned}$	No	-	-
Mapudungun	arn	Araucanian, Mapudungun	South America	$\begin{aligned} & \text { Smeets (2005: } \\ & 471) \end{aligned}$	No	-	-
Maquiritari	mch	Cariban, Guianan	South America	$\begin{gathered} \text { Cáceres (2011: } \\ 309) \end{gathered}$	No	-	-
Mbugu	mhd	Pidgins and creoles	Africa	Mous (2003: 133)	No	-	-
Menya	mcr	Angan, Nuclear Angan	Australia-Papua New Guinea	Whitehead (2004: $145,171)$	No	-	-
Meriam	ulk	Eastern Trans-Fly, Meriam	Australia-Papua New Guinea	$\begin{gathered} \text { Piper (1989: 201- } \\ 202) \end{gathered}$	No	-	-
Midob	mei	Nubian, WestCentral Nubian	Africa	Werner (1993: 63)	Yes ($\alpha 2$)	Yes	No (?)
Migabac	mpp	IuonNuclear Trans New Guinea,	Australia-Papua New Guinea	McEvoy (2008: 85)	No	-	-
Mískito	miq	Misumalpan, Mískito	North AmericaMesoamerica	Salamanca (1988: 318)	No	-	-
Mosetén-Chimané	cas	Language isolate	South America	Sakel (2004: 332)	No	-	-
Moskona	mtj	East Bird's head, Meax	Australia-Papua New Guinea	$\begin{aligned} & \text { Gravelle (2010: } \\ & 503) \end{aligned}$	No	-	-
Mullukmulluk	mpb	Northern Daly, Mullukmulluk	Australia-Papua New Guinea	Lindsay et al. (2017: 51)	No	-	-
Murui Huitoto	huu	Huitotoan, Nuclear Witotoan	South America	Wojtylak (2017: 431)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?	
Nangikurrunggurr	mwf	Southern Daly, Nangikurrunggurr	Australia-Papua New Guinea	Reid (1991: 349)	No	-	-	
N\\|lng	ngh	Tuu, !Kwi	Africa	5) Collins \& Namaseb (2011:	No	-	-	
Neverver	lgk	esianAustronesian, Malayo-	Southeast AsiaOceania	$\begin{gathered} \text { Barbour (2012: } \\ 418,447) \end{gathered}$	No	-	-	
Ngalkbun	ngk	Gunwinyguan, Marne	Australia-Papua New Guinea	Singer (2001: 71)	No	-	-	
Ngizim	ngi	Afro-Asiatic, Chadic	Africa	$\begin{gathered} \text { Schuh (1972: } 251, \\ 462) \end{gathered}$	No	-	-	
Nhanda	nha	1 Pama-Nyungan, South-West Pama-	Australia-Papua New Guinea	$\begin{gathered} \text { Blevins (2001: } \\ 105) \end{gathered}$	No	-	-	
Nias	nia	esianAustronesian, Malayo-	Southeast AsiaOceania	Brown (2001: 575)	No	-	-	
Nigerian pidgin	pcm	Pidgins and creoles	Africa	Faraclas (2005: 90)	No	-	-	
Nihali	nll	Language isolate	Eurasia	Nagaraja (2014a: 78)	No	-	-	
Nivaclé	cag	Matacoan, Mataguayo I	South America	Fabre (2016: 226)	No	-	-	
Nivkh (Amur)	niv	Language isolate	Eurasia	42) Savel'eva \& Taksami (1965:	Yes ($\alpha 1$)	Yes	No	
North-Central Ju	knw	Kxa, Ju-Jung	Africa	Heine \& König (2015: 276)	No	-	-	
Northeast Kiwai (Urama)	kiw	Kiwaian, Northeast Kiwai	Australia-Papua New Guinea	Brown et al. (2016: 90)	No	-	-	

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
North Slavey	scs	:Athabaskan-EyakTlingit,	North AmericaMesoamerica	Rice (1989: 1107)	No	-	-
Northern Emberá	emp	Chocoan, Embera	South America	Rojas (1987: 36)	No	-	-
Northern Haida	hdn	Haida, Northern Haida	North AmericaMesoamerica	Enrico (2003: 287)	No	-	-
Northern Yokuts	yok	Yokutsan, General Yokuts	North AmericaMesoamerica	Collord (1968: 92)	No	-	-
Northwest Gbaya	gya	Atlantic-Congo, Volta-Congo	Africa	Noss (1981: 122)	No	-	-
Northwest Sahaptin	yak	Sahaptian, Sahaptin	North AmericaMesoamerica	Jansen (2010: 88)	No	-	-
Nuu-chah-nulth	myh	akashanWakashan, Southern	North AmericaMesoamerica	$\begin{aligned} & \text { Davidson (2002: } \\ & 274) \end{aligned}$	No	-	-
Nzadi	$n z d$	Atlantic-Congo, Volta-Congo	Africa	Crane et al. (2011: 177)	No	-	-
Okanagan	oka	Salishan, Interior Salish	North AmericaMesoamerica	Davis (2001: 85)	No	-	-
Oksapmin	opm	l-OkNuclear Trans New Guinea,	Australia-Papua New Guinea	Loughnane (2009: 392)	No	-	-
Ömie	aom	Koiarian, Baraic	Australia-Papua New Guinea	Austing \& Upia (1975: 592)	No	-	-
Onondaga	ono	oquoianIroquoian, Northern	North AmericaMesoamerica	Woodbury (2018: 212)	No	-	-
Orya	ury	Tor-Orya, Orya	Australia-Papua New Guinea	;29) Neukom \& Patnaik (2003:	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Ottawa	otw	Algic, Algonquian	North America- Mesoamerica	$\begin{aligned} & \text { Valentine (2001: } \\ & 849) \end{aligned}$	No	-	-
Palikúr	plu	Arawakan, Palikúr	South America	Launey (2003: 201)	No	-	-
Palula	phl	Indo-European, Indo-Aryan	Eurasia	$\begin{gathered} \text { Liljegren (2016: } \\ 349-350) \end{gathered}$	Yes $(\alpha 1+\alpha 2)$	Yes	Yes
Papiamento	pap	Pidgins and creoles	South America	Goilo (2000: 20)	Yes ($\alpha 1$)	Yes	Yes
Papuan Malay	pmy	esianAustronesian, Malayo-	Australia-Papua New Guinea	$\begin{aligned} & \text { Kluge (2017: } 520- \\ & 521) \end{aligned}$	No	-	-
Pilagá	plg	Guaicuruan, Guaicuru del sur	South America	Vidal (2001: 284)	No	-	-
Pipil	ppl	tecanUto-Aztecan, Southern Uto-	North AmericaMesoamerica	Campbell (1985: 124)	Yes ($\alpha 1$)	Yes	No
Pirahã	myp	Language isolate	South America	Everett (1983: 49- 50)	No	-	-
Puinave	pui	Language isolate	South America	Girón (2008: 417)	No	-	-
Purepecha	pua	Tarascan, Purepecha	North America- Mesoamerica	Chamoreau (2003: 66)	No	-	-
Qawasqar	alc	Kawesqar, NorthCentral Alcalufan	South America	$\begin{gathered} \text { Aguilera (2001: } \\ 217) \end{gathered}$	No	-	-
Rapanui	rap	esianAustronesian, Malayo-	Southeast AsiaOceania	Kieviet (2017: $503,504,506)$	Yes ($\alpha 3$)	Yes	No (?)
Rotokas	roo	opan North Bougainville,	Australia-Papua New Guinea	Robinson (2011: 86)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
San Blas Kuna	cuk	Chibchan, Core Chibchan	North America- Mesoamerica	Smith (2014: 193)	No	-	-
San Dionisio del Mar Huave	hve	uaveHuavean, San Dionisio-San	North AmericaMesoamerica	Salminen (2017: 241)	Yes (β)	Yes	No (?)
Sandawe	sad	Language isolate	Africa	$\begin{aligned} & \text { Steeman (2011: } \\ & 238) \end{aligned}$	No	-	-
Sanumá	xsu	Yanomamic, Sanumá	South America	$\begin{gathered} \text { Borgman (1990: } \\ 86) \end{gathered}$	No	-	-
Savosavo	svs	Language isolate	Southeast AsiaOceania	$\begin{gathered} \text { Wegner (2012: } \\ 102,154) \end{gathered}$	No	-	-
Sawknah-Fogaha	swn	Afro-Asiatic, Berber	Africa	Lakfioui \& Brugnatelli (2020:	Yes ($\alpha 1$)	Yes	No
Semelai	sza	Austroasiatic, Aslian	Southeast AsiaOceania	Kruspe (2004: 317)	No	-	-
Seri	sei	Language isolate	North AmericaMesoamerica	Moser \& Marlett (2010: 449)	No	-	-
Shasta	sht	Shastan, Shasta	North AmericaMesoamerica	Silver (1966: 242)	No	-	-
Shatt	shj	Dajuic, Eastern Dajuic	Africa	Alfira et al. (2016: 211)	No	-	-
Sheko	she	Dizoid, Sheko	Africa	Hellenthal (2010: 425)	No	-	-
Sinhala	\sin	Indo-European, Indo-Iranian	Eurasia	Chandralal (2010: 186)	Yes ($\alpha 3$)	No	Yes
Sirayaic	fos	Austronesian, East Formosan	Southeast AsiaOceania	$\begin{aligned} & \text { Adelaar (2011: } \\ & \text { 219) } \end{aligned}$	Yes ($\alpha 1$)	Yes	Yes

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Siwai	siw	South Bougainville, Buin	Australia-Papua New Guinea	Onishi (1994: 161)	No	-	-
Skou	skv	Sko, Skou-SerraPiore	Australia-Papua New Guinea	Donohue (2004: 144)	No	-	-
Somali	som	Afro-Asiatic, Cushitic	Africa	Saeed (1999: 257)	No	-	-
Southern-Coastal Tsimshian	tsi	n Tsimshian, Southern-Coastal	North AmericaMesoamerica	Flaherty (1979: 179)	No	-	-
Southern Cook Island Maori	mri	esianAustronesian, Malayo-	Southeast AsiaOceania	Nicholas (2016: 285)	No	-	-
Southern Yukaghir	yux	Yukaghir, Kolymic	Eurasia	$\begin{gathered} \text { Maslova (2003: } \\ 495-496) \end{gathered}$	Yes ($\alpha 2$)	Yes	No
Sumerian	sux	Language isolate	Eurasia	$\begin{gathered} \text { Zólyomi (2017: } \\ 149-150) \end{gathered}$	No	-	-
Swahili	swh	Atlantic-Congo, Volta-Congo	Africa	$\begin{gathered} \text { Mpiranya (2015: } \\ 193) \end{gathered}$	No	-	-
Tagalog	tgl	esianAustronesian, Malayo-	Southeast AsiaOceania	527) Schachter \& Otanes (1972:	No	-	-
Tariana	tae	Arawakan, JapuraColombia	South America	Aikhenvald (2003: 403)	No	-	-
Taulil	tuh	Taulil-Butam	Southeast AsiaOceania	Meng (2018: 108)	No	-	-
Tehuelche	teh	Jhonan Chonan, Continental	South America	$\begin{aligned} & \text { Fernández (1998: } \\ & 326) \end{aligned}$	No	-	-
Teiwa	twe	Timor-AlorPantar, Alor-Pantar	Southeast AsiaOceania	$\begin{gathered} \text { Klamer (2010: } \\ 274) \end{gathered}$	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Ternate	tft	iNorth Halmahera, Northern North	Southeast AsiaOceania	Hayami-Allen (2001: 180)	No	-	-
Ternateño	tmg	Pidgins and creoles	Southeast AsiaOceania	$\begin{aligned} & \text { Sippola (2011: } \\ & 270) \end{aligned}$	Yes ($\alpha 1$)	Yes	Yes (?)
Thai	tha	Tai-Kadai, KamTai	Southeast AsiaOceania	Smyth (2002: 143)	No	-	-
Thao	ssf	sian Austronesian, Western Plains	Southeast AsiaOceania	Wang (2004: 270)	No	-	-
Tipai	dih	Cochimi-Yuman	North America- Mesoamerica	Miller (2001: 187)	No	-	-
To'abaita	mlu	esianAustronesian, Malayo-	Southeast AsiaOceania	Lichtenberk (2008: 1021)	No	-	-
Tommo So Dogon	dto	Dogon Dogon, Escarpment	Africa	McPherson (2013: 443)	No	-	-
Toura (Côte d'Ivoire)	neb	Mande, Eastern Mande	Africa	$\begin{gathered} \text { Bearth (1971: } 280- \\ 281) \end{gathered}$	No	-	-
Tukang Besi South	bhq	Austronesian, Malayo-Polinesian	Southeast AsiaOceania	$\begin{gathered} \text { Donohue (1999: } \\ 421-422) \end{gathered}$	No	-	-
Turkish	tur	Turkic, Common Turkic	Eurasia	Kornfilt (2006: 111)	Yes ($\alpha 1 / 3$)	Yes	Yes (?)
Tuvalu	tvl	esianAustronesian, Malayo-	Southeast AsiaOceania	$\begin{gathered} \text { Besnier (2000: } \\ 186) \end{gathered}$	No	-	-
Udihe	ude	Tungusic, Central Tungusic	Eurasia	i7) Nikolaeva \& Tolskaya (2001:	No	-	-
Udmurt	udm	Uralic, Permian	Eurasia	$\begin{aligned} & \text { Edygarova (2015: } \\ & 287) \end{aligned}$	Yes ($\alpha 1$)	Yes	No

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Urarina	ura	Language isolate	South America	Olawsky (2006: 555)	No	-	-
Ute-Southern Paiute	ute	tecanUto-Aztecan, Northern Uto-	North America- Mesoamerica	Givón (2011: 185)	No	-	-
Vaeakau-Taumako	piv	esianAustronesian, Malayo-	Southeast AsiaOceania	i-394) Næss \& Hovdhaugen	No	-	-
Wandala	mfi	Afro-Asiatic, Chadic	Africa	Frajzyngier (2012: 428)	No	-	-
Wappo	wao	Yuki-Wappo, Wappo	North America- Mesoamerica	Thompson et al. (1990: 23)	No	-	-
Warao	wba	Language isolate	South America	Romero-Figeroa (1997: 123)	No	-	-
Wardaman	wmb	Yangmanic, Wardaman	Australia-Papua New Guinea	$\begin{aligned} & \text { Merlan (1994: } \\ & 301) \end{aligned}$	No	-	-
Wari	pav	Chapacuran, Moreic-Waric	South America	Everett \& Kern (1997: 460)	No	-	-
Warlpiri	wbp	Pama-Nyungan, Desert Nyungic	Australia-Papua New Guinea	Bowler (2014: 139)	No	-	-
Watam	wax	Lower Sepik- Ramu, Ramu	Australia-Papua New Guinea	Foley (2010: 102)	No	-	-
Western Keres	kjq	Keresan, Western Keres	North AmericaMesoamerica	$\begin{gathered} \text { Miller (1965: 123, } \\ 228-229) \end{gathered}$	No	-	-
Western Xiangxi Miao	mmr	Hmong-Mien, Hmongic	Southeast AsiaOceania	Sposato (2015: $436,572-573)$	No	-	-
Wolaytta	wal	Ta-Ne-Omotic, Ometo	Africa	Wakasa (2008: 689)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?	Etymologically related to SN ?
Woleaian	woe	esianAustronesian, Malayo-	Southeast AsiaOceania	Sohn (1975: 297)	No	-	-
Wolof	wol	ticAtlantic-Congo, North-Central	Africa	Diouf (2009: 107- 108)	No	-	-
Xamtanga	xan	Afro-Asiatic, Cushitic	Africa	$\begin{gathered} \text { Teshome (2015: } \\ 268-269) \end{gathered}$	Yes (β)	No	Yes
Xicotepec De Juárez Totonac	tqt	Totonacan, Totonac	North AmericaMesoamerica	Reid (1991: 78)	No	-	-
Xinca-Guazacapan	xin	Xincan, XincaGuazacapan	North AmericaMesoamerica	$\begin{aligned} & \text { Rogers (2010: } \\ & 385) \end{aligned}$	No	-	-
Yakkha	ybh	Sino-Tibetan, Himalayish	Southeast AsiaOceania	Schackow (2015: 448)	No	-	-
Yagua	yad	Peba-Yagua, Yagua	South America	Payne (1985: 247)	No	-	-
Yeri	yev	Nuclear Torricelli, West Palai	Australia-Papua New Guinea	Wilson (2017: $376,513-514)$	No	-	-
Yucatec Maya	yua	Mayan, Core Mayan	North AmericaMesoamerica	Bolles \& Bolles (2001: 66)	Yes ($\alpha 1$)	Yes	Yes
Yuchi	yuc	Language isolate	North AmericaMesoamerica	Linn (2001: 499)	No	-	-
Yue Chinese	yue	Sino-Tibetan, Sinitic	Southeast AsiaOceania	Matthews \& Yip (1994: 292)	No	-	-
Yuracaré	yuz	Language isolate	South America	$\begin{gathered} \text { Van Gijn (2006: } \\ 126) \end{gathered}$	No	-	-
Yurok	yur	Algic, Yurok	North AmericaMesoamerica	Garrett (2010: 48)	No	-	-

Language name	ISO	Genealogical affiliation	Macroarea	Source	ENC available?	Distinct from SN?
Yuwaalaraay- Gamilaraay	kld	anPama-Nyungan,	Australia-Papua Etymologically related to SN?			
Zuni	Southeastern	Giacon (2014: $265)$	No	-		

1735 Author's address
1736
1737 Iker Salaberri
1738 Department of Basque Language and Communication
1739 University of the Basque Country (UPV/EHU)
1740 Lehendakari Agirre, 83
174148015 Bilbao, Basque Autonomous Community
1742 Spain
1743 ikersalaberri@gmail.com
1744 https://orcid.org/0000-0003-3859-4011

[^0]: 1 This function has different labels depending on which of its properties is highlighted. 'Rejection' (Payne 1985b) indicates that this is neither a kind of conjunction nor a kind of disjunction, 'connective negation' (Van der Auwera 2021) emphasizes that it serves to connect and negate, and 'emphatic negative coordination' (Haspelmath 2007) points out its emphatic nature. For reasons explained in Sections 2 and 4 the latter term will be used throughout.
 2 Crystal (2008:323) defines negation as "a process or construction in grammatical and semantic analysis which typically expresses the contradiction of some or all of a sentence's meaning". In turn, Dik (1997: 189) characterizes coordination as "a construction consisting of two or more members which are functionally equivalent, bound together at the same level of structure by means of a linking device".

[^1]: 9 The following anonymous link provides access to a list of references to the Appendix: https://zenodo.org/record/4636282\#.YFxfLXko_IU. The names of the languages in the sample and information on their genetic affiliation have been adopted from Glottolog (Hammarström et al. 2020).

