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ABSTRACT
The simplicity and accuracy of Computational Fluid Dynamics (CFD) tools have made them the
most widely used method for solving fluid dynamics problems. However, these tools have some
limitations, being the most significant the required computational resources. This fact, added to
the growth of the Artificial Intelligence, has led to an increasing number of studies using data-
driven methods to solve fluid dynamic problems. Flow control devices are a very popular research
topic, since their implementation can significantly improve the behaviour of the flow. Among these
devices, Vortex Generators (VGs) can be highlighted for their simplicity, efficiency and numerous
applications. In this study, a Convolutional Neural Network (CNN) is proposed to predict the flow
behaviour on thewake behind VGs. In order to obtain data for training the network, 20 different CFD
simulations were conducted, considering the same inflow conditions but different vane heights and
angles of attack of the VGs. The results show that the CNN is able to accurately predict the velocity
and vorticity fields on the wake of the VG, being the most conflictive cases the ones with tall VGs,
large angles of attack and close distances to the VGs. Additionally, the vortical structure, vortex path
and velocity profiles on the vortex core of themain vortex are evaluated, showing good agreements
with CFD results.
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Introduction

Since their introduction, CFD tools have been one of the
most common methods for solving fluid dynamic prob-
lems, due to their simplicity and capability to model the
turbulence. However, CFD tools have certain limitations,
which can be prohibitive. Among these limitations are
the computational time and resources required to run the
simulations, especially when working with very complex
geometries or very accurate turbulencemodels; the influ-
ence of the user, most notably whenmeshing the domain,
defining the numerical models, setting the conditions of
the simulations, and many others. These aspects, added
to the irruption of Deep Learning (DL) techniques, have
ledmore andmore authors to apply data-drivenmethods
to solve fluid dynamic problems.

Initial efforts focused on obtaining predictions of the
different fields in generic cases with simple geometries,
in order to evaluate the capability of DL-based meth-
ods to make predictions with this kind of problems.
Although there is a wide variety of architectures that can
provide accurate predictions of flows around geometries,
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as stated by Zhang et al. (2018), CNNs offer the great-
est generalisation capacity, since these networks allow
introducing different geometries on a simple way. Guo
et al. (2016) designed a CNN to predict pressure and
velocity fields of steady-state laminar flows around sim-
ple geometries. Based in that study, Ribeiro et al. (2020)
tested the accuracy of different CNN architectures for
predicting laminar flows, obtaining a significant accu-
racy improvement. Portal-Porras et al. (2021b) proposed
the implementation of a previous stage for predicting
pressure and vorticity fields, in order to improve the pre-
dictions of a CNNof the velocity fields of turbulent flows.
Kashefi et al. (2020) developed a PointNet (Qi et al., 2017)
architecture for field prediction around irregular shapes,
showing that the network is able to change its predictions
with slight geometry modifications, which is essential
for design optimisation. In all the mentioned studies the
computational time is reduced between 3 and 5 order of
magnitude in comparison with CFD simulations.

Based on the knowledge provided by the aforemen-
tioned studies and many others, more and more authors
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are using this type of networks for real applications, such
as aerfoils (Chen et al., 2020; Thuerey et al., 2020; Yilmaz
& German, 2017), car aerodynamics (Jacob et al., 2022),
thermal systems (Du et al., 2021), chemical reactions
(Ren et al., 2021) and many others.

Within fluid dynamics, flow control devices, both
active and passive, are a very popular research topic, since
their implementation can lead to a great improvement
of flow behaviour. In addition, there is a large variety of
devices and there are many parameters that affect their
behaviour, which makes their study more complex and
challenging. Aramendia-Iradi et al. (2016) and Aramen-
dia (2017) provided an exhaustive review of the available
flow control devices.

Among flow control devices, VGs can be highlighted
for their simplicity, efficiency and numerous applications.
VGs are passive flow control devices, whose objective is
to delay or remove the flow separation, transferring the
energy generated from the outer region to the bound-
ary layer region. They are small vanes, usually mounted
in pairs, placed before the expected region of separation
of the boundary layer with an incident angle with the
oncoming flow. Although they are primarily triangular or
rectangular, VGs can be of various shapes. Typically, the
height of the VGs is similar to the boundary layer thick-
ness in the location where the VG is implemented, aim-
ing to ensure a good interaction between the boundary
layer and the vortex generated by the VG. However, since
tall VGs lead to high drag forces, in many applications
VGs whose height is less than the boundary layer thick-
ness, known as Sub-Boundary-Layer Vortex Generators
(SBVG), are used, as in Ashill et al. (2001, 2002).

Traditionally, VGs, and passive flow control devices
in general, have been studied by means of experimental
tests or CFD simulations, such as in Ibarra-Udaeta et al.
(2020), Urkiola et al. (2017), Portal-Porras et al. (2021a),
Fernandez-Gamiz et al. (2012, 2016, 2018). However,
with the advent of Deep Learning, a new possibility for
the analysis and optimisation of these devices arised.
Portal-Porras et al. (2022), by means of a CNN, predicted
the velocity and pressure fields around two different flow
control devices, microtabs and Gurney flaps, located on
the Trailing Edge (TE) of an aerfoil. Additionally, in that
study, lift and drag coefficients of the aerfoil with those
devices are predicted using a variation of the proposed
CNN.

Even if DL methods can be very useful for a fast
and accurate prediction of flows, their main limitation
is the prediction of three-dimensional flows; since, as
stated by Kashefi et al. (2020), when working with three-
dimensional CNNs, the high computational cost leads to
low-resolution limited workspaces. For example, in the
study conducted by Guo et al. (2016) a domain is divided

into a 128× 256 array for two-dimensional flows, while
for three-dimensional flows the domain is divided into
a 32× 32× 32 array. This causes the predictions to be
unreliable. If a small domain is selected, only the region
close to the geometry can be displayed, losing character-
istics of the flow. On the contrary, the selection of a large
domain makes the representation of the geometry in the
domain coarse, and therefore inadequate. For these rea-
sons, in order to ensure the accuracy of the results and
to reduce the required computational time and resources,
alternatives for the prediction of three-dimensional flows
using DL tools must be sought.

In the present paper the capability of a two-dimensio
nal CNN to learn and predict three-dimensional flow
phenomena of the wake behind SBVGs is evalu-
ated, avoiding the use of computationally demanding
three-dimensional CNNs. With this objective, a two-
dimensional CNN is designed and trained to predict the
velocity and vorticity fields in different planes located on
the wake behind the SBVGs. For training the CNN, the
results of 20 different CFD simulations are used, in which
different vane heights and angles of attack of the VGs are
considered.

The remainder of the manuscript is structured as
follows: in ‘Methodology’ a detailed explanation of the
methodology followed for setting up and conducting
CFD simulations, and designing and training the pro-
posed CNN is provided; in ‘Results and Discussion’ the
predictions of the CNN in terms of velocity and vorticity
fields, vortical structure, vortex path and velocity pro-
files of the core of the vortex are presented, and these
predictions are compared with the CFD results; finally,
in ‘Conclusion’ the main conclusions extracted from this
study are explained.

Methodology

CFD setup

Aiming to obtain data to train, validate and test the CNN,
20 different simulations of vane-type VGs on a flat plate
were conducted, considering different VG heights (H)
and Angles of Attack (α) in each simulation. To conduct
these simulations Star-CCM+ v2019.1 commercial code
was used.

In all the cases the computational domain consists of
a block with a VG of its lower surface. The flow goes
from the upstream part of the block to the downstream
part; therefore, they are set as inlet and outlet, respec-
tively. The surfaces of the VG and the lower surface of
the block are set as no-slip walls, while the rest of the sur-
faces of the block are set as symmetry planes, in order to
avoid affecting the flow. The dimensions of the blockwere
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Figure 1. Dimensions of the numerical domain. (a) Numerical
domain (not to scale); (b) VG dimensions and parameters.

defined to ensure that the boundary layer thickness (δ) at
the location of the VG is equal to 0.25 m.

As the objective of the CFD simulations is to obtain
different samples, 20 different VG configurations are con-
sidered, combining four different angles of attack, 10°,
12°, 15° and 18°; and five different VG heights, 0.2δ, 0.4δ,
0.6δ, 0.8δ and 1δ. The length of the VG is equal to 2δ in all
the cases. For more information about the computational
domain and VG dimensions check Figure 1.

For data extraction, 12 different planes located at the
wake behind the VG are considered. These planes are
located at a distance between 3δ and 25δ from the TE of
theVG, being each plane distanced by 2δ from the others.

With the explained computational domain five differ-
ent structured meshes of around 11 million cells were
generated, one for each VG height. The normalised
height of the cell closest to the wall (�z/δ)was set at 1.5 ·
10−6 in all the cases. The procedure described by Urkiola
et al. (2017) was followed to generate all the meshes. The
meshes are more refined in the near-VG region, in order
to obtainmore accurate results in this region. Themeshes
were rotated depending on the case, in order to obtain the
desired angle of attack. Figure 2 shows an example of the
near-VG region of the mesh generated for H = 1δ.

Figure 2. Refined mesh around the VG for H = 1δ.

Both mesh quality and mesh dependence have been
thoroughly analysed in the previous studies conducted
by Urkiola et al. (2017), Ibarra-Udaeta et al. (2020) and
Portal-Porras et al. (2021a). Demonstrating that the used
meshes are suitable for these simulations.

Regarding the fluid, incompressible turbulent flow in
steady-state is considered. The Reynolds number (Re)
based on the height of the VG is between 5400 and 27,000
according to Expression (1).

Re = u∞ · H
v

(1)

where u∞ refers to the freestream velocity of the flow,
which is set at 20 m/s, and v to the kinematic viscosity.

For turbulence modelling Menter’s RANS-based k-ω
Shear Stress Transport (SST) (Menter, 1993) turbulence
model is selected. As demonstrated by Allan et al. (2002),
in comparison with other RANS models, SST models
provide more accurate results, especially in terms of vor-
tex trajectory and streamwise peak vorticity. Therefore,
this turbulencemodel is considered to be themost appro-
priate for the analysed problem.

Convolutional neural network

Input and output layers
As the considered computational domain is too large to
be processed by the neural network, only themost impor-
tant part of the planes is evaluated, i.e. the area where the
vortices can be observed. This region is the one marked
by a white rectangle in Figure 3.

In order to obtain more samples to train the network,
a data augmentation procedure was followed. In this case,
the procedure to increase the amount of data consisted in
obtaining samples of the same area of interest but with a
small offset of 5 or 10 cmon each side. These zones are the
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Figure 3. Area of interest of an example case. Thewhite rectangle shows the area of interest for the baseline case and the purple-, blue-,
green- and red-dashed rectangles show the areas of interest for the augmented cases.

purple, red, blue and green dashed rectangles of Figure
3. Additionally, the symmetrical cases in the Z-axis of all
the samples were created, resulting in a total of 200 cases
and 2400 planes, 12 per each case. Among these sam-
ples, the 240 samples corresponding to the baseline cases
are considered to test the network, and the augmented
dataset to train and validate it. The dataset only includes
the explained samples, without considering stochasticity
errors.

Two different layers are created to represent these
regions. The first layer contains the projection of the TE
of the VG, and the value of this projection is defined by
the α of the VG. The rest of the layer defines the dis-
tance between the analysed plane and the TE of the VG.
Therefore, this layer defines the location, height and angle
of attack of the VG. The second layer contains a Signed
Distance Function (SDF) that represents the minimum
distance between the projection of the TE of the VG each
point of the domain. Figure 4 shows an example of the
generated layers.

To create the SDF layer firstly the zero-level set (Z)
is created following Expression (2). This is the level of
the plane where the contour of the projection of the TE
is located. This set is marked with a white rectangle in
Figure 4(b).

Z = {(X,Y) ∈ R2/SDF(x, y) = 0} (2)

Then, the sign of SDF is defined. SDF(x, y) = 0 if (x,y) is
on the geometry contour; SDF(x, y) < 0 if (x,y) is inside
the geometry; and SDF(x, y) > 0 if (x,y) is outside the
geometry.

Finally, the value of each element is calculated follow-
ing Expression (3).

SDF(x, y) = min
(X,Y)∈Z

|(x, y) − (X,Y)| · sign (3)

To prepare the output layers, the obtained results of
the CFD simulations are firstly interpolated to fit into
128× 256 arrays. Then, each variable is normalised, fol-
lowing Expressions (4)–(7).

u∗
x = ux

u∞
(4)

u∗
y = uy

u∞
(5)

u∗
z = uz

u∞
(6)

ω∗
x = ωx · δ

u∞
(7)

where u∗
x , u∗

y , u∗
z and ω∗

x are the dimensionless variables.
Finally, all the input and output layers are ranged

between 0 and 1 following Expression (8), aiming to
speed up and enhance the training process.

�′ = � − min(�)

max(�) − min(�)
(8)

where � is replaced by each dimensionless variable.

CNN architecture
In this study, a CNN is proposed to predict the veloc-
ity and vorticity fields on the wake behind the VGs.
MATLAB (2022) commercial code with its Deep Learn-
ing Toolbox (2021) were used to design and train the
network.
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Figure 4. Input layers of the CNN for an example case. (a) Layer for defining the VG; (b) SDF layer.

Figure 5. Schematic view of the proposed CNN.

Among the different architectures of CNNs available,
an encoder–decoder architecture is selected, in particu-
lar a U-Net architecture (Ronneberger et al., 2015). This
kind of network has been widely used to solve fluid-
mechanical problems, as inGuo et al. (2016) andThuerey
et al. (2020). The proposed network consists of four
encoder/decoder blocks. Each encoding block contains
two convolutional layers, both of them followed by a
ReLU (Rectifier Linear Unit) activation function layer.
The second convolutional layer is also followed by a Max
Pooling layer. In the first two encoding blocks strided
convolutions are performed with a kernel of 5× 5; and
in the last two encoding blocks normal convolutions
with a kernel of 3× 3 are performed. The number of
filters is doubled in each encoding block. The decod-
ing part of the network performs the reverse process of
the encoding part. Each encoding block is connected to
its respective decoding block by means of concatena-
tion layers. Figure 5 shows a schematic representation
of the proposed CNN. Portal-Porras et al. (2021b, 2022)

successfully applied this network for velocity, vorticity
and pressure prediction around simple geometries and
aerfoil flow control devices, respectively.

For training the network Adam optimiser (Kingma &
Ba, 2017) was used, with a learning rate of 0.001, a batch
size of 64, and aweight decay of 0.005. From the dataset of
2400 samples, the previously-mentioned 240 samples are
considered for network-testing, and the rest of the sam-
ples are split into 70% training and 30% validation. The
validation was performed after each epoch.

Results and discussion

In order to determine the reliability of the proposedCNN
for predicting flows on the wake behind VGs, the pre-
dictions of the velocity and vorticity fields obtained with
the CNN are compared to the ones obtained with CFD
simulations. Additionally, based on the velocity and vor-
ticity fields, other features of themain vortex generated by
the VGs are extracted, such as, vortical structure, velocity
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Figure 6. Comparison of the predictions obtained by CFD and CNN for three aleatory cases. (a) H = 0.2δ, α = 12◦ and x/δ = 5; (b)
H = 0.8δ, α = 18◦ and x/δ = 9; (c) H = 1δ, α = 10◦ and x/δ = 13.
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Figure 7. Relative error analysis based on the angle of attack of the VGs. (a) Relative ux error; (b) Relative uy error; (c) Relative uz error;
(d) Relativeωx error.
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Figure 7. Continued.

Table 1. Arithmetic mean and standard deviation of the results obtained with CFD and CNN.

CFD CNN

ux uy uz ωx ux uy uz ωx

Arithmetic mean (µ) 19.0355 −0.0142 −0.0956 −0.4123 19.0554 −0.0041 −0.0757 −0.123
Standard deviation (σ ) 2.4349 0.5303 0.7795 39.7207 2.424 0.4774 0.6789 38.9628

profiles and vortex path. To conduct this comparison
between CFD and CNN only the cases from the test-set
are considered.

Velocity and vorticity fields

A comparison of the results of velocity and vorticity fields
obtained with both methods is performed. To conduct
this comparison three different random cases are con-
sidered, each one with a different vane-height, angle of
attack and distance of the plane from the TE of the VG.
Figure 6 shows this comparison and the error of the CNN
predictions taking the CFD results as benchmark.

The velocity fields show that the CNN is able to accu-
rately predict the shape of the vortexes generated by the
VGs, predicting all the vortexes that compose the pri-
mary vortex mechanism described by Velte et al. (2016).
The most troubleshooting area is the core of the pri-
mary vortex, where the CNN underestimates the y- and
z-components of the velocity. Another troubleshooting
area is the suction side of the horseshow vortex described
by Velte et al. (2016), where the CNN undervalues the
x-component of the velocity.

Regarding the vorticity, although themaximum errors
are considerably high in all the cases evaluated, these
errors appear in the near-wall region, where the vorticity

increases due to the influence of the boundary layer.
However, the errors in the area of interest, i.e. in the area
where the main vortex appears, are acceptable.

In order to obtain a quantitative view of the results, the
arithmetic mean (μ) and standard deviation (σ ) of the
whole test-set are analysed. These values are presented in
Table 1. The results of these parameters show that the val-
ues obtained with both methods are very similar, being
the largest differences in the y and z components of the
velocity.

Error analysis

An error analysis is carried out in order to evaluate which
parameters most affect the CNN predictions. For this
analysis the relative error (εR) of each of the magnitudes
at all points predicted by the CNN is considered, calcu-
lated on the basis of the Expression 9. An adjusting scalar
(k) is added on the denominator of this expression to
avoid infinite relative errors when the CFD results are
equal to zero. This scalar is equal to 0.01 for ux and ωx
and 0.001 for uy and uz, in order to minimise its impact
on the results.

εR = |xCFD − xCNN |
|xCFD| + k

· 100 (9)

where x is the value of each magnitude.
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Figure 8. Relative error analysis based on the vane height. (a) Relative ux error; (b) Relative uy error; (c) Relative uz error; (d) Relativeωx
error.
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Figure 8. Continued.

Figure 7 displays the relative error analysis based on
the angle of attack of the VGs; Figure 8 based on the vane
height and Figure 9 based on the distance of the plane
from the TE of the VG.

The comparison of the relative error based on the
angle of attack of the VG shows that the largest angles of
attack lead to the largest relative errors, most notably in
uy, uz and ωx. These three magnitudes show the rotation
of the vortex. As the angle of attack increases, the strength
and size of the vortex increases, and this makes the CNN
predictions of the mentioned magnitudes worsen. In the
case of ux, even if the maximum errors are similar in all
the cases, α = 18◦ is the case in which themedium-range
errors appear the most.

The comparison of the relative error based on the
vane height demonstrates that as the height of the VG
decreases, the predictions of the three velocity compo-
nents improve.Aswith the angle of attack, the higherVGs
lead to bigger and stronger vortexes, which complicates
the predictions of the CNN. In the case of ωx, similar
relative errors are found for all the VG heights.

The comparison of the relative error based on the
distance from the TE of the VG shows that the largest
relative errors appear on the near-wake region, and as
the distance from the TE increases the relative errors
decrease. This is attributed to the vortex structure, whose
complexity decreases as it distances from the VG.

As shown in the histograms, some relative errors
are considerably high. However, these errors appear in
insignificant areas, such as the walls. In addition, the

ground truth valuewhere these errors appear is very close
to zero, which makes the relative error increase.

Vortical structure

In order to conduct a qualitative comparison of the vorti-
cal structure, the vortex core is considered. For this study,
it is considered that the vortex core is the region where
the vorticity is higher than the half of the peak vorticity
(ωpeak

2 ). Figure 10 shows the representation of the primary
vortex at a distance of 5δ from the TE of the VGwith both
methods.

The results show that the size of the vortex increases
as the vane-height and angle of attack increase. This
increase is more noticeable with low vane-heights and
high angles of attack. The vortices obtained with the
highest VGs have a circular shape; and as the height of
the VGs decreases, the shape of the vortices change, hav-
ing the vortices obtained with the lowest VGs an elliptical
shape, due to the boundary layer influence. As shown in
more detail later in the article, the lateral displacement of
the vortices increases with the angle of attack.

Concerning the comparison between the vortices
obtained by CFD and CNN, both methods show fairly
similar results in terms of vortex size. Although in both
cases the previously explained vortex shapes obtained,
i.e. circular for high vane-heights and elliptical for low
vane-heights; the vortices obtained by CFD have a more
uniform shape than those obtained byCNN, having these
ones some discontinuities, especially in the outer region
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Figure 9. Relative error analysis based on the distance from the TE of the VG. (a) Relative ux error; (b) Relative uy error; (c) Relative uz
error; (d) Relativeωx error.
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Figure 9. Continued.

of the vortex. This problem is more noticeable as the
angle of attack increases.

Vortex path

In order to analyse the vortex path of the primary vor-
tex generated by the VG, the location of the vortex centre
is evaluated. As explained by Yao et al. (2022), the vor-
tex centre is the point where the peak vorticity appears.
Figure 11 shows the lateral path of the primary vortex
normalised with the height of each VG. Aiming to val-
idate the obtained results with experimental data, the
lateral path obtainedwithα = 10◦,α = 15◦ andα = 18◦
are compared to the data obtained experimentally by
Bray (1998) for H = 0.9δ.

The lateral path obtained with CFD shows that the
displacement of the main vortex increases as it distances
from the VG, following an almost linear trend along the
entire wake behind the VG. For all the angles of attack,
the larger normalised displacements are obtained with
the lower VGs, whereas the smallest ones are obtained
with the higher VGs. In all the tested cases, the vor-
tex displacement increases as the angle of attack of the
VGs increase. Good agreements are obtained with the
experimental data reported by Bray (1998), being the
experimental samples (H = 0.9δ) between the samples of
H = 0.8δ and H = 1δ.

The lateral path of the vortexes obtained with CNN
show that the CNN is able to predict accurately the loca-
tion of the vortex centre, taking theCFD results as bench-
mark. Nevertheless, the results obtained with CNN do
not show the linear trend that those obtained with CFD

show, presenting discontinuities in some cases. This is
attributed to the fact that in the predictions performed
by CNN the results of the planes do not depend on the
results of the previous planes, while in CFD they are
dependent on them. Despite the errors that may appear,
as with CFD, the larger normalised lateral displacements
are obtained with the lowest vane-heights and the higher
angles of attack.

Velocity profiles

As demonstrated by Velte et al. (2009), Velte (2013),
the primary vortex generated by the VG possess helical
symmetry, and therefore, the axial (ux) and azimuthal
(uθ ) velocity profiles are interrelated by a linear relation
defined in their study. In this study both velocity compo-
nents are analysed. To obtain both velocity profiles, a line
that crosses the centre of the vortex is considered. Figure
12 shows the velocity profiles at a distance of 5δ from the
TE of the VG obtained with both methods for each VG
height and angle of attack. The velocity components are
normalised with the streamwise velocity.

The axial velocity profiles show a small decrease in
axial velocity at the centre of the vortex for all the vane
heights. This decrease is more noticeable with the low-
est vane heights and the highest angles of attack. With
high angles of attack a secondary decrease in axial veloc-
ity appears, caused by the suction side of the horseshoe
vortex. The azimuthal velocity profiles show an increase
in azimuthal velocity followed by a decrease. This is
caused by the rotation of the primary vortex, and is more
noticeable in the cases with the highest angles of attack
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Figure 10. Vortical shape of the primary vortex at a distance of 5δ from the TE of the VG. The black rectangles represent the projection
of the TE of the VGs. (a) α = 10◦ with CFD; (b) α = 10◦ with CNN; (c) α = 12◦ with CFD; (d) α = 12◦ with CNN; (e) α = 15◦ with CFD;
(f) α = 15◦ with CNN; (g) α = 18◦ with CFD; (h) α = 18◦ with CNN.

and vane heights. The explained velocity profiles follow
the interrelation described by Velte et al. (2009) and Velte
(2013).

The CNN is able to correctly predict these velocity
profiles with all the angles of attack and vane heights,
showing very slight differences with respect to the CFD
results.

Performance analysis

The main reason for using Deep Learning techniques
instead of CFD tools is the significant reduction in com-
putational time associated with them. Therefore, the
computational time required by each of the methods to
perform the predictions is a parameter to be taken into
account.

To perform each CFD simulation, around 47 h were
required, using 56 Intel Xeon 5420 cores with 45 GB of
RAM. In contrast, 149.3 s were required to obtain the pre-
dictions of the 20 cases of the test-set, using a single core
of the same processor. For training the network around
20 h were required. Table 2 shows a comparison of the
average computational time required by CFDmethods to
obtain the results and the time required by the CNN for
making the predictions of the 12 planes of a single case;
moreover, the speed up of the CNN in comparison with
CFD simulations is shown.

Conclusions

In this work a CNN is designed and trained to predict the
velocity and vorticity fields in the wake behind vane-type
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Figure 11. Comparison of the lateral path of the primary vortex. (a) α = 10◦; (b) α = 12◦; (c) α = 15◦; (d) α = 18◦.
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Figure 11. Continued.

Figure 12. Velocity profiles on the vortex core at x = 5δ. (a) α = 10◦; (b) α = 12◦; (c) α = 15◦; (d) α = 18◦.

Table 2. Computational time required by each method to obtain
the predictions of a single case.

Method Computational time Speedup

CFD 47 h –
CNN 7.465 s 22,665.77

SBVGs, aiming to study the capability of theCNN to learn
and predict flow phenomena. For that purpose, 20 dif-
ferent CFD simulations were run, considering different
angles of attack and heights of the VGs.

The results of velocity and vorticity fields show that
the CNN is able to reliably predict those fields. The CNN
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correctly predicts the shape of the main vortex mecha-
nism generated by the VGs, but there are two main trou-
bleshooting areas. The first troubleshooting area is the
vortex core, where the CNN underestimates the strength
of the vortex core; and the second troubleshooting area is
the suction side of the horseshoe vortex, where the CNN
undervalues its velocity in x direction.

With the obtained velocity and vorticity fields, an
exhaustive error analysis is conducted, in order to anal-
yse the impact of each parameter (VG height, angle of
attack and distance of the plane from the TE) on the
predictions carried out by the CNN. This error analy-
sis demonstrates that the largest errors appear on the
near-wake area with the taller VGs and the larger angles
of attack. This is attributed to the vortical structure of
the mentioned cases, since the most complex structures
appear in these cases.

Additionally, the vortical structures, vortex path and
velocity profiles on the vortex core are extracted from the
predicted velocity and vorticity fields. The vortical struc-
ture shows that, although with some discontinuities in
the outer region of the vortex core, the CNN is able to
successfully predict the shape and size of themain vortex.
The vortex path also demonstrates that the CNN is able
to predict the vortex displacement in both trend and val-
ues. The CNN is also able to predict the velocity profiles
on the vortex core very accurately.

As the main objective of using DL-based methods
instead of the traditional numeric methods is to reduce
the computational time, a performance analysis is con-
ducted, in which the time required to conduct CFD sim-
ulations and CNN predictions is compared. This analysis
shows a speedup of 5 orders of magnitude of the CNN in
comparison with CFD simulations.
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Nomenclature

CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DL Deep Learning
DRL Deep Reinforcement Learning
RANS Reynolds-Averaged Navier–Stokes
ReLU Rectifier Linear Unit
SBVG Sub-Boundary-layer Vortex Generator
SDF Signed Distance Function
SST Shear Stress Transport
TE Trailing Edge
VG Vortex Generator
∗ Dimensionless variable
‘ Variable ranged between 0 and 1
α Angle of Attack
�z First cell height
δ Boundary layer thickness
εR Relative error
H VG height
L VG length
� Normalized magnitude
ρ Density
Re Reynolds number
σ Standard deviation
u Velocity
ux Axial velocity
uθ Azimuthal velocity
u∞ Freestream velocity
μ Arithmetic mean
v Kinematic viscosity
ω Vorticity
x, y, z Cartesian components
Z Zero-level set
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