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ABSTRACT

Using accurate models of photovoltaic modules is of major importance to make realistic simulations 

of these systems in order to study their elements for a better performance. In this paper we address 

the problem of the lack of a systematic procedure to obtain accurate artificial neural network based 

models in an unattended way with large datasets. We face this problem introducing a novel 

systematic procedure to carry out this task. As proof of concept, we tested the procedure modeling a 

Mitsubishi Electric PV-TD185MF5 (185 Wp) photovoltaic module placed at the University College 

of Engineering of Vitoria-Gasteiz (University of the Basque Country, Spain). We have used a 

dataset of 63,000 samples collected during 18 months (from August 2013 to February 2015). The 

main findings of the paper are two. The first one is that the systematic procedure works properly 

because it generated autonomously two very accurate models of IPV (RMSE with unknown test 

dataset of 0.045 A for a one hidden layer neural network, while 0.042 A for a two hidden layers 

neural network), i.e., we conclude that the unattended execution of the systematic pro- cedure 

introduced in this paper has obtained models which have learned the electrical behavior of the 

photovoltaic module with an accuracy higher than the measurement de- vices precision. We have 

compared these results with recent relevant papers and we found that the proposed procedure is 

competitive and improves the state-of-art results. The second finding is that using these models lead 
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to space savings larger than 99.5% of the original tabular representation of the dataset. 

Introduction 

Due to the increasing importance of renewable energy, and thereby among them of the photovoltaic 

energy, there is a great interest in studying its elements for a better perfor- mance. The knowledge of 

its elements allows more reliable facilities and increased energy production. For example, if accurate 

models are available, it would be possible to estimate in real time the electricity production from 

irradiance and temperature data, or even throw alarms if the expected per- formance is not being 

reached because it could be a symptom of any kind of problem. 

When dealing with photovoltaic systems (a cell or a mod- ule), in order to study its behavior it is 

mandatory to know the value of the supplied voltage and current (VPH and IPH) in different working 

conditions. 

Depending on the requirements, it is possible to use simple models to obtain enough accuracy. The 

parameters required for its definition can be simply determined from the data sheets provided by the 

manufacturers. The problem arises when a more complex or detailed model is needed. The 

embodiment and the parameters of a model of a photovoltaic module are not very different from the 

ones of a photovoltaic cell. All parameters are the same unless the short circuit voltage VOC, which is 

divided by the number of cells in series NS that are in the module. 

In the literature there are a number of models of different complexities to explain the electrical 

behavior of photovoltaic modules. In order to clarify such variety we can make a first division into 

theoretical and empirical models. 

Theoretical models use a characteristic equation [23] (see Section Ideal photovoltaic cell), being 

among them a number of models which use different degrees of freedom, i.e., some of them are very 

complete but in other cases authors determine/ approximate them in several practical ways in order to 

get these models being useful. 

The most complete model used in the literature is based on a double diode equivalent circuit which 

leads to a 7 parame- ters model, i.e., a1, a2, RS, RSH, I01 , I02 and IPH. One of the fist using this model 

was [14], which adjusted the parameters through LevenbergeMarquardt and NewtoneRaphson algo- 

rithms. This model is still being used in more recent literature. For example, in Ref. [26] authors 

introduce a new procedure to calculate the IeV characteristics of only thin-film modules. After 

describing such procedure (based on an explicit rational form), the model is used to calculate the 

current of five com- mercial photovoltaic modules, reaching a mean of absolute differences between 

the calculated and issued current of 0.042 A for five different modules. A more wide field of 

application can be found in Ref. [11], where the developed model is valid for three types of cells 

(polycrystalline, amorphous and thin film). In order to estimate the 7 parameters, authors specify an 

iterative algorithm which uses a number of parameters of the modules provided by the data sheet of the 

manufacturer. They compare the curves resulting from their algorithm with those of the manufacturer 

through a plethora of figures showing that they are very close, but no numerical results on their 



accuracy are provided. Anyway, the results and the compari- son are entirely theoretical because they 

are not confronted 

with empirical values. The estimation of the 7 parameters can be carried out by means of an 

evolutionary algorithm as in Ref. [28], where the model is validated with experimental data obtained 

from a polycrystalline module under 7 different weather conditions with a total of 482 samples 

(certainly not too many), reaching an average RMSE of 0.0608 A for all these weather conditions. 

Another quite complete approach used in the literature is based on a single diode equivalent circuit 

which leads to a 5 parameters model, i.e., a, RS, RSH, I0 and IPH. In Ref. [5] the estimation of the 

parameters is done again through a genetic algorithm which uses a number of parameters taken from 

the data sheet of the manufacturer of a concrete monocrystalline module. Authors do not give the 

resulting RMSE value of their approximation, but the comparison is done with five key points given by 

the manufacturer, i.e., theoretical values. In Ref. [36] the approach used by authors is to modify the 

value of RS and RSH and adjust them by means of an iterative algorithm to fit the theoretical curve to 

experimental data in the MPP, implementing the complete model under Simulink- SimPowerSystem 

assisted by Simulink. Authors of [33] use this 5 parameters approach building three versions: from a 

basic model with two approximations of five magnitudes to a model where they are calculated. 

Authors compare the results generated by their model with experimental data obtained from a facility 

by other authors, and study the effect of changing RS and RSH. In Ref. [7] authors present an interesting 

use of this kind of model in a hybrid PV and fuel system. Finally, a much more direct approach is 

used in Ref. [27], where Matlab toolbox components are used and authors generate an application 

with GUIDE. 

A number of authors make some approximations of the characteristic parameters. The most usual of 

them is to as- sume that RSH ¼ ∞, so ISH ¼ 0 A and the third term of the characteristic equation is 

discarded leading to a 4 parameters model. In Refs. [13,37] this simplification is carried out when the 

model of the exactly same module is built following almost the same procedure. These works are 

quite similar to [30]. However there are several differences: the firsts calculate the temperature 

coefficient k0 used to calculate the short cir- cuit current ISC, while the last one uses the value provided 

by the manufacturer; and the ideality factor of the diode is different between [13,37] and [30]. A 

model where the ideality factor can be varied to fit it to different PV technologies is proposed in Ref. 

[34]. As a last 4 parameters model [6], for- mulates a distinct model from the previous ones and 

develops the model of a microgrid facility in an hybrid PV and fuel system. 

The remaining theoretical approaches are even more simple because they consider RS ¼ 0 U or IPH ¼ 

ISC, leading to a 3 parameters model. For example, in Ref. [3] almost a toy experiment (due to the small 

power of the PV module) applied to H2 extraction is presented, while [4] uses the Rauschenbach model 

and carries out a comparison with a real farm. A model that defines the magnitude equations using 

Simulink is pre- sented in Ref. [32]: two models are built, the first one through Simulink tags (from, 

goto) and the other one by means of the practical realization of the equivalent circuit using electrical 

components (resistances, diode, etc.), in such a way that instead of using the characteristic equation 



they use the 

characteristic circuit. In this last model authors consider the approximation that IPH x ISC. 

With regard to empirical models, they are based on learning the model from data. These data, in turn, 

could be obtained from the characteristic equation when instanced by means of particular characteristic 

parameters or from direct measurements obtained from real photovoltaic modules, being this second 

option the most used. The main advantages of using one approach are the drawbacks of the other one 

and vice versa: using real data it is possible to obtain accurate models, however it is mandatory to have 

these data and the model is suited only for that photovoltaic module. On the other hand, using data 

extracted from theoretical models shortens the process and changing characteristic parameters it is 

possible to obtain models for a number of photovoltaic modules without having them physically. 

In Ref. [16] authors use polynomial interpolation and describe a model which allows to obtain only 

the IV and PV curves and provides further insight into the behavior of the photovoltaic module, but it is 

suited only for a range of tem- peratures and irradiances. 

Other approach to the empirical methods is modeling the behavior of the photovoltaic elements by 

means of artificial neuronal networks. In Ref. [20] an interesting review of different approaches is 

presented, while [1,2] developed a practical model, but with very narrow amplitudes for irradi- ance and 

temperature. There are other authors who are seeking to expand these limits [22], but in spite of expand 

the range of magnitudes, they still obtain partial models with data captured during quite small time range 

(two months). In Ref. 

[8] authors use RFB neural networks to generate two models. The former is to obtain IPV from irradiance 

and voltage, and uses 5600 real samples. The second one is devoted to obtain PPV, again from irradiance 

and voltage using 4600 real sam- ples. Authors reported a relative MSE of 2% and 1% respec- tively, 

but the test has been done with training data, so in fact they have reported the training accuracy. Two 

different models based on artificial neural networks are generated in Ref. [25]. Both models have 

temperature and irradiance as inputs, while power as output. The main difference is that one on them is 

specialized in cloudy days (S400 W/m2 /day) while 

them to carry out a sensitivity analysis to study the effect of each one of the inputs of the networks on 

the generated power. 

The main objective of this paper is to address a double problem: the former is to derive systematic 

procedure to obtain global (not partial) models of photovoltaic modules in an unattended way, i.e., 

without human intervention. The second one is to generate an accurate model of the Mitsubishi 

Electric PV-TD185MF5 (185 Wp) photovoltaic module, which will be used as a proof of concept of 

the systematic procedure. In order to tackle these problems we have used an artificial neural network 

based approach because they have several advantages: they have shown good learning and generaliza- 

tion capabilities in different domains, once that they have been trained (i.e., the model has been 

obtained) the use is very simple, and when they are in use the calculations are per- formed very 

quickly. 



Both previously enumerated problems have been over- comed as shows the obtention of an accurate 

neural model with a IPH test performance (Root Mean Square Error, RMSE) of 0.0422 A (the 0.52% of 

ISC ¼ 8.13 A, i.e., better accuracy than the measuring instrumental as will be discussed in Section 

Experimental design of systematic modeling procedure validation), obtained with a long-time dataset 

of 18 months and 63,000 samples. Besides, this procedure obtained a model that improves those 

generated by the state-of-art methods where comparable. 

The paper is structured as follows. Section Background recalls some basic concepts on ideal 

photovoltaic cells and artificial neural networks. The systematic procedure to model the behavior of 

photovoltaic panels based on artificial neural networks and the formulation of a number of approaches 

to study are introduced in Section ANN based photovoltaic module modeling systematic procedure. 

Section Experimental design of systematic modeling procedure validation describes in detail the 

experimental design to validate the systematic procedure, while the obtained exper- imental results are 

discussed and compared with previous relevant works in Section Experimental results. Finally, our 

conclusions are given in Section Conclusions and future work. 

the other one in sunny days (>400 W/m2 /day). Authors havegathered data during 13 months to build 

them from a real module, recording 5760 samples as cloudy days, while 2280 samples as sunny days. 

The training process of each model has been carried out with 70% of samples, while the validation (not 

test) with the remaining 30%. The reported RMSE for the first model with a test dataset of 4 cloudy 

consecutive days is 0.115%, while 0.11% for the second one with a test dataset of 4 sunny consecutive 

days. A more recent work is [35], where authors obtained two neuronal models from experimental data 

gathered during 4 months, each one for two different modules (monocrystalline and flexible organic 

modules). The input of the networks are temperature, irradiance and relative humidity, while the output is 

the power. The 65% of data were used for training (2868 samples), 20% for validation (833 samples) and 

the remaining 15% for test (662 samples). The correlation coefficient is 0.8046 and 0.8493, while the 

average error is 0.05664 W and 0.01169 W respectively for each model. Once that the authors have got 

accurate models, they use 

Background 

 

Ideal photovoltaic cell 

 

A first approximation to the ideal photovoltaic cell is to model it as a current source with an anti-

parallel diode, where the direct current generated when the cell is exposed to light varies linearly with 

the solar radiation (sub-circuit enclosed by a dotted line on the left part of Fig. 1). A second and more 

accurate approximation is shown through overall Fig. 1, where the improvement of the model includes 

the effects of a shunt resistor and other one in series. The main involved magni- tudes are the 

following: IPH is the photogenerated current or photocurrent (A), ID is the current of the diode (A), RSH 

is the shunt resistance (U) and RS is the series resistance (U). This equivalent circuit can be used either 

for an individual cell, a module that consists of several cells or for a matrix that is the union of several 



modules. 

 

 

Fig. 1 e Ideal photovoltaic cell. 

 

Based on the ideal equivalent circuit of Fig. 1, we can describe the relationship between the voltage 

(VPV) and the current (IPV) supplied by the photovoltaic cell by means of the characteristic equation Eq. 

(1) [14], so that expanding each current term Eq. (2) [23] is obtained: 

 

IPV ¼ IPH - ID - ISH; (1) 

different situations, the response of a neural network in unseen situations (i.e., with unseen inputs) 

will probably be acceptable and quite similar to the correct response. So it is said that they have the 

generalization property. 

• Real time capabilities: Once they are trained, and due to their parallel internal structure, their 

response is always very fast. Their internal structure could be more or less complex, but in any case, 

all the internal operations that must be carried out are a number of multiplications and additions if it 

is a linear neural network. This fast response is independent of the complexity of the learned 

models. 

 

There is a number of types of ANN, each of one of them well suited to different problems and 

applications. Besides, there is one or more learning algorithms for each of those types of ANN, having 

their own strengths and weaknesses. To learn more about neural networks in general see Refs. 

[38,9,31,21], and to get deeper insight on identification and control of dynamical systems using ANN 

see Refs. [29,24]. 

I     ¼ I    - I  
(

e
qðVPV þIPVRS Þ  - 1

  
- VPH  þ IPHRS ; (2) 

PV PH 0 

aKT 

RSH 

ANN based photovoltaic module modeling 



where: 

I0 is the saturation current of the diode (A), 

q is the charge of the electron, 1.6 x 10-19 (C), 

a is the diode ideality factor of the diode, 

K is the Boltzmann's constant, 1.38 x 10-23 (j/K), 

T is the cell temperature (o C). 

In Eq. (2) several structural parameters of the cell are involved, i.e., IPH, ID, a, RS and RSH. Since this 

is a theoretical model, we have to use an estimate of all these parameters, and this circumstance leads 

necessarily only to approximate values when the study of a particular photovoltaic module is being 

carried out. 

Besides, as one solar cell is only capable of generating very low terminal voltage and output current, 

for working pur- poses many cells are connected in series to form higher voltage across the terminal 

and connected in parallel to form a module. For large scale operation of PV generator, modules are 

connected in series and parallel to form an array. So, due to the large amount of photovoltaic cells used 

in large real in- stallations, the multiplier effect of these small approximation errors can be relevant. 

 

Artificial neural networks 

 

Using Artificial Neural Networks (ANN) is motivated by its ability to model complex systems [38]. 

These bio-inspired models have several advantages, and among others, these are the most outstanding 

to the problem that we are addressing: 

 

• Learning capabilities: If they are properly trained, they can learn complex mathematical models. 

There are several well known training algorithms and good and tested implementations of them. The 

main challenge concerning this issue is to choose appropriate inputs and outputs to the black box 

model and the internal structure. 

• Generalization capabilities: Again, if they are properly trained  and  the  training  examples  cover  

a  variety  of 

systematic procedure 

 

In this section we describe four models to formulate the approximation to the electrical behavior 

of a photovoltaic module by ANNs (from  subsection  Approximation  by  M1   ¼   (VPH   -  IPH)   

model    to    Approximation    by M4 ¼ (TGVPH - IPH) model), while subsection General 

systematic modeling procedure introduces a general system- atic procedure to get the most accurate 

instance of these models through ANNs. 

Building a model or an approximation of the electrical behavior of the photovoltaic module consists 

in training ANNs to predict the IPH (and in some cases also VPH) given as input specific combinations 



of the temperature T and the irradiance G of the surroundings of the module (and in some cases also VPH). 

 

Approximation by M1 ¼ (VPH - IPH) model 

The main idea that guides the design of this model is the simplicity. In order to build a first model as 

simple as possible, we have assumed that the temperature T and the irradiance G are quite constant 

values, and we have discarded them as significant variables. In Fig. 2(a) we can see a schematic rep- 

resentation of this model. 

So, following this model, the ANNs have one input neuron because there is only one real valued 

input (VPH), and there is also one unique output neuron because there is only one real valued target 

(IPH) associated with each input value. So, both the input and the output layers have only one neuron. 

 

Approximation by M2 ¼ (TG - VPHIPH) model 

The aim of the design of this model is to characterize the intrinsic behavior of a photovoltaic module, 

taking into ac- count only exogenous factors. So, we have assumed that only the temperature T and 

the irradiance G are relevant for this purpose. Fig. 2(b) shows a schematic representation of this 

model. In this case the ANNs have two input neurons because there are two real valued inputs (T and 

G), and there are also two output neurons because there are two real valued targets (VPH and IPH) 

associated with each input combination. In this way, both the input and the output layers have two 

neurons. 

 

Approximation by M3 ¼ (TG - VPH, TG - IPH) models 

The purpose of this model is the same that the previous one, i.e., to characterize the intrinsic behavior of a 

photovoltaic module, but we have considered two different ANN in order to get two smaller and more 

accurate models than the previous one, at the 

 

 

 

 

 

 

 

 

 



 

Fig. 2 e Schematic representation of different ANN models. 

 

 

Fig. 3 e Photovoltaic modules installation (8 pieces), in University College of Engineering 

of Vitoria-Gasteiz (University of the Basque Country, Spain). 

same time that we can use the ANN which models the magni- tude of interest if only one of them is 

needed. We have consid- ered again that only the temperature T and the irradiance G are relevant for this 

purpose. Fig. 2(c) shows the double ANN model. Taking into account the these considerations, the 

ANNs have two input neurons because there are two real valued inputs (T and G), while there is 

one unique output neuron for each type of ANN because there is only one real valued target (VPH or 

IPH) associated with each combination of input values. 

The complete model of the photovoltaic module is obtained by gathering the responses of the two 

independent ANNs. 

 

 

 

 

 



 

Approximation by M4 ¼ (TGVPH - IPH) model 

All models pursue to be as accurate as possible, but their design bears in mind other main objectives 

as simplicity, etc. This last model design, however, has been focused on accu- racy. In order to get 

this objective the temperature T and the irradiance G have not been considered constant, so they have 

not been discarded. In Fig. 2(d) we can see a schematic rep- resentation of this complete model. 

The ANNs which implement this complete model have three dimensional real valued input patterns 

(T, G and VPH), i.e., three input neurons, while there is only one real valued target (IPH) associated 

with each input combination. 

 

General systematic modeling procedure 

 

Once several approaches with different specificities have been introduced in previous subsections, a 

general specification of the training systematic process for the accurate approxima- tion of the different 

models by ANNs is given in Algorithm 1. The first step is to obtain raw data of the relevant physical 

magnitudes to feed all the process. These datasets are adapted to the input/output specification of each 

approximation, and later a normalization and/or noise addition process is carried out, generating the 

definitive datasets. They are partitioned into three datasets, i.e., 60% for training ANNs, 20% for vali- 

dation (overfitting prevention) and the last 20% for test the quality of learned model (prediction 

capability of the electrical 

behavior of the photovoltaic module). 

 

Experimental design of systematic modeling procedure validation 

 

This section is devoted to give a detailed description of the experimental design that we have followed 

to validate our 

systematic modeling procedure and get accurate photovoltaic module models, giving the specifications of 

Algorithm 1 General systematic photovoltaic module model learning procedure through ANNs. 

1. Obtain raw data of the relevant magnitudes 

2. for each ANN learning approximation, 

(a) Adapt the input and output patterns obtained in the step 1 to the description used in the 

approximation 

(b) Modify the input patterns according to the approximation (normalization and noise addition) 

(c) Partition them into three datasets (60% train, 20% validation and 20% test) 

(d) Train ANNs with the adapted train input and output patterns following the approximation 

description 

(e) Test the learned approximation with the adapted test dataset in order to validate it 



the photovoltaic module that has been used, the description of the devices used to obtain measurements of 

all the relevant magnitudes, and much more detailed specification of the systematic procedure that has 

been followed to train and validate the different ANN based approximations. Subsection Photovoltaic 

module description describes the main characteristics of the photovoltaic module whose electrical behavior 

is going to be modeled, while the remaining subsections from Data acquisition procedure to Detailed 

specification of the systematic modeling procedure are intended as a detailed description of the Algorithm 

1. 

 

Photovoltaic module description 

 

In this subsection we introduce the characteristics of the photovoltaic module which is going to be 

used in the experimental part of the paper to obtain different ANN based approximations. The 

module has been manufactured by Mitsubishi Electric, the type is PV-TD185MF5 (185 Wp) and8 

pieces can be seen in Fig. 3 in the University College of Engineering of Vitoria-Gasteiz (University 

of the Basque Country, Spain). This module has 50 series connected polycrystalline cells, and the 

key specifications are shown in Table 1. The performance of solar cells is normally evaluated under 

the standard test condition (STC), where 

 

 

 

Table 1 e Mitsubishi PV-TD185MF5 

photovoltaic module characteristics. 

Attribute  Value  

Manufacturer  Mitsubish

i 

 

Model  PV-

TD185MF5 

 

Cell type  Polycrystallin

e 

Silico

n 

Size [mm]  156 x 

156 

 

Number of cells in 

series 

 50  

Maximum power [W]  185  

Open circuit voltage 

VOC [V] 

 30.60  



Short circuit current 

ISC [A] 

 8.13  

Voltage, max power 

VMPP [V] 

 24.40  

Current, max power 

IMPP [A] 

 7.58  

Nominal operation 

cell temp. 

[o C] 47.5  

an average solar spectrum at AM 1.5 is used, the irradiance is normalized to 1000 W/m2, and the cell 

temperature is taken as 25 oC. 

 

Data acquisition procedure 

 

In this subsection we describe all the details related to the step 1 of the Algorithm 1. The electrical 

setup and the set of devices needed to obtain the value of all the magnitudes involved in the ANN 

based approximations design are explained. This procedure has been followed from August 2013 to 

February 2015, generating nearly 63,000 samples along 18 months, i.e., almost 3500 samples per 

month. Each sampling period lasted 10 min and the relevant magnitudes were measured while a 

variable resistance was manually changed. 

 

General setup 

Fig. 4 shows two versions of the overall setup: on the other hand, Fig. 4(a) shows a schematic diagram 

with all the devices involved to capture the four relevant magnitudes, i.e., VPH, IPH, temperature T and 

irradiance G in the surroundings of the photovoltaic module. The voltmeter is placed in parallel with 

the module to obtain VPH while the amperemeter in series to obtain IPH. Besides, there is a variable 

resistance to act as a variable load and obtain different pairs of voltage and current with the same 

irradiance and temperature. The variable resistance value is controlled according to our convenience, 

but the temperature and the irradiance depends on the climatological conditions. On the other hand, in 

Fig. 4(b) there can be seen the actual workbench. 

 

Irradiance and temperature sensor Si-420 TC-T-K 

This sensor provides the irradiance (W/m2) and the tempera- ture (oC) of the surroundings of the 

photovoltaic module along the duration of the data acquisition process, which usually is not long. 

Once the sensor acquires a stable working temper- ature, both irradiance and temperature values have 

usually a very small variation, therefore they are assumed as constant by manufacturers when provide 

the IV and PV characteristic curves of their photovoltaic modules. The sensor provides its output 

expressed as current. 



With regard to the accuracy of the device, it is ±5% when it measures irradiance and ±1.5 o C when 

temperature. 

 

 

 

Fig. 4 e General setup and measurement elements 

for data logging. 



Current clamp Chauvin Arnoux PAC12 

The current clamp is used to measure the direct current pro- vided by the photovoltaic module, providing at 

its output a voltage proportional to the measured current. This clamp has two working scales: one with a 

narrow input range (0.4e60 A DC) but more accurate readings (precision ±1.5%), and a second one with a 

broader input range (0.5e600 A DC) but with less accurate readings (precision ±2%). Since the expected 

value of IPV is less than 10 A, we have chosen the first working mode, which leads to measurements with a 

maximum error of ±150 mA. 

 

Programmable isolating amplifier Camille Bauer Sineax TV809 The functions of this device are to 

isolate electrically the input/output signals and amplifying and/or converting the signal level or type 

(current to voltage, or vice versa) of the input DC signals. In the experiments described in this paper we 

have used two independent devices. Since the value of both VPV and the output of the current clamps IPV 

are expressed in volts, and the used datalogger only can read currents at its input, it is mandatory to use 

two independent devices to transform these magnitudes into current values. 

The configuration of the transformations to carry out is done through the TV800plus (V1.11) 

software, and the main function of both amplifiers is to convert the voltage and cur- rent signals of the 

photovoltaic module into a 4e20 mA cur- rent signal proportional to the input. The screen to configure 

the conversion of the voltage supplied by the current clamp into current by one of the amplifiers is 

shown in Fig. 5. 

The accuracy of this device is ±0.2% of the maximum value of the input. In the case of VPV the 

maximum value is set to  50 V leading to maximum error of ±0.1 V, while the maximum value of IPV is 

set to 10 A, leading to maximum error of ±20 mA. 

 

Datalogger Camille Bauer datalogger Sineax CAM 

This device is devoted to collect and register the four physical magnitudes that later will be used to 

elaborate the datasets to obtain different approximations as realistic as possible, i.e., irradiance, 

temperature, VPH and IPH. It is designed for long- term measurements in industrial installations, and it 

allows continuous measurement and recording of data. In our case the logging frequency was set to 

0.5 Hz. 

The datalogger is supplied with the CB-Manager software, which integrates several useful functions 

to configure the I/O interface according to specific requirements and to display the measured values. In 

Table 2 the used conversions from cur- rents to physical magnitudes are shown, while Fig. 6 shows 

the configuration screen of the I/O port number 1. 

The accuracy of this device is ±0.1% of the maximum value of the input configuration (full scale) 

which is set to 20 mA, so the measurement error is negligible. 

 

Modification of the datasets 



 

A this point we recall the general systematic procedure described by Algorithm 3.5. After capturing 

data of the rele- vant magnitudes (step 1 of Algorithm 1) by means of the 

 

 

 

Fig. 5 e VT800Plus software to configure the TV809 

Amplifier. 

Table 2 e Conversions from current to physical 
magnitudes. 

Input channel 

Magnitude  4 mA  20 mA 
Irradiance G  0 W/m2  1200 W/m2 
Temperature T -135.5 o C 76 o C 
Voltage VPH  0 V  25 V 
Current IPH  0 A  25 A 



potentially there are two versions of each training and testing dataset: raw unnormalized and 

normalized datasets. 

• The noise addition process, if applied, we can obtain several datasets versions by the addition of 

noise to each input attribute based on uniformly distributed pseudo- random  numbers  in  the  

range  r2[-1, 1]  weighted  by  a parameter noisew2[0, 100], as indicated in Eq. (3): 

 

attribute)attribute $ f1 þ ½noisew$ð2$r - 1Þ]g (3) 

electrical setup described in subsection Data acquisition procedure, a complete dataset is obtained 

containing an exhaustive sampling of the relevant magnitudes when approximating the electrical 

behavior of the photovoltaic module. The step 2(a) is particular for each approximation described in 

Section ANN based photovoltaic module modeling systematic procedure obtaining different datasets 

suited for each approximation, while in this subsection we are dealing with step 2(b) and step 2(c) of 

the Algorithm 1. 

Regarding step 2(b), there are two modification trans- formations that could be carried out on input 

patters: a normalization and a noise addition process. We explore the effect of all four possible 

combinations. 

 

• The normalization of the input attributes of the training and the  test  datasets  sets  them  into  the  

range  [-1, 1].  So, 

This modification rule is intended for generating additive or subtractive noise of magnitude noisew 

percent of the value of each input attribute. We have used the following values: noisew2{0, 1, 2, 5, 

10}, i.e., when noisew ¼ 0 then the original value of the attributes remain unchanged. No more 

modifi- cations have been done, i.e., the raw data captured by all the measuring and conversion 

devices described in subsection Data acquisition procedure have not been filtered looking for outliers 

nor anomalous values in order to keep the systematic procedure as automatized as possible. This in 

turns implies that in some cases there are more than one different value of IPH for the same 

combination of irradiance G, temperature T and VPH; i.e., we are learning a multivalued function. 

With regard to step 2(c) of Algorithm 1, we state that the partition of the modified dataset into train, 

validation and test datasets has been arbitrary. We have partitioned the input 

 



 

 

Fig. 6 e CB-Manager software to configure the 

Sineax CAM datalogger. 



p¼5 

H2 ¼ 
� 

(6) 

and target vectors (accordingly to each approximation defi- nition) using interleaved indices as follows: 

60% are used for training, 20% are used to validate that the network is gener- alizing and to stop 

training before overfitting, and finally, the last 20% are used as a completely independent test of network 

generalization. 

 

 

ANN structure and configuration parameters 

 

The first step in the training process to configure an ANN is to fix its structure. We have used feed-

forward ANNs with one and two hidden layers, being this one the main structural difference between 

them. 

We complete the configuration of the ANNs with the following description: 

 

• Activation function: We have tested ANNs with different activation functions in the hidden nodes, 

depending on the number of hidden layers: 

e One hidden layer: tan-sigmoid, log-sigmoid and purelin functions. 

e Two hidden layers: tan-sigmoid, log-sigmoid and pure- lin functions in the first hidden layer, while 

only purelin in the second one. 

• Hidden layers size: We have tested ANNs with different number of hidden nodes in each one of the 

hidden layers. We have used near to linear fashion spaced natural values depending on the number 

of hidden layers: Eq. (4) defines the range of the number of nodes when the ANNs have only one 

hidden layer (200 values), while Eq. (6) shows the range for the first and the second hidden layer 

when the ANNs have two hidden layers (a maximum of 36 values for each hidden layer): 

 

H1 ¼ 
{

h1 h12ℕþ∧h12½1;  200]
  

(4) 

H ¼ 
n

h h2ℕþ∧h2
n

½1;  20]∪∪20    5:p
oo 

(5) 

h1jh12H if 1st layer h2jh22H if 2st layer∧h2 S h1 

• Trials: For the resulting combinations of adopting the variants of number of hidden layers, 

activation function and neurons number previously exposed, we have per- formed 5 trials 

measuring several performance values in order to analyze the behavior of individual ANNs and also 

the behavior of all ANNs of a given structure. 

 



 



Detailed specification of the systematic modeling procedure 

 

The procedure for all model approximations training and validation is specified in Algorithm 2. It is a 

detailed instance of the general systematic procedure of the Algorithm 1. We define the following 

complete sets to formalize the algo- rithmic description: 

 

• M ¼ {M1, M2, M3, M4} is the set of the model approximation formulations with which we will 

address the problem of photovoltaic electric model learning, and M ¼ ∪jmj, being mj each model 

approximation. 

• R ¼ {true, false} is the set of the possibilities regarding the normalization of the attributes (physical 

magnitudes of the datasets). 

• N ¼ {0, 1, 2, 5, 10} is the percentage of noise gain added to each input attribute, and N ¼ ∪r nr, 

being nr the noise per- centage possibilities. 

• H1 defined by Eq. (4) is the set of number of hidden nodes of the hidden layer if the ANN has only one 

hidden layer, while H2 defined by Eq. (6) is the set of the of number of hidden nodes of the hidden 

layers is the ANN has two hidden layers. 

• F ¼ {tan - sigmoid, log - sigmoid, purelin} is the set of acti- vation functions, and F ¼ ∪t ft, being 

ft the available acti- vation function possibilities for the 1st hidden layer. 

 

Finally, regrading the training algorithm, we have chosen the LevenbergeMarquardt algorithm due 

to speed reasons, despite of being very memory consuming. In all cases, all the ANN input vectors are 

presented once per iteration in a batch. 

paper, i.e., neither normalization nor noise addition processes were applied to the datasets, nor 

different ANN structures were tested. In that work two different models were obtained, reporting for 

both of them a Root Mean Square Error (RMSE) of 

0.1 A. It is an accurate result, but both models were required because each of them was suited only 

for a month, i.e., one of them was trained with a dataset collected in January 2014 while the other 

one with a dataset collected in July 2014, being this circumstance the main drawback of the reported 

results of [22] because this approach is appropriate only if the assumption that the temperature 

and irradiance are con- stants is accepted. 

In the first row of Tables 3 and 4 there are the most accu- rate ANNs for this approach with one and 

two hidden layers respectively. The Perftrain, Perfval and Perftest columns show the RMSE value with 

the train, validation and test datasets respectively. The best results were reached normalizing and 

adding noise to the original datasets, however, as we could expect, the RMSE value for the test dataset 

Perftest reports a poor accuracy. It is due to the approach assumes that tem- perature and irradiance are 

quite constants, however, the entire dataset of 18 months has a very wide range of tem- peratures from 

3.65 o C to 66.54 o C, and from 33.33 W/m2 to 1267.2 W/m2 of irradiances. 



 

Approximation by M2 ¼ (TG - VPHIPH) and 

M3 ¼ (TG - VPH, TG - IPH) models 

In the second row of Tables 3 and 4 there are the most accu- rate ANNs for the approach M2 ¼ (TG - 

VPHIPH) with one and two hidden layers respectively, while in the third and the 

 fourth rows of the same tables there are the best 

results of the 

Experimental results 

 

This section is devoted to discuss the experimental results that we have obtained following the 

systematic procedure and the experimental design of Section Experimental design of systematic 

modeling procedure validation, and to compare them with previous relevant works of the literature. All 

the model approaches are discussed, but we pay more attention to the last model M4 ¼ (TGVPH - IPH) in 

the last subsection. These experimental results have been obtained after intensive exe- cutions in which 

32 workstations (Dell Precision T1700 equipped with Intel(R) Core(TM) i7-4770 CPU@3.40 Ghz and 

16 GB RAM) were working during 7 days. 

 

Approximation by M1 ¼ (VPH - IPH) model 

This model was used with success in Ref. [22] using heuristic methods instead of a systematic 

procedure as proposed in this 

two ANNs which implements the model under the approach M3 ¼ (TG - VPH, TG - IPH). The results 

of both approaches are definitely very poor: in general, the RMSE value of the ANNs which 

implements the approach M2 is the mean of the two corresponding ANNs which implements the 

approach M3. Moreover, these separated ANNs of this last approach do not take advantage of having 

separated targets. We think that the cause of this problem is that the cartesian product of the input 

values is not a sufficient domain to learn such complex multivariate functions, but actually we have 

not proved this hypothesis, and we need to make further work to analyze the poor performance of the 

trained models under these approaches. 

 

Approximation by M4 ¼ (TGVPH - IPH) model 

At this point we recall the main idea which drove this approach specification, i.e, not to assume any of 

the relevant

 

 

 



Table 3 e Best ANN with 1 hidden layer for each approach and their results (RMSE) for the 

18 months dataset. 

 Nor

m 

Nois

e 

Node

s 

Fun

ct 

Perft

rain 

Perf

val 

Perftest 

M1 Yes 5 106 logsi

g 

2.121 2.223 1.923 

M2 No 0 196 logsi

g 

29.54

7 

33.3

37 

31.609 

M3 V Yes 0 174 tansi

g 

60.85

4 

65.2

00 

58.662 

M3 I Yes 0 174 tansi

g 

1.998 2.173 2.032 

M4 Yes 0 64 logsi

g 

0.047 0.052 0.045 

Table 4 e Best ANN with 2 hidden layers for each approach and their results (RMSE) for the 

18 months dataset (Nodes 1/2 means the nodes of the 1st and the 2nd hidden layer). 

 Nor

m 

Nois

e 

Nodes 

1/2 

Funct Perftrain Perf

val 

Perftest 

M1 Yes 2 20/16 tansig 2.176 2.162 1.879 

M2 Yes 1 50/12 logsig 36.252 38.2

45 

33.574 

M3 V No 1 45/3 tansig 70.808 73.0

65 

65.989 

M3 I No 1 50/8 tansig 2.430 2.464 2.262 

M4 No 0 90/6 tansig 0.043 0.051 0.042 

 

magnitudes as constant to achieve a model as accuracy as possible. 

In the last row of Tables 3 and 4 there are the most accurate ANNs with one and two hidden layers 

respectively for this last approach when modeling the behavior of the photovoltaic module through data 

captured along 18 months. The reached accuracy for test datasets Perftest shows a RMSE of 0.045 A and 

0.42 A for ANNs with one and two hidden layers respectively. They are very accurate results as expected 

due to the char- acteristics of this approach. Taking into account that some of measuring equipment has 

a limited precision (among other devices, for example, the current clamp described in subsec- tion  Data  

acquisition  procedure  has  a  maximum  error  of 

±150 mA as stated in that subsection), we can conclude that the unattended execution of the systematic 

procedure intro- duced in this paper has got an ANN model which has learned the behavior of the 



photovoltaic module with an accuracy higher than the measurement precision. 

The correlation coefficients (R-value) of the best ANNs are shown in Fig. 7. Both Fig. 7(a) for the 

best one hidden layer ANN and Fig. 7(b) for the best two hidden layers ANN show a very good 

correlation coefficient taking into account that R ¼ 1 means perfect correlation between the network 

response and targets, and the test dataset is composed of more than 12,600 samples (20% of 63,000 

samples). 

Table 5 and Table 6 give us deeper insight into the learning process of this approach. In the left part 

of the tables there are the values of the best ANN with a combination regarding the normalization and 

noise addition processes, while in the right part there are the best mean structures for all the trials with 

regard to the same combination. Analyzing these tables we can obtain several conclusions, 

considering that they are ob- tained under the double effect of normalization and noise addition: 

 

• In the case of ANNs with one hidden layer, there are several ANNs with very similar accuracy 

values. In fact, there are two ANNs with the same RMSE value, and the second one (with 

normalized dataset) has been selected because it has less nodes in the hidden layer. 

• The normalization process in combination with null or low percentage noise addition results in 

ANNs with two hidden layers with a very similar RMSE value. 

• In general, the normalization process carried out with datasets generates smaller ANNs than those 

generated with unnormalized datasets. 

• The normalization process in the case of ANNs with one hidden layer leads to a smaller RMSE; 

however, in the case of two hidden layers the effect is the opposite, leading to larger RMSE values. 



 

 

 

 

Fig. 7 e Correlation coefficients of the (a) best 1 hidden layer and (b) 2 hidden layers ANNs, 

for approach M4 ¼ (TGVPH ¡ IPH) with the 18 months dataset. 

Table 5 e Test accuracy (RMSE) results for approach M4 ¼ (TGVPH ¡ IPH), merging the results 

obtained with all combinations of hidden nodes and activation functions with ANN with 1 

hidden layer. 

 

Norm 

 

Nois

e 

 

Acc. 

Best individual 

ANN 

Nodes 

 

Funct 

 

Acc

: 

Best mean ANN 

s10-3 Nodes 

 

Funct 

No 0 0.045 129 logsig 0.0

50 

6.

0 

12

9 

logsig 

 1 0.049 47 tansig 0.0

57 

2.

8 

13

8 

tansig 

 2 0.055 96 logsig 0.0

61 

2.

5 

66 logsig 

 5 0.101 148 logsig 0.1

08 

6.

6 

14

8 

logsig 

 10 0.205 112 logsig 0.2

14 

4.

2 

74 logsig 

Yes 0 0.045 64 logsig 0.0

51 

3.

1 

94 logsig 

 1 0.046 117 logsig 0.0 3. 15 tansig 



52 0 4 

 2 0.049 189 logsig 0.0

51 

1.

8 

17

4 

logsig 

 5 0.060 113 tansig 0.0

64 

0.

6 

90 logsig 

 10 0.086 86 tansig 0.0

94 

1.

6 

69 logsig 

 

Table 6 e Test accuracy (RMSE) results for approach M4 ¼ (TGVPH ¡ IPH), merging the results 

obtained with all combinations of hidden nodes and activation functions with ANN with 2 

hidden layers (Nodes 1/2 means the nodes of the 1st and the 2nd hidden layer). 

 

Norm 

 

Nois

e 

 

Acc. 

Best individual 

ANN 

Nodes 1/2 

 

Funct 

 

Acc

: 

 

s10-3 

Best mean ANN 

Nodes 1/2 

 

Funct 

No 0 0.042 90/6 tansig 0.0

49 

3.5 70/15 tansig 

 1 0.047 95/30 tansig 0.0

53 

2.9 95/20 logsig 

 2 0.053 65/12 tansig 0.0

62 

4.7 70/9 tansig 

 5 0.102 100/60 logsig 0.1

08 

2.4 100/45 tansig 

 10 0.199 65/14 tansig 0.2

13 

1.1 18/5 tansig 

Yes 0 0.044 55/4 tansig 0.0

48 

2.5 100/40 logsig 

 1 0.045 80/6 logsig 0.0

49 

3.1 55/17 logsig 

 2 0.046 65/15 tansig 0.0

52 

0.3 80/30 tansig 

 5 0.058 70/35 tansig 0.0

63 

3.0 35/8 tansig 

 10 0.083 80/9 tansig 0.0

91 

7.4 80/12 tansig 

 

• As we can see, for both one and two hidden layer ANNs the best results are always obtained 

without noise addition. This circumstance takes place probably because the measuring devices 



introduce noise in the measurements, as stated in the section devoted to their description. 

• The addition of noise always generates larger RMSE values. 

• The second hidden layer is always much smaller than the first one. 

• The best activation functions for this approach are tansig 

Comparison with previous works 

 

This subsection is devoted to compare the obtained results with previous relevant works of the 

literature. Table 8 con- tains a summary of the results reported by the most relevant and recent 

publications of the state-of-art about PV modules modeling. The methodology and the purpose of 

most of them were recalled in Section Introduction, so only the most 



and  logsig.  The  remaining  activation  functions  have not

 been used in hidden neurons to get the best ANN 

under any combination regarding normalization and noise addition. 

 

As last relevant information with regard to the best one and two hidden layers ANNs trained with the 18 

months dataset, Table 7 shows the space requirements needed to store both ANNs. The first one (one hidden 

layer, Table 7(a)) needs less than 3 KBytes of space to store its configuration, while the second one (two 

hidden layers, Table 7(b)) uses less than 8 KBytes. Comparing these re- quirements with the space needed to 

store a tabular representa- tion of the original dataset calculated in Eq. (7), the saving is very relevant, 

reaching more than 99.84% of space with one hidden layer ANN and more than 99.58% of space with two 

hidden layers: 

values ðT;  G; VPH; IPHÞ Bytes 

63; 000 samples x 4 

Table 7 e Space requirements of the (a) 

best 1 hidden layer and (b) 2 hidden 

layers ANNs, for approach 

   M4 ¼ (TGVPH ¡ IPH) with the 18 months 

dataset. 

 Matri

x 

Layer  Size Size 

(Bytes) 

(a)      

1 Hidden 

layer 

Bias Hidde

n 

 64 512 

  Outpu

t 

 1 8 

 Weig

ht 

Input 

Hidd

en 

 64 x 

3 

64 

15

36 

512 

 TOTA
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   25

68 

(b)      



 

 

 

 

 

 

 

 

 

 

 

 

 

relevant comments on the results will be given in this sub- section. The meaning of the columns of 

Table 8 is the following: 

 

• Type: It is the type of PV cells of the modules which have been reported as used in the theoretical or 

empirical ex- periments of each reference. (poly: polycrystalline, mono: monocrystalline, thin: thin-

film, all: the model could be applied to any type of cell because it has an empirical basis and does not 

depend on any special parameter or charac- teristic of the technology of the cell). 

• Model: It indicates whether the model is theoretically or empirically obtained. 

• P: It is the power of the PV module (watt). 

• Mag: It is the magnitude or variable predicted by the model. 

• Metric: It indicates the metric used to measure the accu- racy obtained by the model, and it evaluates 

the difference between the predicted and the expected/real magnitude (RMSE: root mean square 

error, MSE: mean square error, ME: mean error, R: correlation coefficient, Diff: difference) 

• Value: It is the value of the metric when applied to the magnitude. 

Before analyzing and comparing the results of previous relevant works, we point out several 

circumstances related to our general systematic procedure and the experimental setup: 

 

• The PV module that we have used in the real experiments has much more power (185 W) than the 

PV modules of the previous relevant works (12.4 W, 42 W, 50 W, 55 W, 90 W, 120 W, 125 W, 128 

W and 130 W). This makes the absolute value of the metric to be larger while the relative error 

could be smaller. 

• The dataset of our experiments is composed of 63,000 samples gathered during 18 months. It is 

much more larger than the datasets of the previous relevant works. This makes potentially much 

more difficult the task of learning a model because there are much more points to learn and to fit. 

2 Hidden 

layers 

Bias Hidde

n 

1 90 720 

  Hidde

n 

2 6 48 

  Outpu

t 

 1 8 

 Weig

ht 

Input 

Hidd

en 

Hidd

en 

 

1 

2 

90 x 

3 

6 x 

90 

6 

2160 

4320 

48 

 TOTA

L 

   73

04 



• The model to be learned by our general procedure is a two inputs model, while some model of the 

previous works has three inputs. This makes to these works more easy the learning task because 

they have more information. 

• The model generated by our general procedure is unique for the entire dataset, i.e., it is not splitted 

into two 

submodels as some of the previous works. This makes to these works more easy the learning task 

because they can specialize each model in a segment of the dataset. 

 

At this point we proceed to compare the models obtained in previous relevant works with the model 

generated by our general systematic procedure: 

 

• In Ref. [26] a procedure to obtain the model of only thin- film modules is introduced, and apart 

from its results, the results of the models of a number of different authors are reported. The 

predicted magnitude is IPV, and accepting roughly the comparison between Diff and RMSE, we can 

see clearly that only if the power of the PV module is much lower than ours then the accuracy is 

better. Even in this circumstance, in most cases the model generated by our procedure has a 

better accuracy. 

• In Ref. [28] an evolutionary algorithm is used to generate 

humidity, while the output is the power. Again the magnitude predicted by the model is PPV instead 

of IPV and the metric is ME instead of RMSE, which make that the results are not comparable. 

However, the R coefficient is comparable and it is clearly worse than ours. 

 

Finally, we recall the work of [22] in order to compare the results obtained in that paper with the 

new ones from using the systematic procedure introduced in this paper with this modeling 

approach, but with those two datasets (one with measurements of January 2014 and the other one of 

July 2014). In Ref. [22] the best test accuracy was obtained with a RMSE of 

0.1 A with both datasets. Tables 9 and 10 show that applying the systematic procedure, in general, the 

RMSE is divided by a factor of 103, reaching much better results than those which were already 

accurate. 

the  (theoretical)  model  and  the  results  of  a  number of   

works are reported. In this case the magnitude and the metric used to evaluate the accuracy of all 

models is the same as ours, and we can conclude clearly that our model is more accurate that all of 

they, even with a PV module of 185 W instead of only 120 W. 

• In Ref. [8] authors do not report the type of used real PV module. They use RFB neural networks to 

generate two models. The former (ANN1) is to obtain IPV from irradiance and voltage, while the 

second one (ANN2) is devoted to obtain PPV from the same magnitudes. Authors report nu- merical 

results, but actually the test has been done with training data, so the results are not comparable with 



ours because we have reported results with test data. Moreover, the second magnitude nor the metric 

is the same of ours. 

• In Ref. [25] two different models based on artificial neural networks were generated from a real PV 

module. Both models have temperature and irradiance as inputs while power as output, but they are 

specialized in cloudy and sunny days respectively. This technique allows to obtain two more 

specialized models instead of only one, and the predicted magnitude by the model is PPV instead of 

IPV. So the results are not comparable with ours because we have generated only one global model 

and the magnitude to predict is different. 

• In Ref. [35] two neuronal models from experimental data were built, each one for a different module. 

The inputs of the networks are temperature, irradiance and relative 

Conclusions and future work 

 

In this paper we have discussed one main issue when dealing with photovoltaic module electrical 

behavior learning to generate accurate global (not partial) models: the lack of a systematic 

procedure to obtain these accurate models in an unattended way, i.e, with zero human 

intervention. After giving a background on ideal photovoltaic cells and ANNs, our approach to face 

this problem has been to propose and describe four models to formulate the approximation to the 

electrical behavior of a photovoltaic module by ANNs, i.e., M1 ¼ (VPH - IPH), M2 ¼ (TG - VPHIPH), 

M3 ¼ (TG - VPH, TG - IPH) 

and M4 ¼ (TGVPH - IPH), and to introduce a general systematic procedure to train and validate the 

ANN models of these ap- proaches. In order to test such general systematic procedure we have 

explained in detail the experimental design that we have used, introducing the photovoltaic module 

(Mitsubishi Electric PV-TD185MF5, 185 Wp) of which an accurate model has been obtained as 

proof of concept of the general system- atic procedure, the measuring devices of the relevant magni- 

tudes and the extended description of the general systematic procedure. As a result of applying such 

procedure to a large dataset of 63,000 samples collected during 18 months, two very accurate models 

(Perftest of one hidden layer ANN with RMSE of 0.045 A, and Perftest of two hidden layers ANN with 

RMSE of 0.042 A, in both cases less than the measuring devices precision) were obtained. Besides, it 

has been shown that the 

 

 

 

Table 9 e Best 1 hidden layer ANNs for approach M4 ¼ (TGVPH ¡ IPH) and their results 

(RMSE) for each 1 month dataset. 
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Perf 

10-3 



train val test 

January 

2014 

No 0 9 tansi

g 

0.43

19 

0.33

57 

0.2359 

July 2014 No 0 23 tansi

g 

0.35

31 

1.09

29 

0.4034 

 

 

 

 

Table 10 e Best 2 hidden layers ANNs for approach M4 ¼ (TGVPH ¡ IPH) and their results 

(RMSE) for each 1 month dataset. 

 Nor

m 

Nois

e 

1s

t 

2s

t 

Funct Perf 10-

3 

train 

Perf 10-

3 

val 

Perf 

10-3 

test 

January 

2014 

No 0 7 4 tansig 0.38

82 

0.61

22 

0.1971 

July 2014 No 0 18 3 logsig 0.37

31 

0.65

01 

0.3662 



proposed procedure is competitive and improves the state-of- art results where comparable. 

Future work will consist in analyzing the poor results ob- tained by approaches M2 and M3, paying 

special attention to the presence of outlayers which could condition the smoothness of the multivalued 

function to learn in both cases. 
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