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Abstract.

Objective: An artefact-free electrocardiogram (ECG) is essential during cardiac arrest

to decide therapy such as defibrillation. Mechanical cardiopulmonary resuscitation

(CPR) devices cause movement artefacts that alter the ECG. This study analyzes the

effectiveness of mechanical CPR artefact suppression filters to restore clinically relevant

ECG information.

Approach: In total, 495 10-s ECGs were used, of which 165 were in ventricular

fibrillation (VF), 165 in organized rhythms (OR) and 165 contained mechanical

CPR artefacts recorded during asystole. CPR artefacts and rhythms were mixed at

controlled signal-to-noise ratios (SNRs), ranging from –20 dB to 10 dB. Mechanical

artefacts were removed using least mean squares (LMS), recursive least squares

(RLS) and Kalman filters. Performance was evaluated by comparing the clean and

the restored ECGs in terms of restored SNR, correlation-based similarity measures,

and clinically relevant features: QRS detection performance for OR, and dominant

frequency, mean amplitude and waveform irregularity for VF. For each filter, a

shock/no-shock support vector machine algorithm based on multiresolution analysis

of the restored ECG was designed, and evaluated in terms of sensitivity (Se) and

specificity (Sp).

Main results: The RLS filter produced the largest correlation coefficient (0.80), the

largest average increase in SNR (9.5 dB), and the best QRS detection performance.

The LMS filter best restored VF with errors of 10.3% in dominant frequency, 18.1%

in amplitude and 11.8% in waveform irregularity. The Se/Sp of the diagnosis of the

restored ECG were 95.1/94.5% using the RLS filter and 97.0/91.4% using the LMS

filter.

Significance: Suitable filter configurations to restore ECG waveforms during

mechanical CPR have been determined, allowing reliable clinical decisions without

interrupting mechanical CPR therapy.
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1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health problem claiming over

50 lives per 100 000 persons each year [1]. The latest guidelines from the European

Resuscitation Council and the American Heart Association (AHA) identify early

defibrillation and high quality cardiopulmonary resuscitation (CPR) as key therapies [2].

In particular, uninterrupted chest compressions, provided either by rescuers or through

mechanical devices, are of critical importance [3]. Whereas basic life support responders

rely on the defibrillator’s automated analysis of the ECG for a shock/no-shock decision,

advanced life support (ALS) clinicians visually evaluate the ECG to decide suitable

therapeutic interventions. In both cases, chest compressions must be stopped to avoid

the confounding effects of CPR artefacts on the ECG. However, such CPR interruptions

produce no-flow periods that deteriorate the circulatory state of the patient, reducing

the probability of successful defibrillation and subsequent survival [3].

Several adaptive filters have been designed to remove chest compression artefacts

during manual CPR so that the ECG is restored [4, 5]. The first solutions used

reference signals such as compression depth [6,7], thoracic impedance [6,7], compression

force [8] or blood pressure [9] to model CPR artefacts. The artefacts were estimated

using Wiener filters [7], recursive adaptive matching pursuit algorithms [10], Kalman

filters [11], recursive least squares (RLS) [8] and Gabor filters [9], among others. The

filters became considerably simplified with the introduction of a quasi-periodic CPR

artefact model in which the time-varying Fourier coefficients were estimated using

LMS, RLS or Kalman filters [12–14]. In this model, an estimate of the instantaneous

chest compression frequency during manual CPR is required, which must be estimated

from additional reference channels like depth [12], force [15] and impedance [16]. At

present, mechanical CPR devices are increasingly used in resuscitation by ALS

clinicians [2, 17, 18]. Such devices deliver chest compressions at a fixed rate and depth

and, consequently, no reference channels are needed for adaptive filters based on the

Fourier-series model [19,20].

The preferred approach to evaluating filter performance in terms of ECG waveform

restoration is to analyze artificial mixtures of artefact-free ECGs recorded during

OHCA and CPR artefacts obtained in the absence of electrical activity of the heart

(asystole) [6, 7]. Mixtures are formed at different signal-to-noise-ratios (SNRs), so that

the clean ECG and the restored ECG (obtained by filtering) can be compared in terms

of performance measures such as the restored SNR [11], or the diagnostic accuracy of

an automated shock/no-shock decision algorithm [8]. In the latter case, performance is

reported in terms of sensitivity (Se) and specificity (Sp), the proportion of correctly

classified shockable and non-shockable rhythms, respectively [14]. Studies based on

artificial mixtures, using ECGs recorded during OHCA, have only been conducted

during manual CPR, however, little is known on which filter configurations offer good

restoration of the ECG waveforms. Moreover, the mixture model is well-suited for

evaluating ECG waveform restoration in relation to other diagnostic OHCA scenarios
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such as the prediction of defibrillation success [21], the detection of pulse [22] and the

prediction of re-arrest [23]. The effect of filtering on ECG restoration for those scenarios

has not been yet thoroughly studied.

This study addresses the above-mentioned knowledge gaps by using a mixture model

to evaluate the performance of adaptive filters during mechanical CPR in terms of

ECG waveform restoration, clinically relevant ECG characteristics and shock/no-shock

diagnostic accuracy. The manuscript is organized as follows: Section II describes the

study dataset; Section III explains the mixture model, describes the adaptive filters and

proposes novel performance measures for filter evaluation; the results, discussion and

conclusions are presented in Sections IV and V.

2. Materials

The data were collected by the Dallas-Fort Worth Center for Resuscitation Research

between 2012 and 2016, as part of the Resuscitation Outcomes Consortium. A cohort

of 393 anonymized OHCA patient data files recorded by the MRx monitor–defibrillator

(Philips Medical Systems, Andover, MA, USA) during treatment were used. CPR

was administered manually or with the LUCAS-2 (Physio-Control Inc/Jolife AB,

Lund, Sweden) piston-driven mechanical CPR device. The LUCAS-2 delivers chest

compressions at a fixed rate of 100 min-1 with a fixed depth of 5 cm. The MRx acquires

the ECG with a resolution of 1.03 µV per least significant bit, a bandwidth defined

by 0 Hzand50 Hz, and a sampling frequency of 250 Hz. The ECG and the available

signals to monitor chest compression activity (compression depth and impedance)

were converted to Matlab (MathWorks Inc, Natick, MA, USA). Chest compressions

were automatically detected using standard algorithms on the compression depth or

impedance channels [15].

Signal segments of 10-s duration were extracted from the patient files to form

mixtures of clean ECG and mechanical CPR artefacts during asystole. Thus, all ECGs

(rhythms and CPR artefacts) come from real OHCA data recorded during treatment.

The clean ECG segments were extracted in intervals with confirmed absence of chest

compressions, and included 165 segments from 96 patients during shockable ventricular

fibrillation (VF) and 165 segments from 165 patients in non-shockable organized rhythms

(ORs). CPR artefact segments during asystole were obtained during confirmed use of

LUCAS-2, indicated by a fix compression rate of 100 min-1 without variability. Asystole

was confirmed during pauses in chest compressions whenever the clean ECG had a

peak-to-peak amplitude below 100µV [24]. A total of 165 CPR artefacts from 149

patients were used.

All segments (VF, OR and CPR artefacts) were band-pass filtered between

0.5 – 40 Hz to remove baseline wander and high frequency noise. A Hampel filter was

used to remove spiky artefacts.
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3. Methods

Figure 1 summarizes the procedure followed to evaluate the performance of the adaptive

filters. First, using a mixture model, noisy ECGs are formed at controlled SNRs.

Then, using different filter types and filter parameter settings, the ECGs are restored.

Finally, performance is evaluated in terms of measures quantifying the similarity between

the clean and the restored ECG, clinically relevant ECG waveform characteristics and

accuracy of shock/no-shock decision.

Adaptive filter

Evaluation

ak(n), bk(n)
cos(kω0n)

sin(kω0n)

Mixture
model

αscpr(n)

secg(n)

x(n)

ŝecg(n)

ŝcpr(n)

++
+

Automated
Diagnosis

Signal quality
evaluation

Figure 1. General architecture for CPR artefact removal and evaluation of the quality

of the restored ECG, ŝecg(n).

3.1. Mixture model with controlled SNR

The noisy ECG signal, x(n), is the mixture of a clean ECG signal, secg(n), and a signal

with CPR artefacts, scpr(n), recorded during asystole [6, 7]:

x(n) = secg(n) + αscpr(n). (1)

The SNR of x(n) is controlled by the positive-valued weight α [6]:

SNRin = 10 · log10

(
Pecg

α2Pcpr

)
(dB), (2)

where Pecg and Pcpr denote the power of secg(n) and scpr(n), respectively, which for a

segment of L samples are:

Pecg =
1

L

L∑
n=1

|secg(n)|2 Pcpr =
1

L

L∑
n=1

|scpr(n)|2 (3)

The subscript “in” indicates that the SNR applies to the filter input signal x(n). In

terms of signal power and SNRin, α is given by

α =

√
Pecg

Pcpr

· 10−SNRin
10 . (4)
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Seven different SNRin are tested, ranging from very low (−20 dB) to high (10 dB)

in steps of 5 dB. For each filter setting, a total of 330 · 165 · 7 = 3.8 · 105 combinations

are evaluated, together forming a comprehensive selection of ECGs, CPR artefacts and

SNRin. Figure 2 shows an example of x(n) formed using OR and VF rhythms mixed

with a CPR artefact at different SNRin.

Figure 2. Examples of CPR artefact removal in ECGs with OR (a) and VF (b),

using RLS filtering. CPR artefacts (panel 1), clean OR and VF signals (panel 2),

mixed signals at SNRin of 0 dB (panel 3) and −10 dB (panel 4) and restored ECGs

obtained at 0 dB (panel 5) and −10 dB (panel 6).

3.2. Adaptive filters

During mechanical CPR, the chest compression frequency is constant. The LUCAS-2

device delivers compressions at F0 = 1.67 Hz ≡ 100 min−1, which, for a sampling period

of Ts, corresponds to a discrete angular frequency of ω0 = 2πF0Ts. Under this condition,

the CPR artefact can be modeled as a truncated N -term Fourier series with slowly

varying amplitude [25,26]:
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scpr(n) =
N∑
k=1

ck(n) cos(kω0n+ θk(n)) (5)

=
N∑
k=1

(
ak(n) cos(kω0n) + bk(n) sin(kω0n)

)
. (6)

The Fourier coefficients, ak(n) and bk(n), define the adaptive filter that adjust to

the time-varying characteristics of the artefact [26]. The restored ECG is obtained by

subtracting the model estimate ŝcpr(n) from the observed signal x(n).

ŝecg(n) = x(n)− ŝcpr(n). (7)

The LMS, RLS and Kalman filters are explored for estimating ak(n) and bk(n). All

filter types employ criteria to minimize the error between x(n) and ŝcpr(n). A detailed

description of the filters can be found in [25–28]. Briefly, the LMS filter updates its

coefficients at each time n using increments proportional to the squared error and the

step-size µ [12]. The RLS filter extends the observation window of the squared error

by means of an exponential forgetting factor, λ [13]. The Kalman filter is based on

a state-variable model in which the variance of the observation noise, q, controls the

adjustment rate of the coefficients [14]. These three parameters control the coarseness

of the respective filters. A large forgetting factor (λ), a small step size (µ) and a small

noise variance (q) mean lower misadjustment and better filter stability, but reduced

tracking capabilities (“fine filtering”). The reverse choice of parameter values means

better tracking, but higher misadjustment and poorer stability (“coarse filtering”).

In this study, three different settings of the filter parameters µ, λ and q are

tested to evaluate the effect of fine, moderate and coarse filtering [14, 26], namely

λ = {0.9999, 0.995, 0.99}, µ = {15 · 10−4, 4 · 10−3, 8 · 10−3} and q = {5 · 10−6, 1 · 10−5, 5 ·
10−5} [14,20,25,26]. For all cases, a model with N = 20 harmonics was used [26] meaning

that the filters are composed of 2N coefficients since each harmonic is defined by a pair

of coefficients (ak, bk). Figure 2 shows an example of ŝecg(n), obtained after removing

CPR artefacts from x(n), formed at 0 dB and at 10 dB with VF and OR as underlying

rhythms.

3.3. Evaluation of filter performance

The performance is evaluated in two ways: First, by comparing secg(n) and ŝecg(n)

using similarity measures, and by studying the effect of filtering on clinically relevant

ECG waveform characteristics. Second, by building a machine learning shock advice

algorithm to classify ŝecg(n) and thus to evaluate the accuracy of an automated diagnosis

at different SNRin. To avoid the influence of filter transients, performance measures are

evaluated using the L samples in the interval [2.5, 9.5] s.
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3.3.1. Restored signal quality measures: Three measures are computed, namely the

SNR of the restored signal and two signal similarity measures. The restored SNR is

defined by [6]:

SNRres = 10 · log10

(
Pecg

Pe

)
, (8)

where Pecg and Pe are the power of secg(n) and e(n) = secg(n)− ŝecg(n), respectively.

Signal quality is quantified by Pearson’s correlation coefficient (PCC) computed

between secg(n) and ŝecg(n) (both signals assumed to be zero mean):

PCC =

∑L
n=1 secg(n) · ŝecg(n)√∑L

n=1 s
2
ecg(n) ·

√∑L
n=1 ŝ

2
ecg(n)

, (9)

which is a standard measure of morphological signal similarity. Values close to ± 1

indicate similarity, while values around 0 indicate dissimilarity. PCC is invariant to

differences in signal amplitude, being a disadvantage in our context because filtering

affects signal amplitude. For instance, VF waveform amplitude conveys important

information on the state of the myocardium during cardiac arrest [21].

The adaptive signed correlation index (ASCI) reflects the amplitude differences

between two signals and is defined by [29]:

ASCI =
1

L

L∑
n=1

secg(n)⊗ ŝecg(n), (10)

where ⊗ denotes the signed product of two dichotomized values:

secg(n)⊗ ŝecg(n) ≡

{
−1 |secg(n)− ŝecg(n)| ≤ β,

−1 |secg(n)− ŝecg(n)| > β.
(11)

where the threshold β determines whether the samples at time n are similar. The

threshold was set to 10% of the amplitude range of secg(n), as recommended in [30].

ASCI ranges from -1 (i.e. dissimilar signals) to 1 (i.e. similar signals). In this study,

ASCI is then normalized to the interval [0,1] to make it comparable to PCC.

3.3.2. Characteristic parameters of OR and VF: The most distinctive characteristic

of OR is the presence of QRS complexes. Accurate detection and characterization of

QRS complexes are clinically important in cardiac arrest, for example, when detecting

spontaneous pulse [31]. However, QRS detection in cardiac arrest is more challenging

due to frequently occurring aberrant QRS morphologies [31]. In this study, we evaluate

the performance of a wavelet-based QRS detector [32] on both secg(n) and ŝecg(n). As

ground truth, all QRS complexes in the 165 clean ORs are manually annotated. Finally,

the occurrence times are compared to those obtained from ŝecg(n) so that the probability

of detection (PD) and the probability of false alarm (PF) can be estimated:
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PD(%) = 100 · NTP

NTP +NFN

, (12)

PF(%) = 100 · NFP

NTP +NFP

, (13)

where NTP, NFP and NFN denote the number of true positive, false positive and false

negative detections, respectively.

Three characteristics of VF are studied: dominant frequency (DF) [33],

amplitude [34] and waveform irregularity [21], previously used to predict defibrillation

success [21, 35] and to detect VF in shock advice algorithms [13, 26, 36]. The DF is

obtained by the location of the largest spectral peak higher than 1.5 Hz. The mean

amplitude (MA) is obtained as the mean of |ŝecg(n)| [21, 33]. Waveform irregularity

is characterized by the sample entropy (SampEn). For the generic parameter K, the

absolute relative error, ε, is used to evaluate filter performance:

εK = 100× |K − K̂|
|K|

% (14)

where K is computed from secg(n) and its estimate K̂ from ŝecg(n), respectively.

3.4. Accuracy of automated diagnosis

Filter performance is also evaluated in terms of Se for VF and Sp for OR of a shock advice

algorithm designed to classify ŝecg(n), using a recently introduced machine learning

approach for rhythm classification during mechanical CPR [26]. The algorithm is based

on high-resolution feature extraction from ŝecg(n) using the stationary wavelet transform

(SWT), a wrapper-based feature selection, and a radial basis function kernel support

vector machine (SVM) classifier. Details on the method for feature extraction and

feature selection can be found in [26].

Data is partitioned patient-wise and stratified into training (50%), validation (20%)

and test (30%) sets. The training and validation sets are used to select the most

discriminative subset of 6 features, and to optimize the hyperparameters of the SVM

classifier. The features are standardized to zero mean and unit variance using the

data in the training set. This resulted in a training set of M instance-labeled pairs

{(x1, y1), ..., (xM , yM)} ∈ R6 × {±1}, where xi is the feature vector and yi = 1 and

yi = −1 are the associated shockable and non-shockable rhythm labels, respectively.

The decision function of the SVM is found by solving the following maximization

problem [37]:

W (α) =
M∑
i=1

αi −
1

2

M∑
i,j=1

αiαjyiyj exp(−γ‖xi − xj‖2) (15)

subject to the constraints:
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0 ≤ αi ≤ C ∀i, and
M∑
i=1

αiyi = 0, (16)

where αi are the Lagrange multipliers which are non-zero only for Ms support vectors, C

is the soft margin parameter and γ the width of the Gaussian kernel. Once the support

vectors are determined, the decision function is given by:

f(x) = sign

[
Ms∑
i=1

αiyi exp(−γ‖x− xi‖2) + b

]
, (17)

where the threshold b is determined in the optimization phase and x is the feature vector

under evaluation. A rhythm is classified as shockable when f(x) = 1 and nonshockable

when f(x) = −1. The hyperparameters C and γ are determined after feature selection

in the training and validation sets, using a 18 × 18 logarithmic grid search within

10−1 ≤ C ≤ 102 and 10−3 ≤ γ ≤ 101 to maximize the balanced accuracy (BAC), i.e.

the unweighted mean of Se and Sp.

Clean ECGs and CPR artefact segments were treated as two independent databases.

Each database was partitioned patient-wise and stratified into training (50%), validation

(20%) and test (30%) sets. This means that ≈ 0.5 · 330 clean ECGs (131 patients) and

≈ 0.5 · 165 CPR artefact segments (74 patients) were included in the training set. The

validation set consisted of ≈ 0.2 · 330 (52 patients) and ≈ 0.2 · 165 (30 patients) clean

ECGs and CPR artefact segments, respectively. Finally, in the test set ≈ 0.3 · 330 clean

ECGs (78 patients) and ≈ 0.3 · 165 CPR artefact segments (45 patients) were included.

Thus, for each filter setting, the training, validation and test sets consist of all possible

combinations of CPR artefacts and clean ECGs, mixed at the SNRin levels resulting in

a training set of ≈ 0.52 · 165 · 330 · 7, a validation set of ≈ 0.22 · 165 · 330 · 7 and a test

set of ≈ 0.32 · 165 · 330 · 7 signals. The performance on the test set is evaluated in terms

of Se, Sp and BAC.

4. Results

4.1. Signal quality

Figure 3 shows the signal quality measures as a function of SNRin for different filter

settings. Figure 3a shows, as expected, that ŝecg(n) and secg(n) become increasingly

similar as SNRin increases. The RLS filter leads to higher PCC and ASCI for almost

all SNRin when fine filters are used. However, for the Kalman and LMS filters, coarse

filtering leads to higher PCC and ASCI when the CPR artefact is large. In the LMS

filter, moderate filtering achieves the highest PCC and ASCI for SNRin ≤ −10 dB,

whereas coarse Kalman filtering gives the best results for SNRin ≤ −10 dB. Figure 3b

shows that coarse filtering leads to higher SNRres at low SNRin. However, for a low

SNRin, fine filtering better restores the ECG. The effect of fine and coarse filtering at a

high and a low SNRin is exemplified in Figure 4.
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PCC
ASCI

Figure 3. The mean of PCC and ASCI (a) and SNRres (b) for all possible mixing

combinations as a function of SNRin for different filter types and settings.

4.2. Waveform characteristics

The performance of the QRS detector on clean ECGs is PD = 95.9% and PF = 1.9%, a

result which serves as an upper bound for the results obtained when artefacts are added

at different SNRin. Figure 5 shows the QRS detection performance obtained on ŝecg(n).

The best performance at high SNRin is obtained for the Kalman filter, but the best

overall performance is obtained for the RLS filter, with PD exceeding 90% even for an

SNRin around −10 dB. As SNRin decreases, PF degrades considerably for any filter type

and setting. For fine RLS filtering, PF drops from around 10% for SNRin = 5 dB to over

30% for SNRin =−10 dB.

The effect of filtering on VF waveform characteristics is shown in Figure 6. The

absolute relative errors of DF, MA and SampEn are large at low SNRin, unless coarse
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Figure 4. Two examples of RLS filtering of OR at SNRin = −20 dB (a) and 0 dB

(b). Coarse filtering (λ3 = 0.99) attenuates QRS amplitude more than fine filtering

(λ1 = 0.9999) which, on the other hand, produces a larger residual between QRS

complexes.

Figure 5. The mean of PD as a function of the mean of PF for different filter types,

filter settings and SNRin. Different filter settings are indicated by marker type whereas

SNRin by line color. The 90% PD level is highlighted by a grey line.
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Figure 6. The mean absolute relative error of DF, MA and SampEn as a function of

λ, µ, q and SNRin for different filter types and settings.

filtering is used. The error of DF is lower than 30% for SNRin ≤ −5 when coarse filtering

is used. For large SNRin, the DF of the restored VF signal is best preserved using

moderate and fine filtering. The errors of MA and SampEn follow a similar pattern,

with the LMS filter being the best filter overall, especially for SNRin above −10 dB.

The RLS and Kalman filters show a degradation in the estimation of amplitude and

complexity for moderate and coarse filtering as SNRin increases, possibly caused by

spiky filtering residuals.
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Figure 7. Performance of the shock/no-shock diagnosis for different filter types and

settings.

Figure 8. Effect of filtering on the amplitude of secg(n) for OR (a) and VF (b) at

SNRin = −10 dB.

4.3. Shock/no-shock classification

The performance of the classifiers on the test set is shown in Figure 7 as a function of

SNRin. For most filter settings, Se and Sp are almost constant for SNRin above −5 dB.

Moderate filtering yields better classification of OR (higher Sp), whereas coarse filtering

yields better classification of VF (higher Se). The best overall performance in terms

of BAC is obtained for the RLS filter, though the differences between the three filter

settings are small. The Kalman filter is associated with the worst classification results,

suggesting that the state-space model may not be an efficient approach for estimating
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the CPR artefact model in (6). For all SNRin, the BAC of the coarse LMS filter is just

marginally lower (0.6-percentage points) than that of the best RLS filter.

The accuracy of the shock/no-shock decision algorithm was tested directly on the

165 CPR artefacts (with nonshockable asystole as the underlying rhythm). After

filtering the artefact with the RLS filter and λ = 0.995 (best configuration), the

specificity was found to be 99.4%.

Figure 9 shows four illustrative examples of misclassified segments for both

shockable (VF) and nonshockable (OR) rhythms. In Figure 9a and b the artefact

presents high frequency harmonics causing fast and disorganized filtering residuals in

ŝecg(n). Thus, the filtered OR rhythm resembles VF. Figure 9c and d shows spiky and

high-amplitude filtering residuals resembling an OR rhythm in patients with VF, leading

to a misdiagnosis in the shock/no-shock decision algorithm.

Figure 9. Examples of classification errors. Segments with OR rhythms (a,b) and

segments with VF (c,d).

5. Discussion and conclusions

To the best of our knowledge, the present study provides the first thorough evaluation

of ECG waveform restoration following adaptive mechanical CPR artefact cancellation
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filtering. With this approach, signal quality indices and clinically relevant ECG

features can be determined, providing insights into how accurately the underlying

ECG rhythms can be restored with filtering. In addition to SNRres, we introduce

correlation-based similarity indices [30, 38] and typical OR and VF characteristics of

relevance in applications such as shock outcome prediction [21, 35] and detection of

pulse [22,31]. Since ALS clinicians decide on whether to shock the patient by observing

ŝecg(n), filters that provide the highest signal quality and preserve the salient features of

the rhythms are desirable. Moreover, for each filter setting, a 6-feature machine learning

algorithm was adjusted to evaluate the viability of an automated shock/no-shock

decision and the influence of SNRin on diagnostic accuracy during mechanical CPR.

The high values of SNRres (mean increase of 9.5 dB across all SNRin) presented in

Figure 3 show that adaptive filtering considerably reduces CPR artefacts, while the high

correlation coefficients indicate that the ECG waveforms are quite accurately preserved

in ŝecg(n). However, the ASCI values are slightly below the PCC values suggesting an

amplitude reduction in the ECG after filtering. This is illustrated in Figure 8 where

SNRres is large and both PCC and ASCI are above 0.8, but ASCI is 0.1 smaller than

PCC in both cases. The waveform amplitude is lower in ŝecg(n) than in secg(n).

Besides waveform alterations, this work shows for the first time that filtering

causes changes to the intrinsic properties of OR and VF. The performance of the

QRS detector applied to secg(n) is lower when compared to those obtained on standard

databases [32]. However, QRS detection in cardiac arrest patients presenting ORs is

known to be challenging [31], since QRS complexes may be wide and have aberrant

morphologies. As expected, the performance is lower when the QRS detector is applied

to ŝecg(n). As shown in Figure 5, true QRS complexes are accurately detected after

filtering regardless of SNRin. However, as SNRin decreases, the rate of false positives

soars due to spiky filtering residuals confounded as actual heartbeats. This may not be

a deleterious effect for shock decision algorithms since QRS presence may be enough

for a no-shock decision [39], but the effect may confound other algorithms dependent on

heart rate and QRS morphology such as the prediction of re-arrest [23] and the detection

of spontaneous pulse [31, 40–42]. As for the restoration of VF characteristics, the best

results are obtained for coarse filtering; all three types of filtering present a similar

trend. At low SNRin, fine filtering inefficiently removes the CPR artefact, causing the

dominant frequency of the filtered VF to match the LUCAS-2 rate (1.67 Hz) in about

one third of the cases when the best fine filtering is used (SNRin = −20 dB and RLS

with λ = 0.9999). This is a significant error considering that the mean (standard

deviation) DF for clean VF in our data is 5.1 (1.5) Hz. For MA and SampEn, errors are

also very large for fine filtering at low SNRin, with relative errors in MA and SampEn

in excess of 100% and 50%, respectively. The best overall filter to estimate SampEn

is the coarse LMS filter, with an error rate below 30% for SNRin ≥ −15 dB and an

error below 10% for SNRin ≥ −10 dB. These results may be of clinical importance

as the dominant frequency, amplitude and entropies have been used as predictors

of succesful defibrillations [21, 33–35, 43]. Our results suggest that the prediction of
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defibrillation success during mechanical CPR may be possible without interrupting

the chest compression therapy—a result in line with some recent findings on manual

CPR [44].

While an ALS setting requires accurate restoration of secg(n), the shock/no-shock

decision of ŝecg(n) is also crucial in automatic external defibrillators, used mainly by

non-medical personnel. The decision algorithm implemented in this study has Sp below

the 95% recommended by the AHA for SNRin < −5 dB. Moreover, Se is in compliance

with the 90% recommended by the AHA for SNRin ≥ −15 dB. For SNRin ≤ −15 dB

Se is very low, meaning many false negatives. This is mostly because spiky and

organized filtering residuals are interpreted as QRS complexes of organized rhythms

in VF patients [26]. As SNRin increases, a large portion of those false negatives are

recovered leading to a significant increase in Se. Specificity remains quite constant

for all SNRin. The algorithmic procedure followed for shock/no-shock decision during

mechanical CPR was recently demonstrated to have Se/Sp above 95% [26]. Our results

suggest that a plausible explanation for those results is that SNRin, in most cases, is

high (above −10 dB).

The SNRin is unknown in real cardiac arrest data, so a filter cannot be adjusted

to the SNRin. Thus, the filter that on average shows the best performance should be

preferred. Table 1 shows the mean performance across all SNRin for each filter and type

of filtering. The RLS filter offers the best preservation of waveform morphology (higher

PCC and ASCI), as well as QRS detection performance in terms of PD-to-PF ratio.

The VF waveform features are best preserved by the LMS filter, using either moderate

or coarse filtering, although the results are almost identical to those of moderate RLS

filtering. The best results on rhythm classification are obtained for moderate RLS

filtering.

In monitor–defibrillators, the computational demands are important to consider

because these devices use lower-end microprocessors and FPGAs which run many tasks

in parallel. The LMS filter has much lower computational demands than either the RLS

or Kalman filters because it only involves an error estimation at time n for the filter

update equations. The RLS filter has recursions that involve matrix products [25], and

so do the state-space equations. So the choice of adaptive filter should be a compromise

between diagnostic accuracy, waveform preservation and computational demands on the

monitor–defibrillator.

This study has certain limitations. Data obtained from a single piston driven device

were used (LUCAS-2). This is the most widespread mechanical CPR device, whose

impact on survival has been studied in two large randomized trials [2,17]. However, there

are other piston driven devices on the market [45,46], and even alternative technologies

based on load distribution bands [18]. Our results should generalize well to other piston

driven devices, whereas the effect of filtering would need to be studied separately for

devices based on load distribution bands for which the artefact characteristics are

different [20, 47]. Moreover, data were gathered using one type of monitor–defibrillator

and from a single EMS agency. The characteristics of the ECG acquisition circuitry,
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Table 1. Mean performance across all SNRin for different filter types and settings.

PCC ASCI PD/PF εDF εMA εSampEn Se Sp BAC

RLS

λ1 = 0.9999 0.80 0.71 4.9 14.9 24.7 17.4 92.7 93.2 93.0

λ2 = 0.9950 0.76 0.65 2.9 10.4 18.7 12.1 95.1 94.5 94.8

λ3 = 0.9900 0.68 0.59 2.8 12.0 29.2 17.3 95.8 90.6 93.2

LMS

µ1 = 0.0015 0.76 0.68 4.6 21.7 35.8 16.7 91.2 91.9 91.6

µ2 = 0.0040 0.77 0.67 3.0 10.3 18.7 12.1 94.4 93.5 93.9

µ3 = 0.0080 0.68 0.58 2.8 12.1 18.1 11.8 97.0 91.4 94.2

KALMAN

q1 = 5 · 10−6 0.70 0.62 4.4 28.2 51.1 18.7 91.0 88.4 89.7

q2 = 1 · 10−5 0.74 0.67 3.8 20.8 30.6 15.0 93.8 93.5 93.7

q3 = 5 · 10−5 0.75 0.64 2.9 10.4 25.2 18.0 94.5 93.3 93.9

including sampling frequency, voltage resolution and bandwidths, differ slightly between

devices, but should not alter our results substantially. Although different EMS agencies

may have different protocols and quality of CPR, the use of a mechanical CPR device

standardizes treatment. Finally, an additive mixture model was used to produce a noisy

ECG by adding a CPR artefact to a clean ECG at different SNRs. This type of model

was proposed in [7] and has since then been used in many studies [6,10,25,26]. However,

the model may not accurately reflect the effect of CPR on heart dynamics. Although the

additive mixture model is the best available model to evaluate the effect of filtering on

ECG characteristics, a better way to evaluate shock/no-shock decision algorithms would

be to use noisy ECGs recorded during OHCA. Therefore, a future study is justified

to validate the shock/no-shock decision algorithm on real ECGs corrupted by CPR

artefacts.
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