
Computers in Industry 146 (2023) 103859

Available online 19 January 2023
0166-3615/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

An industrial agent-based customizable platform for I4.0
manufacturing systems

Alejandro López a,*, Oskar Casquero a, Elisabet Estévez b, Aintzane Armentia a, Darío Orive a,
Marga Marcos a

a Systems Engineering and Automatic Control Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
b Electronics and Automation Engineering Department, University of Jaén, Jaén, Spain

A R T I C L E I N F O

Keywords:
Industrial agents
Design patterns
Asset administration shell (AAS)
I4.0 Platform
RAMI 4.0

A B S T R A C T

The fourth industrial revolution paradigm places value on the management of information related to the
manufacturing process. Reference Architectural Model for Industrie 4.0 (RAMI 4.0), proposed by Plattform
Industrie 4.0 (I4.0), provides a starting point for the development of I4.0 systems, based on: (1) international
standards organized in a cubic model; (2) a set of key concepts to define the system participants, called I4.0
components; and (3) a list of infrastructure services required to manage I4.0 components and support them in the
execution of manufacturing applications. However, the terms in which RAMI 4.0 is stated are generic and neutral
from a technological point of view, without actually providing support for the practical development of concrete
management platforms (I4.0 Platforms). This work contributes an I4.0 platform for the manufacturing domain
that offers the infrastructure services required to manage an I4.0 system. The objective is to bring Industry 4.0
closer to companies, bridging the existing gap by providing a platform aligned with RAMI 4.0 which also offers
tools and resources to facilitate the development of I4.0 components. To that end, this I4.0 platform is based on
industrial agents, which have an inherent ability to negotiate and cooperate with each other and address the
integration of assets. The applicability of the proposed I4.0 platform is evaluated by means of a testing scenario.

1. Introduction

The fourth industrial revolution paradigm places value on the
management of information related to the manufacturing process,
whose origin can be in the factory itself or come from any other point in
the value chain (suppliers, clients, other actors involved in the process,
etc.) (Schwab, 2016). Governmental institutions and private organiza
tions around the world have been working over the last decade to define
standards and concepts that regulate and contextualize the fourth in
dustrial revolution. Reference Architectural Model for Industrie 4.0
(RAMI 4.0), Industrial Internet Reference Architecture (IIRA), Intelli
gent Manufacturing System Architecture (IMSA), and Industrial Value
Chain Reference Architecture (IVRA) are some of the most representa
tive examples of reference architectures (Nakagawa et al., 2021; Fraile
et al., 2019; Li et al., 2018). In addition, as the mere provision of tech
nology referenced by these architectures does not guarantee digitiza
tion, efforts have also been made to define different methods and models
that allow practitioners to design roadmaps for digitization, and analyze

their confluence (Sassanelli et al., 2020).
RAMI 4.0, proposed by the German Plattform Industrie 4.0, can be

considered the main reference on this topic. RAMI 4.0 was the first
reference architecture to be released (2015), and has exerted a strong
influence on subsequent reference architectures, which have sought to
collaborate or be aligned with RAMI 4.0 (Lin et al., 2017; Alignment
Report for Reference Architectural, 2018). RAMI 4.0 is based on a
three-dimensional map defined by three axes: (1) Layers, representing
the different functional levels present in the implementation of I4.0
systems; (2) Life cycle & value stream, based on the IEC 62890 standard
(IEC 0, 6289, 2020), which provides models to describe the operational
state of the product; and (3) Hierarchy levels, based on IEC 62264 (IEC,
62264–1, 2013) and IEC 61512 (IEC, 61512–1, 1997) standards, which
propose a structure to define how manufacturing systems are organized
(DIN SPEC 5, 9134, 2016). This cubic model provides a common un
derstanding to all participants of an I4.0 system, known as I4.0 com
ponents. I4.0 components consist of an asset (in this context, any
physical or logical entity with value for a company) and an asset

* Correspondence to: Escuela de Ingeniería de Bilbao, Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
E-mail address: alejandro.lopez@ehu.eus (A. López).

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.sciencedirect.com/journal/computers-in-industry

https://doi.org/10.1016/j.compind.2023.103859
Received 21 October 2022; Received in revised form 29 December 2022; Accepted 9 January 2023

mailto:alejandro.lopez@ehu.eus
www.sciencedirect.com/science/journal/01663615
https://www.sciencedirect.com/journal/computers-in-industry
https://doi.org/10.1016/j.compind.2023.103859
https://doi.org/10.1016/j.compind.2023.103859
https://doi.org/10.1016/j.compind.2023.103859
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2023.103859&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers in Industry 146 (2023) 103859

2

administration shell (AAS) (Glossary, 2021). The AAS is in charge of
representing its asset, providing it with communication capabilities and
managing the access to its information and functionalities by partici
pants from multiple parties throughout the life cycle of the asset
(Wagner et al., 2017).

I4.0 systems are service oriented, i.e., I4.0 components in the system
offer services concerning asset functions or data (e.g., executing
manufacturing operations, querying information related to asset main
tenance or process quality, etc.) by means of an Application Programing
Interface (API) provided by their AASs. These services can be combined
to compose manufacturing applications. For that reason, Plattform
Industrie 4.0 calls these services application relevant services (Miny et al.,
2022). However, I4.0 systems also require an infrastructure to manage
I4.0 components and support them in the execution of manufacturing
applications. To that end, in addition to application relevant services,
Plattform Industrie 4.0 identifies the so-called infrastructure services. This
paper will focus on the latter.

Infrastructure services are defined as “software services that are used by
different application relevant services or applications in the same way, e.g.,
mediate, enable and support the interaction with and between I4.0 compo
nents” (IEC, 62264–1, 2013), p. 7. They are responsible for access con
trol to application relevant services; AAS information management; AAS
creation, registration and deregistration; AAS controlled exposure; etc.
Infrastructure services are classified into two categories: (1) AAS services,
that can be performed by the AASs themselves (i.e., those concerning
AAS management of I4.0 component information and services); (2) AAS
infrastructure services, that are related to the management of the AAS as a
whole (i.e., those intended to create AASs and make them findable to
each other). These latter are performed by management platforms for
I4.0 systems (hereafter, I4.0 platforms). It can therefore be concluded
from the above that I4.0 systems are hybrid by nature, having a
centralized part carried out by the I4.0 platform through the AAS
infrastructure services, and a distributed part developed by the AASs
themselves through the AAS services.

Despite the efforts made by Plattform Industrie 4.0 to generate
documentation related to its cubic model, I4.0 components and infra
structure services, the lack of technological support is holding back the
adoption of this reference architecture by companies. This can be seen in
studies such as the one conducted in April 2020 by the German National
Academy of Science and Engineering (Acatech) (Schuh et al., 2020a), in
which it evaluates 70 companies according to its Industrie 4.0 Maturity
Index (Schuh et al., 2020b). The results of this study reveal that, at the
time of the survey, only 4% of the companies surveyed were engaged in
a large-scale implementation of Industrie 4.0 (see subsection 2.1 of
reference (Schuh et al., 2020a) for further details).

As for the scientific community, many researchers continue to
address the challenges of the fourth industrial revolution without
adhering to RAMI 4.0 or other reference architectures (Kovalenko et al.,
2022; Tang et al., 2018a). Among those that do, much attention is being
paid to the concept of the I4.0 component, and more specifically, the
AAS, with papers such as (Sakurada et al., 2022; Ye et al., 2021a; Pribǐs
et al., 2021). However, as far as the authors know, there is a lack of
works that offer a holistic response, covering the joint development of
the I4.0 components and the I4.0 platform that manages and supports
them. For this reason, this paper presents an I4.0 platform aligned with
RAMI 4.0 for the manufacturing domain. This I4.0 platform offers, on
the one hand, the infrastructure services required to manage an I4.0
system; on the other hand, it provides tools and resources to implement
I4.0 components.

For this purpose, it is based on the industrial agent paradigm
(Vogel-Heuser et al., 2020; Karnouskos and Leitão, 2017). Industrial
agents (or simply agents, for short) are software entities with an inherent
capability to compete and/or collaborate with each other to achieve
their goals. This negotiation and decision-making capabilities make in
dustrial agents naturally meet the requirements to implement proactive
AASs (i.e., AASs with the ability to interact as equals among themselves,

offering and requesting services when necessary to meet their goals)
(Miny et al., 2022). They also stand out for naturally addressing the
integration of assets, which is fundamental in I4.0 systems and is sup
ported by international standards (IEEE Recommended Practice for In
dustrial Agents, 2021). Furthermore, agents have their own Agent
Communication Language (ACL), developed by the Foundation for
Intelligent Physical Agents (FIPA). ACL incorporates the use of mecha
nisms such as ontologies and performatives, which facilitates the defi
nition of different scenarios to ensure interoperability in the system. In
addition, agents can also fit other protocols and build well-known APIs
such as REST.

Specifically, the I4.0 platform presented in this work contributes a
core, formed by a set of agents responsible for providing the AAS
infrastructure services (e.g., creation and registration of AASs, system
state management, etc.). In addition to this core, another set of agents
intended to implement proactive AASs, taking advantage of their features
(distributed intelligence, decision making capabilities etc.). These
agents implement the AAS services (i.e., support the interaction between
I4.0 components and manage access to application relevant services). In
addition, they include a generic interface for the integration of physical
assets and, by extension, for the implementation of application relevant
services, so they can be customized without requiring extensive knowl
edge of industrial agents. In this way, the user is provided with a base
that:

• Guarantees interoperability between I4.0 components without the
need to master the industrial agent paradigm.

• Enables the development of customized I4.0 components by
extending the agents provided within the platform with the required
application relevant services.

The rest of the article is structured as follows: Section 2 discusses
different management platforms for the manufacturing domain,
analyzing what infrastructure they offer and what they lack when it
comes to supporting the development of customized I4.0 systems. Sec
tion 3 outlines the design research method followed in this work. Section
4 describes the proposed I4.0 platform, showing how it is structured to
deliver the infrastructure services required by RAMI 4.0, and how it
supports the development of I4.0 components. Section 5 presents the
case study used for testing the I4.0 platform, and Section 6 discusses the
results obtained from these tests. Finally, Section 7 will present the
conclusions of the paper, as well as the authors’ future work.

2. Related work

This section analyzes the literature about management platforms for
the manufacturing domain. The objective is to check how they organize
factory management, what services they offer, and whether their solu
tions are closed or they facilitate their extension and customization ac
cording to the users’ needs. The characteristics of industrial agents make
them suitable for implementing these manufacturing management
platforms, as evidenced by the volume of literature published on the
subject. For that reason, the analysis has focused mainly on industrial
agent-based solutions.

Within this group, there are still works that are ad hoc, meaning they
do not adhere to any reference architecture. In most of these works, the
management of the manufacturing process relies almost exclusively in
two types of agents (normally referred with these or similar names):
Product Agent, dedicated to managing one or several products, and
Resource Agent, in charge of representing the assets in the factory. In
(Bennulf et al., 2020), Product Agents manage process plans, understood
as sequences of skills they require to fulfil their goals. These skills are
offered by the Resource Agents, who fulfill their designated demands
(specific, parameterized skill requests), collaborating with each other if
necessary. PROSA architecture (Van Brussel et al., 1998) also proposes
using Product Agents and Resource Agents, and incorporates Order

A. López et al.

Computers in Industry 146 (2023) 103859

3

Agents for handling scheduling and logistical aspects. This work also
considers incorporating Staff Agents to supervise the system and assist
the other agents with expert knowledge. ADACOR architecture (Leitao
and Restivo, 2006) follows a similar approach and proposes a Product
Agent, Task Agent and Operational Agent corresponding to the Product
Agent, Order Agent and Resource Agent in PROSA, respectively. In
addition, ADACOR includes a Supervision Agent that provides coordi
nation and optimized scheduling capabilities. Another example is
CASOA architecture (Tang et al., 2018b), where there are four different
agents: Product Agents, Machine Agents, Conveying Agents, in charge of
managing the manufacturing process; and Suggestion Agents, whose
function is to assign order tasks to Product Agents and subsequently
suggest updates based on data processing in the cloud. All these ap
proaches have in common that they identify the basic entities present in
a manufacturing system and define agents associated with them. Thus,
the management of the system is based on the interactions between
these agents for the supply and demand of services (generally with
Product Agents requesting the operations needed to meet their goals and
Resource Agents satisfying the requests). However, these works do not
point to any additional infrastructure or the one they have is only
focused on task planning. This makes system management dependent
only on the partial system information that each agent has, with no
possibility of checking whether this is outdated or incorrect.

Other papers present solutions that go deeper into the functionalities
that support the management of the manufacturing process, with ser
vices such as component creation and registration (Peres et al., 2018).
proposes the IDARTS framework, which consists of several parts,
including an agent-based manufacturing system. This system has a data
model that registers, among other things, plant topology information
concerning the existing assets and their relevant information. This in
formation is periodically checked by a set of Deployment Agents, which
launch and kill agents as required to match the plant topology (Munkelt
and Krockert, 2018). presents a concept based on up to eight different
types of agents divided into transient agents (linked to task execution)
and persistent agents (alive during the whole process). The latter include
agents that do not intervene directly in the process but provide infra
structure: the system agent (in charge of registering production plans
and launching them by creating the necessary agents) and the directory
agent (manages a directory of the agents available in the system).
Similarly, the MAS-RECON architecture proposes a series of agents,
called system supervisory agents, that manage the creation and regis
tration of agents associated with system resources and applications
(Gangoiti et al., 2022). MAS-RECON is not focused on the manufacturing
domain, but it provides tools to customize the resource and application
to a specific domain by means of information models. These works go a
step further, proposing functionalities and means that are essential to
support the management of the manufacturing process. However, their
main drawback is that they do not follow RAMI 4.0 or any of the
reference architectures for the fourth industrial revolution, which makes
interoperability with other systems difficult.

Among the works that are aligned with RAMI 4.0, many focus on the
concepts of AAS and I4.0 Component from different points of view. For
instance, (Sakurada and Leitão, 2020) focuses on the implementation of
the AAS, identifying the following challenges: supporting interopera
bility, interconnecting AASs and assets, and providing distributed in
telligence to I4.0 components. Similarly, (Baumgärtel and Verbeet,
2020) proposes the use of industrial agents to implement the AAS,
obtaining what they have called Active Component Shell. In turn,
(Contreras et al., 2017) proposes an implementation of industrial
agent-based AASs based on three types of agents (resources, products
and coordinators), as well as which technologies to use to implement the
different layers of the cubic model (OPC for the communication layer,
FDI for the information and functional layers, and AutomationML for
end-to-end engineering). These works are interesting because they
identify the features of I4.0 components and which technologies fit with
them, but they do not go into detail on how to develop I4.0 components

or what services they should offer.
Other authors go a step further with the implementation of their AAS

concepts (Arm et al., 2021). proposes a procedure for facilitating the
creation of AASs by means of a configuration wizard. In this proposal,
two basic types of AASs are defined, service requesters and service
providers, with specific functionalities. However, they share a common
code that supports bidding, structured access to data, and data logging.
In contrast, (Cavalieri and Salafia, 2020) focuses on modeling AASs to
represent PLCs programmed according to the IEC 61161–3 standard.
This work proposes to implement AASs as OPC UA nodes, accompanied
by a web application that allows to perform AAS creation and update
services manually. These works present AAS implementations with
specific services, accompanied by complementary infrastructure,
conceived to create or update AASs manually. However, they do not
contemplate an active and automated management of AASs in this
infrastructure.

In other works, I4.0 platform proposals are proposed to provide
infrastructure to support I4.0 components. The work presented in
(Leitão et al., 2016) proposes an architecture for managing
manufacturing reconfiguration. This architecture is based on a network
of heterogeneous components interconnected by a middleware that
guarantees their interoperability. To this end, the middleware offers
functionalities such as service registration and exposure, exception
handling and data persistence, etc. In (Trunzer et al., 2019) the re
quirements for I4.0 architectures are defined based on the analysis of
three research projects that approach the topic from different perspec
tives: data analytics and security, service discovery, and real-time
capability. As a result, an architecture is proposed that combines ele
ments from each of the projects to meet all the requirements. These
works corroborate that there is a real need to develop architectures for
the management of I4.0 systems and indicate what aspects to focus on.
However, after identifying these needs, they do not indicate how to
implement their architectures to address them.

In contrast, there are works that present specific proposals oriented
to different kinds of services (Pisching et al., 2018). proposes an archi
tecture based on RAMI 4.0 layers that focuses on the discovery of
manufacturing assets. For this purpose, two databases are proposed:
Virtual Entity, which keeps a virtual representation of any physical asset
in the system, and the Hierarchical Equipment Network, which manages
two tables: one that indicates the operations available in the system, and
another that relates the operations that each machine can do and their
priority. These priorities are used as a fixed criteria to designate oper
ations (Ye et al., 2021b). features an architecture comprising three
layers: field assets, edge AAS deployment and cloud AAS management.
In this approach, AASs are manually modeled and then transformed into
OPC UA nodes that can exchange data with each other for realizing
application-specific functions. AASs are managed through two cloud
applications: a web browser to view and edit AAS submodels and a user
interface to monitor the data acquired from the assets. These two works
offer, from different perspectives, functional I4.0 platforms to address
the problems they propose to solve. However, although they show
implementation examples, they do not seem to provide guidelines or
templates from which to use their approach.

In (Cruz Salazar et al., 2019), design patterns (i.e., categories of
agents with a specific name and functionality) are proposed to imple
ment an industrial agent-based architecture aligned with RAMI 4.0.
Specifically, in this proposal, the AAS is interpreted as a combination of
agents that play specific roles in the different layers of RAMI 4.0. This
work is reviewed and extended in the MARIANNE architecture (Cruz
Salazar and Vogel-Heuser, 2022), focused on providing a solution
aligned with both RAMI 4.0 and the main standards concerning indus
trial agents (IEEE Recommended Practice for Industrial Agents, 2021;
VDI/VDE, 2021). In contrast, in (López et al., 2021) a skeleton pattern,
based on a single agent, is proposed as the basis for implementing all the
AAS of the system. The paper defines functionalities and a state machine
for the skeleton pattern, and gives examples of how to extend it to

A. López et al.

Computers in Industry 146 (2023) 103859

4

develop different design patterns. These papers do not focus so much on
the services to be offered by the I4.0 components and infrastructure, but
instead give more detail on what kind of components should make up
the system.

To sum up, these works have been compared considering several
aspects: (1) the compliance with RAMI 4.0, (2) the focus of the works
(components, infrastructure, or both), (3) the kind of patterns for
implementing system components (fixed or customizable) if any is
proposed, and (4) the infrastructure services offered (the application
relevant services are not considered, since they depend on the domain).
As a reference, the infrastructure services considered necessary by Platt
form Industrie 4.0 itself have been taken into account (IEC, 62264–1,
2013), Fig. 18. In this sense, in those works not aligned with RAMI 4.0,
services with functionalities equivalent to those required by Plattform
Industrie 4.0 have been considered. Table 1 summarizes the analysis of
related works.

3. Research method

Systems Engineering is dedicated to the realization of successful
systems by documenting requirements, analyzing functionality,
designing architectures, developing and validating prototypes, and
commissioning the solutions while considering all business and tech
nical concerns in the process (Caillaud et al., 2016). The research
method in this area of knowledge can be experimental, design, empir
ical, analysis, or a combination of these methods (Muller, 2013). This
work follows a design research method, as the authors design a software
artifact, in this case a platform, in support of the management of
manufacturing systems at plant level.

As part of the design research approach, a literature review was
conducted focusing on the management platforms for the manufacturing
domain available in the literature and their compliance with RAMI 4.0,
considered the main reference on this topic. As it can be seen in Table 1,
none of the reviewed approaches meet all the requirements, either
because they lack some or many functionalities, or because they offer
functionalities equivalent to those required, but they are not framed
within RAMI 4.0. In order to fill this gap, this work presents an I4.0
platform for manufacturing systems aligned with RAMI 4.0. This plat
form is based on the industrial agent paradigm, leveraging its intrinsic
capabilities to not only provide the required infrastructure to support
the management of manufacturing systems, but also to provide a solid
foundation from which to develop proactive AASs. This approach aims to
provide a platform that offers the infrastructure proposed by RAMI 4.0
to ensure the scalability and interoperability of the system, while
helping practitioners by offering them a base from which to develop
concrete solutions with no need to be experts in industrial agents.

To do so, this platform provides a core infrastructure that imple
ments the AAS infrastructure services and supports the creation and
registration of new AASs on the fly at the request of an operator or other
AASs in the system. In addition, the platform also provides a set of agents
devoted to implementing the AASs in the system. These agents serve to a
double purpose: on the one hand, they implement the AAS services to
ensure a seamless understanding between the I4.0 platform and the I4.0
components (granted by their AASs); on the other hand, they have been
designed in such a way that they can be extended and customized ac
cording to the needs of each use case. To this end, they have a generic
interface to integrate physical assets, enabling access to their informa
tion and functionalities (i.e., allowing the execution of the application
relevant services).

The proposed platform is based on the MAS-RECON architecture
(Gangoiti et al., 2022). MAS-RECON was not designed in accordance
with RAMI 4.0, but it has the potential to manage service-oriented
components with an application-centered approach. Therefore, the
generic core provided by MAS-RECON (e.g., state machine-based life
cycle management, service-oriented interactions) has been adapted to fit
RAMI 4.0. In addition, new functionalities have been added to meet the

requirements of I4.0 systems (e.g., manufacturing resource integration).
Besides MAS-RECON, this work also picks up some of the most inter
esting concepts from other works, such as the division between transient
and persistent agents (Munkelt and Krockert, 2018) and the use of
design patterns (Cruz Salazar et al., 2019; Cruz Salazar and
Vogel-Heuser, 2022).

Finally, after presenting the proposed platform and justify its
compliance with RAMI 4.0, the work is completed with an evaluation of
the design in real-world settings in the context of an industrial appli
cation. The testing follows a case study approach (Aberdeen, 2013),
where evidence of the functionality and data of the performance of a
prototype of the platform are provided.

4. Industrial agents for manufacturing systems I4.0 platform

This section presents the Industrial Agents for Manufacturing Sys
tems (IAMS) I4.0 platform. This platform provides a central infrastruc
ture that implements the AAS Infrastructure Services and allows the
creation of new AASs both by the operator and by other AASs (AAS
Create Service), keeping an updated state of the whole system in an in
ternal repository (AAS Registry Services). In addition, the platform also
provides a set of agents dedicated to implement the AASs in the system
based on design patterns that can be extended and customized according
to the needs of each use case. As explained above, this platform is based
on the MAS-RECON architecture (Karnouskos and Leitão, 2017), Fig. 1.
MAS-RECON is neither characterized for the manufacturing domain nor
aligned with RAMI 4.0, but it provides the System Supervisory Agents
(SSAs), which present some useful features for managing I4.0 systems. It
also offers two templates from which to develop the remaining agents of
the architecture, which can be either Resource Agents (RAs) or Appli
cation Agents (AppAs). In addition, MAS-RECON provides a set of tools
and resources to facilitate domain customization. This includes, on the
one hand, the extension or addition of more SSAs if needed, and, on the
other hand, the characterization of the types of RAs and AppAs and how
they interact with each other.

The remainder of this section is divided into two parts. The first one
presents an overview of the IAMS I4.0, describing all the agents that
compose it. The second one is devoted to explaining the process to
develop I4.0 components.

4.1. IAMS I4.0 platform overview

Fig. 1 shows the IAMS I4.0 platform. From bottom to top, it can be
seen how it is built in terms of implementation: first, the Java Agent
DEvelopment Framework (JADE1) provides basic classes and methods
for the creation of agents and ensures compliance with FIPA (Standard
Status Specifications, 2022) standard for agent communication; next,
the MAS-RECON core, formed by the agents highlighted in black, pro
vides support and supervision functionalities for the management of the
I4.0 system; finally, the IAMS customization, made up of the agents in
green, provides the user with (1) an interface to interact with the I4.0
system and (2) a set of agent categories with specific names and infra
structure functionalities (hereafter, design patterns) from which to
develop customized AASs.

From left to right, instead, the agents are organized according to
their functionalities. In the first group are the System Supervisory
Agents, which comprise the core of the IAMS I4.0 platform (see Fig. 1).
They are in charge of managing and supervising the process from a
global point of view, providing both functional and computational
support. Moreover, their implementation is independent of the I4.0
components that the system will have.

Within this group, the most prominent agent is the System Re
pository Agent (SRA). It is in charge of managing the System Repository

1 https://jade.tilab.com/

A. López et al.

https://jade.tilab.com/

Computers in Industry 146 (2023) 103859

5

(SR), which contains essential information about all the I4.0 compo
nents running in the system. Thus, putting the infrastructure services
considered by Plattform Industrie 4.0 into perspective (see (IEC,
62264–1, 2013), Fig. 18), the SRA is responsible for providing the AAS
infrastructure services: when creating and registering I4.0 components, it
is responsible for assigning them a unique identifier and registering their
information in the SR (thus providing the AAS create service and the AAS
registry services). The SRA can also query, edit and delete I4.0 compo
nents from the SR. In addition, it can manage access to this information:
any participant in the system can access the information of another I4.0
component by asking for its identifier or if it meets some specific
required characteristic (attributes, services offered, etc.). This func
tionality corresponds to the AAS exposure and discovery services.

To complement the SRA, the Planner Agent (PLA) has been

developed. The PLA serves as an interface for the user, allowing the use
of the AAS infrastructure services offered by the SRA. In this way, a user of
the IAMS I4.0 platform can create and register I4.0 components, and
consult their state individually or jointly by means of the PLA.

Finally, the Processing Node Agent (PNA) aims to represent the
processing nodes available in the system, ensuring proper awareness and
access to the system’s computing capacity. PNAs can negotiate with each
other based on different criteria (e.g., available memory, CPU load, etc.)
to offer computation and communication capabilities to the agents in the
system.

On the other hand, the RAs and AppAs are intended to implement the
AASs of the I4.0 system. There are two main differences between these
groups of agents: the type of asset they integrate and their life cycle. RAs
integrate physical assets, while AppAs integrate logical assets. This

Table 1
Summary of related work analysis.

Proposal RAMI 4.0
compliance

Focus Patterns I4.0 Infrastructure Services (or equivalent)

AAS Infrastructure Services AAS Services

AAS
Create

AAS
Registry

AAS Exposure
and Discovery

Submodel
Registry

Meta Information
Management

Submodel
Exposure and
Discovery

(Bennulf et al., 2020) No C Fixed No No No Ms Ms Yes
(Van Brussel et al., 1998;

Leitao and Restivo, 2006;
Tang et al., 2018b)

No C+I Fixed No No Yes Yes Yes Yes

(Munkelt and Krockert, 2018;
(Peres et al., 2018)

No C+I Fixed Yes Yes Yes Yes Yes Yes

(Gangoiti et al., 2022) No C+I Customizable Yes Yes Yes Yes Yes Yes
(Sakurada and Leitão, 2020;

Baumgärtel and Verbeet,
2020)

Yes C Not specified No No No No No No

(Contreras et al., 2017) Yes C Fixed No No No No No No
(Arm et al., 2021) Yes C Fixed Ms No No Yes Yes Yes
(Cavalieri and Salafia, 2020) Yes C Not specified Ms No No Mp Mp Yes
(Leitão et al., 2016; Trunzer

et al., 2019)
Yes C+I Not specified No No No No No No

(Pisching et al., 2018) Partially I Fixed No Yes Yes No No Yes
(Ye et al., 2021b) Yes C+I Not specified Ms Yes Yes Mp Mp Yes
(Cruz Salazar et al., 2019;

Cruz Salazar and
Vogel-Heuser, 2022)

Yes C+I Fixed Ms No Yes Yes Yes Yes

(López et al., 2021) Yes C Customizable No No No Yes Yes Yes

C = Focus on components, I = Focus on infrastructure, C+I = Focus on components and infrastructure; Ms = Manually, before startup; Mp = Manually, during process.

Fig. 1. IAMS I4.0 platform overview.
Adapted from (Karnouskos and Leitão, 2017), Fig. 1. SRA = System Repository Agent, SR = System Repository, PLA = Planner agent, PNA = Processing Node Agent,
MA = Machine Agent, TA = Transport Agent, BA = Batch Agent, OA = Order Agent, MPA = Manufacturing Plan Agent.

A. López et al.

Computers in Industry 146 (2023) 103859

6

implies a difference in the way of accessing the data and functionalities
offered by the asset: in the case of RAs, integration is limited by the
communicative capabilities of their assets, while in AppAs integration
can usually be done directly. As for the life cycle, the assets represented
by RAs can take part at different manufacturing applications when
requested, providing the services required by the applications to meet
their objectives. For this reason, RAs are persistent in nature, i.e., once
they are created, they remain in the system indefinitely unless there is a
problem, or they are removed on purpose. Instead, AppAs represent
assets whose life is linked to a specific task within a manufacturing
application. Therefore, AppAs are transient in nature, i.e., once their
task is completed, they have no other function in the system. Beyond
these differences, specific RAs and AppAs have been defined for the
manufacturing domain. For this purpose, the works analyzed in Section
2 have been taken as a reference.

With respect to RAs, the simplest approach consists on defining a
single agent type for any manufacturing asset (Bennulf et al., 2020;
Munkelt and Krockert, 2018), although a higher granularity can be
considered (e.g., Robot Agents (Kovalenko et al., 2022), Conveyor
Agents (Kovalenko et al., 2022; Tang et al., 2018b), or AGV Agents
(Tang et al., 2018a), among others). Having these works in mind, a
balance has been sought between being too generic (considering all
factory resources as one) and being too specific (defining too many
types). As a result, in this work manufacturing resources are classified in
two basic types: machines (i.e., resources that transform products) and
transports (i.e., resources that move products). Consequently, two
design patterns have been developed from the RA template: the Machine
Agent (MA) and the Transport Agent (TA). Regarding the AppAs,
manufacturing applications are usually narrowed to product orders, so
that the Product Agent (PA) is the only agent of this type considered
(Kovalenko et al., 2022; Bennulf et al., 2020; Tang et al., 2018b).
Although these approaches allow unitary traceability, (López et al.,
2020) presents a complementary perspective that facilitates tracking the
status of complex orders and the factory in general. Hence, three
application entities (batch, order and manufacturing plan) have been
defined for tracking the manufacturing process at different levels, each
one of them with their respective design pattern: the Batch Agent (BA)
manages traceability at the product or batch level; the Order Agent (OA)
tracks at the customer level (i.e., monitoring all the batches that are part
of the same customer order); finally, the Manufacturing Plan Agent
(MPA) monitors the development of the manufacturing plan as a whole.
These application entities (and, by extension, their design patterns) have
a hierarchical relationship, so that one or more BAs report information
to a single OA, and the existing OAs report to a single MPA.

As for the compliance of these design patterns with RAMI 4.0, they
are the basis provided by IAMS for the user to develop AASs capable of
integrating manufacturing assets. Note that I4.0 components (or, more
specifically, their AASs) should implement, on the one hand, the AAS
services required to manage interoperability between AASs (access
control to application relevant services, negotiation mechanisms between
AASs, etc.) and, on the other hand, the application relevant services to give
access to assets’ functions and data. The implementation of the AAS
services has to be the same for all I4.0 components to ensure interoper
ability between them and with the core of the I4.0 platform. For this
reason, AAS services are already implemented in the set of RAs and
AppAs presented in this work, leveraging the negotiation and decision-
making capabilities inherent to industrial agents. On the contrary, the
application relevant services cannot be implemented in advance since they
will depend on the communication and functional capabilities of the
asset to be integrated. However, RAs and AppAs do include interfaces to
help the user to integrate physical assets in a generic way, giving access
to functions and data to develop customized application relevant services.

4.2. Development of I4.0 components

This subsection illustrates how to develop I4.0 components from the

RA and AppA templates provided by MAS-RECON. This process consists
of three steps. First, the RA and AppA templates have been adjusted for
the IAMS I4.0 platform to fit the manufacturing domain. Next, these
templates have been extended to develop the design patterns (the MA
and TA from the RA template, and the BA, OA, and MPA from the AppA
template, respectively). This step covers the implementation of the AAS
services, and their use to support the interactions of these design pat
terns. Finally, the last step is to develop I4.0 components from the design
patterns. This step requires customization by the user, since the char
acteristics of the assets to be integrated and the application relevant ser
vices they offer are particular to each case. Nevertheless, this work shows
the set of tools and mechanisms provided by IAMS to assist the user in
this step.

4.2.1. Fitting Mas-Recon templates to the manufacturing domain
The templates provided by the MAS-RECON architecture for RAs and

AppsAs are classes that provide basic methods (e.g., for communicating
with the SRA) and implement the finite state machines (FSM) depicted
in (Karnouskos and Leitão, 2017) Fig. 4. Each state of these FSMs is
implemented by means of one or several behaviors (i.e., a class that
defines the actions performed by an agent depending on its in
teractions). In the case of the RA template, the FSM proposed in
MAS-RECON consists of three states: a booting state that performs the
initialization tasks implemented in a boot behavior; a running state
composed of two behaviors, one to participate in negotiations for service
allocation (negotiating behavior) and one to manage the allocated service
requests (running behavior); and a stopping state that performs the final
ization tasks implemented in an end behavior. This RA template has been
fitted in IAMS for the manufacturing domain by applying the following
changes:

• A new asset management behavior has been included in the running
state. This behavior manages the interactions with the physical assets
of the factory in a homogeneous way. It allows decoupling the
management of service requests (processed by the running behavior)
from the interactions with the physical asset necessary to fulfil the
services (handled by the asset management behavior).

• In addition, a new idle state has also been included. This state rep
resents situations in which the I4.0 component is alive, but its asset is
unavailable (e.g., in case of a mechanical breakdown or a mainte
nance stop). The idle state can be reached from the running state, and
it can transition either to the running state or to the stopping state. The
actions corresponding to this state can be defined by means of an idle
behavior.

Fig. 2 shows the resulting FSM for the RA template proposed in the
IAMS I4.0.

As for the AppA template, it presents the three states already seen in
the RA template (booting, running and stopping), plus two other states
used for replica management (tracking and waiting for decision), which
are not of interest for this work. In this case, it has been considered that
it is not required to add further states or behaviors with respect to the
FSM provided by MAS-RECON.

4.2.2. Developing the design patterns from the Ra and Appa templates
In this step, RA and AppA templates are extended to obtain the MA,

TA, BA, OA and MPA design patterns, which allow implementing the
AASs of the I4.0 components of the system. To this end, specific content
has been given to the states and behaviors from the FSMs discussed in
the previous subsection. These design patterns provide the AAS services
and support SSAs in the execution of the AAS infrastructure services (see
(IEC, 62264–1, 2013), Fig. 18).

In the case of the MA and TA-based AASs, they receive at booting all
the information related to their asset from a configuration file. This
ensures the fulfilment of the submodel registry services. This is followed by
registration in the system, as illustrated in Fig. 3 for the case of the MA.

A. López et al.

Computers in Industry 146 (2023) 103859

7

As a precondition, it is checked the availability of the physical asset by
sending it a message (checkAsset in Fig. 3). In case there is not response,
or it indicates the asset is not ready to work, the registration is aborted.
Otherwise, the SRA is requested to assign a unique identifier to the new
AAS and to register its information in the SR (register in Fig. 3). In
addition to registration, the user can add the required initialization tasks
in the boot behavior.

Once startup is completed, MA and TA-based AASs enter the running
state. From this point on, they should be ready to handle requests for
application relevant services. These requests can be directed to a specific
AAS (e.g., to inquire about the status of its asset, such as its current
temperature or speed), or they can be the result of a negotiation (e.g.,
the requester requires an application relevant service, but it is not aware of

which is the most suitable candidate to do so). For the latter case, the
negotiating behavior implements a negotiation mechanism by which AASs
of the same kind (i.e., which integrate the same type of asset) can
determine in a decentralized way who should accomplish the requested
application relevant services. As for the mechanism to calculate the
negotiating value of each AAS, it will be strongly dependent on the
criteria required by the user. Similarly, the actions to be taken by the
winning AAS will depend on the purpose of the negotiation. In both
cases, the user will be able to customize these aspects as required thanks
to two methods, calculateNegotiationValue and checkNegotiation,
included in the negotiating behavior.

Requests for application relevant services received by the AAS, either
directly or as a result of a negotiation, are managed by the running
behavior. Specifically, requests concerning submodel services (i.e., appli
cation relevant services which can be performed by retrieving all or part of
the information within a submodel) are handled directly. As for requests
regarding asset related services (i.e., application relevant services which
require an interaction with the asset), they are registered in a submodel
so that they are addressed in order. This implies that this behavior al
lows an AAS to make its submodels accessible to others (complying with
the exposure and discovery services).

As for the BA, OA and MPA-based AASs, their functionalities are
founded on the same AAS services, although they present some differ
ences in their booting and running states. First, they receive the infor
mation with the initial state from a manufacturing plan loaded into the
system by an operator through the PLA (loadPlan in Fig. 4). Before
creating and registering the AAS, the manufacturing plan is checked for
conformity to the domain. This is done in two phases: a first one in which
each entity of the plan is checked individually (seRegister in Fig. 4), and a
second one in which it is validated if its hierarchy is correct (iValidate in
Fig. 4). This process is explained in more detail in (Casquero et al.,
2020). If the validation is successful, then the first entity in the hierarchy
is started. In our customization of the domain, it is the MPA (appStart in
Fig. 4). The MPA AAS is deployed on the most suitable processing in
terms of system utilization (e.g., available memory, CPU load, etc.). This
is determined by a negotiation between PNAs (negotiate in Fig. 4). To
complete the startup of the entire manufacturing plan, the MPA AAS is

Fig. 2. FSM for the RA template proposed in the IAMS I4.0 platform.

Fig. 3. Sequence diagram representing the interactions of the MA design
pattern during the booting state.

A. López et al.

Computers in Industry 146 (2023) 103859

8

responsible for starting the OA AASs that depend on it, and these, in
turn, for starting the BA AASs that depend on them. In addition, they all
wait to receive a confirmation that their children have been successfully
booted before moving to the running state. As it can be seen in the lower
part of Fig. 4, an OA AAS remains in the booting state until it receives
confirmation that its children BA AASs have transitioned to the running
state. The same is true for the MPA AAS as long as it does not receive
confirmation from its associated OA AASs.

Once in the running state, the BA, OA and MPA-based AASs work in
the same way: they update the submodel in which they record the
traceability of their application entity based on the information they
receive (traceUpdate in Fig. 5). Furthermore, as they collect information,
they report it to the higher level of the hierarchy (reportUpdate in Fig. 5).
Finally, when the entity they are tracing has completed its
manufacturing process, they transmit their complete traceability sub
model and then transition to the stopping state, where they are unregis
tered and removed from the system (terminate in Fig. 5).

4.2.3. Supporting the development of I4.0 components
The previous step explains how the design patterns proposed in this

paper implement AASs that incorporate the AAS services and use them to
develop their functionality in the booting and running states. However, to
complete the development of I4.0 components, it is necessary for these
AASs to integrate their assets to provide application relevant services. This
last step is responsibility of the user, since the factory assets to use and
the application relevant services they offer depend on each use case. In this

sense, the integration of BA, OA and MPA AASs with their assets is
considered direct: being logical assets (in this case, process information
at different levels) they can be directly embedded as submodels or
deployed in a database with the appropriate access. Thus, this subsec
tion focuses on the tools and mechanisms provided to facilitate the user
the development of I4.0 components based on the MA and TA AASs.

Regarding the interactions between AASs and physical assets, there
may be cases where different assets offer the same services but have
different communication capabilities. This would require several
implementations of the same type of AAS for different physical assets. To
avoid this, the JadeGateway and GatewayAgent classes, provided by
JADE, have been used to decouple the high-level functionality of the
AAS (i.e., management of application relevant services and interaction
with other AASs) from the communication capabilities of its physical
asset. By means of these classes, a gateway is created that allows con
necting entities using different communication protocols (Vogel-Heuser
et al., 2020). In this case, it serves as a bridge between the AAS, which
uses ACL, and the physical asset, which uses one of the communication
protocols defined by its manufacturer. Beyond abstracting the asset’s
communication protocol, the gateway also allows the AAS to be
deployed both on and off the asset. This provides users with flexibility in
applying generic integration practices, regardless the asset to be inte
grated and its communication capabilities (López et al., 2022).

In addition, the RA template customization for the manufacturing
domain (see subsection 4.2.1) includes an interface with two methods
used to standardize interactions between AASs and their gateways:

Fig. 4. Sequence diagram representing the interactions between the MPA, OA and BA design patterns during booting state.

A. López et al.

Computers in Industry 146 (2023) 103859

9

sendDataToAsset and rcvDataFromAsset. These methods, invoked from
the asset management behavior in the running state, work as shown in
Fig. 6:

• sendDataToAsset, evaluates a work in progress flag to determine
whether the physical asset is free. If so, it also checks for pending
asset related services requests (opt statement in Fig. 6). If these con
ditions are met, information concerning the next asset related service
request is fetched from the corresponding submodel (fetchServiceR
equestInfo in Fig. 6) and sent to the gateway. Once the information
has been sent, the work in progress flag is activated to block the
sending of new information until the service has been completed
(workInProgress=TRUE in Fig. 6).

• rcvDataFromAsset exclusively processes messages received from its
gateway. These can be either acknowledgment messages to confirm
the physical asset has received some information, or they can contain
partial or total results from the execution of an asset related service. If
the latter is the case, the results received are transmitted to the BA
that is tracing the product(s) involved (processItem in Fig. 6). In
addition, if the service has been completed, its information is deleted
from the list of queued asset related services and the work in progress
flag is deactivated (workInProgress=FALSE in Fig. 6).

5. Case study

This section illustrates the applicability of the IAMS I4.0 platform for
managing manufacturing processes by deploying it on a demonstrator
used as a test bed. The demonstrator is equipped with two
manufacturing cells that perform assembly operations of a set of 3D
printed parts emulating the shaft of a stepper motor. These assembly

operations are processed in batches of variable size, ranging from one to
six items. For this purpose, each cell comprises a KUKA KR3 R540 robot,
in charge of handling the parts, and a Siemens ET 200SP Open
Controller. This controller is made up of a software PLC, which allows
controlling the robot, and an integrated Windows 10 operating system,
which allows deploying third-party software. In addition to the
manufacturing cells, the demonstrator also features a cluster of PCs to
provide computing capacity to enable the deployment of the software
infrastructure required by the user. This cluster was made up of five
nodes. Each node was a Dell Optiplex 760 with Ubuntu 20.04 as the
operative system. All nodes were connected through a gigabit switch.

Fig. 7 shows the deployment of the IAMS I4.0 platform in the
demonstrator for this testing scenario. On the one hand, one of the
cluster PCs has been reserved to host the SRA and the PLA, serving as the
interface with the system. The rest of the PCs in the cluster act as pro
cessing nodes, each represented by a PNA. These nodes will be used to
deploy the BA, OA and MPA-based AASs (for this concrete testing sce
nario, two BAs, one OA and one MPA, respectively). On the other hand,
each MA-based AAS corresponding to the two manufacturing cells have
been deployed in the Windows environment of each ET 200SPs. Their
gateways have also been deployed on the same devices, and exchange
information with their PLC environments through shared memory.

Regarding the metrics, the execution times of the application relevant
services were not considered, as these depend more on the demonstrator
than on the performance of the IAMS I4.0 platform itself. Instead, we
focused on evaluating infrastructure measures, specifically the deploy
ment time of the AASs (i.e., the time required for them to register on the
I4.0 platform, complete their startup tasks and reach the running state,
when they are considered fully operational), to see if it is carried out in a
manageable time. In order to have more detail on what happens during

Fig. 5. Sequence diagram representing the interactions between the MPA, OA and BA design patterns during running state.

A. López et al.

Computers in Industry 146 (2023) 103859

10

this deployment process, it has been decided to obtain disaggregated
measures. These measures will be different depending on the type of
AASs, as they follow different startup processes:

• MA and TA-based AASs (illustrated in Fig. 8.a for the case of the MA).
First, the timestamp tr0 is measured at the time of AAS creation. A
timestamp tr1 will then be collected when confirmation of connec
tivity to the asset is received. Finally, timestamp tr2 will represent
the instant when the AAS enters the running state. With these
timestamps, three time intervals were defined: asset check time (tr1-
tr0), registration time (tr2-tr1) and deployment time (tr2-tr0).

• BA, OA and MPA-based AASs (illustrated in Fig. 8.b for the case of
the MPA). The timestamp ta0 will indicate the time at which the user
requests the deployment of a manufacturing plan through the PLA.
This request initiates a negotiation between the PNAs to determine
on which processing node to deploy each AAS. The timestamp ta1 is
collected for each AAS in the application when its negotiation pro
cess ends (i.e., when they have already been assigned a processing
node). Next, timestamp ta2 is measured at the beginning of the
booting state to know that the AAS has already been created, and
finally, ta3 is measured when the AAS enters the running state. With
these timestamps, four time intervals were defined: scheduling time

(ta1-ta0), registration time (ta2-ta1), booting time (ta3-ta2) and
deployment time (ta3-ta0).

6. Results and discussion

The purpose of this section is to present and discuss the results pre
sented in Table 2, which show the deployment times of all the AAS used
in the case study presented in the previous section see Fig. 7). The main
interest of this test is in the differences between the deployment times of
each agent and in reasoning the causes behind them, rather than in the
overall figures (considering that all agents deploy in about 1 s or less).
To ensure a correct data fitting distribution, the tests have been per
formed 20 times.

As can be seen, there is a significant difference between the
deployment time used by MA-based AASs (around 125 ms), and BA, OA
and MPA-based AASs (ranging from 873 ms for BA_2 to 1003 ms for
MPA_1). This difference can be explained as follows: in the case of MA-
based AASs, the deployment process is performed in a straightforward
manner, without any interactions other than checking that the asset is
alive. In contrast, in the case of BA, OA and MPA AASs, the deployment
process is conditioned by the negotiation process between PNAs to
decide where to deploy each AAS. In addition, the hierarchical

Fig. 6. Sequence diagram representing the operation of the sendDataToAsset and rcvDataFromAsset methods to standardize the interactions between AASs
and gateways.

A. López et al.

Computers in Industry 146 (2023) 103859

11

relationship between them also conditions their deployment times.
To better understand these differences, Fig. 9 and Fig. 10 break down

in detail how the deployment of each type of AAS occurs. Fig. 9 shows
the deployment time of the MA-based AASs divided into intervals. Both
cases show a similar response, with approximately 30% of the time spent
confirming that the asset is accessible, and the remaining time spent
registering the AAS in the SR.

As for Fig. 10, it shows the results obtained for BA, OA and MPA
AASs, which allow contrasting the deployment procedure detailed in
Fig. 4. First, the longest deployment time corresponds to MPA_1
(1003 ms), followed by OA_1 (1002 ms), and finally BA_2 (924 ms) and

Fig. 7. Diagram of the I4.0 platform deployment on the demonstrator.

Fig. 8. Timing diagram indicating the instants at which timestamps are captured for: a) AASs based on the MA design pattern; b) AASs based on the MPA
design pattern.

Table 2
Average deployment time after conducting the testing scenario
(N = 20).

AAS Average Deployment Time (ms)

MA_1 132
MA_2 119
MPA_1 1003
OA_1 1002
BA_1 924
BA_2 873

A. López et al.

Computers in Industry 146 (2023) 103859

12

BA_1 (873 ms). This makes sense, since MPA_1 cannot leave its booting
state until it receives confirmation from OA_1, and the same happens to
OA_1 with respect to BA_2 and BA_1. This cascading booting process also
explains the differences between the time intervals for these AASs. In the
case of MPA_1, the planning time is minimal (only 3% of the deployment
time), since it is the first negotiation to take place, followed by an also
short registration time (8% of the total). In contrast, its booting time
accounts for 89% of the deployment time, not because it requires this
time to perform all its booting tasks, but because it remains waiting to
receive confirmation from OA_1. Proof of this is that the average
deployment time of MPA_1 is only 1 ms longer than that of OA_1 (as
soon as it receives the confirmation message, it transitions to the running
state). As the hierarchy descends, the scheduling time increases. This is
because the negotiations to determine which node should host which
AAS are resolved sequentially, so the elapsed time from ta0 is increasing
(note that ta0 is the same for OA_1, BA_1 and BA_2 as for MPA_2 but their
ta1 are different). At the same time, the booting times are getting smaller
and smaller, since OA_1 only must wait for confirmation from BA_1 and
BA_2 and they perform their boot tasks directly.

7. Conclusions

There is active work in the development of platforms based on the
reference architectures, but with approaches that are not mature enough
to be adopted by the industry, and vice versa. Besides, there are many
works that focus on some of the different technologies that, together, can
enable I4.0 systems to meet all their requirements. However, most of
these works are based on particular approaches, and therefore do not
follow reference architectures. For this reason, this work proposes a
platform that takes into account the evolution of reference architectures
and their key aspects, and includes methodological and technological
resources that allow the implementation of customized solutions. These
resources, based on the paradigm of industrial agents, provide a solid
foundation that allows the platform to be used without the need to have

a deep knowledge of the technology. In this way, companies are sup
ported in the transition towards I4.0.

Specifically, the aim of this work is to offer a platform for the man
agement of manufacturing systems aligned with the precepts of the idea
of Industrie 4.0 proposed by RAMI 4.0 that also provides mechanisms
that facilitate the user the development and customization of the AAS
that participate in the system representing the assets of its factory. To
this end, it employs the paradigm of industrial agents, which innately
contemplates the ability to cooperate between system participants, as
well as the integration of assets. In the opinion of the authors, the
novelty of this proposal resides in two different aspects. On the one
hand, in offering within the I4.0 platform design patterns for the
development of customizable AASs. These design patterns implement
the infrastructure services, but can be customized to offer the application
relevant services required by the user, which helps reducing the devel
opment times of customized I4.0 systems. On the other hand, in the way
of providing through the different agents of the I4.0 platform all the
infrastructure services required by the Plattform Industrie 4.0.

However, the services indicated by Plattform Industrie 4.0 only
contemplate a scenario in which manufacturing runs smoothly. In the
authors’ opinion, it is essential that the I4.0 platforms have the neces
sary resources to be able to keep manufacturing applications operational
despite breakdowns or delays in any of the factory’s assets. Thus, future
work will be devoted to increase the functionalities of the I4.0 platform
presented in this work to ensure seamless execution of manufacturing
applications.

CRediT authorship contribution statement

Alejandro López: Conceptualization, Software, Validation, Writing
– original draft. Oskar Casquero: Conceptualization, Supervision,
Writing – review & editing. Elisabet Estévez: Conceptualization, Su
pervision, Writing – review & editing. Aintzane Armentia: Software,
Validation, Writing – review & editing. Darío Orive: Validation, Re
sources, Writing – review & editing. Marga Marcos: Conceptualization,
Supervision, Writing – review & editing. All authors have read and
agreed to the current version of the manuscript.

Declaration of Competing Interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests:
Ministerio de Ciencia, Innovación y Universidades (MCIU)/Agencia
Estatal de Investigación (AEI)/Fondo Europeo de Desarrollo Regional
(FEDER), Unión Europea (UE) (grant number RTI2018-096116-B-I00).

Data Availability

Data will be made available on request.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.compind.2023.103859.

References

Aberdeen, T., 2013. Yin, R. K. (2009). Case study research: Design and methods (4th
Ed.). Thousand Oaks, CA: Sage. Can. J. Action Res. 14 (1), 69–71. https://doi.org/
10.33524/cjar.v14i1.73.

Alignment Report for Reference Architectural Model for Industrie 4.0/ Intelligent
Manufacturing System Architecture. Apr. 2018. [Online]. Available: 〈https://www.
plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturin
g.html〉.

Arm, J., et al., 2021. Automated design and integration of asset administration shells in
components of industry 4.0. Sensors 21 (6), 2004. https://doi.org/10.3390/
s21062004.

Fig. 9. Disaggregated times of deployment time for MA-based AASs.

Fig. 10. Disaggregated times of deployment time for BA, OA and MPA-
based AASs.

A. López et al.

https://doi.org/10.1016/j.compind.2023.103859
https://doi.org/10.33524/cjar.v14i1.73
https://doi.org/10.33524/cjar.v14i1.73
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/hm-2018-manufacturing.html
https://doi.org/10.3390/s21062004
https://doi.org/10.3390/s21062004

Computers in Industry 146 (2023) 103859

13

Baumgärtel H. and Verbeet R., Service and Agent based System Architectures for
Industrie 4.0 Systems, in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, Apr. 2020, pp. 1–6. doi: 〈10.1109/NOMS47738.2020.
9110406〉.

Bennulf, M., Danielsson, F., Svensson, B., Lennartson, B., 2020. Goal-oriented process
plans in a multi-agent system for Plug & Produce. IEEE Trans. Ind. Inform. 1. https://
doi.org/10.1109/TII.2020.2994032.

Caillaud, E., Rose, B., Goepp, V., 2016. Research methodology for systems engineering:
some recommendations. IFAC-Pap. 49 (12), 1567–1572. https://doi.org/10.1016/j.
ifacol.2016.07.803.

Casquero O., A. Armentia, E. Estevez, A. López, M. Marcos, Customization of agent-based
manufacturing applications based on domain modelling, in 21st IFAC World
Congress, Jul. 2020, vol. 4.

Cavalieri, S., Salafia, M.G., 2020. Asset administration shell for PLC representation based
on IEC 61131–3. IEEE Access 8, 142606–142621. https://doi.org/10.1109/
ACCESS.2020.3013890.

Contreras, J.D., Garcia, J.I., Diaz, J.D., 2017. Developing of industry 4.0 applications. Int.
J. Online Eng. IJOE 13 (10), 30. https://doi.org/10.3991/ijoe.v13i10.7331.

Cruz Salazar, L.A., Vogel-Heuser, B., 2022. A CPPS-architecture and workflow for
bringing agent-based technologies as a form of artificial intelligence into practice.
Autom 70 (6), 580–598. https://doi.org/10.1515/auto-2022-0008.

Cruz Salazar, L.A., Ryashentseva, D., Lüder, A., Vogel-Heuser, B., 2019. Cyber-physical
production systems architecture based on multi-agent’s design pattern—comparison
of selected approaches mapping four agent patterns. Int. J. Adv. Manuf. Technol.
https://doi.org/10.1007/s00170-019-03800-4.

DIN SPEC 91345. 2016.
Fraile, Sanchis, Poler, Ortiz, 2019. Reference models for digital manufacturing platforms.

Appl. Sci. 9 (20), 4433. https://doi.org/10.3390/app9204433.
Gangoiti, U., López, A., Armentia, A., Estévez, E., Casquero, O., Marcos, M., 2022.

A customizable architecture for application-centric management of context-aware
applications. IEEE Access 10, 1603–1625. https://doi.org/10.1109/
ACCESS.2021.3138586.

Glossary. 〈https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/
glossary.html〉 (Accessed Feb. 13, 2021).

IEC 61512–1. 1997.
IEC 62264–1. 2013.
IEC 62890. 2020.
IEEE Recommended Practice for Industrial Agents, 2021. Integration of software agents

and low-level automation functions, 26601-2020 IEEE Std 1–43. https://doi.org/
10.1109/IEEESTD.2021.9340089.

Karnouskos, S., Leitão, P., 2017. Key contributing factors to the acceptance of agents in
industrial environments. IEEE Trans. Ind. Inform. 13 (2), 696–703. https://doi.org/
10.1109/TII.2016.2607148.

Kovalenko, I., Balta, E.C., Tilbury, D.M., Barton, K., 2022. Cooperative product agents to
improve manufacturing system flexibility: a model-based decision framework. IEEE
Trans. Autom. Sci. Eng. 1–18. https://doi.org/10.1109/TASE.2022.3156384.

Leitao, P., Restivo, F., 2006. ADACOR: a holonic architecture for agile and adaptive
manufacturing control. Comput. Ind. https://doi.org/10.1016/j.
compind.2005.05.005.

Leitão P., J. Barbosa, A. Pereira, J. Barata, A.W. Colombo, “Specification of the PERFoRM
architecture for the seamless production system reconfiguration,” in IECON 2016 -
42nd Annual Conference of the IEEE Industrial Electronics Society, Oct. 2016, pp.
5729–5734. doi: 〈10.1109/IECON.2016.7793007〉.

Li, Q., et al., 2018. Smart manufacturing standardization: architectures, reference models
and standards framework. Comput. Ind. 101, 91–106. https://doi.org/10.1016/j.
compind.2018.06.005.

Lin S.-W. et al., Architecture Alignment and Interoperability. Dec. 2017. [Online].
Available: 〈https://www.iiconsortium.org/iic-i40-joint-work.htm〉.

López A., E. Estévez, O. Casquero, M. Marcos, Using industrial standards for modeling
flexible manufacturing systems, in 2020 IEEE Conference on Industrial
Cyberphysical Systems (ICPS), Jun. 2020, 1, pp. 41–46. doi: 〈10.1109/ICPS48405.
2020.9274785〉.

López A., O. Casquero, M. Marcos, Design patterns for the implementation of Industrial
Agent-based AASs, in 2021 4th IEEE International Conference on Industrial Cyber-
Physical Systems (ICPS), May 2021, pp. 213–218. doi: 〈10.1109/ICPS49255.2021.94
68129〉.

López, A., Estévez, E., Casquero, O., Marcos, M., 2022. A methodological approach for
integrating physical assets in industry 4.0. IEEE Trans. Ind. Inform. 1–9. https://doi.
org/10.1109/TII.2022.3230714.

Miny T., G. Stephan, T. Usländer, J. Vialkowitsch, Functional View of the Asset
Administration Shell in an Industrie 4.0 System Environment. Apr. 13, 2021.
Accessed: Jan. 17, 2022. [Online]. Available: 〈https://www.plattform-i40.de/I
P/Redaktion/DE/Downloads/Publikation/Functional-View.html〉.

Muller, G., 2013. Systems engineering research methods. Procedia Comput. Sci. 16,
1092–1101. https://doi.org/10.1016/j.procs.2013.01.115.

Munkelt T. and Krockert M., Agent-based self-organization versus central production
planning, in 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, Dec.
2018, pp. 3241–3251. doi: 〈10.1109/WSC.2018.8632305〉.

Nakagawa, E.Y., Antonino, P.O., Schnicke, F., Capilla, R., Kuhn, T., Liggesmeyer, P.,
2021. Industry 4.0 reference architectures: State of the art and future trends.
Comput. Ind. Eng. 156, 107241 https://doi.org/10.1016/j.cie.2021.107241.

Peres, R.S., Dionisio Rocha, A., Leitao, P., Barata, J., 2018. IDARTS – Towards intelligent
data analysis and real-time supervision for industry 4.0. Comput. Ind. 101, 138–146.
https://doi.org/10.1016/j.compind.2018.07.004.

Pisching, M.A., Pessoa, M.A.O., Junqueira, F., dos Santos Filho, D.J., Miyagi, P.E., 2018.
An architecture based on RAMI 4.0 to discover equipment to process operations
required by products. Comput. Ind. Eng. 125, 574–591. https://doi.org/10.1016/j.
cie.2017.12.029.

Pribǐs, R., Beňo, L., Drahoš, P., 2021. Asset administration shell design methodology
using embedded OPC unified architecture server. Electronics 10 (20), 2520. https://
doi.org/10.3390/electronics10202520.

Sakurada L. and Leitão P., Multi-Agent Systems to Implement Industry 4.0 Components,
in 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), Jun. 2020, vol.
1, pp. 21–26. doi: 〈10.1109/ICPS48405.2020.9274745〉.

Sakurada, L., Leitao, P., la Prieta, F.D., 2022. Agent-based asset administration shell
approach for digitizing industrial assets. IFAC-Pap. 55 (2), 193–198. https://doi.org/
10.1016/j.ifacol.2022.04.192.

Sassanelli, C., Rossi, M., Terzi, S., 2020. Evaluating the smart maturity of manufacturing
companies along the product development process to set a PLM project roadmap. Int.
J. Prod. Lifecycle Manag. 12 (3) https://doi.org/10.1504/IJPLM.2020.109789.

Schuh G., R. Anderl, R. Dumitrescu, A. Krüger, Industrie 4.0 Maturity Index. Apr. 22,
2020b. [Online]. Available: 〈https://en.acatech.de/publication/industrie-4–0-matu
rity-index-update-2020/〉.

Schuh G., R. Anderl, R. Dumitrescu, A. Krüger, Using the Industrie 4.0 Maturity Index in
Industry. Apr. 22, 2020a. [Online]. Available: 〈https://en.acatech.de/publication/
using-the-industrie-4–0-maturity-index-in-industry-case-studies/〉.

Schwab K., The Fourth Industrial Revolution. 2016.
Standard Status Specifications. 〈http://www.fipa.org/repository/standardspecs.html〉

(Accessed Sep. 02, 2022).
Tang, D., et al., 2018a. Using autonomous intelligence to build a smart shop floor. Int. J.

Adv. Manuf. Technol. 94 (5), 1597–1606. https://doi.org/10.1007/s00170-017-
0459-y.

Tang, H., Li, D., Wang, S., Dong, Z., 2018b. CASOA: an architecture for agent-based
manufacturing system in the context of industry 4.0. IEEE Access 6, 12746–12754.
https://doi.org/10.1109/ACCESS.2017.2758160.

Trunzer, E., et al., 2019. System architectures for Industrie 4.0 applications: Derivation
of a generic architecture proposal. Prod. Eng. 13 (3–4), 247–257. https://doi.org/
10.1007/s11740-019-00902-6.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P., 1998. Reference
architecture for holonic manufacturing systems: PROSA. Comput. Ind. 37 (3),
255–274. https://doi.org/10.1016/S0166-3615(98)00102-X.

VDI/VDE. 2021. 2653 Sheet 4: Multi-agent systems in industrial automation – Selected
patterns for field level control and energy systems,” Feb. 2022.

Vogel-Heuser, B., Seitz, M., Cruz Salazar, L.A., Gehlhoff, F., Dogan, A., Fay, A., 2020.
Multi-agent systems to enable Industry 4.0. Autom 68 (6), 445–458. https://doi.org/
10.1515/auto-2020-0004.

Wagner C. et al., The role of the Industry 4.0 asset administration shell and the digital
twin during the life cycle of a plant, in 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), Sep. 2017, pp. 1–8. doi:
〈10.1109/ETFA.2017.8247583〉.

Ye, X., Yu, M., Song, W.S., Hong, S.H., 2021a. An asset administration shell method for
data exchange between manufacturing software applications. IEEE Access 9,
144171–144178. https://doi.org/10.1109/ACCESS.2021.3122175.

Ye, X., Hong, S.H., Song, W.S., Kim, Y.C., Zhang, X., 2021b. An industry 4.0 asset
administration shell-enabled digital solution for robot-based manufacturing systems.
IEEE Access 9, 154448–154459. https://doi.org/10.1109/ACCESS.2021.3128580.

A. López et al.

http://10.1109/NOMS47738.2020.9110406
http://10.1109/NOMS47738.2020.9110406
https://doi.org/10.1109/TII.2020.2994032
https://doi.org/10.1109/TII.2020.2994032
https://doi.org/10.1016/j.ifacol.2016.07.803
https://doi.org/10.1016/j.ifacol.2016.07.803
https://doi.org/10.1109/ACCESS.2020.3013890
https://doi.org/10.1109/ACCESS.2020.3013890
https://doi.org/10.3991/ijoe.v13i10.7331
https://doi.org/10.1515/auto-2022-0008
https://doi.org/10.1007/s00170-019-03800-4
https://doi.org/10.3390/app9204433
https://doi.org/10.1109/ACCESS.2021.3138586
https://doi.org/10.1109/ACCESS.2021.3138586
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://doi.org/10.1109/IEEESTD.2021.9340089
https://doi.org/10.1109/IEEESTD.2021.9340089
https://doi.org/10.1109/TII.2016.2607148
https://doi.org/10.1109/TII.2016.2607148
https://doi.org/10.1109/TASE.2022.3156384
https://doi.org/10.1016/j.compind.2005.05.005
https://doi.org/10.1016/j.compind.2005.05.005
http://10.1109/IECON.2016.7793007
https://doi.org/10.1016/j.compind.2018.06.005
https://doi.org/10.1016/j.compind.2018.06.005
https://www.iiconsortium.org/iic-i40-joint-work.htm
http://10.1109/ICPS48405.2020.9274785
http://10.1109/ICPS48405.2020.9274785
http://10.1109/ICPS49255.2021.9468129
http://10.1109/ICPS49255.2021.9468129
https://doi.org/10.1109/TII.2022.3230714
https://doi.org/10.1109/TII.2022.3230714
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
https://doi.org/10.1016/j.procs.2013.01.115
http://10.1109/WSC.2018.8632305
https://doi.org/10.1016/j.cie.2021.107241
https://doi.org/10.1016/j.compind.2018.07.004
https://doi.org/10.1016/j.cie.2017.12.029
https://doi.org/10.1016/j.cie.2017.12.029
https://doi.org/10.3390/electronics10202520
https://doi.org/10.3390/electronics10202520
http://10.1109/ICPS48405.2020.9274745
https://doi.org/10.1016/j.ifacol.2022.04.192
https://doi.org/10.1016/j.ifacol.2022.04.192
https://doi.org/10.1504/IJPLM.2020.109789
https://en.acatech.de/publication/industrie-4-0-maturity-index-update-2020/
https://en.acatech.de/publication/industrie-4-0-maturity-index-update-2020/
https://en.acatech.de/publication/using-the-industrie-4-0-maturity-index-in-industry-case-studies/
https://en.acatech.de/publication/using-the-industrie-4-0-maturity-index-in-industry-case-studies/
http://www.fipa.org/repository/standardspecs.html
https://doi.org/10.1007/s00170-017-0459-y
https://doi.org/10.1007/s00170-017-0459-y
https://doi.org/10.1109/ACCESS.2017.2758160
https://doi.org/10.1007/s11740-019-00902-6
https://doi.org/10.1007/s11740-019-00902-6
https://doi.org/10.1016/S0166-3615(98)00102-X
https://doi.org/10.1515/auto-2020-0004
https://doi.org/10.1515/auto-2020-0004
http://10.1109/ETFA.2017.8247583
https://doi.org/10.1109/ACCESS.2021.3122175
https://doi.org/10.1109/ACCESS.2021.3128580

	An industrial agent-based customizable platform for I4.0 manufacturing systems
	1 Introduction
	2 Related work
	3 Research method
	4 Industrial agents for manufacturing systems I4.0 platform
	4.1 IAMS I4.0 platform overview
	4.2 Development of I4.0 components
	4.2.1 Fitting Mas-Recon templates to the manufacturing domain
	4.2.2 Developing the design patterns from the Ra and Appa templates
	4.2.3 Supporting the development of I4.0 components

	5 Case study
	6 Results and discussion
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Appendix A Supporting information
	References

