This is a preprint version of a Published Work that appeared in final form in Quaternary Science Reviews 19 : 106-115 (2015). To access the final edited and published work see https://doi.org/10.1016/j.quascirev.2015.04.017

1 The return to the Iberian Peninsula: first Quaternary record of *Muscardinus* and a

2 palaeogeographical review of the genus in Europe.

3

4 Naroa GARCIA-IBAIBARRIAGA^{a, b}*, Álvaro ARRIZABALAGA^a, María-José IRIARTE-

5 CHIAPUSSO^{*a*, *c*}, Juan ROFES^{*d*}, Xabier MURELAGA^{*b*}

6

a Dpto. Geografía, Prehistoria y Arqueología, Universidad del País Vasco UPV/EHU, C/ Tomás y Valiente
 s/n, 01006 Vitoria-Gasteiz, Spain.

9 b Dpto. Estratigrafía y Paleontología, Universidad del País Vasco UPV/EHU, Barrio Sarriena s/n, 48940

10 Leioa, Spain.

11 c IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.

d) UMR 7209, CNRS, « Archéozoologie, Archéobotanique » MNHN CP56, 55 rue Buffon 75005, Paris,
France.

14

15 Abstract

16 Although the earliest record of the genus *Muscardinus* dates from the Middle Miocene 17 in Spain, no mention has been reported for a period since the Lower Pliocene in the 18 Iberian Peninsula. For the first time, Ouaternary fossil remains of a hazel dormouse 19 (Muscardinus avellanarius) are described in the Iberian Peninsula, with this also being 20 the westernmost record of the genus in the Eurasian continent. The fossils, two second 21 upper molars and a first upper molar, come from Lezetxiki II Cave, an early Late 22 Pleistocene site in northern Spain. The presence of the hazel dormouse is in agreement 23 with the abundance of rodent species indicative of woodland, suggesting mild climatic 24 conditions and a landscape formed by deciduous forest. This assemblage has been 25 arguably assigned to warm and humid conditions associated with an interstadial period

26	in MIS 5.	We also p	present an	analysis	of the	palaeoge	eograph	y of the	genus in	Europe.
				-			<u> </u>	-	<u> </u>	

- 27 The identification of this dormouse reinforces the idea of natural connections between
- 28 western Iberia and the rest of Europe during the Pleistocene.

Corresponding author:

- 31 Naroa Garcia-Ibaibarriaga
- 32 Dpto. Geografía, Prehistoria y Arqueología, Universidad del País Vasco UPV/EHU, C/
- 33 Tomás y Valiente s/n, 01006 Vitoria-Gasteiz, Spain
- 34 naroa.garcia@ehu.eus
- 36 Keywords: Muscardinus avellanarius; Palaeogeography; Palaeoecology; Upper
- 37 Pleistocene; Lezetxiki II; Iberian Peninsula.

- -

52 **1. Introduction**

53

As pointed out by Bright et al. (1996a, p. 9), the dormouse is widely known from its
appealing photographs and its occurrence in children's story books, notably *Alice's Adventures in Wonderland*. However, compared with current knowledge, little is known
about the fossil record of *Muscardinus*.

58

59 The fact is that the dental remains of Muscardinus are somewhat rare in Pleistocene 60 sites. Chaline (1972) proposes that its rarity, probably more apparent than real, is partly 61 due to the smallness of the teeth, which easily go unnoticed in a sieve. Meanwhile, 62 Hanquet (2011) argued that it can be explained by the scarcity of this species in nature. 63 However, as noticed by Daoub (1993), the frequency of glirids found in some fossil 64 assemblages, especially at the end of the Early Pleistocene, is often very high, although 65 they may have suffered a decline during the Late Quaternary. Additionally, it should be 66 borne in mind that the hazel dormouse is one of the smallest of the European dormice, 67 with an estimated body mass of 25g (Freudenthal and Martín-Suárez, 2013a), besides 68 being a nocturnal arboreal species rarely active on the ground and difficult to prey on 69 (Capizzi et al., 2002).

70

In the present study, we describe one first upper cheek tooth (M1) and two second upper
cheek teeth (M2) from the early Late Pleistocene archaeological site of Lezetxiki II
(Basque Country, North Spain). This discovery represents the first Quaternary record of *Muscardinus avellanarius* in the Iberian Peninsula, and also the westernmost record of
the genus in the Eurasian continent.

77 Lezetxiki II is an important site in the Basque Country and the Cantabrian coast. To 78 date, it has yielded a notable amount of small vertebrate fossils that document the 79 richness of Upper Pleistocene biomes of northern Spain. The first description of a hazel 80 dormouse from this site contributes to the general knowledge of this taxon, and an 81 updated review of the palaeogeographical evolution of the genus in Europe will be 82 certainly useful for future research. This discovery also contributes to a better 83 understanding of the palaeoecology and palaeobiogeography of the area during the Late 84 Pleistocene, and provides information about movements of mammals between Iberia 85 and the rest of Europe.

86

87 2. Lezetxiki II Cave

88

89 Lezetxiki (Arrasate, Basque Country) is a karst complex located in the central sector of 90 northern Iberia (Fig. 1), in the upper valley of the River Deba, near the end of the Bay 91 of Biscay. The classic deposit of Lezetxiki was first excavated from 1956 to 1968 by 92 J.M. de Barandiarán, and an extensive sequence of Late Pleistocene levels was revealed. 93 Three human fossil remains were also recovered, namely, two Neanderthal teeth from 94 Level II and a humerus from Level VIII, provisionally dated to MIS 6 (Arrizabalaga, et 95 al., 2005). In 1996, excavations were restarted by A. Arrizabalaga and M.J. Iriarte using 96 updated methodology (Arrizabalaga, 2006, 2005), in order to provide a better context 97 for the human fossils and other finds. The new research has been carried out on the 98 southern side of the classic deposit and in the neighbouring cave of Lezetxiki II. This 99 latter site has provided a *ca*. 3 m deep sedimentary sequence (Levels A-K) and is 100 physically connected with Lezetxiki precisely in the place where the human humerus

101	was found, providing its probable stratigraphic context. Scarce archaeological remains
102	have been recorded in both caves, mainly rough flakes made of raw materials other than
103	flint, i.e., limonite, quartzite, lutite, vulcanite and even limestone (Arrizabalaga, 2005).
104	
105 106	(INSERT FIGURE 1 HERE)
107	On the contrary, the mammal materials from this locality include the first fossil record
108	in the Cantabrian region of Allocricetus bursae and the south-westernmost record of
109	Sicista betulina in Eurasia (Rofes et al., 2012), as well as the first fossil remain of
110	Macaca sylvanus of the Cantabrian region, which is one of the most recent macaques
111	across Europe (Castaños et al., 2011). The first record of wolverine (Gulo gulo) in the
112	Iberian Peninsula also came from Lezetxiki (Altuna, 1973).
113	
114	A Th/U date of 74 ka BP (Falguerès et al., 2006), obtained for a speleothem located
115	about 100 cm above the position of the Muscardinus molars, is the primary reference to
116	interpret the geochronology of the infill at Lezetxiki II. Consequently, the Muscardinus
117	remains from Level G have a minimum date of the very last phase of MIS 5. This result
118	is in accordance with the sedimentological analysis carried out by Arriolabengoa et al.
119	(2014), which specifies that the variations in the sediment composition between levels
120	with a predominance of allochthonous and autochthonous materials may result from
121	repeated environmental changes in the interestadials that characterized MIS 5.
122	
123	The preliminary results of the palynological study have not provided information about
124	the vegetation in this period, due to poor spore and pollen conservation. In addition,
125	reference deposits for MIS 5 in northern Spain are located in the western coastal area
126	(Gómez-Orellana, 2002; Gómez-Orellana et al., 2007), and are lacustrine deposits with

127	very different biogeographical characteristics from Lezetxiki II. Even so, there is no
128	complete picture of the events in this isotope stage, only of certain times in Phases 5c
129	(Longa Area, Galicia) and 5a (La Franca, Asturias). Both temperate phases are
130	characterised by extensive forest cover (arboreal pollen >60%), with such mesophilic
131	and thermophilic species as Quercus robur tp., Corylus, Betula and Fagus, as well as
132	Carpinus and Myrica. In the periods of climate deterioration (MIS 5d and 5b) identified
133	in other records in the southern Europe, the herbaceous-shrub species spread to the
134	detriment of woodland (Pons and Reille, 1988; Burjachs i Casas, 1990).
135	
136	The faunal association from the studied level is given in Table 1. Due to the scarcity and
137	lack of identifiable remains among the large mammal association (25 identifiable
138	remains from 134 NR) they cannot be used as a palaeoclimate indicator (Villaluenga et
139	al., 2012). In contrast, the small vertebrate assemblage comprises at least 21 taxa,
140	suggesting a patchy landscape dominated by wet meadows and woodland areas, with
141	the presence of water sources in the vicinity of the cave.
142	
143 144	(INSERT TABLE 1 HERE)
145	3. Material and methods
146	
147	Level G at Lezetxiki II, at the entrance of the cave, yielded the Muscardinus molars at a
148	depth of approximately -225cm below the current cave datum level. The sediment from
149	at least 0.3 m^2 of all the stratigraphic units in the M13 quadrant was extracted during
150	sampling for small vertebrate remains. The sediment was water-screened using a stack
151	of sieves of decreasing mesh size (4 mm-0.5 mm). Subsequently, the fossils were

152 separated from the concentrates, classified and studied with a stereoscopic microscope153 (Nikon SMZ-U).

154

155 The specific assignment of the fossil remains to Muscardinus avellanarius was based on 156 diverse bibliographic support (Couzi, 2011; Rolland, 2008). For the nomenclature used 157 in the description of the teeth (see Figure S1 in the Supplementary Online Information), 158 we follow Daams (1981). The orientation of the specimens is as defined by García-Alix 159 et al. (2008), and the method of counting series of parallel ridges, from front to back 160 was performed after van den Hoek Ostende (2003). The taxonomic classification 161 follows Wilson and Reeder (2005). Measurements were taken as defined by Daams 162 (1981) (see Figure S1 in the Supplementary Online Information) using a stereoscopic 163 microscope (Nikon SMZ-U) connected to a video camera (DS-5 m). Scanning electron 164 microscopy was performed using a JEOL JSM-5400 Scanning Electron Microscope 165 (SEM) at the University of the Basque Country (EHU/UPV), which belongs to the 166 General Research Services (SGIKER). 167 168 Bivariate comparative analyses were performed by plotting the length against the width 169 of several recent and Pleistocene hazel dormice dimensions (see Table S1 in the 170 Supplementary Online Information). We have also used univariate plots for better 171 characterisation of the incomplete left M2 from Lezetxiki II. Statistical analyses and 172 graphics were performed in the R statistical environment (R Development Core Team, 173 2014). 174

175 **4. Systematic Palaeontology**

177	Order RODENTIA Bowdich, 1821
178	Family GLIRIDAE Muirhead, 1819
179	Subfamily LEITHIINAE Lydekker, 1895
180	Genus Muscardinus Kaup, 1829
181	Muscardinus avellanarius Linnaeus, 1758
182	(Fig. 2)
183	
184 185	(INSERT FIGURE 2 HERE)
186	Stratigraphic range of the genus
187	From the Middle Miocene (European Mammal Neogene Zone 6, MN6; Serravallian) to
188	the present day.
189	
190	Studied Locality and Horizon
191	Lezetxiki II (Arrasate, Basque Country, North Iberian Peninsula); Basque-Cantabrian
192	Basin, early Late Pleistocene (MIS 5)
193	
194	Material and Measurements
195	Measurements (length x width) are given in 0.1 millimetres units. See Table 2
196	
197 198	(INSERT TABLE 2 HERE)
199	Distribution: For the geographic distribution in the Iberian Peninsula since the Miocene
200	(with a few references for the Pliocene) see Fig. 3, with a detailed list of sites and
201	countries in Table 3. Fig. 4 and Table 4 are dedicated to the distribution of the genus in
202	the European subcontinent during the Early, Middle and Late Pleistocene.

204 4.1 Description of the material

205

206	M1: the degree of wear does not allow a precise interpretation. The molar, with a flat
207	occlusal surface, is much longer than wide. There are five transverse enamel crests,
208	separated by broad valleys. It is not possible to confirm if the ridges are lingually
209	connected by an endoloph or not. No accessory ridges have been identified. The
210	anteroloph and protoloph (first and second ridges respectively) are straight, oblique,
211	lingually more backward than labially. The valley between the protoloph and mesoloph
212	is wide, but it narrows towards the labial side. The metaloph and posteroloph are
213	approximately parallel to the axis of the tooth.
214	
215	M2: The dental pattern of this molar is difficult to observe due to the poor preservation
216	of the teeth, which are fragmented. The outline of the occlusal surface is sub-square,
217	with seven narrow transverse low ridges. The ridges, longitudinally lingually connected
218	by an endoloph, are approximately straight. The third ridge is interrupted in both
219	specimens.
220	
221	5. Palaeogeographical evolution in Europe
222	
223	The current distribution of dormice in Europe, including <i>M. avellanarius</i> , is well-known
224	from the literature, including studies in Croatia (Tvrtković et al., 1994), Czech Republic
225	(Anděra, 1994), Denmark (Vilhelmsen, 2003), Germany (Büchner, 2007), Great Britain
226	(Bright et al., 1996), Hungary (Hecker et al., 2003), Italy (Amori et al., 1994), Lithuania

227 (Juškaitis, 2003) and the Netherlands (Foppen et al., 2002), among others. In contrast,

228 the distribution in the Pleistocene is limited to what can be inferred from isolated 229 reports and major site compilations (e.g. Jánossy, 1986; Kowalski, 2001; Marcolini, 230 2003; Nadachowski, 1990; Socha, 2014; Terzea, 1994). No detailed analysis of the 231 palaeogeography of the genus has been carried out. 232 233 In addition, the origin of the genus remains unclear. While Daams and De Bruijn (1995) 234 proposed *Glirudinus* as the ancestor of *Muscardinus*, Aguilar and Lazzari (2006) 235 considered that *Muscardinus* migrated from Iberian Peninsula to Europe at the 236 MN4/MN5 transition (García-Alix et al., 2008). From the Late Miocene onwards, 237 diverse lineages and species emerge in Europe. The *Pentaglis*, named by Kretzoi (1943) 238 and *Eomuscardinus*, the new subgenus of *Muscardinus* described by Hartenberg in 239 1966, were synonymized with Muscardinus by Daams and Bruijn (1995). Muscardinus 240 avellanarius is the only extant representative of the genus (Mammalia, Rodentia, 241 Gliridae). 242

243 The first record of the genus (Daams, 1985), namely Muscardinus thaleri, is from the 244 Middle Miocene (MN4B) in Spain. Nevertheless, according to Aguilar and Lazzari 245 (2006) the first reliable evidence of *Muscardinus* genus comes from MN4/5 at 246 Blanquatère 1, described as *Muscardinus sansaniensis* (Lartet, 1851). Freudenthal and 247 Martín-Suárez (2013b) object to this and consider that "the fauna (of Blanquetère 1) is a 248 mixture of various ages and that the genus does not appear before MN6". During the 249 Miocene the genus presents a restricted distribution in the south of the Iberian Peninsula 250 (Fig. 3), without ever going further north than the Ebro Basin (Tarazona-3; Álvarez-251 Sierra et al., 2006).

253	
254	
255	
256	

250	
257	The dormice underwent a significant radiation from the Iberian Peninsula during the
258	Miocene (i.e., in the early Vallesian, Late Miocene according to Agustí, 1990), probably
259	favoured by the warm climates of the epoch. Thereby, the genus was represented by M .
260	thaleri in Spain and M. sansaniensis in France and Central Europe (Daams and De
261	Bruijn, 1995).
262	
263	In this context, according to published data (Sesé, 2006), dormice suffered a drastic
264	reduction in the Catalan basins during the Upper Vallesian (MN 10), with only two
265	genera surviving: Muscardinus and Glis. In the inland basins of the Iberian Peninsula,
266	the only survivors of the loss of diversity during the Turolian (MN11-13) were
267	Muscardinus and Eliomys. A late Miocene insular endemism, Muscardinus cyclopaeus,
268	has been described on the island of Menorca (Agustí, 1990). Although the survival of
269	the genus in the Iberian Peninsula during the Lower Pliocene should be corroborated by
270	a more extended fossil assemblage, the latest fossil records attributed to the genus in the
271	Iberian Peninsula are from the earliest Ruscinian (MN 14-15; Lower Pliocene) of
272	Cantera de Pulianas Purcal-4 (where a new species, Muscardinus meridionalis was
273	described; García-Alix et al., 2008), Cañada del Castaño (as Muscardinus cf.
274	pliocaenicus; Agustí and Martín-Suárez, 1984) and Campredó (as Muscardinus aff.
275	vireti; Agustí et al., 1983). Since then, neither living nor fossil hazel dormice have been
276	recorded in the Iberian Peninsula, and therefore the species probably became locally
277	extinct.
278	

279	As regards the oldest reliable European finds of hazel dormouse, and in the absence of a
280	consensus of scholars as to whether Muscardinus dacicus is a synonym of Muscardinus
281	avellanarius (as proposed by Kowalski, 2001), we accept that they come from the Early
282	Biharian (1.8-1.5 ma) of Kadzielnia-1 (Nadachowski, 1990a). In fact, during the Early
283	Pleistocene the genus is concentrated in Eastern Europe (Fig.4A), although this lack of
284	evidence could be more apparent than real. One of the few Mediterranean sites (Rivoli
285	Veronese; Kotsakis et al. 2003) provided the single record of Muscardinus pliocaenicus
286	in this period. The western limit of the expansion of the genus is marked by Vallonet
287	(Maul, 1990), the single Early Pleistocene locality in France with remains of the genus.
288	Meanwhile, the eastern range reached the sites of Chiscau and Subpiatra, both in Bihor
289	Department, in Rumania (Kowalski, 2001; Maul, 1990).
290	
291 292 293	(INSERT FIGURE 4 HERE) (INSERT TABLE 4 HERE)
294	
295	The situation during the Middle Pleistocene is quite different (Fig. 4B). The number of
296	records decreases notably, from the 37 mentions in the previous period to the current 26.
297	At the same time, the genus presents a wider distribution, expanding through central and
298	southern Europe, although never further west than Charente Department (Fontéchevade
299	site; Chaline, 1972). This is when the genus reaches its maximum limit of expansion
300	eastwards, with the fossils from a cave in the Párului, in Rumania (Kowalski, 2001).
301	Furthermore, the only finds of the genus in the United Kingdom are from the Boxgrove
302	and Westbury-sub-Mendip sites, which are also the northernmost records for the genus.
303	This time witnessed the extinction of other species in the genus except Muscardinus

avellanarius, with a last record of *Muscardinus dadicus malvensis* from the site of Cave
10 in the Lupsa Valley (Kowalski, 2001).

307	According to the data, there is an underlying assumption that during the Late
308	Pleistocene the species distribution suffered a latitudinal decline to below the 50°
309	parallel (Fig. 4C), only surpassed by the mention of Muscardinus avellanarius from
310	Pisede, in Germany (Kowalski, 2001). The increase in the number of Italian references
311	for this period is remarkable, with the only Greek fossil from Loutraki Bear-cave
312	(Chatzopoulou, K., 2001). There is a record of Muscardinus malatestai at the Italian site
313	of Grotta Vascio 'o Funno (Kotsakis, 2003), considered the descendant of Muscardinus
314	avellanarius. However it should be treated with caution given that it is currently not an
315	accepted species. The northernmost limit of hazel dormouse during the Late Pleistocene
316	is Pisede; the southernmost, Cipolliane Cave (Kowalski, 2001); the westernmost,
317	Lezetxiki II (this paper) and the easternmost Bacho Kiro (Kowalski and Nadachowski,
318	1982).
319	
320	Nowadays, M. avellanarius is a widespread species, with a range that extends from
321	Europe to northern Asia Minor, although in continental Europe it is absent from Iberia,
322	south-west France, and northern parts of Fennoscandia and Russia (Amori et al., 2008).
323	
324	6. Palaeoecological implications
325	
326	The hazel dormouse, traditionally associated with hazel, occurs in a broad range of
327	wooded habitats. Even if the majority of hazel dormouse sites include hazel, the forest
328	composition is different in various parts of their geographic range depending on latitude

and altitude; hence they can sometimes be found among other tree species, even

330 conifers. Except for hibernation, they rarely descend to the ground and are reluctant to

331 cross open spaces, surely due to the danger posed by owls and other predators (Bright et

al., 1996). Even so, *Muscardinus avellanarius* can be regarded as a "woodland edge"

animal, while they prefer to live in shrub layers full of undergrowth. A continuous shrub

layer is ideal, especially where there are a few larger canopy trees. Its presence is

indicative of temperate climate and humid forested environments.

336

337 From a palaeoecological point of view, the presence of the hazel dormouse in Level G

338 in Lezetxiki II Cave, together with the abundance of rodent species indicative of

339 deciduous forest, warmer and moist environments (such as Apodemus sylvaticus-

340 *flavicollis, Eliomys quercinus, Pliomys lenki* and *Clethrionomys glareolus*) and the

341 absence of strictly cold species, suggest a landscape of deciduous forest with the

342 presence of open areas, and mild climatic conditions.

343

344 Some characteristics in common with the record from Lezetxiki II can be found at the

345 French site of Baume Mola-Guercy (Defleur et al., 2001). The levels corresponding to

the MIS 5 present a similar small mammal assemblage, with a high percentage of forestspecies.

348

349 7. Discussion

350

351 Dormice are characterized by having brachydont cheek teeth, with quite low crowns and 352 well-developed roots. The dental crown pattern consists of a set of varying numbers of 353 primary and secondary transverse ridges of enamel on the occlusal surface (lophodont 354 dentition). The position, length and number of these ridges enable the classification of 355 the species. It is also possible to distinguish between upper and lower teeth. In the upper 356 teeth the hind wall of the ridges slopes gently down and has transverse grooves while 357 the front slope is steep and smooth (García-Alix et al. 2008). 358 359 The teeth from Lezetxiki II Cave resemble those in various recent and Pleistocene 360 samples in overall size and morphology. In absolute terms, the width of the first upper 361 molar is below the range of variation of most of the comparative samples (Fig. 5a), and 362 is especially narrower than the mean value of 26 M1 from the Upper Pleistocene site of 363 Arma delle Manie (Paunescu, 2001). However, it is within the range of variation of the 364 Late Biharian (Calabrian) hazel dormouse remains from Kozi Grzbiet (Hoek Ostende, 365 2003). 366 (INSERT FIGURE 5 HERE) 367 368 In the case of the bivariate analysis of M2, we can only take into account the right M2 369 from Lezetxiki II (Figure 5b) due to the incompleteness of the one from the left side. 370 Even if the assemblage of recent Muscardinus avellanarius from France (MNHN) also 371 presents comparable values regarding the length, the most similar specimens are those 372 from the Lower Pleistocene at Kozi Grzbiet. The width is below the range of variation 373 of most of the samples except for the Lower Pleistocene specimens at Kozi Grzbiet. 374 375 The results of the univariate analysis of the two M2 lengths and their comparison are 376 shown in Fig. 6. The most remarkable feature of the left M2 is its short length, while the 377 incompleteness of the tooth means that it cannot be determined whether a similar 378 pattern is observed in the width. In the latter case, the values are quite close to the 379 minimum rate obtained from the MNHN assemblage. Right M2, in contrast, is close to

380	the mean of the modern samples and the fossil sample from Kozi Grzbiet, but its value
381	is below the range of variation of the Upper Pleistocene sample from Arma delle Manie
382 383	(INSERT FIGURE 6 HERE)
384	This noticeable difference between the right and left M2 at Lezetxiki II, which exceeds
385	the range of variation of any of the comparative samples, could have various
386	explanations:
387	
388	• The first is a probable sexual dimorphism, although no differences have been
389	found between modern hazel dormouse sexes with respect to the presence and
390	morphology of the bones.
391	• The second interpretation is based on the possibility that the left M2 belonged to
392	an abnormally small individual, maybe pathological. This option seems
393	improbable due to lack of morphological differences identified in the tooth.
394	• Another conceivable scenario is that the M2 presented in this work belongs to a
395	subadult. One year-old dormice are larger in size than two to three months-old
396	individuals (Juškaitis and Büchner, 2013).
397	• Finally, the justification could be biogeographical. This last supposition is based
398	on Bergmann's rule: in a warm-blooded animal species having distinct
399	geographic populations, individuals of larger size are found in colder
400	environments, while animals of the same species living in warm climates are of
401	smaller size. According to some recent research, the validity of this tendency in
402	small mammals must be considered with caution (Ashton et al., 2000; Meiri and
403	Dayan, 2003).

405	It is also remarkable that the width of the Lezetxiki specimens is similar to the Lower
406	Pleistocene samples from Kozi and very different from the Upper Pleistocene samples
407	from Arma delle Manie. Besides the aforementioned biogeographical explanation,
408	another factor that may account for these differences is the chronology. It is known that
409	the phylogenetic evolution of the Muscardinus lineage is expressed by a size increase
410	and by a loss in the number of ridges in the cheek teeth (García-Alix et al., 2008),
411	although once again, this tendency would not explain the pattern presented by the
412	Lezetxiki II teeth.
413	
414	8. Conclusion
415	
416	The discovery of a hazel dormouse (Muscardinus avellanarius) is reported. One first
417	upper molar and two second upper molars from the early Late Pleistocene site of
418	Lezetxiki II (Arrasate, Basque Country, Spain) are described, indisputably attributed to
419	<i>M. avellanarius</i> on the basis of diagnostic morphological and morphometric features.
420	
421	The genus Muscardinus was reported in the fossil record of the Iberian Peninsula during
422	the Miocene, probably becoming locally extinct after the Lower Pleistocene. Therefore
423	these remains, represent the first Quaternary record in the Iberian Peninsula, and
424	constitute the westernmost reference of the genus in the Eurasian continent, expanding
425	its range of distribution beyond the Pyrenees.
426	
427	Concerning the climate conditions during deposition in Lezetxiki II, the presence of
428	hazel dormouse would be hypothetically linked to warm and humid conditions
429	associated with an interstadial period of MIS 5. Today, hazel dormouse inhabits a wide

430 variety of woody environments with a substantial shrub layer. A similar landscape431 composition is inferred by the small vertebrate association.

432

The criteria of dental pattern suggest that the teeth are within the range of variation of known Pleistocene and current species. However, the most complete dormouse teeth from Lezetxiki can be described as narrow when compared to modern comparative samples but within the range of variation in the Kozi Grzbiet Lower Pleistocene specimens.

438

439 The occurrence of a new faunal element during the Late Pleistocene at Lezetxiki II,

added to the previous discoveries, supports the existence of connections between

441 western Iberia and the rest of Europe during the Pleistocene. Correspondingly, the idea

442 of the existence of geographical barriers that hindered the interchange of mammal

443 groups, including humans, must be dismissed.

444

445 Acknowledgments

446

We would like to thank A. Gómez-Olivencia for his useful insights that improved this paper and Peter Smith for his assistance with the English editing. The technical and human support provided by SGIker (UPV/EHU) is also gratefully acknowledged. N. Garcia-Ibaibarriaga has a predoctoral fellowship (BFI-2010-289) from the Basque Government, while J. Rofes has a Marie Curie Action Project (MCA-IEF Project No. 629604) from the European Commission. The archaeological work in Lezetxiki was funded by Aranzadi Science Society, Gipuzkoako Foru Aldundia, the Municipality of

454	Arrasate and Kobate	Quarry.	We also	received	financial	support	from t	he	Researc	ch
-----	---------------------	---------	---------	----------	-----------	---------	--------	----	---------	----

455 teams GIU12/35 and IT-622-13 at the Universidad del País Vasco UPV-EHU.

456

457 **References**

458 Aguilar, J.-P., Agustí, J., Gibert, J., 1979. Rongeurs, miocenes dans le Valles-Penedes. Les

459 rongeurs de Castell de Barbera. Palaeovertebrata 9, 17–31.

460 Aguilar, J.-P., Crochet, J.-Y., Krivic, K., Marandat, B., Michaux, J., Mihevc, A., Sigé, B., Šebela, S.,

461 1998. Pleistocene small mammals from some karstic fillings of Slovenia. Preliminary

- 462 Results. Acta Carsologica 27, 141–150.
- 463 Aguilar, J.-P., Lazzari, V., 2006. Nouvelles espèces de gliridés du gisement karstique de

464 Blanquatère 1 (Miocène moyen, sud de la France). Geodiversitas 28, 277–295.

- 465 Agustí, J., 1990. The Miocene Rodent succession in Eastern Spain: A Zoogeographical appraisal,
- 466 in: Lindsay, E.H., Fahlbusch, V., Mein, P. (Eds.), European Neogene Mammal Chronology.
- 467 Plenum Pres, New York, pp. 373–404.
- 468 Agustí, J., Anadon, P., Julià, R., 1983. Nuevos datos sobre el Plioceno del Baix Ebre. Aportación

469 a la correlación entre las escalas marina y continental. Acta Geológica Hispánica 18, 123–
470 130.

- 471 Agustí, J., Casanovas-Vilar, I., Furió, M., 2005. Rodents, insectivores and chiropterans
- 472 (Mammalia) from the late Aragonian of Can Missert (Middle Miocene, Vallès-Penedès
- 473 Basin, Spain). Geobios 38, 575–583.

474	Agustí, J., Gibert, J., Moyá, S., Cabrera, L., 1979. Roedores e Insectivoros (Mammalia) del
475	Mioceno superior de la Seu d'Urgell (Cataluña, España).pdf. Acta Geológica Hispánica 14,
476	362–369.

477 Agustí, J., Martín-Suárez, E., 1984. El Plioceno continental de la depresión Guadix-Baza (Prov.
478 Granada) y su fauna de micromamíferos. Nota preliminar. Acta Geológica Hispánica 19,
479 277–281.

480 Alba, D.M., Moyà-Solà, S., Casanovas-Vilar, I., Galindo, J., Robles, J.M., Rotgers, C., Furió, M.,

481 Angelone, C., Köhler, M., Garcés, M., Cabrera, L., Almécija, S., Obradó, P., 2006. Los

482 vertebrados fósiles del Abocador de Can Mata (els Hostalets de Pierola, l'Anoia,

483 Cataluña), una sucesión de localidades del Aragoniense superior (MN6 y MN7+8) de la

484 cuenca del Vallès-Penedès. Campañas 2002-2003, 2004 y 2005. Estud. Geológicos 62,
485 295–312.

486 Altuna, J., 1973. Primer hallazgo del glotón (Gulo gulo L.) en la Península Ibérica. Munibe 15,
487 128.

488 Álvarez-Sierra, M.A., García Paredes, I., Peláez-Campomanes, P., 2006. Middle Miocene

489 Rodents from the Tarazona Area (Ebro Basin, Spain). Beiträge zur Paläontologie 30, 5–13.

490 Amori, G., Cantini, M., Rota, V., 1994. Distribution and conservation of Italian dormice. Hystrix
491 6, 331–336.

492 Amori, G., Hutterer, R., Kryštufek, B., Yigit, N., Mitsain, G., Meinig, H., Juškaitis, R., 2008.

493 Muscardinus avellanarius. The IUCN Red List of Threatened Species. Version 2014.3.

494 Anděra, M., 1994. The present status of dormice in the Czech Republic. Hystrix 6, 155–160.

- Andrews, P.J., 1990. Owls, Caves and Fossils, The South African Archaeological Bulletin. Natural
 History Museum Publications, London.
- 497 Arriolabengoa, M., Iriarte, E., Aranburu, A., Yusta, I., Arrizabalaga, A., 2014. Provenance study
- 498 of endokarst fine sediments through mineralogical and geochemical data (Lezetxiki II
 499 cave, northern Iberia). Quat. Int. 1–13.
- Arrizabalaga, A., 2005. Las primeras ocupaciones humanas en el Pirineo Occidental y Montes
 Vascos. Un estado de la cuestión en 2005. Munibe 57, 53–70.
- 502 Arrizabalaga, A., 2006. Lezetxiki (Arrasate, País Vasco). Nuevas preguntas hacerca de un
- 503 antiguo yacimiento., in: Cabrera Valdés, V., Bernaldo de Quiros Guidotti, F., Maíllo
- 504 Fernández, J.M. (Eds.), En El Centenario de La Cueva de El Castillo: El Ocaso de Los
- 505 Neandertales. Centro Asociado de la UNED en Santoña, pp. 293–309.
- 506 Arrizabalaga, A., Altuna, J., Areso, P., Falguerès, C., Iriarte-Chiapusso, M.-J., Mariezkurrena, K.,
- 507 Pemán, E., Ruiz-Alonso, M., Tarriño, A., Uriz, A., Vallverdú, J., 2005. Retorno a Lezetxiki
- 508 (Arrasate, País Vasco): nuevas perspectivas de la investigación, in: Santonja, M., Pérez-
- 509 González, A., Machado, M.J. (Eds.), Geoarquelogía Y Patrimonio En La Península Ibérica Y
- 510 El Entorno Mediterráneo. ADEMA, Madrid, pp. 81–91.
- Ashton, K.G., Tracy, M.C., Queiroz, A. De, 2000. Is Bergmann's Rule Valid for Mammals? Am.
 Nat. 156, 390–415.
- 513 Bertolini, M., Fedozzi, S., Martini, F., Sala, B., 1996. Late glacial and holocene climatic
- 514 oscillations inferred from the variations in the micromammal associations at Grotta della
- 515 Serratura. Quat. Ital. J. Quat. Sci. 9, 561–566.

516	Bogićević, K., Nenadić, D., Mihailović, D., Lazarević, Z., Milivojević, J., 2011. Late Pleistocene
517	rodents (Mammalia: Rodentia) from the Baranica cave near Knjaževac (Eastern Serbia):
518	systematics and palaeoecology. Riv. Ital. di Paleontol. e Stratigr. 117, 331–346.
519	Bon, M., Piccoli, G., Sala, B., 1991. I giacimenti quaternari di vertebrati fossili nell'Italia nord-
520	orientale. Mem. di Sci. Geol. dell'Università di Padova 43, 185–231.
521	Bright, P., Morris, P., Mitchell-Jones, T., 1996a. The dormouse conservation handbook. English
522	Nature., Peterborough.
523	Bright, P., Morris, P.A., Mitchell-Jones, A.J., 1996b. A new survey of the dormouse Muscardinus
524	avellanarius in Britain, 1993–4. Mamm. Rev. 26, 189–195.
525	Büchner, S., 2007. Die Haselmaus in Hessen. Verbreitung, Nachweismethoden and
526	Schutzmassnahmen. Gießen: Hessen-Forst FENA, FB Naturschutz.
527	Burjachs i Casas, F., 1990. Evolició de la Vegetació i paleoclimatologia desde fa més de 85.000
528	anys a la regió d'Olot. Anàlisi pollínica del Pla de l'Estany (Sant Joan les Fonts, la
529	Garrotxa). Vitrina 5: 39-46.
530	Capizzi, D., Battistini, M., Amori, G., 2002. Analysis of the hazel dormouse, Muscardinus
531	avellanarius , distribution in a Mediterranean fragmented woodland. Ital. J. Zool. 69, 25–
532	31.
533	Casanovas-Vilar, I., Alba, D.M., Robles, J.M., Moyà-Solà, S., 2011. Registro paleontológico
534	continental del mioceno de la cuenca del Vallès-Penedès, in: Pérez de los Ríos, M.,
535	Marigó, J., Minwer-Barakat, R., Bolet, A., DeMiguel, D. (Eds.), Guía de Campo XXVII
536	Jornadas de La Sociedad Española de Paleontología. Institut Català de Paleontologia
537	Miquel Crusafont, Sabadell, pp. 55–80.

538	Castaños, P., Murelaga, X., Arrizabalaga, A., Iriarte-Chiapusso, MJ., 2011. First evidence of
539	Macaca sylvanus (Primates, Cercopithecidae) from the Late Pleistocene of Lezetxiki II
540	cave (Basque Country, Spain). J. Hum. Evol. 60, 816–20.

- 541 Chaline, J., 1972. Les Rongeurs du Pléistocène Moyen et Supérieur de France (Systématique,
- 542 Biostratigraphie, Paléoclimatologie). Cahiers de Paléontologie. Ed. C.N.R.S. Paris.
- 543 Chaline, J., 1983. Les rongeurs, les paléoenvironnments et les climats du Pléistocène Moyen de
 544 Vergranne (Doubs). Géologie 5, 31–45.
- 545 Chaline, J., Brunet-Lecomte, P., Campy, M., 1995. The last glacial/interglacial record of rodent
- 546 remains from the Gigny karst sequence in the French Jura used for paleoclimatico and
- 547 paleoecological reconstrucions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 117, 229–252.
- 548 Chatzopoulou, K., Vasileiadou, A., Koliadimou, K., Tsoukala, E., Rabeder, G., Nagel, D., 2001.
- 549 Preliminary report on the Late Pleistocene small mammal fauna from the Loutraki Bear-

550 cave (Pella, Macedonia, Greece). Cad. do Lab. Xeolóxico Laxe 26, 485–495.

- 551 Couzi, L., 2011. Identifier les petits mammifères non-volant Erinaceomorpha, Soricomorpha,
- 552 Rodentia d'Aquitaine. LPO, Aquitaine/www.faune-aquitaine.org.
- Daams, R., 1981. The dental pattern of the dormice Dryomys, Myomimus, Microdyromys and
 Peridyromys. Ultrecht Micropaleontological Bulletins.
- 555 Daams, R., 1985. Glirinae (Gliridae, Rodentia) from the type area of the Aragonian and
- adjacent areas (provinces of Teruel and Zaragoza, Spain). Scr. Geol. 77, 1–20.
- 557 Daams, R., De Bruijn, H., 1995. A Classification of the Gliridae (Rodentia) on the basis of the
 558 dental morphology. Hystrix 6, 3–50.

- Daoub, A., 1993. Evolution of Gliridae (Rodentia, Mammalia) in the Pliocene and Quaternary of
 Poland. Acta Zool. cracoviensia 36, 199–231.
- 561 Defleur, A., Crégut-Bonnoure, E., Desclaux, E., Thinon, M., 2001. Présentation paléo-
- 562 environnementale du remplissage de la Baume Moula-Guercy à Soyons (Ardèche): implications
- 563 paléoclimatiques et chronologiques. Anthropologie. 105, 369–408.
- 564 Desclaux, E., Defleur, A., 1997. Étude préliminaire des micromammifères de la Baume Moula-

565 Guercy à Soyons (Ardèche, France). Systématique, Biostratigraphie et Paléoécologie.

566 Quaternaire 8, 213–223.

567 Dimitrijević, V., 1996. Upper Pleistocene mammals from cave deposits in Serbia. Acta Zool.

568 cracoviensia 39, 117–120.

569 Falguerès, C., Yokoyama, Y., Arrizabalaga, A., 2006. La geocronología del yacimiento

570 pleistocénico de Lezetxiki (Arrasate, País Vasco). Crítica de las dataciones existentes y

571 algunas nuevas aportaciones. Munibe 57, 93–106.

572 Foppen, R., Verheggen, L., Boonman, M., 2002. Biology, status and conservation of the hazel

573 dormouse (Muscardinus avellanarius) in the Netherlands. Lutra 45, 147–154.

- 574 Freudenthal, M., Martín-Suárez, E., 2013a. Estimating body mass of fossil rodents. Scr. Geol.
 575 145, 1–130.
- 576 Freudenthal, M., Martín-Suárez, E., 2013b. New ideas on the systematics of Gliridae (Rodentia,
 577 Mammalia). Spanish J. Palaeontol. 28, 239.252.
- 578 García-Alix, A., Minwer-Barakat, R., Martín-suárez, E., Freudenthal, M., 2008. Muscardinus
- 579 meridionalis sp. nov., a new specird of Gliridae (Rodentia, Mammalia) and its implications
- 580 for the phylogeny of Muscardinus. J. Vertebr. Paleontol. 28, 568–573.

581	Gibbard, P.L., West, R.G., Zagwijn, W.H., Balson, P.S., Burger, A.W., Funnell, B.M., Jeffery, D.H.,
582	Kolfschoten, J.D.J.T. Van, Lister, A.M., Meijer, T., Norton, P.E.P., Preece, R.C., Rose, J.,
583	Stuart, A.J., Whiteman, C.A., Zalasiewicz, J.A., 1991. Early and Early Middle Pleistocene
584	correlations in southern north Sea Basin. Quat. Sci. Rev. 10, 23–52.
585	Gómez-Orellana, L., 2002. El último Ciclo Glaciar-Interglaciar en el litoral del NW ibérico:
586	Dinámica climática y paisajística. PhD thesis, University of Santiago de Compostela, Lugo,
587	Spain.
588	Gómez-Orellana, L., Ramil-Rego, P., Muñoz Sobrino, C., 2007. The Würm in NW Iberia, a pollen
589	record from Area Longa (Galicia). Quat. Res. 67, 438-452
590	Hanquet, C., 2011. Evolution des paléoenvironnements et des paléoclimats au Pléistocène
591	moyen, en Europe méridionale, d'après les faunes de micromammifères. Université
592	Montpellier III-Paul Valéry.
593	Hecker, K., Bakó, B., Csorba, G., 2003. New data on the distribution of the Hungarian dormouse
594	species (Gliridae). Állattani Közlemények 88, 57–67.
595	Hernández Fernández, M., 2000. Análisis paleoecológico y paleoclimático de las sucesiones de
596	mamíferos del Plio-Pleistoceno Ibérico.
597	Hoek Ostende, L.W. van den., 2003. Gliridae (Rodentia, Mammalia) from the Upper Pliocene of
598	Tegelen (province of Limburg, The Netherlands). Scr. Geol. 126, 203–215.
599	Jánossy, D., 1986. Pleistocene Vertebrate faunas of Hungary. Elsevier, Amsterdam.
600	Juškaitis, R., 2003. New data on distribution, habitats and abundance of dormice (Gliridae) in
601	Lithuania. Acta Zool. Acad. Sci. Hungaricae 49, 55–62.

- Juškaitis R., Büchner S., 2013. The hazel dormouse Muscardinus avellanarius. NBB English
 edition, vol 2. Hohenwarsleben: Westarp Wissenschaften.
- Kolfschoten, T. van, 1990. The evolution of the mammal faunas in the Netherlands and the
 Middle Rhine area (Western Germany) during the Late Middle Pleistocene. Meded. Rijks
 Geol. D. 43, 1–69.
- 607 Kotsakis, T., 2003. Fossil glirids of Italy: the state of the art. Coloquios Paleontol. 1, 335–343.
- 608 Kotsakis, T., Abbazzi, L., Angelone, C., Argenti, P., Fanfani, F., Marcolini, F., Masini, F., Tre, R.,
- 609 Firenze, U., 2003. Plio-Pleistocene biogeography of Italian mainland micromammals.
- 610 Deinsea 10, 313–342.
- Kowalski, K., 1958. An Early Pleistocene fauna of small mammals from the Kadzielnia Hill in
 Kielce (Poland). Acta Paleontol. Pol. 3, 1–47.
- 613 Kowalski, K., 2001. Pleistocene rodents of europe. Folia Quat. 72, 3–389.
- 614 Kowalski, K., Nadachowski, A., 1982. Rodentia (Bacho Kiro, Bulgaria), in: Excavation in the
- 615 Bacho Kiro Cave (Bulgaria). Fianl Report. pp. 45–51.
- Kunst, K., Nagel, D., Rabeder, G., 1989. Erste grabungsergebnisse vom Nixloch bei LosensteinTernberg. Jahrb. des Oberösterreichischen Musealvereines Gesellschaft für Landeskd.
 134, 199–212.
- 619 López-García, J.M., Berto, C., Colamussi, V., Valle, C.D., Vetro, D. Lo, Luzi, E., Malavasi, G.,
- 620 Martini, F., Sala, B., 2014. Palaeoenvironmental and palaeoclimatic reconstruction of the
- 621 latest Pleistocene–Holocene sequence from Grotta del Romito (Calabria, southern Italy)
- 622 using the small-mammal assemblages. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409,
- 623 169–179.

- 624 Mais, K., Rabeder, G., 1984. Das große Höhlensystem im Pfaffenberg bei Bad Deutsch-
- 625 Altenburg (Niederösterreich) und seine fossilen Faunen. Die Höhle 35, 213–230.
- 626 Marchetti, M., Parolin, K., Sala, B., 2000. The Biharian fauna from Monte La Mesa (Verona,
- 627 northeastern Italy). Acta Zool. cracoviensia 43, 79–105.
- 628 Marcolini, F., 2003. Continental Lower Valdarno rodent biochronology and two new methods
- 629 for the systematics of Mimomys (Arvicolidae, Rodentia). Atti della Soc. Toscana Sci. Nat.
- 630 di Pisa 108, 129–136.
- 631 Marković, Z., 2008. Small mammals (Rodentia and Lagomorpha) from Gradašnica Cave (East
- 632 Serbia). Bull. Nat. Hist. Museum Belgrade 1, 65–77.
- 633 Marquet, J.C., 1989. Paléoenvironnement et chronologie des sites du domaine atlantique
- 634 français d'âge Pléistocène moyen et supérieur d'après l'étude des rongeurs. Thesis. Univ.
 635 Bourgogne, 637 pp.
- Martín-Suárez, E., Freudenthal, M., 1998. Biostratigraphy of the continental Upper Miocene of
 Crevillente (Alicante, SE Spain). Geobios 31, 839–847.
- 638 Maul, L., 1990. Überblick über die unterpleistozänen KleinsÄugerfaunen Europas.
- 639 Quartärpaläontologie 8, 153–191.
- 640 Meiri, S., Dayan, T., 2003. On the validity of Bergmann 's rule. J. Biogeogr. 30, 331–351.
- Nadachowski, A., 1990a. Review of fosil Rodentia from Poland (Mammalia). Senckenb. Biol. 70,
 229–250.
- 643 Nadachowski, A., 1990b. Lower Pleistocene rodents of Poland: faunal succession and
- biostratigraphy. Quartärpaläontologie 8, 215–223.

645	Nadachowski, A., Stefaniak, K., Szynkiewicz, A., Marciszak, A., Socha, P., Schick, P., August, C.,
646	2011. Biostratigraphic importance of the Early Pleistocene fauna from Żabia Cave
647	(Poland) in Central Europe. Quat. Int. 243, 204–218.

- 648 Paunescu, A.C., 2001. Les rongeurs du Pléistocène inférieur et moyen de trois grottes du Sud-
- 649 Est de la France (Vallonnet, Caune de l'Arago, Baume Bonne). Implications systématiques,
- biostrati- graphiques et paléoenvironnementales. 2001. Thèse de Doctorat, Muséum
- 651 national d'Histoire naturelle, Paris.
- Pons, A., Reille, M., 1988. The Holocene- and Upper Pleistocene pollen record from Padul
- 653 (Granada, Spain): a new estudy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 66: 243-263.
- 654 Popov, V. V., 1989. Middle Pleistocene small mammals (Insectivora, Lagomorpha, Rodentia)

from Morovitsa Cave (North Bulgaria). Acta Zool. cracoviensia 32, 561–588.

- R Developement Core Team, 2014. R: A language and environment for statistical computing. R
 Foundation for Statistical Computing, Vienna, Austria.
- 658 Radulescu, C., Samson, P., 1985. Pliocene and Pleistocene mammalian biostraligraphy in South-
- 659 eastern Transylvania. Traveaux de l'Institut de Spéologie "Emille Racovitza" 24.

660 Roebroeks, W., Conard, N., Kolfschoten, T. van, 1992. Dense Forests, cold Steppes and the

- 661 palaeolithic Settlement of Northern Europe. Curr. Anthropol. 33, 551–586.
- 662 Rofes, J., Garcia-Ibaibarriaga, N., Murelaga, X., Arrizabalaga, A., Iriarte-Chiapusso, M.-J.,
- 663 Cuenca-Bescós, G., Villaluenga, A., 2012. The southwesternmost record of Sicista
- 664 (Mammalia; Dipodidae) in Eurasia, with a review of the palaeogeography and
- palaeoecology of the genus in Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348-349,
- 666 67–73.

- Rolland, C., 2008. Clé d'identification des micro-mammifères de Rhône Alpes. CORA Faune
 Sauvage.
- Ronchitelli, A., Boscato, P., Surdi, G., Masini, F., Petruso, D., Accorsi, C.A., Torri, P., 2011. The
 Grotta Grande of Scario (Salerno, Italy): Archaeology and environment during the last
 interglacial (MIS 5) of the Mediterranean region. Quat. Int. 231, 95–109.
 Ruiz-Sánchez, F.J., Santisteban, C., Crespo-Roures, V.D., Freudenthal, M., 2011. New rodent
 faunas from Middle Miocene and Mio- Pliocene in the Cabriel Basin (Valencia, Spain). J.
 - 674 Iber. Geol. 37, 161–172.
 - 675 Sesé, C., 2003. Paleontología y bioestratigrafía del Mioceno continental de la cuenca de
 676 Calatayud (Zaragoza): Nuevos yacimientos de Micromamíferos. Estud. Geológicos 59,
 677 249–264.
 - 678 Sesé, C., 2006. Los roedores y lagomorfos del Neógeno de España. Estud. Geológicos 62, 429–
 679 480.
 - Socha, P., 2014. Rodent palaeofaunas from Biśnik Cave (Kraków-Częstochowa Upland, Poland):
 Palaeoecological, palaeoclimatic and biostratigraphic reconstruction. Quat. Int. 326-327,
 64–81.
 - 683 Terzea, E., 1994. Fossiliferous sites and the chronology of mammal faunas at Beftia (Bihor,
 - 684 Romania). Trav. du Muséum Natl. d'Histoire Nat. "Grigore Antipa". 34, 467–485.
 - Tvrtković, N., Dulić, B., Grubešić, M., 1994. Distribution and habitats of dormice in Croatia.
 Hystrix 6, 199–208.

- Valensi, P., Abbassi, M., 1998. Reconstitution de paléoenvironnements quaternaires par l'
 utilisation de diverses méthodes sur une communauté de mammifères Application à la
 grotte du Lazaret. Quaternaire 9, 291–302.
- 690 Van Dam, J.A., Alcalá, L., Alonso Zarza, A., Calvo, J.P., Garcés, M., Krijgsman, W., 2001. The
- 691 Upper Miocene mammal record from the Teruel-Alfambra Region (Spain). The MN
- 692 system and continental stage/age concepts discussed. J. Vertebr. Paleontol. 21, 367–385.
- Vilhelmsen, H., 2003. Status of dormice (Muscardinus avellanarius) in Denmark. Acta Zool.
 Acad. Sci. Hungaricae 49, 139–145.
- 695 Villaluenga, A., Monrepos, S., Castaños, P., Alustiza Mujika, J.A., 2012. Cave Bear (Ursus
- 696 spelaeus Rosenmüller Heinroth, 1794) and Humans During the Early Upper Pleistocene
- 697 (Lower and Middle Palaeolithic) in Lezetxiki , Lezetxiki II and Astigarragako Kobea. J.
- 698 Taphon. 10, 521–543.
- Wilson, D.E., Reeder, D.M., 2005. Mammal Species of the World. A Taxonomic and Geographic
 Reference. John Hopkins University Press, Baltimore.

Table 1

Vertebrate faunal list from Level G in Lezetxiki II cave (Arrasate, Basque Country, northern Iberian Peninsula).

Artiodactyla	Rodentia	Erinaceomorpha	Anura
Bovidae	Apodemussylvaticus-flavicollis	Erinaceus europaeus	<i>Bufo</i> sp.
	Muscardinus avellanarius		Rana temporaria-iberica
Carnivora	Eliomys quercinus	Eulipotyphla	Salamandra salamandra
Ursus spelaeus	Arvicola amphibius	<i>Talpa</i> sp.	
	Microtus agrestis	Sorex araneus-coronatus	Squamata
Lagomorpha	Microtus arvalis	Crocidura sp.	Anguis fragilis
Oryctolagus cuniculus	Microtus (Terricola) sp.		Colubridae indet.
	Clethrionomys glareolus		Viperidae indet.
Chiroptera	Pliomys lenki		
Chiroptera indet.			

Data source: artiodactyls and carnivores (Villaluenga et al., 2012); small vertebrates (this paper)

Table 2

Measurements (in mm) of the teeth of Muscardinus avellanarius Linnaeus, 1758 from Lezetxiki II Cave (Arrasate, Basque Country, northern

Iberian Peninsula)

Dental element	Lenght	,	Width
right M1		18,2	11,4
right M2		13,3	11,9
left M2		10,5	

Table 3

Detailed list of Iberian locations with different Muscardinus species during the Miocene and Pliocene.

Number	Site	Species	Number	Site	Species
1	Canteras de Jun	Muscardinus cf. vireti	17	Castell de Barbera	1 Muscardinus cf. vallesiensis
2	PUR-24A	Muscardinus meridionalis	17	Castell de Barbera	2 Muscardinus hispanicus
2	PUR-4*	Muscardinus meridionalis	18	Pedregueras IIC	2 Muscardinus hispanicus
3	Cañada del Castaño*	Muscardinus cf. pliocaenicus	19	Can Almirall	Muscardinus hispanicus
4	Moreda 1*	Muscardinus sp.	20	Can Missert	Muscardinus hispanicus
5	Concud 3	Muscardinus aff. hispanicus	21	Els Casots	Muscardinus sp.
6	Masía de la Roma 6, 7, 9, 11	Muscardinus hispanicus	22	T. N. & S.2 Au	Muscardinus sp.
7	Masía del Barbo A, B	Muscardinus hispanicus	23	Can Petit	2 Muscardinus hispanicus
8	Peralejos 4	Muscardinus hispanicus	24	Can Vilella	Muscardinus vireti
9	Puente Minero 2, 8	Muscardinus hispanicus	25	CR-2, 4B, 6, 8, 14, 15, 17	<i>Muscardinus</i> sp.
10	Armantes 14	Muscardinus thaleri	26	Juan Vich 2	Muscardinus cf. thaleri
11	Carrilanga 1	Muscardinus hispanicus	27	La Hornera	Muscardinus vireti
12	Manchones	Muscardinus thaleri	28	Tarazona 3	Muscardinus sp.
13	Abocador de Can Mata	Muscardinus sansaniensis	29	Sant Quirze	Muscardinus hispanicus
14	Barranc de Can Vila 1	Muscardinus sansaniensis	30	Belmonte	Muscardinus sp.
15	Can Llobaretes	1 Muscardinus cf. vallesiensis	31	Campredó	Muscardinus aff. vireti
15	Can Llobaretes	2 Muscardinus hispanicus	32	Cala Es Pou	Muscardinus cyclopeus
16	Can Ponsic I	2 Muscardinus hispanicus			

¹Originally defined as *Eomuscardinus* cf. *vallesiensis*; ²Originally defined as *Muscardinus crusafonti*; *Pliocene site. The data were taken from Aguilar et al. (1979), Agustí (1990), Agustí et al. (2005, 1979), Alba et al. (2006), Álvarez-Sierra et al. (2006), Casanovas-Vilar et al. (2011), Daams (1985), García-Alix et al. (2008), Martín-Suárez and Freudenthal (1998), Ruiz-Sánchez et al. (2011), Sesé (2003), Van Dam et al. (2001). Abbreviations: CR, Crevillente; PUR, Canteras de Pulianas Purcal; T. N. & S.2 Au, Trinchera Norte & S.2 Autopista.

Table 4

Detailed list of European locations with different Muscardinus species during the Early, Middle and Late Pleistocene.

Stage	Number	Country	Site	Species	Stage	Number	Country	Site	Species
Early Pleistocene	36	Austria	Deutsch Altenburg 2C1, 4B	Muscardinus dacicus	Middle Pleistocene	75	Italy	Grotta Grande of Scario	Muscardinus avellanarius
	37	Czech Rep	Chlum 6	Muscardinus sp.		76	Poland	Biśnik Cave	Muscardinus avellanarius
	38	Czech Rep	Holštejn	Muscardinus sp.		77	Romania	Cave 10 in the Lupsa Valley	Muscardinus dacicus malvensis
	39	Czech Rep	Koněprusy C718	Muscardinus sp.		77	Romania	Cave 13 in the Lupsa Valley	Muscardinus cf. avellanarius
	39	Czech Rep	Koněprusy C718	Muscardinus avellanarius		78	Romania	Cave in the Párului Valley	Pleistoceno Medio (Late)
	40	Czech Rep	Skalka	Muscardinus avellanarius		79	Romania	Magura V	Muscardinus avellanarius
	42	France	Vallonet	Muscardinus cf. avellanarius		80	Romania	Sîndominic-1	Muscardinus avellanarius
	33	Germany	Sackdilling	Muscardinus aff.	Late	83	Austria	Nixloch	Muscardinus avellanarius

			avellanarius	Pleistocene				
34	Germany	Scbernfeld	Muscardinus sp.		84	Bulgary	Bacho Kiro	Muscardinus avellanarius
35	Germany	Schambach near Treuchtlingen	Muscardinus sp.		85	Bulgary	Mecha Cave	Muscardinus avellanarius
43	Hungary	Csarnóta locality no. 2	Muscardinus sp.		86	Bulgary	Temnata Cave-3	Muscardinus avellanarius
44	Hungary	Kövesvárad	Muscardinus dacicus		89	France	Combe-Grenal	Muscardinus avellanarius
45	Hungary	Osztramos 2	Muscardinus cf. dacicus		90	France	Baume de Gigny	Muscardinus avellanarius
46	Hungary	Somssich-hegy 2	Muscardinus sp.		91	France	Régourdou	Muscardinus avellanarius
61	Hungary	Uppony Layer no. 10	Muscardinus cf. avellanarius		92	France	Santenay	Muscardinus avellanarius
47	Italy	Montagnola Senese	Muscardinus sp.		81	Germany	Genkingen-2	Muscardinus avellanarius
48	Italy	Monte La Mesa	Muscardinus cf. dacicus		82	Germany	Pisede	Muscardinus avellanarius
49	Italy	Pirro Nord	Muscardinus cf. avellanarius		93	Greece	Loutraki Bear- cave	Muscardinus sp.
50	Italy	Rivoli Veronese	Muscardinus pliocaenicus		94	Hungary	Porlyuk (layer 1)	Muscardinus avellanarius
51	Netherland	Tegelen	Muscardinus cf. avellanarius		95	Hungary	Poroslyuk of Ballavölgy (layer 3)	Muscardinus avellanarius
52	Netherland	Zuurland Faunas 7-9	Muscardinus sp.		96	Hungary	Rejtek rock shelter 1	Muscardinus avellanarius
53	Poland	Kadzielnia-1	Muscardinus cf. avellanarius		97	Italy	Arma del Manie	Muscardinus avellanarius
54	Poland	Kielniki-3A	Muscardinus sp.		98	Italy	Cipolliane Cave	Muscardinus sp.
55	Poland	Kozi Grzbiet	Muscardinus cf. avellanarius		99	Italy	Ferrovia Cave	Muscardinus sp.

	56	Poland	Zabia Cave	Muscardinus cf. avellanarius
	57	Poland	Zalesiaki 1A	Muscardinus sp.
	58	Romania	Betfia IX	Muscardinus sp.
	58	Romania	Betfia XIII, X, XI, VII-1b-e, VII-3, II	Muscardinus dacicus
	59	Romania	Chiscau	Muscardinus sp.
	60	Romania	Subpiatra	Muscardinus sp.
	41	Slovakia	Včeláre 5	Muscardinus sp.
	41	Slovakia	Včeláre 6/3.7.8.9	Muscardinus cf. avellanarius
Middle	63	Belgium	La Belle-Roche Cave	Muscardinus sp.
Pleistocene	64	Bulgary	Morovitsa Cave	Muscardinus cf. <i>avellanarius</i>
	65	France	Baume Moula Guercy (couche XVII, XV)	Muscardinus avellanarius
	66	France	Fontéchevade	Muscardinus avellanarius
	67	France	Lazaret	Muscardinus avellanarius
	68	France	Vergranne	Muscardinus sp.
	72	Germany	Miesenheim I	Muscardinus avellanarius
	62	Germany	Sudmer-Berg-2	Muscardinus avellanarius

100	Italy	Grota del Romito	Muscardinus avellanarius
101	Italy	Grota Paglicci, Inner levels	Muscardinus avellanarius
102	Italy	Grotta "Vascio 'o Funno"	Muscardinus malatestai
103	Italy	Praia a Mare	Muscardinus avellanarius
104	Italy	Grotta Cala	Muscardinus avellanarius
105	Italy	Grotta del Broion	Muscardinus avellanarius
106	Italy	Grotta della Serratura	Muscardinus avellanarius
107	Italy	Grotta di Castelcivita	Muscardinus avellanarius
108	Italy	Grotta Averla	Muscardinus avellanarius
109	Italy	Riparo Mezzena	Muscardinus avellanarius
110	Italy	Valdiporro	Muscardinus avellanarius
76	Poland	Biśnik Cave	Muscardinus avellanarius
111	Poland	Cioarei Cave	Muscardinus avellanarius
112	Poland	Hotilor Cave	Muscardinus avellanarius
113	Serbia	Baranica Pécina	Muscardinus avellanarius
114	Serbia	Gradašnica Pécina	Muscardinus avellanarius

69	Great Britain	Boxgrove	Muscardinus avellanarius	115	Serbia	Petnička Pécina	Muscardinus avellanarius
70	Great Britain	Westbury-sub- Mendip	Muscardinus avellanarius	116	Serbia	Smolucka Pécina	Muscardinus avellanarius
71	Hungary	Tarko	Muscardinus cf. avellanarius	117	Serbia	Vasiljska Pécina	Muscardinus avellanarius
61	Hungary	Uppony (layer 6, 7)	Muscardinus cf. avellanarius	118	Serbia	Vrelska Pećina cave	Muscardinus avellanarius
49	Italy	Pirro Nord	Muscardinus cf. avellanarius	87	Slovenia	Črni kal 2	Muscardinus sp.
73	Italy	Campani Cave	Muscardinus avellanarius	88	Slovenia	Potočka Zijalka	Muscardinus avellanarius
74	Italy	Fornace di Cornedo	Muscardinus avellanarius	119	Switzerland	Ettingen	Muscardinus avellanarius

The data were taken from Andrews (1990), Aguilar et al. (1998), Bertolini et al. (1996), Bogićević et al., (2011), Bon et al. (1991), Chaline (1983, 1972), Chaline et al. (1995), Chatzopoulou et al. (2001), Desclaux and Defleur (1997), Dimitrijević (1996), Gibbard et al. (1991), Hernández-Fernández (2000), Jánossy (1986), Kolfschoten (1990), Kotsakis (2003), Kotsakis et al. (2003), Kowalski (2001), Kowalski and Nadachowski (1982), Kunst (1989), López-García et al. (2014), Mais and Rabeder (1984), Marchetti et al. (2000), Marcolini (2003), Marković (2008), Marquet (1989), Maul (1990), Nadachowski (1990a, 1990b), Nadachowski et al. (2011), Paunescu (2001), Popov (1989), Radulescu and Samson (1985), Roebroeks et al. (1992), Ronchitelli et al. (2011), Socha (2014), Terzea (1994), Valensi and Abbassi (1998).

Figure 1 Click here to download high resolution image

Figure Legends

1	Figure Legends
2	
3	Figure 1. Geographical location of Lezetxiki II Cave (Arrasate, Gipuzkoa, Spain) and
4	the approximate location of other archaeological sites (Mdt 25 obtained from the IGN).
5	
6	Figure 2. Right first upper molar (M1), right second upper molar (M2) and left second
7	upper molar (M2) of Muscardinus avellanarius from Lezetxiki II (Arrasate, Basque
8	Country, Spain).
9	
10	Figure 3. Palaeogeographic distribution of the different species of Muscardinus in
11	Spain during the Miocene and Pliocene. The data were taken from the same sources as
12	in Table 3.
13	
14	Figure 4. Palaeogeographic distribution of the different species of Muscardinus in
15	Europe during the Early (A), Middle (B) and Late (C) Pleistocene. The data were taken
16	from the same sources as in Table 3.
17	
18	Figure 5. A and B. Bivariate analyses of the length and width values for the first and
19	second upper molar of several Muscardinus avellanarius populations (fossil and
20	modern), respectively. Variables are given in mm. For the row data and references see
21	Table S1 in the Supplementary Online Information
22	
23	Figure 6. Univariate analysis of the length values for the second upper molar of several
24	Muscardinus avellanarius populations (fossil and modern). Variables are given in mm.

- 25 Lezetxiki L = Lezetxiki Left M2 and Lezetxiki R= Lezetxiki Right M2. For the row data
- 26 and references see Table S1 in the Supplementary Online Information

Supplementary Data Click here to download Supplementary Data: Supplementary information.docx