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ABSTRACT
Electrocardiogram (EKG) based classification of out-of-hospital cardiac arrest (OHCA) rhythms is
important to guide treatment and to retrospectively elucidate the effects of therapy on patient response.
OHCA rhythms are grouped into five categories: ventricular fibrillation (VF) and tachycardia (VT), asystole
(AS), pulseless electrical activity (PEA), and pulse-generating rhythms (PR). Clinically these rhythms
are grouped into broader categories like shockable (VF/VT), non-shockable (AS/PEA/PR), or organized
(ORG, PEA/PR). OHCA rhythm classification is further complicated because EKGs are corrupted by
cardiopulmonary resuscitation (CPR) artifacts. The objective of this study was to demonstrate a framework
for automatic multiclass OHCA rhythm classification in the presence of CPR artifacts.
In total, 2133 EKG segments from 272 OHCA patients were used: 580 AS, 94 PR, 953 PEA, 479
VF, and 27 VT. CPR artifacts were adaptively filtered, 93 features were computed from the stationary
wavelet transform analysis, and random forests were used for classification. A repeated stratified nested
cross-validation procedure was used for feature selection, parameter tuning, and model assessment. Data
were partitioned patient-wise. The classifiers were evaluated using per class sensitivity, and the unweighted
mean of sensitivities (UMS) as a global performance metric. Four levels of clinical detail were studied:
shock/no-shock, shock/AS/ORG, VF/VT/AS/ORG, and VF/VT/AS/PEA/PR.
The median UMS (interdecile range) for the 2, 3, 4, and 5-class classifiers were: 95.4% (95.1-95.6),
87.6% (87.3-88.1), 80.6% (79.3-81.8), and 71.9% (69.5-74.6), respectively. For shock/no-shock decisions
sensitivities were 93.5% (93.0-93.9) and 97.2% (97.0-97.4), meeting clinical standards for artifact-free
EKG. The UMS for five classes with CPR artifacts was 5.8-points below that of the best algorithms without
CPR artifacts, but improved the UMS of latter by over 19-points for EKG with CPR artifacts.
A robust and accurate approach for multiclass OHCA rhythm classification during CPR has been
demonstrated, improving the accuracy of the current state-of-the-art methods.

INDEX TERMS Out-of-hospital cardiac arrest (OHCA), electrocardiogram (EKG), cardiopulmonary
resuscitation (CPR), adaptive filter, stationary wavelet transform (SWT), random forest (RF) classifier.
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I. INTRODUCTION1

O
UT-of-hospital cardiac arrest (OHCA) is a leading2

cause of death in the industrialized world. In Europe3

the estimated annual average incidence of ambulance treated4

cases is 41 (range 19-104) per 100 000 persons [1]. Patients5

in cardiac arrest lose their cardiac and respiratory function,6

and die within minutes if not treated. Treatment consists of7

highly time-sensitive interventions such as: recognition, call8

for help, cardiopulmonary resuscitation (CPR), defibrillation,9

and post-resuscitation care. Bystanders and lay rescuers can10

provide CPR to maintain an artificial perfusion of the vital11

organs through chest compressions, and mouth to mouth12

breaths for ventilations. Defibrillation by an automated13

external defibrillator (AED) can be used to revert lethal14

ventricular arrhythmia and restore the normal function of15

the heart. Upon the arrival of the medicalized ambulance,16

specialized treatment becomes available including continued17

high-quality CPR and defibrillation, but also add intravenous18

pharmacological treatment (adrenaline and anti-arrhythmic19

drugs), airway management, and assisted ventilation. If20

spontaneous circulation is restored, the patient is transported21

to a hospital for in-hospital treatment and post-resuscitation22

care [2].23

Knowing the patient’s cardiac rhythm during resuscitation24

is important for two reasons. First, awareness of the patient’s25

rhythm may contribute to guide therapy. International26

guidelines describe treatment pathways based on cardiac27

rhythm and elapsed time, i.e., rhythm analysis every28

2 minutes with defibrillation attempts for ventricular29

fibrillation (VF) or tachycardia (VT), and consideration of30

intravenous drugs such as adrenaline every 3-5 minutes31

for all non-perfusing rhythms [2]. Second, in retrospective32

analyses, the rhythm transitions of the patient during CPR33

provide important information about the interplay between34

therapy and patient response [3]–[5]. This may contribute to35

identify therapeutic interventions or treatment patterns that36

improve OHCA survival. One of the limiting factors for37

such analyses is the lack of datasets with cardiac rhythm38

annotations due to the manual labor involved. Thus, there is39

a need for automatic methods for cardiac rhythm annotation.40

In OHCA rhythms are grouped into five categories [6], [7]:41

VF, VT, asystole (AS), pulseless electrical activity (PEA),42

and pulse-generating rhythms (PR). Often, PEA and PR43

are called organized rhythms (ORG), or rhythms presenting44

visible QRS complexes in the electrocardiogram (EKG)45

[8]. PEA is characterized by a disassociation between the46

mechanical (contraction of the myocardium) and electrical47

(QRS complexes) activities of the heart, which leads to no48

palpable pulse [4].49

OHCA rhythm classification algorithms are based on50

the analysis of the EKG, and in most cases address51

2-class classification problems. A typical example is AED52

shock advice algorithms [9]–[11], designed to discriminate53

shockable (VF/VT) from nonshockable rhythms (AS/ORG).54

Depending on the clinical context a finer detail is needed.55

VT treatment may benefit from synchronized electrical56

cardioversion [12]. Another clinically relevant problem is 57

the detection of spontaneous circulation or pulse, which is 58

framed as a PEA/PR discrimination algorithm once ORG 59

rhythms are identified [8], [13], [14]. So there is clearly a 60

need for different levels of detail in OHCA cardiac rhythm 61

classification. Five-class OHCA rhythm classification using 62

the EKG was introduced by Rad et al [7], [15]. Most 63

OHCA rhythm classification algorithms consist of an EKG 64

feature extraction stage followed by a machine learning 65

classifier. EKG feature extraction has been approached in 66

the time [16], [17], frequency [18], [19], time-frequency 67

[15], [20], [21], and complexity domains [22], [23]. The 68

machine learning approaches explored in the classification 69

stage include K-nearest neighbors [15], [24], support vector 70

machines [10], [25], [26], artificial neural networks [13], 71

[19], [27], and ensembles of decision trees [11], [14]. 72

OHCA rhythm classification is further complicated by 73

the presence of CPR artifacts in the EKG. Interruptions in 74

CPR to classify the rhythm lead to interrupted perfusion of 75

vital organs and lowers chances of survival [28]. Efforts 76

have been made to develop accurate OHCA rhythm analysis 77

methods during CPR [29]. The most popular approach 78

is the suppression of the CPR artifact using adaptive 79

filters [30]–[32], followed by an EKG feature extraction 80

stage on the filtered EKG. These approaches have been 81

successfully demonstrated to discriminate shockable (Sh) 82

from nonshockable (NSh) rhythms both during manual CPR 83

[33] and piston driven mechanical CPR [21]. However, there 84

are no studies on multiclass OHCA rhythm classification 85

during CPR. In fact, when 5-class OHCA rhythm classifiers 86

developed using artifact-free EKG were tested during CPR 87

their performance substantially degraded [15], [27]. So there 88

is a need to develop algorithms for multiclass OHCA rhythm 89

classification during CPR. 90

This study introduces new methods for multiclass OHCA 91

rhythm classification during CPR. The scope of the 92

algorithms is gradually increased from 2-class to 5-class 93

rhythm classification to address the different levels of clinical 94

detail needed depending on the application. The following 95

classification problems were studied: Sh/NSh, Sh/AS/ORG, 96

VF/VT/AS/ORG, and VF/VT/AS/PEA/PR. The paper is 97

organized as follows. The study dataset and its annotation 98

are described in Section II; feature engineering including 99

CPR artifact filtering is described in Section III; Section IV 100

describes the architecture used for the optimization and 101

evaluation of the classification algorithms. Finally, results, 102

discussion, and conclusions are presented in Sections V and 103

VI. 104

II. DATA COLLECTION AND PREPARATION 105

Data were extracted from a large prospective OHCA clinical 106

trial designed to measure CPR-quality, and conducted in 107

three European sites between 2002 and 2004: Akershus 108

(Norway), Stockholm (Sweden) and London (UK) [34], 109

[35]. Prototype defibrillators based on the Heartstart 4000 110

(Philips Medical Systems, Andover, Mass) were deployed 111
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in 6 ambulances at each site. The defibrillators were fitted112

with an external CPR assist pad that measured compression113

depth [36]. The raw data for our study consisted of114

the EKG and transthoracic impedance obtained from the115

defibrillation pads, and the compression depth. All signals116

were originally sampled at 500Hz, and then downsampled117

to a sampling frequency of fs = 250Hz (Ts = 4ms) for118

this study. A notch and a Hampel filter were used to remove119

powerline interferences and spiky artifacts, respectively.120

Chest compression instants (tk), were automatically marked121

in the depth signal using a negative peak detector for depths122

exceeding 1 cm (see Fig. 1).123

All recordings were annotated for the original study into124

the five OHCA rhythm types, by consensus between an125

experienced anesthesiologist trained in advanced cardiac126

life support and a biomedical engineer specialized in127

resuscitation [34]. VF was defined as an irregular ventricular128

rhythm with peak-to-peak amplitudes above 100µV and129

a fibrillation frequency above 2Hz. Regular ventricular130

rhythms with rates above 120min
-1 were annotated as VT.131

AS was annotated in rhythms with peak-to-peak amplitude132

below 100µV and/or rates below 12min
-1, and ORG133

rhythms when the heart rate was above 12 min
-1. ORG134

rhythms were further classified into PEA or PR by assessing135

the presence of blood flow, indicated by clinical annotations136

of pulse done during resuscitation, or by the presence of137

fluctuations in the thoracic impedance aligned with the QRS138

complexes [13], [34].139

For this study, we automatically extracted 20-s segments140

with the following characteristics: unique rhythm type,141

ongoing compressions during a 15-s interval, and a 5-s142

interval without compressions either preceding or following 143

chest compressions (see Fig. 1). The interval during 144

compressions was used to develop and evaluate the OHCA 145

rhythm classifiers, and the interval without compression 146

artifacts to confirm the original rhythm annotation. All 147

automatically extracted segments were reviewed by 3 148

experienced biomedical engineers to discard segments with 149

low signal quality and noise, and to certify by consensus that 150

the original annotations in the dataset were correct. The final 151

dataset contained 2133 segments from 272 patients, whereof 152

580 were AS (139 patients), 94 PR (31), 953 PEA (167), 479 153

VF (103), and 27 VT (11). 154

III. FEATURE ENGINEERING 155

Feature engineering consisted of 3 stages. First, chest 156

compression artifacts were removed using an adaptive filter. 157

Then, a multi-resolution analysis of the EKG was performed 158

using wavelet transforms, from which the denoised EKG 159

and its sub-band decomposition were obtained. Finally, 160

high-resolution features were extracted from the denoised 161

EKG and its sub-band components. In what follows n is the 162

sample index, so t = n ·Ts. 163

A. CPR ARTIFACT FILTER 164

CPR artifacts were suppressed using a state-of-the-art 165

method based on a recursive least squares (RLS) filter [32] 166

that estimates the CPR artifact, scpr(n), as a quasiperiodic 167

interference [31]. The fundamental frequency of the 168

artifact, !0(n), is the instantaneous frequency of the chest 169

compressions. The CPR artifact is represented as a truncated 170

Fourier series of N harmonically related components of 171

Without compressions During compressions

Analysis interval

ORG

FIGURE1: One 20-s segment from the dataset corresponding to a patient with an organized rhythm (ORG). In the first 5 s there
is no artifact and the ORG rhythm is visible, in the last 15 s the CPR artifact conceals the patient’s rhythm. After filtering ŝekg
is obtained (middle panel), and the underlying rhythm is again visible in the artifacted interval. The bottom panel shows the
compression depth signal with the chest compression instants (tk) highlighted using vertical red lines.
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frequencies !` = ` ·!0 and slowly time-varying Fourier172

coefficients [31]:173

scpr(n) = A(n)
NX

`=1

a`(n) cos(!`n) + b`(n) sin(!`n)

= A(n)⇥
|
(n)�(n) (1)

where174

�(n) = [cos(!1n) sin(!1n) . . . cos(!Nn) sin(!Nn)]
| (2)

⇥(n) = [a1(n) b1(n) . . . aN (n) bN (n)]
| (3)

and A(n) = 1 during compressions, and A(n) = 0175

otherwise. The time-varying coefficients of the RLS filter are176

the in-phase (a`) and quadrature (b`) components in vector177

⇥(n). The instantaneous frequency of the compressions was178

derived from the tk instants obtained from the depth signal179

(see Fig. 1):180

!0(n) = 2⇡
1

tk � tk�1
tk�1  nTs < tk (4)181

The RLS coefficients were adaptively estimated to182

minimize the mean square error between the corrupted EKG,183

scor, and the estimated artifact, ŝcpr, at the frequency of the184

harmonics. The error signal of the RLS filter is thus the185

filtered EKG, ŝekg, which is used to identify the underlying186

rhythm. The RLS update equations are [37]:187

ŝekg(n) = scor(n)�A(n)⇥
|
(n� 1)�(n) (5)

F(n) =
1

�


F(n�1)� F(n�1)�(n)�|

(n)F(n�1)

�+�
|
(n)F(n�1)�(n)

�
(6)

⇥(n) = ⇥(n�1) + F(n)�(n)ŝekg(n) (7)

The gain matrix and coefficients vector were initialized to188

F (0) = 0.03 · I2N and ⇥(0) = 0, where I2N is the 2N⇥2N189

identity matrix. The forgetting factor of the RLS algorithm,190

�, and the number of harmonics, N , were set to 0.998 and 4,191

as recommended in [32].192

B. STATIONARY WAVELET TRANSFORM193

EKG multiresolution analysis was done using the stationary194

wavelet transform (SWT). The SWT differs from the195

standard discrete wavelet transform in that at each196

decomposition level the low-pass (approximation) and197

high-pass (detail) components are not downsampled. Instead,198

the filters are upsampled so all detail and approximation199

coefficients have the length of the original signal, producing200

a translation-invariant representation [38].201

Each EKG segment was decomposed into its sub-bands202

using a pair of quadrature mirror lowpass (hj) and highpass203

(gj) filters, which for level 0 are related by:204

g0(L� 1� n) = (�1)
nh0(n), (8)

where L is the length of the filters. At stage j the filters were 205

those of stage 0 upsampled by a 2j factor, hj(n) = h0(n)" 2j . 206

The detail, dj(n), and approximation, aj(n), coefficients 207

were recursively obtained through convolution (⇤): 208

a0(n) = ŝekg(n) (9)
aj(n) = hj�1(n) ⇤ aj�1(n) (10)
dj(n) = gj�1(n) ⇤ aj�1(n) (11)

The time-reversed version of the decomposition filters, that 209

is h(n) = h(L�1�n), were recursively used to reconstruct 210

the original signal [38]: 211

aj�1(n) =
1
2

�
hj(n) ⇤ aj(n) + gj(n) ⇤ dj(n)

�
(12) 212

from j = J, . . . , 1. 213

EKG features were extracted using a 2048-sample analysis 214

interval (8.192 s) of ŝekg centered in the 15 s during chest 215

compressions (see Fig. 1). A Daubechies 4 motherwavelet 216

and J = 7 decomposition levels were used to generate 217

a7 and d7, . . . , d1. Only detail coefficients d3 � d7 were 218

used for feature extraction, which is equivalent to retaining 219

the spectral components in the 0.98 � 31.25Hz band. Soft 220

denoising was applied to d3 � d7 with a universal threshold 221

rescaled by the standard deviation of the noise [39]. The 222

denoised d3�d7 coefficients were used to obtain the denoised 223

EKG, ŝden, by recursively applying eq. (12). The whole 224

decomposition and denoising (reconstruction) processes are 225

illustrated in Fig. 2 for a VF and an ORG. 226

C. FEATURE EXTRACTION 227

Ninety three features were extracted from ŝden and d3 � d7. 228

These features quantify the most distinctive characteristics 229

of OHCA rhythm subtypes, and encompass the collective 230

knowledge of over 25 years of active research in the 231

field (over 250 features from the available literature were 232

initially analyzed). In what follows, feature naming is that 233

of the original papers, and the MATLAB code for feature 234

calculation is available from (https://github.com/iraiaisasi/ 235

OHCAfeatures). The features grouped by analysis domain 236

are: 237

• Time domain (5 features). These were only extracted 238

from ŝden and include: bCP [18], x1, x2 [33], and 239

the mean and the standard deviation of the heart rate 240

(MeanRate and StdRate) obtained from the QRS 241

detections of a modified Hamilton-Tompkins algorithm 242

[14], [40]. 243

• Spectral domain (6 features). Including the classical x3, 244

x4, x5 [33], VFleak [41], and two new features, 245

Enrg, the relative energy content of the signal in the 246

4-8Hz frequency band, and SkewPSD, the skewness of 247

the power spectral density of the EKG. All features were 248

computed from ŝden. 249

• Complexity analysis (14 features), including CVbin and 250

Abin [42] of ŝden, and two measures of entropy for ŝden 251
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FIGURE2: SWT sub-band decomposition and denoised EKG reconstruction for the 8.192-s analysis interval of the filtered EKG,
ŝekg. The left panel corresponds to an organized rhythm (ORG) and the right panel to a ventricular fibrillation (VF).

and d3 � d7. The entropy measures were the sample252

entropy (SampEn) of the signal, and the Shannon253

entropy (ShanEn) of the sign of the first difference254

[43].255

• Statistical analysis (54 features). Nine features were256

calculated to characterize the statistical distribution257

of the signal amplitude: interquartile ranges (IQR)258

[15], mean and standard deviation of the absolute259

value of the amplitudes (MeanAbs and StdAbs) and260

slopes (MeanAbs1 and StdAbs1), Skewness (Skew),261

Kurtosis (Kurt) [11], and the Hjorth mobility and262

complexity (Hmb and Hcmp) [44]. All the features were263

computed for ŝden and d3 � d7.264

• Phase space features (14 features). Taken’s time-delay265

embedding method [45] with a delay of ⌧ = 2266

samples was used to create a two-dimensional phase267

space representation for ŝden and d3 � d7 [46]. An268

ellipsoid was fitted in the phase-space using the least269

squares criterion, and its major axis (EllipPS), and270

the skewness of the distance distributions in the phase271

space (SkewPS) were computed. Then a recurrence272

quantification analysis (RQA) was used to extract and273

quantify the transition structures of the system dynamics274

in the phase space. Two RQA measures were computed275

only for ŝden, the length of the longest diagonal line 276

(RQA1), and the recurrence period density entropy 277

(RQA2) [47]. 278

The dataset can thus be represented as a set of 279

instance-label pairs {(x1, y1), ..., (xN , yN )} where yi are the 280

class labels (for instance {0, 1} for a Sh/NSh classification 281

problem), the feature vector xi 2 RK contains the values of 282

the K = 93 features for EKG segment i, and N = 2133 is 283

the number of EKG segments in the database. 284

IV. CLASSIFIER TRAINING AND EVALUATION 285

A repeated quasi-stratified nested cross-validation (CV) 286

architecture was used [21], [48], with an outer 10-fold CV 287

for feature selection and model assessment, and an inner 288

5-fold CV for classifier parameter optimization. First, for 289

each training set of the outer CV, features were selected 290

using recursive feature elimination (RFE) [49]. Then, these 291

features were used in the inner CV to optimize the parameters 292

of the classifier. Finally, the classifier was trained and 293

assessed in the outer loop. Data were always partitioned 294

patient-wise and in a quasi-stratified manner, by forcing 295

the prevalence of each rhythm in each fold to be at least 296

70% of the prevalence of that rhythm in the whole set. In 297

this way patient-wise and stratified sampling could be done 298
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simultaneously.299

Confusion matrices were used to evaluate the performance300

of the classifiers [15], and four classification problems301

were addressed: Sh/NSh (2-class), Sh/AS/ORG (3-class),302

VF/VT/AS/ORG (4-class), and VF/VT/AS/PEA/PR (5-class).303

For each class i the sensitivity (Sei) was computed, and304

the unweighted mean of all sensitivities (UMS) was used as305

summarizing metric:306

Sei =
TPi

TPi + FNi
, UMS =

1

P

PX

i=1

Sei (13)

where TPi and FNi are the true positives and false negatives307

for class i, and P is the number of classes. The nested CV308

procedure was repeated 50 times to estimate the statistical309

distributions of Sei and UMS, and to obtain the stacked310

confusion matrices for each classification problem.311

A. CLASSIFIER312

Random forest (RF) classifiers [50] were used to decide313

the EKG rhythm class. An RF is an ensemble of B314

decision trees {T1(x), ..., TB(x)} that produces B nearly315

uncorrelated predictions {ŷ1 = T1(x), ..., ŷB = TB(x)} of316

the rhythm type for the EKG segment. Training an RF317

classifier comprises:318

• Generating B training subsets from the original training319

data by bootstrapping (i.e., random sampling with320

replacement). We choose each training subset to have321

the same size as the original training data.322

• A classification tree is grown for each training subset323

by choosing the best split among a randomly selected324

subset of mtry features in each node. The criterion to325

choose the split was to minimize the cross-entropy.326

• The recursive binary splitting continues until each327

terminal node has fewer than some minimum number328

of observations, lsize.329

• The decision of classifier, ŷj = FRF (xj), is obtained330

by the majority vote of the B trees.331

Once the models were trained, the predictions in the332

validation sets were obtained by comparing the predictions333

of the model ŷj to the labels assigned by the clinicians yj ,334

to obtain the confusion matrix of the model and the metrics335

derived thereof.336

We considered three parameters of the RF classifier: B,337

mtry, and lsize. The number of trees was initially fixed to338

B = 500. This choice is not critical, a sufficiently large339

number stabilizes the accuracy and further increasing B does340

not overfit the model [50]. The number of predictors per split341

was set to the default value
p
K. The minimum number of342

observations per leaf, lsize, controls the depth of the trees,343

and was identified as critical in our preliminary tests. We344

optimized lsize in the inner CV by doing a grid-search in345

the range 1  lsize  200 with the UMS as the objective346

function. Finally, uniform prior probabilities for each class347

were assigned during training to address the class imbalance.348

B. FEATURE SELECTION 349

Feature selection was based on an RFE approach using the 350

permutation importance as a ranking criterion [51]–[53]. 351

Permutation importance is a built-in characteristic of the RF 352

classifier that ranks feature importance by permuting the 353

values of the feature in the training data and assessing the 354

out-of-bag error. Large errors mean the feature is important 355

for classification. At each iteration of the RFE algorithm, 356

features were ranked and the least important 3% of the 357

features were removed. The process was continued until Kcl 358

features were left for classification. The values decided for 359

the different models were: Kcl = 25 for 2-class, Kcl = 30 360

for 3-class, Kcl = 35 for 4-class, and Kcl = 40 for 5-class. 361

V. RESULTS AND DISCUSSION 362

The results reported in this section are those obtained 363

after running the RFE feature selection algorithm in the 364

10-fold outer CV until Kcl features were left, and fitting 365

the classifiers with the optimal parameters determined in the 366

5-fold inner CV. The process was repeated in 50 random 367

repetitions of the nested CV procedure, there are thus 50 368

estimates of the metrics for the whole dataset and 500 369

algorithmic runs on the validation folds in the outer CV. The 370

metrics are reported as median (interdecile range, IDR) for 371

those 50 evaluations. 372

A. CLASSIFICATION RESULTS 373

A detailed analysis of the classification results for the 374

different class models are shown in Table 1 and Fig. 3. 375

Fig. 3 shows the confusion matrices obtained stacking the 376

predictions from the 50 random repetitions of the nested 377

CV procedure, and provide all the information needed to 378

accurately calculate the performance metrics for each rhythm 379

TABLE1: Median UMS and sensitivity per class for different
classifiers. The metrics are reported as median (IDR) for the
50 runs of the nested CV procedure.

Classifier Se (%) UMS (%)

Two-class

Sh 93.5 (93.0-93.9)
95.4 (95.1-95.6)NSh 97.2 (97.0-97.4)

Three-class

AS 82.5 (81.6-83.4)
87.6 (87.3-88.1)OR 86.5 (86.0-87.1)

Sh 93.9 (93.3-94.3)
Four-class

AS 79.0 (78.1-80.3)

80.6 (79.3-81.8)
OR 80.1 (78.8-81.3)
VF 89.1 (88.2-89.8)
VT 74.1 (70.4-77.8)

Five-class

AS 83.4 (81.9-85.1)

71.9 (69.5-74.6)

PEA 42.6 (37.6-46.9)
PR 65.4 (60.1-73.9)
VF 89.6 (88.5-90.6)
VT 77.8 (66.7-88.9)
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NSh Sh
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VF
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FIGURE3: Stacked confusion matrices for 50 runs of the nested CV procedure for the different models. The mean sensitivities
for each class and model are shown in the diagonals (mean and median sensitivities are slightly different, see table 1).

type and classifier. The median (IDR) of the sensitivities and380

UMS for each classifier are shown in Table 1.381

For the Sh/NSh 2-class problem, the median UMS was382

95.4%, with median sensitivity for the shockable and383

nonshockable rhythms of 93.5 % and 97.2 %, respectively.384

This is a very important problem since it addresses shock385

advice decisions during CPR. Shock advice algorithms386

for defibrillators are normally tested on artifact-free data.387

In that scenario, the American Heart Association requires388

a minimum sensitivity for shockable and nonshockable389

rhythms of 90 % and 95 %, respectively [54]. Our solution390

is above those requirements. Morevover, our results improve391

by over 1.5-points the UMS reported for the most392

accurate shock/no-shock algorithms during manual chest393

compressions [33], [55].394

A finer classification of NSh rhythms includes the395

distinction between AS and ORG rhythms, which can be396

important to determine pharmacological treatment, or the397

effect of adrenaline use and dosage during CPR [56]. 398

The UMS for the 3-class classifier was above 87.5 %, and 399

shockable rhythms had a sensitivity of 93.9%. However, the 400

distinction between AS/ORG during CPR was difficult, 13% 401

of AS were incorrectly classified as ORG whereas a 10.8% of 402

ORG rhythms were classified as AS. These finding are in line 403

with those reported by Kwok et al, who on a limited set of 404

patients demonstrated the first 3-class rhythm classification 405

algorithm during CPR [20]. In scenarios without CPR 406

artifact the distinction between AS/ORG is simple and 407

can be addressed using energy and heart-rate measures 408

[33]. During chest compressions spiky filtering residuals 409

may be confounded as QRS complexes during AS (Fig. 4, 410

top panel). Conversely, CPR artifact filtering may reduce 411

R-peak amplitudes in ORG rhythms producing erroneous AS 412

classifications (Fig. 4, bottom panel). 413

Classifying shockable rhythms into VT or VF may allow 414

synchronized electrical cardioversion on VT, to avoid the 415

VOLUME 4, 2016 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE4: Two examples of misclassified segments for the 3-class classifier. In the top panel an AS is classified as ORG, while
the bottom panel shows an ORG misclassified as AS.

FIGURE5: An example of a VT classified as VF by the 4-class classifier.

R on T phenomenon that may induce VF. However, the416

sensitivity for VT dropped considerably in the 4-class417

problem, 19.7% of VT was classified as VF and 6.3 % as418

ORG. VT rhythms can be confounded as ORG (narrower419

monomorphic VT) or VF (more irregular Torsades de420

Pointes). CPR artifacts further complicate the problem since421

filtering residuals may resemble an irregular VF during VT422

(see Fig. 5). In any case, the median UMS for the 4-class423

problem was 80.6%, more than 55-points higher than the424

25 % value expected for a random guess.425

In the 5-class problem, most of the errors were caused426

by the PEA/PR distinction (presence of pulse in ORG427

rhythms). Pulse assessment using only the EKG is hard,428

and determination of pulse during OHCA frequently relies 429

on additional surrogate variables of perfusion like pulse 430

oximetry signals, invasive blood pressure measurements, or 431

expired CO2 [57], [58]. Fig. 6 shows two representative 432

examples of the difficulty of determining pulse using only 433

the EKG. However, our 5-class classifier had a median UMS 434

of 71.9% during CPR, which is only 5.8-points lower than 435

the 5-class OHCA rhythm classifier on artifact-free EKG 436

proposed by Rad et al [15]. Furthermore, when Rad et al 437

used their algorithms to annotate complete OHCA episodes 438

(no data pruning), the UMS during artifact-free segments 439

was 75 %, but dropped to 52.5 % in intervals during chest 440

compressions, even after filtering the CPR artifact [27]. 441
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FIGURE6: Two examples of misclassified PEA/PR rhythms. The last five seconds (clean intervals) of both panels show the
difficulty of pulse assessment based only on the EKG.

Our architecture would therefore substantially improve the442

accuracy of 5-class classifiers during CPR.443

B. SELECTION OF PARAMETERS444

The most critical parameter in our RF classifiers was the445

minimum number of observations in the terminal nodes,446

lsize, which gives a compromise between bias and variance447

by controlling how shallow the classification trees are. Larger448

values of lsize produce shallower trees. Fig. 7 shows, for449

the different classifiers, the median value of the performance450

metrics for the evaluations of the 50 repeats of the 10-fold451

outer CV as a function of lsize. In the cases where class452

imbalance is smaller (2 and 3 class) deeper trees increase the453

UMS, however when the class imbalance is large (4 and 5454

class) shallower trees produce better results (see Fig. 7). The455

median (IDR) value of the optimal lsize for the 2 and 3-class456

classifiers were 3 (1.0-7.0) and 3 (1.0-5.0), but increased457

considerably to 80 (30.0-150.0) and 125 (50.0-200.0) for the458

cases of 4 and 5-classes.459

Fig. 7 also shows that the sensitivity for the classes with460

lower prevalence (VT and PR) increases with shallower trees.461

In the 4-class classifier the sensitivity for VT increased by462

more than 40 points when lsize was raised from 1 to 100,463

while the sensitivities of the most prevalent classes (AS,464

ORG, and VF) decreased very slightly. A similar behavior465

was observed for the sensitivities of VT and PR in the 5-class466

problem, although in this case the sensitivity of PEA, the467

rhythm that borders PR and VT, decreased considerably from468

83.1 % to 25.1 %. PEA sensitivity could be better addressed 469

using multimodal analysis by adding information from other 470

signals like pulse oximetry, invasive blood pressure, brain 471

oximetry or expired CO2 when available [58], [59]. 472

Changing the number of trees, B, and the features per 473

split, mtry , had less impact on classification. Fig. 8 shows 474

the median UMS of the 50 random repetitions of the 475

5-class classifier for different choices of B and mtry , with 476

lsize = 125. The figure shows that our preliminary design 477

choices were sound, the UMS stabilizes for B > 250 and 478

the effect of mtry on the classification results was small with 479

the median UMS varying between 70.9 % and 72.6 %. So the 480

default mtry =
p
K value was a very acceptable choice. 481

C. FEATURE SELECTION AND RELEVANCE 482

Feature design is key in classical machine learning. In 483

our approach, we introduced the SWT for multi-resolution 484

analysis because it allows a better amplitude and statistical 485

characterization of the features than the classical discrete 486

wavelet transform used by Rad et al. [15]. In addition soft 487

denoising produced a reconstructed signal from which many 488

classical OHCA rhythm classification features could be better 489

estimated. Fig. 5 shows the 40 features with the highest 490

probability of selection (the most important features) for each 491

classification problem. These probabilities were estimated by 492

counting the number of times the features were selected in the 493

500 runs of feature selection algorithm (50 repeats of 10-fold 494

outer CV). For the 2-class problem the most relevant features 495
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FIGURE7: Median UMS and Se per class in the 50 repeats of the 10-fold outer CV, as a function of lsize.

FIGURE8: The median UMS (5-class) in the 50 random
repetitions, as a function of the number of trees, B, and the
number of features per split, mtry .

are a mixture of those derived from the detail coefficients 496

and from the denoised signal and correspond to complexity, 497

frequency, time, and statistical domains. For the 3 and 498

4-class classifiers, features derived from the phase-space 499

reconstruction of the signals were also relevant. Finally, for 500

the most challenging 5-class classifier, the RQA analysis was 501

also needed to improve classification results. Features like 502

VFleak, SampEn (d3) and IQR (d7) were selected in all 503

feature selection runs corresponding to the 2, 3 and 4-class 504

classifiers and SampEn (d3) was also selected in all the 505

runs of the 5-class classifier. These results are consistent 506

with our previous findings on shock/no-shock decisions 507

during mechanical CPR [21]. Although CPR artifacts present 508

very different characteristics during mechanical and manual 509

CPR, features derived from the SWT decomposition of the 510

filtered EKG seem to be very robust and independent of the 511

filtering residuals, thus are able to capture the distinctive 512

characteristics of OHCA rhythms. 513
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FIGURE9: Selection probability for the 40 most selected
features in the 500 runs of feature selection (outer loop).

VI. CONCLUSIONS514

A robust methodology for OHCA rhythm classification515

during CPR has been presented. The approach consists516

of an adaptive CPR artifact suppression filter, followed517

by feature extraction based on the SWT multiresolution518

analysis of the EKG, the features are finally fed to519

a random forest to classify the cardiac rhythm. The520

approach was successfully demonstrated for 2, 3, 4 and521

5-class OHCA cardiac rhythm classification, addressing the522

most important clinical scenarios for rhythm assessment523

during CPR. Our method improved the state-of-the-art524

methods in the extensively studied 2-class shock/no-shock 525

decision scenario, meeting the criteria of the American 526

Heart Association for artifact-free EKG. To the best of 527

our knowledge, we introduced the first general framework 528

for multi-class OHCA rhythm classification during CPR 529

with increasing levels of clinical detail, and our approach 530

substantially improved the accuracy of 5-class OHCA 531

cardiac rhythm classifiers during CPR. 532
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