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Abstract
Hypothyroidism is the most frequent endocrine pathology. Although clinical or overt hypothyroidism has been traditionally 
associated to low T3 / T4 and high thyrotropin (TSH) circulating levels, other forms exist such as subclinical hypothyroid-
ism, characterized by normal blood T3 / T4 and high TSH. In its different forms is estimated to affect approximately 10% 
of the population, especially women, in a 5:1 ratio with respect to men. Among its consequences are alterations in cardiac 
electrical activity, especially in the repolarization phase, which is accompanied by an increased susceptibility to cardiac 
arrhythmias. Although these alterations have traditionally been attributed to thyroid hormone deficiency, recent studies, both 
clinical trials and experimental models, demonstrate a fundamental role of TSH in cardiac electrical remodeling. Thus, both 
metabolic thyroid hormones and TSH regulate cardiac ion channel expression in many and varied ways. This means that 
the different combinations of hormones that predominate in different types of hypothyroidism (overt, subclinic, primary, 
central) can generate different forms of cardiac electrical remodeling. These new findings are raising the relevant question 
of whether serum TSH reference ranges should be redefined.
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Introduction

Although not as famous as diabetes, hypothyroidism (HT) 
is actually the most prevalent endocrine disease in Western 
countries. In Spain, almost half of the endocrinology patients 
are treated for thyroid diseases [23]. Primary hypothyroid-
ism, the most frequent thyroid disease, is characterized by 
a decrease in circulating levels of the thyroid hormones 

thyroxine (T3) and triiodothyronine (T4). This is caused by 
a deficient function of the thyroid gland, accompanied by 
a compensatory elevation of pituitary thyroid-stimulating 
hormone (thyrotropin or TSH) (Table 1). Its prevalence 
is higher in women, with a female-to-male ratio of 5:1 in 
European countries [6, 23, 37]. The prevalence of HT in 
industrialized countries is not very different: around 0.6% in 
Europe, 0.35% in the USA, and 0.7% in Korea [22, 32, 39].

Subclinical hypothyroidism is a silent form of HT in 
which the thyroid gland is damaged, but normal T3 and 
T4 levels are maintained at the expense of a compensatory 
elevation of TSH levels. Since blood T3 levels are normal, 
most patients remain undiagnosed. According to the Spanish 
Society of Endocrinology and Nutrition [9], only 600,000 
people are diagnosed with subclinical hypothyroidism (1.3% 
of the population), but the estimated amount could be close 
to 3 million patients (around 6%) [11]. In Europe, the preva-
lence is around 4.5%; in the USA, between 4.3 and 8.5%; and 
in Korea 3.1% [22, 32, 39]. Very importantly, patients with 
subclinical HT have an estimated probability of progress-
ing to clinical HT between 5–20% at 1 year, and 63% at 10 
years. In any case, this progression seems to be proportional 
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to elevated TSH levels, advanced age, and the presence of 
antithyroid antibodies [5, 21, 27].

Finally, central hypothyroidism is an infrequent form of 
HT caused by insufficient stimulation of the thyroid gland 
due to low levels of thyroid-stimulating hormone (Table 1). 
Central HT can be secondary, whose origin is pituitary, or 
tertiary, with hypothalamic origin. In children, it is usually 
caused by craniopharyngiomas and anterior cranial irradia-
tion of brain tumors or hematologic malignancies. In adults, 
it is usually due to macroadenomas, pituitary surgery, or 
post-irradiation. The estimated prevalence of central HT is 
1/80,000 to 1/120,000 worldwide [24].

One of the main targets of thyroid hormones is the car-
diovascular system [30]. The main cardiac symptoms of HT 
are poor exercise tolerance and increased fatigue [13]. In 
more advanced stages, ventricular and atrial fibrosis, myo-
cardial edema, and reduced cardiac output usually appear 
[10, 50, 58]. The effects of thyroid dysfunction on cardiac 
and cardiovascular mechanical function, such as heart fail-
ure and coronary disease, have recently been reviewed [67]. 
However, it should be noted that the first signs of cardiac 
dysfunction are often found on the electrocardiogram. It 
is known that cardiac arrhythmias can be elicited or main-
tained by circulatory factor such as inflammatory cytokines 
or by structural remodeling such as myocardial infarction or 
interstitial fibrosis, and their involvement in arrhythmogen-
esis in hypothyroidism has also been recently reviewed [57]. 
Therefore, through a historical perspective, this review aims 
to delve specifically into the causes of the cardiac electrical 
remodeling that occurs in patients with hypothyroidism and 
in experimental models of this disease.

Cardiac electrical remodeling 
in hypothyroidism

Primary overt hypothyroidism

The electrocardiograms of hypothyroid patients often show 
significant sinus bradycardia, atrial fibrillation, and, mainly, 
prolonged ventricular repolarization (Fig. 1). Thus, there is 
a lengthening of the QT interval (indicator of the duration 
of ventricular depolarization), and of the rate-corrected QT 
(QTc). In addition, HT increases QT dispersion or QTd 
(which is the difference between the longest and shortest QT 
in all leads), and causes a prolongation of the duration of the 

T-peak to T-end  (Tpeak–Tend), reflecting an increase in ven-
tricular electrical heterogeneity. Either QTc prolongation, 
QTd increase, or  Tpeak–Tend lengthening is independently 
associated with an elevated incidence of polymorphic ven-
tricular tachyarrhythmias, such as torsades de pointes (TdP). 
Although TdP usually extinguish spontaneously, if they per-
sist, they can ultimately lead to ventricular fibrillation and 
sudden cardiac death [3, 4, 10, 20, 60]. Animal models of 
HT consistently reproduce the electrocardiographic altera-
tions observed in patients [15, 16, 69].

Subclinical hypothyroidism

Individuals affected by subclinical HT are usually asympto-
matic but show electrocardiographic abnormalities similar to 
those seen in patients with overt hypothyroidism. Evidence 
of this is that the patients who have overcome Hasimoto’s 
thyroiditis and maintain normal T3/T4 levels at the expense 
of an elevated TSH have prolonged QTc and increased QTd. 
These patients, like those with overt HT, show a higher inci-
dence of atrial and ventricular premature beats [21].

Central hypothyroidism

Because the prevalence of central hypothyroidism is very 
low and patients usually have other hormonal deficits, 
the effects on the ECG have been poorly studied. How-
ever, experiments in animal models reveal that central HT 
does not cause significant electrocardiographic alterations 
(Fig. 1) [15].

Table 1  Different types 
of hypothyroidism are 
characterized by different levels 
of circulating hormones

TSH T3

Overt HT ↑↑↑ ↓↓
Subclinical HT ↑ =
Central ↓↓↓ ↓↓

Fig. 1  Original electrocardiographic recordings in experimental ani-
mals. Healthy (control), central (cHT), and primary hypothyroidism 
(pHT). The recording of the animal with central HT is very similar to 
the control recording, while that of the animal with primary HT pre-
sents severe alterations, such as atrial fibrillation and a lengthened QT 
interval. The recordings correspond to lead II. P, R, S, and T waves 
are indicated in the control recording. The Q wave is not visible in 
any recording. RR, RR interval; QT, QT interval
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The distinctive feature of central HT, what makes it dif-
ferent from primary clinical and subclinical HT, is that low 
levels of T3 and T4 are accompanied by low levels of TSH.

Role of TSH in cellular cardiac electrical 
remodeling in hypothyroidism

Given that in subclinical HT thyroid hormone levels are 
still normal, the coincidence in electrocardiographic mani-
festations between established and subclinical HT suggests 
that cardiac electrical remodeling is not only due to thy-
roid hormone deficiency, but also to some other factor. 
In fact, incubation of human-induced stem cell-derived 
cardiac myocytes (hiPS-CMs) with low concentrations of 
T3 (0.01 nM) and T4 (0.0002 and 0.02 nM) did not cause 
lengthening of the field potential duration (FPD), which is 
the in vitro equivalent of the QT interval [59].

It is important to remember that overt and subclinical 
HT have in common high TSH levels. In this regard, sev-
eral groups have described that in patients with HT, QTc 
lengthening and QTd increase reverse after treatment, 
when TSH levels normalize. Therefore, based on corre-
lation analyses performed in healthy individuals and in 
hypothyroid patients, with or without treatment, several 
groups proposed that QTc and QTd alterations are caused 
by elevated TSH levels [21, 38, 60]. In the same line of 
research, a correlation between TSH concentration and the 
duration of the  Tpeak–Tend has recently been described [4].

Obviously, for this to be true, the TSH receptor must 
be expressed in cardiac muscle. In the last decades, TSH 
receptor expression has been described in several extrathy-
roidal tissues such as skin, kidney, liver, bone, blood 
vessels, or the immune system, although its physiologi-
cal relevance is difficult to establish and is still a matter 
of debate [62]. In the heart, the TSH receptor was first 
described in mouse atria and human cardiac muscle in 
1995 [14]. Later studies in cardiac ventricles of rodents 
confirmed its expression at the mRNA and protein level 
and, more importantly, found that TSH receptors in the 
heart activate the cAMP and PKA pathway [12, 26]. More 
recently, experiments in isolated rat ventricular cardiomy-
ocytes performed by our research group demonstrated that 
incubation with TSH regulates the expression of Kv4.3, 
Kv4.2, and Kir2.1  K+ channels and the accessory protein 
KCHIP2, whereas blockade of the TSH receptor with a 
specific antibody prevented the effect [2]. Similarly, in 
adult human atrial myocytes, PKA inhibition suppresses 
the TSH-induced effect [15]. This demonstrates that TSH 
regulates cardiac electrical activity directly, through acti-
vation of its receptor and its canonical signaling pathway.

Hormones responsible for cellular cardiac 
electrical remodeling in hypothyroidism

In the human heart, the action potential (AP) is the result 
of a balance between depolarizing and repolarizing cur-
rents. The fast inward  Na+ current  (INa), carried by Nav1.5 
channels, which are codified by the SCN5A gene, depolar-
izes the phase 0 of the cardiac AP, whereas the inward 
L-type  Ca2+ current  (ICa-L), carried by Cav1.2 channels, 
which are the product of the CACNA1C gene, depolarizes 
the plateau phase. On the other hand, the main four repo-
larizing  K+ currents are as follows: the transient outward 
 (Ito), the rapid delayed rectifier  (IKr), the slow delayed rec-
tifier  (IKs), and the ultrarapid delayed rectifier  (IKur). These 
currents are generated by the outflow of potassium through 
Kv4.3; Kv11.1 or hERG; Kv7.1 or KCNQ1, together with 
KCNE1; and Kv1.5 channels, which are codified by the 
KCND3, KCNH2, KCNQ1/KCNE1, and KCNA5 genes, 
respectively. Therefore, the HT-induced lengthening of the 
ECG QT interval can be caused by an increase in depolar-
izing currents, a decrease in repolarizing currents, or a 
combination of both.

In the 1990s, the role of thyroid hormones in the regu-
lation of cardiac ionic currents began to be studied inten-
sively. However, the results obtained were in many cases 
contradictory, due to differences in the animal models and 
the techniques used between the different studies. After 
30 years of research, the picture is beginning to become 
clearer.

Na+ and  Ca2+ currents

Patch-clamp experiments in hypothyroid guinea pigs showed 
that HT had no effect on  INa [8]. This result was confirmed 
by microarray analysis in hypothyroid rats, where sodium 
channel subunit transcripts were unaffected [33].

Although that work in guinea pigs also found no effect 
on the  ICa-L [8], subsequent research has consistently con-
tradicted this result. Thyroid hormones regulate  ICa-L at both 
the transcriptional and post-transcriptional levels. On the 
one hand, T3 acutely increases the calcium current by acting 
directly on rat cardiac myocytes and activating the cAMP 
cascade [64]. On the other hand, it inhibits the expression of 
L-type  Ca2+ channels. Consequently, animals with primary 
or central hypothyroidism have higher expression of CAC-
NA1C gene and higher  ICa-L amplitude compared with euthy-
roid animals [15, 33, 64]. This increase in  ICa-L may contrib-
ute to the lengthening of cardiac repolarization observed in 
hypothyroid patients. Last, regarding the role of TSH, our 
group has found no effect on  ICa-L amplitude or CACNA1C 
channel expression [2, 15].
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Repolarizing  K+ currents

Transient outward  K+ current

Since  Ito in rodents has a very large current amplitude, it 
has been extensively studied. Pioneering studies in neonatal 
cardiac myocytes demonstrated that thyroid hormones were 
necessary for correct transient outward current development, 
that is, for normal channel protein expression and normal 
current amplitude [52, 53, 65]. These findings led to sev-
eral studies in rats with myocardial infarction who showed 
reduced  Ito, and found that treatment with thyroid hormones 
and hormone analogues like 3,5-diiodothyropropionic acid 
(DITPA) restored  Ito density and expression of Kv4.2 and 
Kv1.4 channels [45, 66]. In addition, treatment with DITPA 
also restored cardiac  Ito in diabetic animals with hypothy-
roidism [17]. In fact, HT per se, reduces the amplitude of 
several potassium currents, including  Ito. Our group found 
that the decrease in  Ito amplitude is not homogeneous along 
the ventricular wall, which, in turn, explains the alterations 
in QT dispersion and  Tpeak–Tend duration [16] observed in 
hypothyroid animals.

Interestingly, unlike its crucial role for normal  Ito develop-
ment, it has also been consistently demonstrated that T3 has 
no effect on this current in adult cardiac myocytes, either 
healthy or hypothyroid [53, 56]. Therefore, the absence of 
T3 does not explain the reduction of  Ito observed in adult 
hypothyroidism.

Conversely, we found a direct relationship between TSH 
and reduced  Ito in hypothyroidism [2, 15]. Both current 
amplitude and Kv4.3 channel expression were reduced in 
cardiac myocytes isolated from animals with primary HT 
(with high TSH), but not in those isolated from animals with 
central HT (with low TSH). We also observed that incuba-
tion with TSH reduced  Ito in myocytes from control and cen-
tral hypothyroid animals, but not in myocytes from animals 
with primary HT (in which the current was already reduced 
due to high plasma TSH levels). Furthermore, incubation 
with TSH reduced KCND3 gene expression in human heart 
samples in vitro. Taken together, these results grant a novel 
role for TSH in cardiac electrical remodeling and support 
the hypothesis that QTc and QTd alterations are caused by 
elevated TSH levels.

Delayed rectifying currents  IKr,  IKs, and  IKur

In the human ventricle, the main repolarizing current is the 
rapid delayed rectifier or  IKr that flows through the hERG 
channel. In human-induced stem cell-derived cardiac myo-
cytes (hiPS-CMs), treatment with T3 stimulated myocytic 
maturation in terms of increased cell size, sarcomere length, 
and contractile force [68]. In a recent work in hIPS-CMs, com-
bined T3+Dexamethasone treatment increased  IKr expression 

and therefore improved the electrophysiological maturation of 
these cells [63]. However, neither hypo- nor hyperthyroidism 
modify the expression of the KCNH2 gene, which encodes 
the  IKr channels, in adult murine cardiomyocytes [33]. These 
results suggest that, as with  Ito, thyroid hormones are neces-
sary for the normal development of  IKr in neonatal myocytes, 
and that the effect is reduced throughout development until it 
disappears in adult cardiac myocytes. Finally, regarding the 
role of the thyroid-stimulating hormone, our group recently 
reported that incubation with TSH in human heart samples did 
not affect the expression of KCNH2 gene [15].

The slow delayed rectifier  K+ current,  IKs, is primarily 
responsible for the adaptation of repolarization duration to 
changes in heart rate and sympathetic stimulation. Again, 
T3+Dexamethasone-treated hIPS-CMs developed increased 
 IKs expression [63], consistent with an important role for 
T3 in assisting electrophysiological maturation of cardiac 
cells. However, to our knowledge, the direct effect of thy-
roid hormones on  IKs in adult cardiac myocytes has not been 
studied. In the context of hypothyroidism, the results on the 
 IKs are contradictory. A first study reported a reduction of 
 IKs amplitude in guinea pigs with primary hypothyroid-
ism [65]. In contrast, later work in hypothyroid mice found 
that the expression of the  IKs-generating genes KCNQ1 and 
KCNE1 and the current amplitude were increased [33]. Fur-
ther experiments would be needed to confirm the effect of 
thyroid hormones on adult cardiac myocytes, but in light of 
the results described above on  ICa-L, the guinea pig may not 
to be a good model for studying the electrophysiological 
effects of thyroid hormones [8, 15, 33, 64, 65]. On the other 
hand, we have observed that incubation with TSH reduces 
the expression of the KCNQ1 gene in control adult human 
heart samples. This could explain, at least in part, the higher 
incidence of cardiac arrhythmias in hypothyroid patients 
under conditions of sympathetic stimulation, observed both 
in vivo and in silico [15].

Last, the ultrarapid outward current,  IKur, has little physi-
ological relevance in the human ventricle but is essential for 
atrial repolarization. Both primary (with high TSH) and cen-
tral HT (with low TSH) reduce Kv1.5 channel expression and 
 IKur amplitude [15, 33, 47]. This finding, together with the 
absence of effect after incubation with TSH, indicates that  IKur 
is directly regulated by T3 [2]. This could also explain the high 
incidence of atrial arrhythmias in hypothyroid patients.

Cardiac electrical remodeling is different 
depending on the combination of hormones

Since the expression of ionic currents is not homogene-
ous in the heart, action potential waveform is different in 
sinoatrial and atrioventricular nodes, atria, Purkinje fib-
ers, and ventricular endocardium, midmyocardium, and 
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epicardium. In addition, plasmatic levels of T3 and TSH 
are different in each type of HT, and these hormones selec-
tively regulate ionic currents. Ultimately, several combina-
tions of hormone levels and hormone-induced effects on 
almost all cardiac ionic currents have been extensively 
studied. These results can be introduced in mathematical 
models of atrial and ventricular action potentials [43, 44] 
to predict global effects in the heart (Fig. 2).

T3 hormone is necessary for the postnatal development of 
potassium currents such as  Ito,  IKr, and  IKs. Subsequently, the 
effect of this hormone on  Ito and  IKr currents is reduced through-
out development and finally disappears in adult cardiomyocytes. 
In contrast, T3 hormone increases the expression of CACNA1, 
KCNQ1, and KCNE1 genes and the amplitude of  ICa-L and  IKs 
currents in adult cardiac myocytes [33, 52, 53, 56, 63, 64, 68].

On the other hand, TSH has also direct effects on cardiac 
ion channel expression. Whereas TSH has no effect on the 
expression or amplitude of  ICa-L or  IKr, it does reduce the 
expression and amplitude of  Ito,  IKs, and  IKur through the acti-
vation of its receptor and the cAMP/PKA pathway [2, 15].

Clinical implications

Arrhythmogenic mechanisms

An accepted paradigm in cardiology is a substrate and a trig-
ger are necessary for an arrhythmia to occur. Probably, the 

most common pro-arrhythmic substrate is QT prolongation 
[31, 41]. As explained, hypothyroidism modifies the func-
tional expression of cardiac ionic currents, and this electrical 
remodeling often results in QT prolongation. Then, the main 
triggers of arrhythmia, which are early afterdepolarizations 
(EAD) and late afterdepolarizations (DAD), could act on 
this substrate.

DADs are often driven by spontaneous calcium release 
during diastole when intracellular  Ca2+ overload increases the 
activity of the  Na+/Ca2+ exchanger (NCX). Research from 
different groups demonstrated that, in hypothyroidism, the 
elevation of circulating TSH levels increases the expression of 
the NCX at the mRNA and protein level [15, 16, 33]. Surpris-
ingly, although there are more NCX, its activity is inhibited by 
TSH [15]. In addition, hypothyroidism does not induce  Ca2+ 
overload and even reduces  Ca2+ transients and sarcoplasmic 
reticulum  Ca2+ release [40]. Taken together, these results rule 
out DAD as the main trigger of arrhythmia in HT.

On the other side, in patients with prolonged QT interval, 
arrhythmias are often triggered by EADs [36]. EADs are 
voltage oscillations during the phase 2 or 3 of the action 
potential caused by the reactivation of depolarizing currents. 
The increase of  ICa-L and the decrease of  K+ currents prolong 
AP duration and can induce EADs due to the activation of 
the late sodium current,  INa-L [25]. Our group has used the 
O’Hara-Rudy-dynamic model of ventricular AP [44] in in 
silico populations of control and hypothyroid patients and 
found higher incidence of EADs in the modeled hypothyroid 

Fig. 2  Human atrial and ventricular action potentials (AP) simulated 
in conditions of primary or central HT. Atrial and ventricular elec-
trical remodeling caused by central hypothyroidism (cHT; low TSH) 
and primary hypothyroidism (pHT; high TSH). cHT significantly 
prolongs the duration of atrial AP, but only slightly that of ventric-
ular AP. In pHT, repolarization in the atrium fails, which explains 

the appearance of atrial fibrillation on the ECG. Similarly, in pHT, 
the ventricular action potential also shows a significant alteration of 
repolarization, which explains the incidence of early afterpotentials 
(EAD) and extrasystoles. Atrial and ventricular action potentials were 
simulated using the Nygren-Firek-Clark-Lindblad-Clark-Giles and 
O’Hara-Rudy dynamic models, respectively
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patients [15]. In agreement with these simulations, a very 
recent paper demonstrated a high incidence of EADs in 
hypothyroid mouse hearts, which were abolished by the 
 INa-L-specific blocker ranolazine [54].

Treatment of hypothyroidism

Hypothyroidism was treated with crude thyroid extract 
since the end of the nineteenth century. Later, a mixture 
of T3 and T4 began to be used, which continued to be used 
until the third quarter of the twentieth century. From then 
on, the use of T3 began to be eliminated because it was 
discovered that the organism transforms T4 into T3 and 
because exogenous T3 caused adverse effects. Although 
originally one of the reasons for the decline in the use of 
T3 in the treatment of HT was that it caused ventricu-
lar extrasystoles, it was demonstrated that treatment with 
either T4 or T3 improves cardiac electrical remodeling and 
reduces the incidence of arrhythmias in animal models of 
myocardial infarction and diabetes [17, 49, 65]. Currently, 
the standard treatment of hypothyroidism is daily levo-
thyroxine (LT4) at the dose that normalizes TSH levels. 
However, it has been shown that this treatment does not 
eliminate symptoms in up to 20% of patients, and there-
fore, the introduction of T3 is being discussed again [9, 
29, 51], although its effect on arrhythmogenesis in humans 
still needs to be studied in depth.

Relevance of TSH levels

Serum TSH reflects thyroid status in a more sensitive way 
than free thyroxine, but it is only a valid measure when the 
hypothalamic-pituitary axis is intact. Although serum TSH 
measurement alone is not sufficient for the diagnosis of cen-
tral hypothyroidism, currently, it is the best test to screen for 
primary hypothyroidism [48, 61].

The Framingham study [46] assessed whether TSH could 
affect left ventricular structure and function. No significant 
associations were observed between this hormone and left 
ventricular mass, wall thickness, or systolic function. How-
ever, TSH affects cardiac electrical behavior. In this sense, 
several clinical studies indicated that elevated serum TSH 
level played an essential role in QT prolongation and disper-
sion in patients with hypothyroidism [7, 21]. Experimental 
findings from our laboratory are consistent with this, since 
TSH directly modulates cardiac currents, prolongs repolari-
zation, and increases the susceptibility to cardiac arrhyth-
mias [2, 15].

A very recent study has revealed that hypothyroidism is 
an independent predictor of progression from paroxysmal 
AF to persistent AF after AF ablation, even after treatment 
and normalization of thyroxine levels. This supports the 
hypothesis that TSH could be involved in the remodeling, 
either electrical or structural, responsible for the appearance 
or maintenance of the AF substrate [35].

Fig. 3  Both T3 and TSH are essential for the regulation of cardiac 
electrical activity. T3 regulates the expression of  Ca2+ and  K+ chan-
nels in the cardiac myocyte membrane in healthy conditions. TSH, in 
addition to modulating the release of T3 from the thyroid, has a direct 
effect on cardiac myocytes, as it regulates the expression of  K+ chan-
nels. The balance between these hormones determines the shape and 

duration of the action potential in isolated cardiomyocytes, and the 
characteristics of the electrocardiogram of patients. Low T3 and high 
TSH increase  Ca2+ channels and decrease  K+ channel expression, and 
this deregulation leads to arrhythmia. (Healthy, black traces; HT, red 
traces; RA/LA, right/left atria; RV/LV, right/left ventricle; Ao/PA, 
aorta/pulmonar artery)
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In addition, increased mortality and incidence of major 
adverse cardiovascular endpoints (MACE) have been 
reported among individuals with both high and low TSH 
levels, even within the range of values considered normal 
[1, 28, 42]. In the clinical setting, this raises the question 
of whether the reference ranges of serum TSH should be 
re-redefined [18, 19, 34, 55].

Conclusion

Metabolic thyroid hormones are important in the develop-
ment and maturation of potassium currents such as  Ito and 
 IKr, but their effect on these currents vanishes during devel-
opment. In adult cardiac myocytes, thyroid hormones modu-
late the expression and behavior of  ICa-L and  IKs.

Thyroid-stimulating hormone has also important effects in 
the regulation of cardiac electrical activity. Through the activa-
tion of its receptor in the heart, TSH modulates the expression 
of the repolarizing currents  Ito,  IKs, and  IKur. The important role 
that this hormone plays in cardiac electrical remodeling and 
the appearance of cardiac arrhythmias that occur in hypothy-
roidism have recently been demonstrated (Fig. 3).
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