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ABSTRACT

Drift appears to be crucial to study the stability properties of Nash equilibria
in a component specifying di®erent out-of-equilibrium behaviour. We propose a new
microeconomic model of drift to be added to the learning process by which agents ¯nd
their way to equilibrium. A key feature of the model is the sensitivity of the noisy agent
to the proportion of agents in his player population playing the same strategy as his
current one. We show that, 1. Perturbed Payo®-Positive and Payo® Monotone selection
dynamics are capable of stabilizing pure non strict Nash equilibria in either singleton or
nonsingleton component of equilibria; 2. The model is relevant to understand the role
of drift in the behaviour observed in the laboratory for the Ultimatum Game and for
predicting outcomes that can be experimentally tested. Hence, the selection dynamics
model perturbed with the proposed drift may be seen as well as a new learning tool to
understand observed behaviour.
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1.Introduction
It is common place to observe that the equilibrium selected by a theory depends

on the manner in which perturbations are handled (see, for example, Selten's
(1975) perfect equilibrium and Myerson's (1978) proper equilibrium ). Binmore
et al.(1995) and Binmore and Samuelson(1999) also emphasize the importance of
perturbations, but they place these in the dynamic process that takes the players
to equilibrium rather than perturbing the game itself (like Selten or Myerson). It
is in modelling such perturbations realistically that the present paper is concerned.

The important work of Binmore and Samuelson (1999),-B & S, from now on-,
studies the limiting behaviour of perturbed selection dynamic systems, but little
insight is given into what perturbations one should expect. The implicit message
of B& S is the need of an explicit microeconomic model of observed human choice
behaviour that originates the drift that perturbs a selection dynamics.

We tackle this issue by relating drift with the choice procedure used by the
so-called

P
agents. The procedure derives explicitly from the similarity theory

developed ¯rst by Tversky (1977) in psychology and later applied to choice theory
by Kahneman and Tversky (1979) and Rubinstein (1988) to explain observed
behavior, such as the one leading to the Allais Paradox. The present paper extends
the similarity based choice theory developed in Aizpurua et al. (1993) and Uriarte
(1999), by building a model valid for a dynamic setting.

We use the same methodology as B & S to study the stability properties
of Nash equilibria specifying di®erent out-of-equilibrium path appearing in con-
nected components of stationary states. Thus, we work with a continuous, de-
terministic selection dynamic model -derived from a biological model of natural
selection. Then, for a better approximation to an underlying stochastic strategy-
adjustment process that governs the players' behaviour, the selection model will
be completed by adding perturbations that incorporates some of the real-life im-
perfections or \anomalies" of the human choice behaviour which are excluded by
the model. These appear in the model as drift. For B & S, the ultimate goal
of including drift is to obtain a more realistic model of how society evolves and
coordinates on some equilibria and not in others.

In the present paper drift is not derived from the behaviour of agents who
misread the game. We assume a society composed of agents who use di®erent
strategy choice procedures. Thus, a di®erent type of agents, the

P
procedural

agents, is added to the population of agents whose behaviour leads to the selection
dynamic model (the SD-agents). Drift arises from the strategy-adjustment pro-
cess governing the behaviour of the

P
agents. In that process, the

P
agents inject

continuously strategies that are not currently played by the population. Thus, the
learning process of the

P
agents will perturb that of the SD¡ agents. Hence, we

shall deal with perturbed selection dynamic systems containing large player pop-
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ulations and each population being composed of two equally large subpopulations
of agent types, the SD¡ agent type and

P
-agent type.

The most important innovation introduced in this paper is a feature observed
in real life decision-making procedures that is excluded by selection dynamic mod-
els. In those models, payo®s are the only indicator considered by the agents when
taking decisions on the space of available strategies. But it is well known that, in
real choice situations, people often imitate successful actions, whereby \success"
is measured by the fraction of the population taking that action. In our model, it
is the

P
-agent who captures that way of learning. It is true that both payo®s and

strategy frequencies are indicators of how well one is doing in a game, but when
social norms and conventions are introduced into the picture, their in°uence on
individuals is that di®erent strategies are a priory perceived di®erently and there-
fore the tendencies to abandon them might di®er. That is, in some games, playing
some strategy might be viewed as more ethical (or, just more according to the
custom) than playing another strategy and therefore, people will be less inclined
to abandon the former than the latter. For this reason, when the choices of an in-
dividual are led by a set of norms, it seems natural to assume that the in°uence of
payo®s on the strategy choices of a

P ¡agent is less important than the in°uence
of the fraction of agents in the same population playing the same strategy.

The analytic results of the present paper are obtained under such extreme
sensitivities of the

P ¡agents to the strategy frequencies that the possible in-
°uence of payo®s on their strategy choices is eliminated. Our model allows drift
to be governed by non-payo® factors only and payo®s would in°uence e®ectively
the motion of the perturbed system through the selection dynamic model. This
model of drift shows that there exists a trade-o® between the stability properties
of the component of non strict Nash equilibria and the sensitivity of drift to either
expected payo®s (as in B & S) or to strategy frequencies. We show that the more
sensitive is drift to strategy frequencies the stronger are the stability properties of
the components. It is worth mentioning that contrary to B & S and to the noise
models of Hopkins (2002), drift in the present model is non inward-pointing. The
reason for this is that if the purpose of the perturbed model is to match observed
behaviour then, inward-pointing drift is problematic.

With respect to B & S's results, extensions are obtained in two directions.
First, we show that, with a suitable choice of the parameters that specify drift,
both perturbed payo®-positive and payo®-monotone selection models may stabi-
lize pure non strict Nash equilibria in either singleton or non singleton component
of equilibria. Thus, contrary to the model of B & S, stability in components of
Nash equilibria specifying out of equilibrium behaviour is achieved independently
of the size of the component. Second, as a model of perturbed learning, the model
seems to be a better description of the interactive learning that actually takes
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place in laboratory environments. It is known that the range of equilibria that
can be obtained with the B & S model does not include those that are observed
in the experiments of Roth and Erev (1995) with the Full Ultimatum Game (see
Binmore et al. (1995)). In the present model, the equilibria are consistent with
the experimental data and, moreover, it is predicted that they are independent
of the observed initial propensities. To our knowledge, the independence of the
outcomes from the initial play in the Ultimatum Game has never been tested.
Hence, we propose an experiment to address this question and test the prediction
of the model. From the experiment we would know how realistic are the assump-
tions built in the theory of the

P
agents and the role of drift in the equilibrium

selection.
The paper is organized as follows. The notation is presented in Section 2. In

Section 3, we present our model of evolutionary drift. In section 4, we show how
individual similarity compatible adaptive choices approximate, in the aggregate,
selection dynamic models such as the adjusted Replicator Dynamics and Weakly
Payo®-Positive dynamics. In section 5 the main analytic results are presented. In
Section 6 we study the perturbed learning implicit in the model in the light of the
observed equilibria of di®erent games.

2. Notation

Let G be a noncooperative ¯nite game in normal form, with K = f1; 2; ::::; ng
as the set of players. We assume that there are n large player-populations. Ran-
domly drawn members of the n player-populations, one from each population,
are repeatedly matched to play the game. For each player k 2 K , let Sk =
f1; 2; ::::;mkg be his ¯nite set of pure strategies, for some integer mk > 2 .
Throughout the paper, we shall refer to agent ki; a member of player-population
k 2 K playing strategy i 2 Sk. Thus, fki will denote the proportion of agents in
player population k 2 K who play strategy i 2 Sk at time t, with fk being the
vector collecting such proportions in population k and f = (f1;:::;fn) the popula-
tion state at time t. Hence, f 2 ¢ = £nk=1¢k; where ¢k is the simplex of mixed
strategies for player k 2 K . Fki = [0; 1] is the space of proportions of agents in
player-population k playing strategy i. Let ¼ki(f) denote the (expected) payo®
to agent ki given the population state f at time t and ¦ki the space of expected
payo®s ¼ki(f ); k 2 K; i 2 Sk and f 2 ¢ (more speci¯cations about payo®s are
given in section 3.2, below). The term ¼k(f ) =

Pmk
i=1 fki¼ki(f) denotes the average

expected payo® to player population k 2 K

Methodology
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We start with a system of continuous, deterministic di®erential equations that
describe how the proportions of the player populations attached to each pure
strategy evolve over time. For B & S, this system is represented by a selection
dynamic model which one can ¯nd in biological models of natural selection. Obvi-
ously, no selection function can take into account the many factors that a®ect the
actual learning process that guide agents' decisions. Therefore, B & S assume that
a better approximation to the underlying stochastic strategy-adjustment process
could be obtained by adding a drift term to the selection dynamics. In the next
section we shall extend the analysis of B & S by adding behavioral features initially
excluded in the selection dynamics and providing microeconomic foundations for
the drift term.

3. Drift.
It is natural to observe di®erent behaviours when di®erent agents face the

same decision problem. For this reason, diversity of tastes and values are central
to economic analysis. Thus, following the economist's approach, to the society
that evolves according to those agents whose behaviour leads to the selection
dynamic model (the SD¡ agents), we shall add a new type of agents, the so-calledP

-procedural agents. We shall assume below that the source of perturbations
to the selection dynamic is the strategy-adjustment process followed by the

P

agents. Thus, the perturbed selection dynamic (studied in section 5) will have
large player-populations and inside each population we assume there are two types
of agents, the SD¡ agents and the

P
agents. Both population types are assumed

to be equally large. We proceed now to describe the features of the
P

agent ki.
It seems natural to assume that the participant in a repeated interaction builds

experience-based conjectures about how good or bad is playing the underlying
game and that he may relate that evaluation to, among other factors, the pro-
portion of individuals who are playing exactly like him. We will assume that in
a given interaction that takes place many times the

P¡ agent ki has, at each
stage, information about those proportions and thinks as follows: \the higher is
the proportion of agents in my player population who are currently using the same
strategy as mine, the less ambiguity ( or insecurity or uncertainty or vagueness)
I should feel about how well I am playing the game". Formally,

Assumption 1
Each

P ¡agent ki is endowed with a di®erentiable function dki in the set

D =
½
dki : Fki ! [0; 1] :dki(0) = 1; dki(1) = 0; and

bfki > efki ) dki( bfki) < dki( efki)

¾
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Given a proportion fki 2 Fki and any dki 2D; dki(fki);measures the ambiguity
(about how well is playing the game at time t) felt by the

P
agent ki when the

proportion of agents in player population k playing strategy i 2 Sk at time t is
fki. The ambiguity gradually decreases when he observes that more and more
agents from his population come to play the same strategy as his: We call the
dki function agent ki0s threshold function. For a di®erent use of the strategy
proportions information, see Young (1993a), (1993b) and (1996).

Remark 1: The Playing Modes.
For any dki; bdki in D; if for all fki 2 (0; 1); dki(fki) < bdki(fki); then we say

that dki is sharper than bdki: Two important cases should be considered: for all
fki 2 (0; 1), the extremely sharp threshold function, d 2 D; for which d(fki) takes
values which are \very close" to 0 (i.e., d(fki) »= 0) and the extremely unsharp
threshold function, d 2 D; for which d(fki) takes values which are \very close" to
1(i:e:; d(fki) »= 1 ). Clearly, for any rki 2 [0; 1] , dki = rkid + (1 ¡ rki)d is in D:
Hence, rki may be used as a measure for the degree of sharpness of agent

P
agent

ki0s threshold function dki . If rki = 1; dki(fki) = d(fki) and we say that
P

agent
ki is in the alert mode of play. When rki = 0; dki(fki) = d(fki); and we say thatP

agent ki is in the absent mode of play.

3.1.Vagueness Modelled by Means of Similarity Relations.
We assume that the level of vagueness felt by the

P
agent ki; about how well

is playing, develops intervals (in both the payo® and strategy frequency spaces
) inside which events are not distinguishable. To model these intervals, we use
the similarity theory introduced by Tversky(1977) and later adapted to decision
theory by Rubinstein(1988),(1998).

In essence, a similarity relation serves to capture the capacity of an individual
to discriminate between events. Correlated similarity relations, a concept intro-
duced by Aizpur¶ua et al.(1993), describe how that discrimination capacity changes
depending on the values of some relevant parameter. For instance, the correlated
similarity relations de¯ned on Fki could capture the idea that the e®orts dedicated
to discriminate on Fki increase if the payo®s at stake, ¼ki(f ); increase. Correlated
similarity relations on ¦ki would formalize the idea that discrimination on ¦ki
increases when the proportion of agents fki increases (i.e. a ¯ner discrimination is
obtained if experience is increased and this is assumed to occur when more agents
from population k come to play strategy i).

We shall see that the dki function serves to de¯ne on ¦ki (correlated) similar-
ities of the di®erence type and the ¸ki function (de¯ned below) is used to de¯ne
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on Fki a similarity of the ratio type.

3.2. The Role of Payo®s.
Assuming that each

P
agent ki is endowed with a dki 2 D and given fki 2

(0; 1), the function ¸ki is de¯ned as follows: for all ¼ki(f ) > dki(fki) > 0

¸ki(¼ki(f ) =
¼ki(f)

¼ki(f) ¡ dki(fki)
> 1(2)

In this de¯nition of ¸ki we assume that all payo®s are strictly positive and do
not exceed 1. Hence, ¦ki = (0; 1]; for all k 2 K and i 2 Sk: If ¼ki(f) 5 dki(fki)
then, ¸ki is not de¯ned and we would then have the degenerate similarity relation,
i.e. a relation for which the similarity interval of any point in ¦ki is the whole
space ¦ki (see Rubinstein (1988)): (Nevertheless, this situation cannot be easily
modelled. When doing the computations, we can avoid the problems caused by
the degenerate case, -i.e. when ¸ki < 0 -, to the dynamics (4) and (6) below, by
adding a constant c > 1 to both numerator and denominator of (2)):

But, in fact, payo®s play some role in the determination of ¸ki functions only
for values of rki di®erent from 0 and 1, that is, when agents are not in one of
the two playing modes. Under the de¯nition (2) of ¸ki; if rki = 1 then, for any
fki 2 (0; 1); ¸ki(¼ki(f )) is nearly 1 for any ¼ki(f) > d(fki): When rki = 0 then,
¸ki(¼ki(f )) is a very large number for any ¼ki(f ) > d(fki). In the latter case, ¸ki(:)
would only be de¯ned for ¼ki(f ) equal to 1. Therefore, both in the alert and the
absent modes, it is the extreme sensitivity of the threshold function dki(:) to fki
that determines the value of the function ¸ki. In other words, expected payo®s
would not matter in these two extreme cases and then, the ¸ki functions would
be de¯ned as in (3) below.

Assumption 2
When the

P
agent ki is in a given playing mode, then, for all ¼ki(f) 2 ¦ki

and fki 2 (0; 1); the ¸ki functions are de¯ned as

¸ki(¼ki(f )) =
1

1 ¡ dki(fki)
> 1(3)

where dki(:) = d(:) if
P

agent ki is playing in the alert mode or dki(:) = d(:)
if he is playing in the absent mode.
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Now all payo®s and the space ¦ki are less restricted than in the previous case.
In this paper, we assume that the ¸ki functions are de¯ned as in (3): Some words
of warning should be said here. Even though the analytic results (of section 5) are
obtained with ¸ki de¯ned as in (3), we think it is worth mentioning the de¯nition
of ¸ki given in (2), because there are real life (or laboratory) situations in which
agents are not exactly in a given playing mode, while in other cases one might
think that they are (see the examples presented in section 6). Further, (2) allows
us to establish a link with the B & S model of drift (explained in note 1 below).
We call ¸ki the

P¡ agent ki0s perception function. These functions play a key
role in the dynamics of drift presented in section 3.4.

3.3. Satis¯cing
P

Preferences

The pair of similarity relations de¯ned by dki and ¸ki; respectively, facilitate
the decision-making to the

P
agent ki by means of the following procedure (the

paper would be clearer and less cryptic if the speci¯c features of the similarity
theory used here are not hidden; hence, we show in Appendix I how the similarity
relations are de¯ned and how a

P
preference on ¦ki £ Fki could be de¯ned from

them): given a pair of vectors (¼ki(f); f ki) and (¼ki(f ); fki) in ¦ki £ Fki; the
P

agent ki proceeds by checking ¯rst whether \ ¼ki(f ) is similar to ¼ki(f )" and \
f ki is similar to fki": If, say, only the ¯rst statement is true and fki > fki , then
(¼ki(f ); fki) is declared to be preferred to (¼ki(f ); fki): In this manner, the

P

agent ki may build a (non-complete and non-transitive)
P

preference relation,
%ki; on ¦ki £ Fki. Thus, for any vector (¼ki(f ); fki) 2 ¦ki £ Fki; attached to
strategy i 2 Sk at time t; the corresponding upper, lower and indi®erence sets can
be de¯ned (see Figure 1; to understand how this ¯gure is built, we have assumed
that dki 6= d; d and ¸ki is de¯ned as in (3) ). The preferred set would representP ¡agent ki0s aspiration set at time t. By de¯nition, as (¼ki(f ); fki) changes the
corresponding aspiration set, obviously, changes.

[Place here Figure 1]

We assume that a
P

agent ki is a
P

preference satis¯cer, in the sense that
he chooses a strategy just to minimize the distance from (¼ki(f); fki) to his as-
piration set. But this amounts to minimize the uncertainty, dki(fki); felt about
how well is playing the game. That is, dki(fki) determines both the size of the
similarity interval on ¦ki and, through ¸ki; the size of the interval on Fki. And
both intervals determine the thickness of the indi®erence set (see Appendix I
and Figure 1). The smaller is the value of ¸ki; the thinner is the indi®erence
set ski [(¼ki(f); fki)] ;¡ the dark area of Figure 1- ,and therefore, the smaller is
the distance to the aspiration: Hence, the function ¸ki could be thought of as an
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indicator of the degree of satisfaction of
P ¡ agent ki with the strategy he is

currently using. The smaller the value of ¸ki; the happiest would feel the agent
with his current strategy. Then, no matter what the values of ¼ki(f ) and fki are,
the indi®erence set of a

P
agent ki in the alert mode would have almost an empty

interior and so (¼ki(f); fki) is \near" the agent's aspiration set. Then, it could be
said that he is \very satis¯ed" with his current strategy. In the other extreme,
the indi®erence set of someone in the absent mode would cover almost the entire
space ¦ki £ Fki and the agent could be said to be \highly dissatis¯ed" with his
current strategy.

3.4. The Dynamic of Drift
We take the ratio 1

ķi
as the probability that

P
agent ki will retain his current

strategy i 2 Sk in the next period ; 1¡ 1
¸ki

will then be the probability of switching
to a di®erent strategy in Sk.

Assumption 3: \The Mistake".
When a

P
agent ki is dissatis¯ed with his current strategy, he will choose the

mk¡ 1 available strategies j 2 Sk; j 6= i; with the same probability 1
mk¡1 (1¡ 1

¸ki
).

Thus, the
P

agents follow the rule \try every other action if you feel dissat-
is¯ed with your current strategy". We call it \mistake" just to keep using the
same words of B&S; but, of course, we do not think it is a mistake to behave
that way. Assumption 3 is introduced with the only purpose of perturbing the
SD system by injecting strategies that are not currently played. Since we are
completing a selection model that excludes some features of human choice be-
haviour, we think that there are some arguments that may justify the use of this
assumption. In a selection dynamic model, extinct strategies remain extinct for-
ever. This assumption should be used with care in non biological contexts. In
real choice situations, there are agents who, given the uncertainties they face, give
a chance not only to technologies that have survived the evolutionary pressures
(i.e. the market pressures) but to all the technologies they know. They may even
update \recipes" used in the past. This might explain, for instance, the existence
of agricultural products grown in mass production farms and those produced in
a smaller scale in \bio-farms" (where no pesticides and hormones are used) and
industrial products obtained either by means of robotized technologies or with
\hand made" technologies.

We assume that when an agent switches strategy instantly learns, by imita-
tion or education, the playing mode of the newly adopted strategy. Inside the

P

agents of population k, strategy i 2 Sk = f1; 2; :::;mkg will be played \mistak-
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enly" by those dissatis¯ed
P

agents kj , j 6= i; coming from the rest of mk ¡ 1
strategies (the in°ow), 1

mk¡1
Pmk
j 6=i fkj(1 ¡ 1

¸kj
). The out°ow is the proportion of

dissatis¯ed
P

agents ki who abandon the strategy and \mistakenly" choose with
equal probability themk¡1 strategies di®erent to i, fki(1¡ 1

¸ki
):We shall assume

that the drift term or the \mistaken" dynamics added to the ki ¡ th selection
dynamics equation is just the di®erence between these two °ows originated by the
\mistake" in which incur dissatis¯ed

P
agents. Hence, those who retain their

current strategy are not included in the drift term.

1
mk ¡ 1

mkX

j 6=i
fkj(1¡ 1

¸kj
) ¡ fki(1 ¡ 1

¸ki
)

=
1

mk ¡ 1

mkX

j 6=i
fkj(1¡ 1

¸kj
) + fki

1
¸ki

¡ fki

= [µki(f) ¡ fki]

where µki(f ) = 1
mk¡1

Pmk
j 6=i fkj(1 ¡ 1

¸kj
) + fki 1

ķi
. If each

P
agent ki; in every

k 2 K = f1; 2; ::::; ng ; is playing each strategy i 2 Sk under some playing mode
then, by (3), the drift term is not sensitive to expected payo®s and will take the
following form1

[µki(f) ¡ fki] =
1

mk ¡ 1

mkX

j 6=i
fkjdkj(fkj) ¡ fkidki(fki)(4)

Remark 2:
The limiting values of drift are modelled as follows. When a

P
agent ki is in

the alert mode, the probability of switching, 1 ¡ 1
ķi

, will always be very small
and so the drift he will introduce will be negligible. We may say that he is, either
by experience or due to some other reasons (such as education, the ethical values
held by the agent and the social norms he honors ), \loyal" to his current strategy
i 2 Sk . In the absent mode an agent feels a high degree of uncertainty about the
righteousness of his play and therefore will feel very dissatis¯ed with his current
strategy. Hence, the probability 1 ¡ 1

¸ki
, will be large because ¸ki is very large;

therefore the drift he will introduce will be very high:

10



4. From Similarity Compatible Choices to Selection Dynamic Mod-
els.

So far, we have used similarity theory to build a model of drift. Now we show
how one can build a selection dynamic model ( SD ) from agents whose choices
are based on a pair of similarity relations. Assume that there are k large player
populations. Inside each population, there is only one type of agents, the SD¡
ki agents, who are described below ( and speci¯cally named as the © agent ki ).
Members of the k populations chosen at random - one member from each player
population- are repeatedly matched to play the noncooperative ¯nite game G:We
assume that every SD¡ki agent has always a constant level of uncertainty about
how well is playing the game. Hence,

Assumption 4
For all k 2 K and i 2 Sk, the function dki : Fki ! [0; 1] is de¯ned as.
dki(fki) = ²k; for all fki 2 Fki = [0; 1]; where ²k 2 (0; 1):

As before, we assume that the level of uncertainty ²k felt by agent SD¡ ki
generates similarity intervals in both ¦ki and Fki, which are described by means of
similarity relations. Assumption 4 will allow us to introduce a similarity relation
of the di®erence type on ¦ki. The next function,- called perception function-,
de¯ned for all ¼ki > ²k > 0 as

Áki(¼ki(f)) =
¼ki(f )

¼ki(f) ¡ ²k
> 1

We assume now that all payo®s are strictly positive and do not exceed 1. Since ²k
is ¯xed, we might restrict ¼ki to the set ¦ki = (²k; 1]: The function Áki serves to
build ratio-type correlated similarity relations on Fki ( both similarity relations are
built very much like those described in Appendix 1 for the

P
agents. For speci¯c

details that distinguish this case from the similarities used to build drift, see
Aizpur¶ua et al.(1993)). The similarities will then be used to build a preference,-
now a © procedural preference-, on ¦ki £ Fki: As in the behaviour of the

P

preference holders, at each point in time, a © agent ki 's degree of satisfaction
with strategy i depends on the distance from the vector (¼ki(f); fki); attached to
strategy i 2 Sk at time t; and its corresponding preferred (or aspiration) set. That
distance depends on the thickness of the indi®erence set, »ki [(¼ki(f ); fki)];which
in turn depends on both "k and Áki(¼ki(f)): Assuming di®erentiability of Áki
with respect ¼ki(t)); we have that @Áki(¼ki(f ))@¼ki(f )

< 0: Thus, the higher is ¼ki(f) the
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smaller is Áki(¼ki(f)) and the thinner is the indi®erence set. Hence, we assume
that at each period of time, every © agent ki chooses a strategy in Sk to reduce
the distance from ((¼ki(f); fki) to its corresponding aspiration (or preferred) set.

Let us consider now the ratio (for notational simplicity we write Áki(f ) instead
of Áki(¼ki(f )));

Áki(f) ¡ 1
§mk
i=1
Áki(f)

=
Ák(f) ¡ 1
Ák(f )

where §mk
i=1
Áki(f ) = Ák(f ); is the total perception in player population k at t.

As ¼ki(f ) increases (decreases) the ratio Áki(f )¡1Ák(f)
decreases (increases). Hence, we

may interpret Áki(f)¡1Ák(f )
(1¡ Áki(f )¡1Ák(f)

) as a measure of the proportion of ki strategists
who feel dissatis¯ed (satis¯ed) with strategy i. Assume that time is divided in
discrete periods of length ¿ and that (¿ ) 1 ¡ ¿ is the probability that each
agent (does not) retain(s) his current strategy. Then ¿ (Ák(f(t))¡1)Ák (f (t))

fki(t) denotes the
proportion of ki strategists who will choose a new strategy at time t (the out°ow).
If a particular strategy is chosen with a probability that is equal to the proportion
of agents playing that strategy, then ¿

Pmk
j=1

(Ák(f (t))¡1)
Ák(f (t))

fkjfki = ¿ (Ák(f (t))¡1)Ák(f (t))
fki(t)

denotes the proportion of agents who choose strategy i (the in°ow). (where
Ák(f (t)) =

Pmk
j=1 Ákj(f (t))fkj(t) is the average perception in player population k

at time t ). Therefore

fki(t+ ¿) = fki(t) ¡ ¿ [Áki(f (t))¡ 1]
Ák(f(t))

fki(t) + ¿
£
Ák(f (t)) ¡ 1

¤

Ák(f(t))
fki(t):

As ¿ ! 0; in the limit we have

²
fki= fki

·
Ák(f )¡ Áki(f )
Ák(f)

¸
(5)

Proposition 1
(a) If for all player position k 2 K = f1; 2; :::; ng ; the strategy set Sk consists

of two elements, i.e. if mk = 2 then, equation (5) is just the standard Replicator
Dynamics (RD) multiplied by a positive function.
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(b) Ifmk > 2; then, from (5) we obtain a selection dynamics that approximates
the RD, but preserves only the positive sign of the RD, i.e. is a Weakly Payo®-
Positive selection dynamics (WP-PD).

Proof: In the Appendix II. ¥

5. Analysis.
It seems that the previous result tells us that we should study selection dy-

namic models, ranging from the Payo®-Positive ones to the wider class of Weakly
Payo®-Positive dynamics. To this end, let, as before, K = f1; 2; ::::; ng be the set
of players and for each player k 2 K , let Sk = f1; 2; ::::;mkg be his ¯nite set of
pure strategies, for some integer mk > 2. We start with the RD; results will not
be changed if we consider the standard RD. The resulting perturbed determinis-
tic RD is (note that the expected payo®s of the selection dynamic model are not
normalized)

²
fki= fki (¼ki(f) ¡ ¼k(f)) + [µki(f) ¡ fki](6)

As it was mentioned above, (6) is derived by the joint behaviour of the SD ¡ ki
agents and the

P ¡ki agents. Notice that for each player-population k 2 K;
Pmk
i=1[µki(f)¡ fki] = 0 and so

Pmk
i=1

²
fki=

Pmk
i=1 fki (¼ki(f )¡ ¼k(f))+

Pmk
i=1 [µki(f)¡

fki] = 0.
Let f¤ be a pure strategy equilibrium of the general game G in normal form.

We say that f ¤ is a Nash equilibrium in the alert mode when for every i¤ 2 f ¤ and
every player population k 2 f1; 2; :::; ng ; the P

agents ki¤0s threshold function
dki¤ = d; while for the rest of

P
agents kj0s the functions dkj = d , j 6= i¤: Thus,

a pure-strategy Nash equilibrium f ¤ is in alert mode when all strategies in that
equilibrium pro¯le are played by

P
agents in the alert mode while all strategies

not in f ¤ are played by
P

agents in the absent mode.

Proposition 2
Let f ¤ be pure but not a strict Nash equilibrium in the alert mode . Then, f¤

is stabilized in the Replicator Dynamics perturbed by the drift term (4).
Proof: In Appendix II. ¥.

Let the growth-rate function g that assigns to each population state f; player
population k and pure strategy i available to k the growth rate gki(f ) of the
population share fki . Let g be a Payo® Positive growth-rate function (i.e. for
all f 2 ¢; player population k 2 K and pure strategies i 2 Sk; sgn[ gki(f)] ,
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sgn[¼ki(f )¡ ¼k(f)] ). The RD is an example of such g: By adding the drift term
(4) we get the perturbed equation

²
fki= gki(f)fki + [µki(f) ¡ fki](7)

The next corollary is immediate.
Corollary 1
Proposition 2 is valid for any Payo® Positive g:¥

Consider now the class of Payo® Monotonic growth-rate functions (i.e. for all
f 2 ¢; player population k 2 K and pure strategies i; j 2 Sk; ¼ki(f) >.¼kj(f) ,
gki(f ) > gkj(f ) ).

Proposition 3
Let f¤ be pure but not a strict Nash equilibrium in the alert mode. Then, f¤

is stabilized in any Payo® Monotonic selection dynamics perturbed by the drift
term (4).

Proof: In Appendix II. ¥

Now, what about the class of Weakly Payo® Positive Dynamics?. Here we face
the problem that when in a player population, say k 2 K; everyone earns the same
payo®, apart from regularity, weak payo® positivity imposes no restrictions on gk.
Then, inside population k; we might have two opposed general drifts: one caused
by the selection dynamics itself, driving the population toward some pure strategy
(see Weibull(1995), Example 5.7) and the other caused by the drift term, sending
the population toward another pure strategy, and both strategies belonging to
di®erent Nash equilibria. The limiting result will depend on the relative power
of both drifts. Hence, nothing general can be established in this class of selection
dynamics.

6. Perturbed Learning (or Learning to Be Imperfect) and Predic-
tions

The speci¯cation of the drift term [µki(f )¡fki] will change from game to game.
The changes will be captured by the playing modes attached to each strategy
in each population. Given a game, in particular, a game with multiple Nash
equilibria, the choice of a speci¯cation of drift must be guided, in our opinion, by
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the data obtained in the laboratory, as well as from the knowledge of society's
modal tastes and values. For concreteness, the selection dynamics of this section
is assumed to be the standard RD.

6.1. Example 1( Outcomes do not depend on the size of the Nash
Component)

Let us consider a game having a component with empty interior, such as the
one presented by B & S, reproduced here in Figure 2. In this game, (L;U ) is an
equilibrium in weakly dominated strategies (a non strict-path equilibrium in B &
S words) that cannot be stabilized with the model of drift of B & S because there
is no possibility for inward- pointing drift to be compatible with this equilibrium.
If we assume that agents playing L and U are in the alert mode and those playing
R and D are in the absent mode then, it can be veri¯ed that (L;U) is a local
asymptotic attractor for the perturbed system (6) (the formal proof is similar to
that of Proposition 2). Figure 2 is obtained from a computer simulation2: Figure
2a corresponds to the phase diagram of the unperturbed replicator dynamics and
Figure 2b depicts the phase diagram of drift. Figure 2c depicts the perturbed
replicator dynamics with two asymptotic attractors, the subgame-perfect equilib-
rium (R;D) and (L;U ). The basin of attraction of (L;U ) will increase in size
relative to that of (R;D) if the sharpness of dL and dU were higher relative to
those of dR and dD:

[Place here Figure 2]

Similarly, in the version of the Dalek Game studied by B & S (see Figure 3), the
non subgame-perfect equilibrium (T;R) will appear as a local asymptotic attractor
whenever these strategies are played in the alert mode and the strategies of the
subgame-perfect equilibrium (M;L ) are played in the absent mode (note that
these playing modes might make sense when the game is interpreted as how to
divide 12 units of surplus). Thus, contrary to the B&S model, predictions with our
model are based on arguments that do not depend on the size of the component.

We have established:

Corollary 2

Proposition 2 shows that the stability power of the present model of drift does
not depend on the size of the Nash Component. ¥

[Place here Figure 3]
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In the next two examples we are going to present the drift speci¯cations needed
to stabilize every Nash equilibrium, whether subgame-perfect or not, in two games
of di®erent economic nature, but equal structure: the Ultimatum Minigame and
the Chain-Store Game. The sections below could be called \learning to be imper-
fect", as they are, in a sense, a di®erent answer to the issues dealt by Binmore et
al.(1995).

( y) Y N
( x) H 2,2 2 ,2

L 3,1 0,0

Figure 4. The Ultimatum Minigame or the Chain-Store Game.

6.2. Example 3: The Ultimatum Minigame (UM)
Let us suppose a simpli¯ed version of the Ultimatum Game (see Binmore et

al. (1995)) . Figure 4 describes the game in strategic form; the amount to be
divided is 4 and x and y are the probabilities of playing H and Y, respectively.
The game has a unique Subgame-perfect equilibrium (0, 1) and a component of
Nash equilibria, denoted NC, the segment joining (1, 0) and (1, 2/3). Let ¸H ,
¸L, ¸Y , ¸N ; dH ; dL; dY and dN denote the perception and threshold functions ofP

agents playing strategy High, Low, Yes and No, respectively.
The experimental ¯ndings about the Ultimatum Game are very robust ( see

also the ¯ndings of GÄuth et al.(2001) though) and show that people share a
common notion about what is a fair, reasonable or acceptable o®er and that
their play is largely guided by those notions. Hence, for the UM, there is only one
speci¯cation of drift that is compatible with the experimental ¯ndings; that is, the
drift derived when we assume that

P¡ proposers playing H and
P¡ responders

playing N are in the alert mode while the rest of
P¡ agents in both populations

are in the absent mode. In other words, agents in both populations must be loyal to
the strategies that allow a coordination in the equal-split equilibrium and unloyal
to those strategies that do not allow that outcome. Proposition 4, Case I, below,
shows that this particular speci¯cation of the drift term, and no other, stabilizes
the point x = 1 and y = 0 of the Nash component. Further, even if initially
there is a very small percentage of

P
agents playing H and N in their respective

populations in the alert mode and the rest of agents in both populations are in
the absent mode, the theorem shows that (1; 0) will be the outcome. In Binmore
et al. (1995), outcomes are locally asymptotic and obtained as approximations to
an element in the component NC:
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The perturbed system (6) with drift term (4) for the UM is the following (time
index suppressed)

¢x = x(1¡ x)(2 ¡ 3y)¡ xdH(x) + (1 ¡ x)dL(1¡ x)(8)
¢
y = y(1 ¡ y)(1¡ x) ¡ ydY (y) + (1 ¡ y)dN(1¡ y)(9)

6.3. Example 4: The Chain-Store Game (CH-S)
Selten's Chain-Store Game has the same structure as the UM game. The two

games describe di®erent economic situations and therefore the drift term need
not be the same. We shall assume, for simplicity, that both the UM and CH-S
games have the payo®s of Figure 4. Hence, the UM game would correspond to
the (only) Weak Monopolist Game of Jung et al.(1994) in which the incumbent
(Monopolist) would prefer to share the market if entry occurred. We may conjec-
ture two di®erent situations modelled by two di®erent speci¯cations of drift. For
instance, let us consider the case when potential entrant

P
agents playing NE

(Not Enter) are in the alert mode, those playing E (Enter) are in the absent mode
and all

P
incumbent agents, i.e. those playing Y (Yield) and F (Fight), are in

the absent mode or almost in that mode ( change in Figure 2, H and L for NE
and E, respectively; F substitutes N ). Thus,

P
incumbents think to know well

the trade, overestimate their power and do not worry; while
P

entrants calculate
well their moves. Let x denote the proportion of potential entrants playing NE
and y the proportion of incumbents playing Y: Then, in Proposition 4, Case II,
below, we get (1; 1=2) as a global asymptotic attractor. Note that this result is
related to Proposition 3 of Binmore et al. (1995), where, assuming endogenous
drift and uniform mistake probabilities for both populations, they found that the
asymptotic attractors are (0,1), the subgame-perfect equilibrium, and (1, 1/2).

The next situation would approach the case of experienced players with su±-
cient time and learning with no experimenter-induced strong monopolist of Jung
et al.(1994). The appropriate speci¯cation of drift for this situation could be when
both potential entrants playing E and incumbents playing Y are in the alert mode,
while the rest of agents in both populations are in the absent mode. Then, in
Case III of Proposition 4, we show that the subgame-perfect equilibrium is a
global asymptotic attractor (and elements of NC are not local attactors). The
next result is a full stability study of these two games.

Proposition 4
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Case I. Suppose in the UM Game that the
P
H agents (i.e.

P
proposers

o®ering H) are in the alert mode ( so dH = d ) and the
P
L agents are in the

absent mode ( dL = d ). Then, if responders playing Y are in the absent mode
( dY = d ) and those playing N are in the alert mode ( dN = d ), the only
asymptotic attractor is the equal-split Nash equilibrium (1; 0).

Case II. Suppose in the CH-S Game that the
P
NE agents are in the alert

mode ,( dNE = d) and the
P
E agents are in the absent mode (dE = d ). Then,

if both
P

agents Y and F are almost in the absent mode and dY (:) = dF (:), the
only asymptotic attractor is (1; 1=2).

Case III. Suppose in the CH-S Game that the
P
NE agents are in the absent

mode (so dNE = d ) and the
P
E agents are in the alert mode ( dE = d ). Then

if dY = d and dF = d, the only asymptotic attractor is the subgame-perfect
equilibrium (0; 1):

Proof : In Appendix II. ¥

Corollary 3
Any Nash equilibrium in the interior of NC can be stabilized.

Proof. This can be accomplished by a combination of some strategies in the
alert mode and others with threshold functions displaying di®erent levels of low
sensitivity to the corresponding strategy frequency, as in Case II of Proposition
4. ¥

\Be magnanimous and learn to say no". If someone' s behaviour is guided
by this norm, he would play High (in the role of proposer) and No (in the role
of responder) in the alert mode. Proposition 2, Case I , may serve to relate the
present work with that of Abbink et al.(2001). We may say, in their words, that
this is a fairness motivated person, loyal to the strategy that would implement
the equal split equilibrium, so that,

P
responders playing No are \programmed"

to punish unfair o®ers. Suppose the initial play is near the subgame perfect equi-
librium, (0; 1); where there is only a small percentage of highly fairness-motivatedP

agents in both player populations. The theorem shows that both
P

proposers
and responders learn to coordinate in the non perfect equilibrium (1; 0) where
they all play H and N; respectively, in the alert mode. Hence, the theorem pre-
dicts learning in both noisy player populations, whereas in Abbink et al.(2001),
there is only evidence for ¯rst movers learning.

Numerical Example:the drift terms needed to stabilize equilibria in
the Nash Component NC of the UM and CH-S games.
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As in Example 1, consider the subclass dki(fki) = (1¡ fki)ni , nki 2 (0;1) of
threshold functions in D. In this set, the degree of sharpness of dki(fki) increases
with the value of nki: Suppose we want to stabilize the points (1; 0:6) and (1; 0:3);
both in the component NC of the UM or Ch-S Game. If we set x = 1 in the
system (5)-(6) and make

²y= 0; we get, ( in the following, we use the notation for
the Ultimatum Minigame; for the Chain-Store Game, we would write dF instead
of dN )

dY (y)
dN(1¡ y) =

1 ¡ y
y

When y = 0:6; we know from Proposition 4 that above (1; 1=2); we must have
1 > rY > rN (but rY cannot be very high). Substituting y by its value and taking
logarithms in the above expression, we get, among many others, the following
three pairs of values for nY and nN - determining the sharpness or sensitivity
of dY and dN to strategy frequencies y and 1¡ y; respectively- compatible with
the drift needed to stabilize (1; 0:6) 2 NC : (nY = 0.72126, nN = 0.5), (0.554,
0.2) and (0.4481, 0.01), respectively. If y = 0:3; Proposition 4 says that below
(1; 1=2); rY < rN < 1 ; we get the following three pairs values for nY and nN
compatible with the drift that stabilizes (1; 0:3) 2 NC :(0.6624, 0.9), (0.3249,
0.8) and (0.1561, 0.75), respectively.

In Figure 5 it is depicted the graph of the function that relates rY with rN .
Above the diagonal D, it is indicated the pairs of ( rY ; rN) needed to stabilize the
equilibria in the subset [(1,0), (1,1/2)] of the component NC =[(1, 0), (1, 2/3)].
When ( rY ; rN) = ( 0; 1); Proposition 4 shows that (H;N) is a global asymptotic
attractor and when the graph cuts D at low levels of rY = rN ; then, (1; 1=2) is the
global asymptotic attractor. The graph below and near D are the pairs ( rY ; rN)
needed to stabilize the rest of the equilibria in NC: When ( rY ; rN) = ( 1; 0);
then , under the assumptions of Case III , we would obtain the subgame-perfect
equilibrium (L; Y ) as a global attractor. ¥

[Place here Figure 5 ]

6.4. Example 5:The Full Ultimatum Game.
To test the role of drift in the selection of outcomes observed in the laboratory

we propose an experiment for the Full Ultimatum Game. We have seen that the
model allows to establish a clear relation between drift and the modal tastes and
values in a society or, in a smaller scale, between drift and the observed behaviour
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in speci¯c environments. This relation serves to obtain the information needed
to specify the drift term (4) by determining the playing mode of each strategy.
Once this is accomplished, the model may make predictions or at least replicate
the learning that takes place, if any, in the laboratory.

In Roth et al. (1991) and Roth and Erev (1995) it is reported an experiment
with the Ultimatum Game3 carried out in four countries: Israel, Japan, USA
and Slovenia. It is observed that the norms that are commonly used in real-life
bargaining situations prompt individuals to initially allocate a signi¯cant share of
the surplus to the responders.

We shall refer in this section to a computer simulation for this game carried
out with system (6). A more complete study of this sort can be found in Uriarte
(2000), where it is shown under which conditions the model converges to the
observed equilibria in each of the four countries4. As argued by Roth and Erev
(1995), players' initial propensities can have a long-term in°uence in the players
learning. It can said too that the initial propensities in the Ultimatum Game tend
to be located in the basin of attraction of the observed equilibria: that is, in the
basin of f5g for Slovenia and USA and f6g for Israel and Japan. Hence, both the
initial propensities and the ¯nal outcomes are the data that should be predicted
by the theory. Let us refer ¯rst to the B & S theory.

In Binmore et al. (1995) it is said that the range of potential equilibria ob-
tained with the B & S model does not include, in general, the \fair outcome" in
the Full Ultimatum Game . It was reported there (see p.68) that increasing the
mistake probabilities attached to the \fair" o®er has little e®ect on the results of
the calculations. Furthermore, even though the observed initial propensities are
in the neighborhood of the ¯nal outcomes of this game, simulations show that in
the B & S model the solution trajectories starting from those initial propensities
can lead, in many cases, towards the subgame-perfect equilibrium or equilibria
close to it. Hence, we may say that the predictions derived with the B & S model
are somehow inconsistent with the experimental results5.

We mentioned above that the degree of sharpness of dki could be use to model
how sensitive is agent ki to society's norms and conventions which are encoded
in the strategy frequencies fki. Thus, dki would be a kind of agent ki0s \initial
cultural endowment", shaped by his/her life experience as a member of a given
society and capturing part of the cultural background that would bring to the
laboratory. From Proposition 2, we know how to introduce the drift needed to
stabilize equilibria that are not subgame-perfect. So, let Pki denote that the

P

agents ki playing strategy i are in the alert mode and that the rest of strategies j 6=
i for population k are played by agents in the absent mode. For the simulations,
we shall suppose that the \initial cultural endowment" in Japan and Israel is
given by fPI6; PII6g and in Slovenia and USA fPI5; PII5g ; where k = I stands for
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proposers and k = II for responders6:
Under these conditions, the computations with the Full Ultimatum Game

show that the observed laboratory equilibria, f5g in USA and Slovenia and f6g
in Israel and Japan, appear as global asymptotic attractors5. Something similar
happened in Proposition 4 with the Ultimatum Minigame. This means that, con-
trary to what happens to the reinforcement learning model, in the present model
of perturbed learning the experimental outcomes can be obtained independently
of the initial play . Hence, to simulate the path to the observed outcomes in
the ultimatum game, the model does not need to take the observed initial play
(the initial propensities of Roth and Erev (1995)) as given. The present model
of drift predicts that the observed laboratory data, i.e. both the initial propen-
sities and the equilibria, are due to a rather high sensitivity of individuals to
fairness-oriented norms. Society's inequality-averse modal values will motivate a
behaviour in which the \fair" strategies will be played by the agents using their
analytical and perceptual resources at their highest level, i.e. in the alert mode.

To our knowledge, the independence of the experimental outcomes in the Ulti-
matum Game from the initial propensities has not been tested yet. Therefore we
propose the following experiment to address this question and have more informa-
tion about the role of drift in the outcome. A group of subjects is anonymously
matched in a way so that their play is conditioned to coordinate on equilibria
close to the subgame-perfect equilibrium; another group is conditioned to play
equilibria with high payo®s for responders. This could be done, for instance, by
anonymously matching individual proposers against dummy agents (or comput-
ers) programmed to play like \soft" responders who would accept any positive
amount. Responders, on the other hand, would be matched against dummy or
computerized \soft" proposers. After few rounds, and due to the softness of the
opponents, the initial propensities of the real subjects, that are usually seen in
this game, would have disappeared; the fairness oriented ethical preferences would
have been temporarily \forgotten" by both proposers and responders and their
egoistic preferences will be maximized. Without any interruption of the game, the
dummy or computerized proposers and responders are eliminated and the subjects
are matched against each other7. Our prediction is that if we let them play enough
rounds, the behaviour oriented to get reasonable settlements for both parties will
reappear generating a strong drift which will in°uence the learning process and
push the system to the outcomes observed in the mentioned experiments.

7. Conclusions
Clearly, what a regular selection dynamic model, -payo®-monotonic, payo®-

positive or weakly payo®-positive-, excludes is a type of agent whose strategy
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adjustment process depends on non-payo®s variables, such as the proportion of
agents in his player population playing the same strategy as his current one. We
have shown that the inclusion of a choice behaviour sensitive to those proportions,
under the form of drift, signi¯cantly changes the stability power of a payo® led
dynamics.

In fact, what we have done is to complete a (biologically based) selection
model by adding new type of agents whose behaviour could be in°uenced only
by social norms and conventions. The results are shown to match those observed
in the laboratory and mitigate somehow the Cheung and Friedman 's (1998)
disappointing tests with the (unperturbed) RD8. We deduce that the failure of
Binmore and Samuelson¶s (1995) drift model to match the observed data is due
to their dependence on payo®s and to being inward pointing.

There are things to be done in future works. First, we should endogenize
the playing modes, whether alert or absent, through a transition from one to the
other which could be either continuous or not. In other words, we should relate
the playing modes with experience. Second, we should carry out experiments to
test the predictions mentioned in the last section and, in particular, to know in
which sense the knowledge of how many subjects are playing like me in°uences
my decisions.

8. Notes
1. We can compare the present model of drift with that of Binmore and Samuelson

's (1999). Suppose that the
P

agent ki is neither in the alert nor in the absent mode
and that ¸ki is de¯ned as in (2). Given dki; the drift introduced by this agent depends
on the value of ¸ki at (¼ki(f ); fki).; then, given fki and dki

@¸ki
@¼ki(f)

=
¡dki(fki)

(¼ki(f) ¡ dki(fki))2
< 0

This means that if the expected payo® at stake increases, perception increases and,
as a consequence, the drift introduced by

P
agent ki will be reduced. This is the

shrinking property of the correlated similarity relation de¯ned by ¸ki onFki (see Uriarte
(1999)): This property has some similarity with B & S's assumption of a decreasing and
Lipschitz continuous drift function on expected payo® di®erences. This property would
also be satis¯ed had we de¯ned the functions ¸ki as

¸ki(¤k(f) =
¤k(f)

¤k(f) ¡ dki(fki)
where ¤k(f)(> dki(fki)) is the di®erence between the maximum and the minimum
of the expected payo®s attached to player k0s strategies given the current strategy
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frequencies in the opposing populations. Hence, perception increases with B & S 's
measure of potential cost of making a mistake, ¤k(f): As noted above, the role of
payo®s in the determination of the level of drift depends on the parameter rki. If
rki = 1 , dki = d and the derivative @¸ki

@¼ki(f )
is almost zero; if rki = 0, dki = d and ¸ki

will be de¯ned only when ¼ki(t) = 1 and so we cannot take derivatives. Hence, As rki
! 0, dki becomes less sensitive to fki and so ¸ki will be more sensitive to expected
payo®s . Thus, we would approach a model of drift which would be more sensitive to
expected payo®s ¼ki(f) (or to potential costs ¤k(f ) ) and less sensitive to the strategy
proportion fki . In other words, we would approach the model of drift proposed by B
& S.

The µki of the present paper can be said to be
P¡agent ki's \adaptive mistake

probability": Mistake probabilities are ¯xed in the B & S model and agents may avoid
the error by increasing their cognitive e®orts when the potential cost of making the
mistake increases. Instead, the approach taken here seems to be more natural, as
agents can learn from their \mistakes", by adjusting them. Endogenous µki 's means
that drift is not inward-pointing.

2. To run the simulations, we shall use the subclass of threshold functions in the set
D; dki(fki) = (1¡fki)nki ; with nki 2 (0;1) and i 2 Sk . This subclass is large enough
for the purpose of computations. When nki ! 0 , the degree of sharpness diminishes.
For the simulations, we consider that the

P
agent ki is playing strategy i in the alert

mode when dki(fki) = (1¡fki)500; he would be in the absent mode when 0 < nki · 1;
say dki(fki) = (1 ¡ fki)10¡8 . As in Binmore et al. (1995), we approach equation
(6) by means of the equation fki(t + ¿ ) ¡ fki(t) = ¿ fki(t)(¼ki(f)(t) ¡ ¼ki(f)(t)) +
¿ (µki(f )(t) ¡ fki(t)) , where the step size ¿ = 0:01. We shall consider, like Binmore
et al.(1995), that the system has converged on a point when the ¯rst 15 decimals are
unchanging.

3. The experiment consisted of dividing an amount of money and the interpretation
of the Ultimatum Game is that Player I is proposing to Player II what he is demanding
for himself; the second player's strategies are maximal acceptable demands.

4. Of course, we do not think that the issue is reduced to a mere quantitative
matching of the theoretical results with the laboratory data. What is relevant here is
the motivation of the perturbations that push the system to converge to the observed
equilibrium in a given country as being something closely related to, say, some cultural
characteristic that distinguishes the country that is being examined.

5. The model developed in Binmore et al.(1995) requires a mistake probability of
0.95 attached to the equilibrium demand reached in each country and the remaining
probabilities being equal to one another. Under this speci¯cation of drift and for some
values of their ® and ¯ parameters, only starting from those observed initial propensities
or from a neighborhood of them, the model may match the observed equilibria. The
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remaining problems are the motivations for this speci¯cation of drift that allows the
quantitative matching and the point made in the above note 3. A more basic issue
is that in the Binmore et al. (1995) model of drift agents' mistakes depend on their
capability to compute the potential cost - measured in expected payo®s- of making a
mistake.

6. There are other combinations leading to the same result, but as we put in the
alert mode more and more strategies, in particular, those in the vicinity of 5 and 6 , we
may simulate the path to the observed equilibria, but their basin will shrink.

7. After each round, every subject should be given information about the proportion
fki of people in his population who have used the same strategy as his current one.

8. In the Matching Pennies Game, -just to mention the behaviour of the model
with respect to an interior Nash equilibrium-, when all the

P¡ agents in both player
populations are in the absent mode , the perturbed system (6) converges to the Nash
equilibrium (1=2; 1=2):

9. Appendix I:
9.1. Similarity relations.
Given a pair of vectors, (¼ki(f); f ki) and (¼ki(f); fki); in ¦ki £ Fki; with fki ,

fki 2 (0; 1); we de¯ne similarity relations on ¦ki and Fki as follows.
(i) On the space ¦ki we de¯ne correlated similarity relations of the di®er-

ence type: given fki; ¼ki(f ) is said to be similar to ¼ki(f); ( formally written
as ¼ki(f )S¦ki(fki)¼ki(f) ), if and only if

¯̄
¼ki(f) ¡ ¼ki(f)

¯̄
5 dki(fki) , where j:j

stands for absolute value. Note that dki(fki); the uncertainty or ambiguity level
felt by

P
agent ki, becomes the threshold level in the de¯nition of this similarity

relation.
(ii) on Fki we de¯ne (Rubinstein-like) ratio-type similarity relations: fki is

similar to fki;(formally, f kiSFkifki ), if and only if 1=¸ki 5 fki=fki 5 ¸ki ( where
¸ki is de¯ned as in (3)).

9.2. The
P ¡ Procedural Preference on ¦ki £ Fki

We shall assume that each
P

agent ki compares pairs of alternatives in
¦ki £ Fki with the aid of the above pair of similarities, S¦ki(fki) and SFki; and
may know which of the two is preferred. Thus, he may de¯ne his

P
procedural

preference %kion ¦ki £Fki and know his aspiration set at each t: That is, given a
pair of vectors (¼ki(f); f ki) and (¼ki(f); fki) in ¦ki£ Fki , the vector (¼ki(f); f ki)
will be declared to be preferred to (¼ki(f); fki), i.e. (¼ki(f); fki) Âki (¼ki(f ); fki);
whenever

P
agent ki perceives that one of the following three conditions is met .

Condition ® : ¼ki(f) > ¼ki(f), and no ¼ki(f )S¦ki(fki)¼ki(f); fkiSFkifki:
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In words,¼ki(f) is bigger than ¼ki(f ) and, given f ki , ¼ki(f) is perceived to be
not similar to ¼ki(f ) ; while , fki is perceived to be similar to fki .

Condition ¯ : fki > fki and no fkiSFkifki; ¼ki(f )S¦ki(fki)¼ki(f):
In words, f ki is bigger than fki and f ki is perceived to be not similar to fki;

and ,given fki; ¼ki(f) is perceived to be similar to ¼ki(f):

Condition ± : ¼ki(f) > ¼ki(f ) and no ¼ki(f)S¦ki(f ki)¼ki(f ); f ki > fki and no
f kiSFkifki: Vector (¼ki(f); f ki) is strictly bigger than (¼ki(f); fki) and no similarity
is perceived in both instances.

Whenever both expected payo®s and strategy proportions are perceived to be
similar, then the two vectors will be declared indi®erent ; i.e. when ¼ki(f)S¦ki(f ki)¼ki(f);
¼ki(f )S¦ki(fki)¼ki(f ); and f kiSFkifki, , then (¼ki(f ); fki) »ki (¼ki(f ); fki). When
none of these four situations takes place, then the two vectors would be non-
comparable.

Appendix II:
Proof of Proposition 1. (a) Let Sk = f1; 2g be player population k's

strategy set. Without loss of generality, let us refer to the dynamics of strategy
1: Then, by equation (5), we have

²
fk1 = fk1

·
Ák(f) ¡ Ák1(f )
Ák(f)

¸

= fk1
· ¼k1(f )
¼k1(f )¡²kfk1 +

¼k2(f )
¼k2(f)¡²k fk2 ¡ ¼k1(f)

¼k1(f )¡²k
¼k1(f )
¼k1(f )¡²k +

¼k2(f )
¼k2(f )¡²k

¸

= fk1(1 ¡ fk1)
·
¼k2(f )(¼k1(f) ¡ ²k)¡ ¼k1(f )(¼k2(f) ¡ ²k)
¼k1(f )(¼k2(f) ¡ ²k) + ¼k2(f)(¼k1(f) ¡ ²k)

¸

=
fk1(1¡ fk1)²k

¼k1(f)(¼k2(f) ¡ ²k) + ¼k2(f )(¼k1(f) ¡ ²k)
(¼k1(f) ¡ ¼k2(f))

= ²k
¼k1(f)(¼k2(f) ¡ ²k) + ¼k2(f )(¼k1(f) ¡ ²k)

fk1(¼k1(f) ¡ ¼k(f))

Hence,
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²
fki=

²k
D(f )

fki[¼ki(f )¡ ¼k(f)](10)

Since ¼ki(f ) > ²k > 0; i = 1; 2; then, D(f) ´ 2¼k1(f )¼k2(f) ¡ ²k > 0 and the

dynamics is well de¯ned. By equation (10), growth rates
²
fki
fki

equal payo® di®er-
ences [¼ki(f) ¡ ¼k(f )] multiplied by a (Lipschitz) continuous, positive function
²k
D(f) : This concludes the proof of (a).

(b) Consider now the case of three strategies mk = 3. Without loss of gener-
ality, let the strategy i 2 Sk = f1; 2; 3g be 3 . Then, rearranging (6) yields the
following:

²
fk3 = fk3

·
Ák(f) ¡ Ák3(f )

Ák

¸

=
fk3
D(f)

[¡²2k(fk1(¼k3(f )¡ ¼k1(f )) + fk2(¼k3(f) ¡ ¼k2(f))) + ²k(fk1(¼k3(f )

¡¼k1(f ))¼k2(f) + fk2(¼k3(f) ¡ ¼k2(f))¼k1(f ))]:

Thus,
²
fk3=

²k
D(f)

fk3[fk1(¼k3(f)¡¼k1(f))(¼k2(f )¡²k)+fk2(¼k3(f)¡¼k2(f ))(¼k1(f)¡²k)](11)

where D(f ) = ¼k1(f )(¼k2(f) ¡ ²k)(¼k3(f) ¡ ²k) + ¼k2(f)(¼k1(f ) ¡ ²k)(¼k3(f ) ¡
²k) + ¼k3(f)(¼k1(f )¡ ²k)(¼k2(f )¡ ²k) =

3¼k1(f )¼k2(f)¼k3(f ) + ²2k ¡ 2²k [¼k1(f)¼k2(f) + ¼k1(f )¼k3(f) + ¼k2(f )¼k3(f)] :
As before,
D(f ) > 0; because to build function Áki; we assumed ¼ki(f) > ²: Thus, ²kfk3D(f ) >

0 in (11).Since ¼k3(f )¡¼k(f ) = fk1(¼k3(f)¡ ¼k1(f)) + fk2(¼k3(f )¡¼k2(f)); it is
easy to see that, when ¼k3(f) ¡ ¼k(f) > 0; then
fk1(¼k3(f) ¡ ¼k1(f))(¼k2(f )¡ ²k) + fk2(¼k3(f) ¡ ¼k2(f))(¼k1(f )¡ ²k) > 0

and therefore
²
fk3> 0: In other words, when

²
fki> 0 in the RD then,

²
fki> 0 in

equation (11).

When ¼k3(f ) ¡ ¼k(f) < 0 and so
²
fki< 0 in the RD, it can be seen that there

are cases in which the negative sign is not preserved by (10). Similarly, when
¼k3(f )¡ ¼k(f ) = 0 , equation (11) is not always 0.

26



(c) Consider now the general case with i 2 Sk = f1; 2; :::; Ng . Then, rear-
ranging (6) yields the following:

²
fki = fki

·
Ák(f) ¡ Áki(f)
Ák(f )

¸

= ²k
D(f)

fki[
NX

j=1

fkj(¼ki(f )¡ ¼kj(f))
Y

h 6=j
(¼kh(f )¡ ²k)]

where D(f) =
NP
j=1
¼kj

Q
h6=j

(¼kh(f)¡²k) > 0 if ¼kh(f) > ²k; for all h 2 Sk: As before,

Since ¼k3(f)¡¼k(f ) = fk1(¼k3(f)¡¼k1(f))+fk2(¼k3(f)¡¼k2(f)); it is easy to see

that, when ¼ki(f) ¡¼k(f) > 0 , then,
NP
j=1
fkj(¼ki(f)¡ ¼kj(f ))

Q
h6=j

(¼kh(f) ¡ ²) > 0

and therefore
²
fki> 0:¥

Proof of Proposition 2: Let i¤ be a strategy in the equilibrium pro l̄e
f ¤ 2 ¢: Let i¤ 2 Sk = f1; 2; :::;mkg , k 2 K = f1; 2; :::; ng : Since we are assuming
that f¤ is a pure Nash equilibrium played in the alert mode then, (6) could be
written as:

²
fki¤ = fki¤ (¼ki¤ (f) ¡ ¼k(f )) +

1
mk ¡ 1

mkX

j 6=i¤
fkjd(fkj) ¡ fki¤d(fki¤)

=
mkX

j 6=i¤
fkj

·
fki¤(¼ki¤(f )¡ ¼kj(f)) +

1
mk ¡ 1

d(fkj)
¸

¡ fki¤d(fki¤ ); (12)

We must show that
²
fki¤> 0 for any f in some neighborhood of f¤: Let ­ be

an open set assumed to contain only the vertex f¤ of ¢. Note ¯rst that, for all

fki¤ 2 (0; 1) and all fkj 2 (0; 1), the drift term a®ecting equation
²
fki¤ is always

positive and greater than any of the drift terms a®ecting the rest of the equations
²
fkj , j 6= i¤; in population k. That is, [µki¤(f )¡ fki¤] > 0; [µkj(f )¡ fkj] S 0 and

1
mk ¡ 1

mkX

j 6=i¤
fkjd(fkj))¡fki¤d(fki¤ ) >

¯̄
¯̄
¯

1
mk ¡ 1

(
mkX

l6=j;i¤
fkld(fkl) + fki¤d(fki¤)) ¡ fkjd(fkj)

¯̄
¯̄
¯
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This inequality holds for all i¤ in f¤ and k 2 K: This is so because d(fki¤ ) is nearly
0 and d(fkj) is nearly 1, for all fki¤ and fkj in (0; 1); respectively.

Since f¤ is pure but not a strict Nash equilibrium, player k may have an
alternative pure best reply say, l 2 Sk: Then, for any f in the edge of ¢ joining
the vertices f¤ = (i¤; f¤¡k) and f ¦ = (l; f¤¡k); payo®s to k are constant: ¼ki¤(f ) =
¼kl(f) = ¼k(f): Hence, for any payo®-positive g; gki¤(f ) = gkl(f) = 0. But then,
the above inequality in the drift terms generate, inside population k; a movement
toward vertex f¤ :

²
fki¤= 1

mk¡1
Pmk
j 6=i¤ fkjd(fkj) ¡ fki¤d(fki¤) > 0:

Suppose now that ¼ki¤ (f)¡¼k(f) < 0; f not in that edge. We show now that
in (12) the expression inside brackets is positive. Since f ¤ is a Nash equilibrium,
¼k is continuous and Sk is ¯nite, we may choose a neighborhood ­¤ ½ ­\ ¢ of f¤
so that, for all f 2 ­¤, k 2 K , j 6= i¤ , j; i¤ 2 Sk; 1

mk¡1 > max j¼ki¤ (f) ¡ ¼kj(f )j,
(where j:j stands for absolute value) . By assumption, d(fkj) is close to 1 for all
fkj 2 (0; 1) and therefore, on ­¤; d(fkj) > fki¤. Hence, on ­¤; for all k 2 K , i¤
in f ¤ and f 6= f¤ 2 ­¤ , we are sure that fki¤(¼ki¤(f) ¡ ¼kj(f )) + 1

mk¡1d(fkj) > 0
. Then, since the negative term , ¡fki¤d(fki¤); has a negligible absolute value

mkX

j 6=i¤
fkj

·
fki¤ (¼ki¤ (f) ¡ ¼kj(f )) +

1
mk ¡ 1

d(fkj)
¸
>

¯̄
¡fki¤d(fki¤ )

¯̄

Therefore, if the system of perturbed equations
²
fki¤ starts in any f 0 2 ­¤; f0 6= f ¤;

then, for all k 2 K and i¤ in f¤;

²
fki¤=

mkX

j 6=i¤
fkj

·
fki¤(¼ki¤(f )¡ ¼kj(f)) +

1
mk ¡ 1

d(fkj)
¸

¡ fki¤d(fki¤ ) > 0

Hence; lim
t!1

f0(t) = f¤. Once f¤ is reached then, for each k 2 K and each i¤ in

f ¤;
²
fki¤= 0; because fki¤ = 1 and so d(fki¤) = 0. Thus, we can conclude that the

Nash equilibrium f¤ is asymptotically stable. ¥

Proof of Proposition 3. Let i¤ be a strategy in f¤ 2 ¢: Let i¤; j 2 Sk,
i¤ 6= j , k 2 K = f1; 2; :::; ng : Write equation (7) for i¤ and j:

²
fki¤ = fki¤gki¤(f ) + [µki¤(f )¡ fki¤] = fki¤ (gki¤ (f) ¡ d(fki¤)) +

1
mk ¡ 1

mkX

j 6=i¤
fkjd(fkj))

²
fkj = fkjgkj(f ) + [µkj(f )¡ fkj] = fkj(gkj(f )¡ d(fkj)) +

1
mk ¡ 1

(
mkX

l6=j;i¤
fkld(fkl) + fki¤d(fki¤ ))
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Let ­ be an open set assumed to contain only the vertex f ¤ of ¢: As in
Proposition 2, if l 2 Sk is an alternative pure best reply for player k; then gkl(f ) =
gki¤(f ) along the edge of ¢ joining the two vertices. Hence, there is a drift, inside
population k; toward pure strategy i¤:

Now, let ¼ki¤(f ) < ¼kj(f); for f not in that edge: Then, by payo® monotonicity,
gki¤(f ) < gkj(f ) and, since f ¤ is a Nash equilibrium (and therefore, a stationary
state for a payo® monotonic g); gki¤(f ¤) = gkj(f ¤) = 0. As f approaches f ¤; those
payo® (and growth-rate) di®erences will decrease continuously.

Notice ¯rst that, in some neighborhood of f ¤; the monotonic relationship,
¼ki¤(f ) < ¼kj(f ) , gki¤(f )¡ gkj(f ); breaks down. This is due to the drift term of
²
fkj that makes, necessarily, (gkj(f) ¡ d(fkj)) < 0 , f 6= f¤ in that neighborhood,
where d(fkj) is nearly 1 for all fkj 2 (0; 1); while d(fki¤ ) is nearly 0 for all fki¤ 2
(0; 1): The di®erences between fkj(gkj(f )¡ d(fkj)) and fki¤(gki¤(f)¡d(fki¤)) tend
to 0 as we approach f¤:

On the other hand, if we take into account what is left of the drift terms, we
have

1
mk ¡ 1

mkX

j 6=i¤
fkjd(fkj)) >

1
mk ¡ 1

(
mkX

l 6=j;i¤
fkld(fkl) + fki¤d(fki¤)) > 0

for all fki¤ and fkj in (0; 1); j = 1; :::;mk : This is true because the number of
d(:) functions that the expression on the left has is (mk¡ 1), while the one on the
right has (mk¡2) plus the negligible term fki¤d(fki¤ ); where fki¤ is the proportion
that is assumed to be increasing, as we approach f ¤: In other words, there exists
a neighborhood ­¤ ½ ­ of f ¤ in which, for all f 6= f ¤ 2 ­¤\ ¢; i¤ in f ¤, j 6= i¤ 2
Sk and k 2 K , unambiguously

²
fki¤= fki¤gki¤(f) + [µki¤ (f) ¡ fki¤ ] > 0

Therefore we can say that f¤ is asymptotically stable. ¥

Proof of Proposition 4:
Case I: rewriting the perturbed system (8)-(9), we get

²x = (1¡ x) [d(1 ¡x) + x(2¡ 3y)] ¡ xd(x)
²y = y [(1¡ y)(1¡ x)¡ d(y)] + (1 ¡ y)d(1¡ y)
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Writing
²x=

²y= 0 in (8)-(9) yields (0; 0), (1; 0); (0; 1) (since dY (y) = 0 when
y = 1 ) and (1,1), as the possible stationary points of the system. In the interior
of the state space, i.e. for values of x 2 (0; 1) and y 2 (0; 1), we can see in the
above equations that (noting that d(:) is almost 0 and d(:) is almost 1),

²x> 0 and
²y< 0:When x = 1; the system (8)-(9) is reduced to

²y= ¡yd(y) + (1¡ y)d(1 ¡ y)

and so
²y< 0 for all y 2 (0; 1): When y = 1; it can be seen that ²x> 0 for all

x 2 (0; 1): When x = 0;
²y< 0 for all y 2 (0; 1) and when y = 0; ²x> 0 for all

x 2 (0; 1): Therefore, (1; 0) is a global asymptotic attractor.
Case II: writing ²x =

²y= 0 in the system (8)-(9) yields (0,0), (1,0), (0, 1), (1,
1) and (1, 1/2) as the possible stationary points. As in the previous case,

²x> 0
in the interior of the state space. When x = 1;

²
y= ¡ydY (y) + (1 ¡ y)dN(1 ¡ y)

and since we have assumed that dY (:) = dN(:) then,
²y7 0 if y ? 1=2;thus,

²y= 0
when y = 1=2: The rest of the behaviour in the boundary is the same as in Case
I, therefore, (1; 1=2) is a global asymptotic attractor.

Case III. After the study of the previous cases, It can be easily veri¯ed that,
given the assumed playing modes,

²x< 0 and
²
y> 0 in the interior of the state space;

in the boundary the behaviour is such that (0; 1) is a global asymptotic attractor.
¥
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Figure 1. The
P¡procedural preference %ki : Given the vector (¼ki(f); fki); its

upper and lower contour sets, -obtained by means of a procedure speci¯ed by Conditions
®; ¯ and ±, described in Appendix 1-, are U (®)[U(¯)[U(±) and L(®)[L(¯)[L(±);
respectively. The dark area is the indi®erence set »ki [(¼ki(f); fki)]:] :
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Figure 5. The relationship established by Proposition 4 between the degree of
sharpness rY and rN of the threshold functions dY and dN , respectively in the Ulti-
matum Minigame.
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