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dbcsp: User-friendly R package for
Distance-Based Common Spatial Patterns
by Itsaso Rodríguez, Itziar Irigoien, Basilio Sierra, and Concepción Arenas

Abstract Common Spatial Patterns (CSP) is a widely used method to analyse electroencephalography
(EEG) data, concerning the supervised classification of the activity of brain. More generally, it can
be useful to distinguish between multivariate signals recorded during a time span for two different
classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals
from both classes and it allows the data to be projected into a low-dimensional subspace. Once the
data are represented in a low-dimensional subspace, a classification step must be carried out. The
original CSP method is based on the Euclidean distance between signals, and here we extend it so that
it can be applied on any appropriate distance for data at hand. Both the classical CSP and the new
Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.

1 Background

Eigenvalue and generalized eigenvalue problems are very relevant techniques in data analysis. The
well-known Principal Component Analysis with the eigenvalue problem in its roots was already
established by the late seventies (Mardia et al., 1979). In mathematical terms, Common Spatial Patterns
(CSP) is based on the generalized eigenvalue decomposition or the simultaneous diagonalization of
two matrices to find projections in a low dimensional space. Although in algebraic terms PCA and
CSP share several similarities, their main aims are different: PCA follows a non-supervised approach
but CSP is a two-class supervised technique. Besides, PCA is suitable for standard quantitative data
arranged in ‘individuals × variables’ tables, while CSP is designed to handle multivariate signals
time series. That means that, while for PCA each individual or unit is represented by a classical
numerical vector, for CSP each individual is represented by several signals recorded during a time
span, i.e., by a ‘number of signals × time span’ matrix. CSP allows the individuals to be represented
in a dimension reduced space, a crucial step given the high dimensional nature of the original data.
CSP computes the average covariance matrices of signals from the two classes to yield features whose
variances are optimal to discriminate the classes of measurements. Once data is projected into a low
dimensional space, a classification step is carried out. The CSP technique was first proposed under
the name Fukunaga-Koontz Transform in Fukunaga and Koontz (1970) as an extension of PCA, and
Müller-Gerking et al. (1999) used it to discriminate electroencephalography data (EEG) in a movement
task. Since then, it has been a widely used technique to analyze EEG data and develop Brain Computer
Interfaces (BCI), with different variations and extensions (Blankertz et al., 2007a,b; Grosse-Wentrup
and Buss, 2008; Lotte and Guan, 2011; Wang et al., 2012; Astigarraga et al., 2016; Darvish Ghanbar et al.,
2021). In Wu et al. (2013), subject specific best time window and number of CSP features are fitted
through a two-level cross validation scheme within the Linear Discriminant classifier. Samek et al.
(2014) offer a divergence-based framework including several extensions of CSP. As a general term, CSP
filter maximizes the variance of the filtered or projected EEG signals of one class of movements while
minimizing it for the signals of the other class. Similarly, it can be used to detect epileptic activities
Khalid et al. (2016) or other brain activities. BCI systems can also be of great help to people who suffer
from some disorders of cerebral palsy, or who suffer from other diseases or disabilities that prevent
the normal use of their motor skills. These systems can considerably improve the quality of life of
these people, for which small advances and changes imply big improvements. BCI systems can also
contribute to human vigilance detection, connected with occupations involving sustained attention
tasks. Among others, CSP and variations of it have been applied to the vigilance estimation task (Yu
et al., 2019).

The original CSP method is based on the Euclidean distance between signals. However, as far
as we know, a generalization allowing the use of any appropriate distance was not introduced. The
aim of the present work is to introduce a novel Distance-Based generalization of it (DB-CSP). This
generalization is of great interest, since these techniques can also offer good solutions in other fields
where multivariate time series data arise beyond pure electroencephalography data (Poppe, 2010;
Rodríguez-Moreno et al., 2020).

Although CSP in its classical version is a very well-known technique in the field of BCI, it is not
implemented in R. In addition, as DB-CSP is a new extension of it, it is worth building an R package
that includes both CSP and DB-CSP techniques. The package offers functions in a user-friendly way for
the less familiar users of R but it also offers complete information about its objects so that reproducible
analysis can be carried out and more advanced and customised analysis can be performed taking
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Figure 1: Flow-chart showing the steps to classify a new data. First, the filtering is done along with
the feature extraction. This is the core of the procedure (CSP or DB-CSP). Then, a classifier is built to
make the decision giving the classification of the new data.

advantage of already well-known packages of R.

The paper is organized as follows. First, we review the mathematical formulation of the Common
Spatial Patterns method. Next, we present the core of our contribution describing both the novel
CSP’ extension based on distances and the dbcsp package. Then, the main functions in dbcsp are
introduced along with reproducible examples of their use. Finally, some conclusions are drawn.

2 CSP and DB-CSP

Let us consider that we have n statistical individuals or units classified in two classes C1 and C2, with
#C1 = n1 and #C2 = n2. For each unit i in class Ck, data from c sources or signals are collected during
T time units and therefore unit i is represented in matrix the Xik (i = 1, . . . , nk ; k = 1, 2). For instance,
for electroencephalograms, data are recorded by a c-sensor cap each t time units (t = 1, . . . , T). As
usual, we consider that each Xik is already scaled or with the appropriate pre-processing in the context
of application; for instance, if working with EGG data, each signal should be band-pass filtered before
its use.

The goal is to classify a new unit X in C1 or C2. To this end, first a projection into a low-dimensional
subspace is carried out. Then, as a standard approach the Linear Discriminant classifier (LDA) is
applied taking as input data for the classifier the log-variance of the projections obtained in the first
step. It is obvious that the importance of the technique lies mainly in the first step, and once it is done,
LDA or any other classifiers could be applied. Based on that, we focus on how this projection into
a low-dimensional space is done, from the classical CSP point of view as well as its novel extension
DB-CSP (see Figure 1).

Classical CSP

The main idea is to use a linear transform to project or filter data into low-dimensional subspace with
a projection matrix, in such a way that each row consists of weights for signals. This transformation
maximizes the variance of two-class signal matrices. The method performs a simultaneous diagonal-
ization of the covariance matrices of both classes. Given data X11, . . . , Xn11 (matrices c × T) from class
C1 and X12, . . . , Xn22 (also matrices c × T) from class C2, the following steps are needed:
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• All matrices are standardized so that traces of XikX′
ik are the same.

• Compute average covariance matrices:

Bk =
1
nk

nk

∑
i=1

XikX′
ik , k = 1, 2

• Look for directions W = (w1, . . . , wc) ∈ Rc×c according to the criterion:

Maximize tr(W ′B1W)

subject to W ′(B1 + B2)W = I

The solution is given by the generalized spectral decomposition B1w = λB2w choosing the first
and the last q eigenvectors: WCSP = (w1, . . . , wq, wc−q+1, . . . , wc).

Vectors wj offer weights so that new signals X′
i1wj and X′

i2wj have big and low variability for the
first q vectors (j = 1, . . . , q) respectively, and vice-versa for the last q vectors (j = c − q + 1, . . . , c). To
clarify the notation and interpretation, let us denote aj = wj the first q vectors and bj = wc+1−j the
last q. That way, and broadly speaking, variability of elements in C1 is big when projecting on vectors
aj and low on vectors bj, and vice-versa, for elements in class C2.

Finally, the log-variability of these new and few 2q signals are considered as input for the classifi-
cation, which classically is the Linear Discriminant Analysis (LDA). Obviously, any other classification
technique can be used, as it is illustrated in the subsection Extending the example.

Distance-based CSP

Following the commented ideas, the Distance-Based CSP (DB-CSP) is an extension of the classical CSP
method. In the same way as the classical CSP, DB-CSP gives some weights to the original sources or
signals and obtains new and few 2q signals which are useful for the discrimination between the two
classes. Nevertheless, the considered distance between the signals can be any other than the Euclidean.
The steps are the following:

• Compute an appropriate distance measure between sources and the double-centered inner
product:

Xik → Dik → Pik = −1/2HD(2)
ik H , i = 1, . . . , nk; k = 1, 2

where H stands for the centering matrix and the superindex in brackets (2) for squared elements
in the matrix. Again, all matrices are standardized so that all traces of XikX′

ik are the same.

• Compute average distance-based covariance matrices:

B∗
k =

1
nk

nk

∑
i=1

(
PikP′

ik + Xikxik1′ + 1x′i,kX′
ik − x′ikxik11′

)
where xik = 1

c 1′Xik, and k = 1, 2.

Once we have the covariance matrices related to the chosen distance matrix, the directions are
found as in classical CSP and new signals X′

ikaj, X′
ikbj are built (j = 1, . . . , q). Again, for individuals in

class C1 the projections on vectors a and b are big and low respectively; for individuals in class C2 it is
the other way round.

It is important to note that if the chosen distance does not produce a positive definite covariance
matrix, it must be replaced by a similar one that is positive definite.

When the selected distance is the Euclidean, then, DB-CSP reduces to classical CSP.

Once the q directions aj and bj are calculated, new 2q signals are built. Many interesting charac-
teristics of the new signals could be extracted, although the most important in the procedure is the
variance. Those characteristics of the new signals are the input data for the classification step.
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3 Implementation

In this section, the structure of the package and the functions implemented are explained. The
dbcsp package was developed for the free statistical R environment and it is available from the
Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/dbcsp/
index.html.

Input

The input data are the corresponding n1 and n2 matrices Xik of the n units classified in classes C1
and C2, respectively (i = 1, . . . , nk ; k = 1, 2). Let x1 and x2 be two lists of length n1 and n2,
respectively, with Xik matrices (c × T) as elements of the lists. NA values are allowed. They are imputed
by interpolating with the surrounding values via the na.approx function in package zoo. To ensure
the user is aware of the missing values and their imputation, a warning is printed. We also consider
that new items to be classified are in list xt. The aforementioned first step of the method is carried out
by building the object called "dbcsp".

dbcsp object

The dbcsp object is an S4 class created to compute the projection vectors W. The object has the follow-
ing slots:

• Slots
X1 = "list", X2 = "list", the lists X1 and X2 (lengths n1 and n2) containing the matrices Xik
for the two classes C1 and C2, respectively (i = 1, . . . , nk ; k = 1, 2).

q = "integer", to determine the number of pairs of eigenvectors aj and bj that are kept. By
default q=15.

labels = "character", vector of two strings indicating labels names, by default names of
elements in X1 and X2.

type = "character", to set the type of distance to be considered, by default type='EUCL'. The
supported distances are these ones:

– Included in TSdist: infnorm,ccor,sts,...

– Included in parallelDist: bhattacharyya,bray,...

– Custom distances: it is also possible to use a user-defined distance function, a function
dcustom which returns a scalar providing the distance value (d(xik, xjk)) between signals
xik and xjk (i, j = 1, . . . , nk , k = 1, 2). The name of the custom distance function is passed
as character to the type parameter (type="dcustom"). The parallelDist package also allows
the use of custom distances, but the distance function has to be defined using the cppXPtr
function of the RcppXPtrUtils package, as is explained in the User-defined distance functions
section of the parallelDist package documentation.

mixture = "logical", logical value indicating whether to use mixture of distances or not (EUCL
+ other), by default mixture=FALSE.

w = "numeric", weight for the mixture of distances Dmixture = wDeuclidea + (1 − w)Dtype,
by default w=0.5.

training = "logical", logical value indicating whether or not to perform the classification,
by default classification=FALSE. If classification=TRUE, LDA discrimination based on the
log-variances of the projected sources is considered, following the classical approach in CSP.

fold = "integer", integer value, by default fold=10. It controls the number of partitions for
the k-fold validation procedure, if the classification is done.

seed = "numeric", numeric value, by default seed=NULL. Set a seed in case you want to be able
to replicate the results.
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eig.tol = "numeric", numeric value, by default eig.tol=1e-06. If the minimum eigenvalue is
below this tolerance, average covariance matrices are replaced by the most similar matrix that is
positive definite. It is done via function nearPD in Matrix and a warning message is printed to
make the user aware of it.

out = "list", list containing elements of the output. Mainly, matrix W with vectors aj and bj
in element vectors, log-variances of filtered signals in proy and partitions considered in the
k-fold approach with reproducibility purposes.

• Usage
Following the standard procedure in R, an instance of a class dbcsp is created via the new()
constructor function:

new("dbcsp",X1 = x1,X1 = x2)

Slots X1 and X2 are compulsory since they contain the original data. When a slot is not specified,
the default value is considered. First, the S4 object of class dbcsp must be created. By default, the
Euclidean distance is used, nevertheless it can be changed. For instance, "Dynamic Transform
Distance" (Giorgino et al., 2009) can be set:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, type='dtw')

or a mixture between this distance and the Euclidean can be indicated by:

mydbcsp.mix <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"),
mixture=TRUE, w=0.4,type="dtw")

Besides, a custom distance function can be defined and used when creating the object:

fn <- function(x, y) mean(1 - cos(x - y))
mydbcsp <- new("dbcsp", X1 = x, X2 = y, type="fn")

It is worth mentioning that it is possible to reduce the computational time through parallelDist
custom distance option, where the function is defined using C++ and by creating an external
pointer to the function by means of the cppXPtr function:

customEucli <- RcppXPtrUtils::cppXPtr(
"double customDist(const arma::mat &A, const arma::mat &B) {

return sqrt(arma::accu(arma::square(A - B)));
}",
depends = c("RcppArmadillo")

)
mydbcsp <- new('dbcsp',x1,x2,type="customEucli")

The object contains all the information to carry out the classification task in a lower dimension
space.

Functions plot and boxplot

For exploratory and descriptive purposes, the original signals Xik and the projected ones can be plotted
for the selected individual i in class k, and the selected pair of dimensions aj and bj (i = 1, . . . , nk,
k = 1, 2).

• Usage
plot(mydbcsp)

• Arguments
x, an object of class dbcsp

class, integer to indicate which of both classes to access (1 or 2), by default class=1.

index, integer to indicate which instance of the class to plot, by default index=1.
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vectors, integer to indicate which j projected signals are to be plotted. By default all the vectors
used in the projection are plotted.

pairs logical, if TRUE the pairs aj and bj of the indicated indices are also shown, by default
pairs=TRUE.

before logical, if TRUE the original signals are plotted, by default before=TRUE.

after logical, if TRUE the signals after projection are plotted, by default after=TRUE.

legend logical, if TRUE, a legend for filtered signals is shown, by default legend=FALSE.

getsignals logical, if TRUE, the projected signals are returned.

Besides, the log-variances of the projected signals of both classes can be shown in boxplots. This
graphic can help to understand the discriminative power that is in the low-dimension space.

• Usage
boxplot(mydbcsp)

• Arguments
x, an object of class dbcsp

vectors, integer or vector of integers, indicating the index of the projected vectors to plot, by
default index=1.

pairs logical, if TRUE the pairs aj and bj of the indicated indices are also shown, by default
pairs=TRUE.

show_log logical, if TRUE the logarithms of the variances are displayed, otherwise the variances,
by default show_log=TRUE.

It is worth taking into account that in the aforementioned functions, values in argument vectors
must lie between 1 and 2q, being q the number of dimensions used to perform the DB-CSP algo-
rithm when creating the dbcsp object. Therefore, values 1 to q correspond to vectors a1 to aq and
values q + 1 to 2q correspond to vectors b1 to bq. Then, if pairs=TRUE, it is recommended that
values in argument vectors are in {1, . . . , q}, since their pairs are plotted as well. When values
are above q, it should be noted that they correspond to vectors b1 to bq. For instance, if q=15 and
boxplot(object,vectors=16,pairs=FALSE), vector b1 (16 − q = 1) is shown.

Function selectQ, Function train and Function predict

The functions in this section help the classification step in the procedure. Function selectQ helps to
find an appropriate dimension needed for the classification. Given different values of dimensions,
the accuracy related to each dimension is calculated so that the user can assess which dimension
of the reduced space can be sufficient. A k-fold cross-validation approach or a holdout approach
can be followed. Function train performs the Linear Discriminant classification based on the log-
variances of the dimensions built in the dbcsp object. Since LDA has a geometric interpretation that
makes the classifier sensible for more general situations Duda et al. (2001), not the normality nor the
homoscedasticity of data are checked. The accuracy of the classifier is computed based on the k-fold
validation procedure. Finally, function predict performs the classification of new individuals.

• Usage of selectQ
selectQ(mydbcsp)

• Arguments
object, an object of class dbcsp
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Q, vector of integers which represents the dimensions to use, by default Q=c(1,2,3,5,10,15).

train_size, float between 0.0 and 1.0 representing the proportion of the data set to include in
the train split, by default train_size=0.75.

CV, logical indicating whether a k-fold cross validation must be performed or a hold-out ap-
proach (if TRUE, train_size is not used), by default CV=FALSE.

folds integer, number of folds to use if CV is performed.

seed numeric value, by default seed=NULL. Set a seed in case you want to be able to replicate the
results.

This function returns the accuracy values related to each dimension set in Q. If CV=TRUE, the mean
accuracy as well as the standard deviation among folds is also returned.

• Usage of train
train(mydbcsp) or embedded as a parameter in:
new('dbcsp',X1=x1,X2=x2,training=TRUE,type="dtw")

• Arguments
x, an object of class dbcsp

selected_q, integer value indicating the number of vectors to use when training the model. By
default all dimensions considered when creating the object dbcsp.

Besides, arguments seed and fold are available.

It is important to note that in this way a classical analysis can be carried out, in the sense of:

• LDA is applied based on the log-variances of the dimensions indicated by the user in select_q;

• percentage of correct classification is obtained via k-fold cross validation.

However, it is evident that it may be of interest to use other classifiers or other characteristics in
addition to or different from log-variances. This more advanced procedure is explained below. See
the basic analysis of the User guide with a real example section in order to visualize and follow the
process of a first basic/classic analysis.

• Usage of predict
predict(mydbcsp,X_test=xt)

• Arguments
object, an object of class dbcsp

X_test, list of matrices to be classified.

true_targets, optional, if available, vector of true labels of the instances. Note that they must
match the name of the labels used when training the model.

4 User guide with a real example

To show an example beyond pure electroencephalography data, Action Recognition data is considered.
Besides having a reproducible example to show the use of the implemented functions and the results
they offer, this Action Recognition data set is included in the package. The data set contains the
skeleton data extracted from videos of people performing six different actions, recorded by a semi-
humanoid robot. It consists of a total of 272 videos with 6 action categories. There are around 45
clips in each category, performed by 46 different people. Each instance is composed of 50 signals (xy
coordinates for 25 body key points extracted using OpenPose (Cao et al., 2019)), where each signal has
92 values, one per frame. These are the six categories included in the data set:
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1. Come: gesture for telling the robot to come to you. There are 46 instances for this class.

2. Five: gesture of ‘high five’. There are 45 instances for this class.

3. Handshake: gesture of handshaking with the robot. There are 45 instances for this class.

4. Hello: gesture for saying hello to the robot. There are 44 instances for this class.

5. Ignore: ignore the robot, pass by. There are 46 instances for this class.

6. Look at: stare at the robot in front of it. There are 46 instances for this class.

The data set is accessible via AR.data and more specific information can be found in (Rodríguez-
Moreno et al., 2020). Each class is a list of matrices of [K × num_ f rames] dimensions, where K = 50
signals and num_ f rames = 92 values. As mentioned before, the 50 signals represent the xy coordinates
of 25 body key points extracted by OpenPose.

For example, two different classes can be accessed this way:

x1 <- AR.data$come
x2 <- AR.data$five

where, x1 is a list of 46 instances of [50x92] matrices of come class and x2 is a list of 45 instances of
[50x92] matrices of five class. An example of skeleton sequences for both classes is shown in Figure 2
(left, for class come and right, for class five).

Figure 2: Sequences of the skeleton extracted from the videos. Left: sequence for action ‘come’. Right:
sequence for action ‘(high) five’. For each frame, x and y coordinates of the 25 body key points of the
skeleton are extracted by OpenPose.

Next, the use of functions in dbcsp is shown based on this data set. First a basic/classic analysis is
performed.

Basic/classic analysis

Let us consider an analysis using 15-dimensional projections and the Euclidean distance. At a first
step the user can obtain vectors W by:

x1 <- AR.data$come
x2 <- AR.data$five
mydbcsp <- new('dbcsp', X1=x1, X2=x2, q=15, labels=c("C1", "C2"))
summary(mydbcsp)

Creating the object mydbcsp, the vectors W are calculated. As indicated in parameter q=15, the first
and last 15 eigenvectors are retained. With summary, the obtained output is:

There are 46 instances of class C1 with [50x92] dimension.
There are 45 instances of class C2 with [50x92] dimension.
The DB-CSP method has used 15 vectors for the projection.
EUCL distance has been used.
Training has not been performed yet.

Now, if the user knows from the beginning that 3 is an appropriate dimension, the classification
step could be done while creating the object. Using classical analysis, with for instance 10-fold, LDA
as classifier and log-variances as characteristics, the corresponding input and summary output are:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, q=3, labels=c("C1", "C2"), training=TRUE, fold = 10, seed = 19)
summary(mydbcsp)
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There are 46 instances of class C1 with [50x92] dimension.
There are 45 instances of class C2 with [50x92] dimension.
The DB-CSP method has used 3 vectors for the projection.
EUCL distance has been used.
An accuracy of 0.9130556 has been obtained with 10 fold cross validation and using 3 vectors when training.

If a closer view of the accuracies among the folds is needed, the user can obtain them from the out
slot of the object:

# Accuracy in each fold
mydbcsp@out$folds_acc

# Intances belonging to each fold
mydbcsp@out$used_folds

Basic/classic analysis selecting the value of q

Furthermore, it is clear that the optimal value of q should be chosen based on the percentages of correct
classification. It is worth mentioning that the LDA is applied on the 2q projections, as set in the object
building step. It is interesting to measure how many dimensions would be enough using selectQ
function:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"))
selectDim <- selectQ(mydbcsp, seed=30, CV=TRUE, fold = 10)

selectDim
Q acc sd

1 1 0.7663889 0.12607868
2 2 0.9033333 0.09428818
3 3 0.8686111 0.11314534
4 5 0.8750000 0.13289537
5 10 0.8797222 0.09513230
6 15 0.8250000 0.05257433

Since the 10-fold cross-validation approach is chosen, the mean accuracies as well as the correspond-
ing standard deviations are returned. Thus, with Linear Discriminant Analysis (LDA), log-variances as
characteristics, it seems that dimensions related to first and last q = 2 eigenvectors (2 × 2 dimensions
in total) are enough to obtain a good classification, with an accuracy of 90%. Nevertheless, it can also
be observed that variation among folds can be relevant.

To visualize what is the representation in the reduced dimension space function plot can be used.
For instance, to visualize the first unit of the first class, based on projections along the 2 first and last
vectors (a1, a2 and b1, b2):

plot(mydbcsp, index=1, class=1, vectors=1:2)

In the top graphic of Figure 3, the representation of the first video of class C1 given by non standardized
matrix X11 can be seen, where the horizontal axis represents the frames of the video and the lines are
the positions of the body key points (50 lines). In the bottom graphic, the same video is represented in
a reduced space where the video is represented by the new signals (only 4 lines).

To have a better insight of the discriminating power of the new signals in the reduced dimension
space, we can plot the corresponding log-variances of the new signals. Parameter vectors in function
boxplot sets which are the eigenvectors considered to plot.

boxplot(mydbcsp, vectors=1:2)

In Figure 4 it can be seen that variability of projections on the first eigenvector direction (log(VAR(X′
ika1)))

are big for elements in x1, but small for elements in x2. Analogously, projecting on the last dimension
(log(VAR(X′

ikb1))), low variability is held in x1 and big variability in x2. The same pattern holds
when projecting on vectors a2 and b2.
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Figure 3: Representation of the first video of class C1. Top: original version where each line corresponds
to the signal of a body key point. Bottom: the projections on vectors a1 and a2 (continuous lines) and
b1 and b2 (dotted lines). Being a video of class C1, variabilities of the projections on vectors a1 and a2
are big whereas on vectors b1 and b2 are small, as expected.
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Figure 4: Log-variabilities of the projected signals on vectors a1 and a2 and b1 and b2, separated by
classes C1 and C2. By construction, variabilities of the projections on vectors a1 and a2 are big for units
in class C1 and small for units C2; opposite pattern can be seen for projections on vectors b1 and b2.
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Basic/classic analysis new unit classification

Once the value of q has been decided and the accuracy of the classification is known, the classifier
should be built (through train()) so that the user can proceed to predict the class a new action held in
a video belongs to, using the function predict. For instance, with only illustrative purpose, we can
classify the first 5 videos which are stored in x1.

mydbcsp <- train(mydbcsp, selected_q=2, verbose=FALSE)
xtest <- x1[1:5]
outpred <- predict(mydbcsp, X_test=xtest)

If the labels of the testing items are known, the latter function returns the accuracy.

outpred <- predict(mydbcsp, X_test=xtest, true_targets= rep("C1", 5))

Finally, notice that the user could use any other distance instead of the Euclidean between the
signals to compute the important directions aj and bj. For instance, in this case it could be appropriate
to use the Dynamic Time Warping distance, setting so in the argument type="dtw":

# Distance DTW
mydbcsp.dtw <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"), type="dtw")

5 Extending the example

In the previous section a basic workflow to use functions implemented in dbcsp is presented. Nev-
ertheless, it is straightforward to extend the procedure. Once the interesting directions in W are
calculated through dbcsp, other summarizing characteristics beyond the variance could be extracted
from the projected signals, as well as other classifiers which could be used in the classification step. For
those purposes, dbcsp is used to compute the directions in W that will be the base to calculate other
features as well as the input features for other classifiers. Here it is shown how, once the eigenvectors
are extracted from an object dbcsp, several characteristics could be extracted from the signals and
a new data.frame can be built so that any other classification technique could be applied. In this
example we worked with caret package to apply different classifiers. It is important to pay attention to
which the train and test sets are, so that the vectors are computed based only on training set instances.

# Establish training and test data
n1 <- length(x1)
trainind1 <- rep(TRUE, n1)
n2 <- length(x2)
trainind2 <- rep(TRUE, n2)
set.seed(19)
trainind1[sample(1:n1, 10, replace=FALSE)] <- FALSE
trainind2[sample(1:n2, 10, replace=FALSE)] <- FALSE
x1train <- x1[trainind1]
x2train <- x2[trainind2]

# Extract the interesting directions
vectors <- new('dbcsp', X1=x1train, X2=x2train, q=5, labels=c("C1", "C2"))@out$vectors

# Function to calculate the desired characteristics from signals
calc_info <- function(proj_X, type){
values <- switch(type,

'var' = values <- plyr::laply(proj_X, function(x){apply(x,1,var)}),
'max' = values <- plyr::laply(proj_X, function(x){apply(x,1,max)}),
'min' = values <- plyr::laply(proj_X, function(x){apply(x,1,min)}),
'iqr' = values <- plyr::laply(proj_X, function(x){
apply(x,1,function(y){
q <- quantile(y, probs = c(0.25, 0.75))
q[2] -q[1]

})
})

)
return(values)

}
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By means of this latter function, besides the variance of the new signals, the maximum, the minimum,
and the interquartile range can be extracted.

Next, imagine we want to perform our classification step with the interquartile range information
along with the log-variance.

# Project units of class C1 and
projected_x1 <- plyr::llply(x1, function(x,W) t(W)%*%x, W=vectors)

# Extract the characteristics
logvar_x1 <- log(calc_info(projected_x1,'var'))
iqr_x1 <- calc_info(projected_x1,'iqr')
new_x1 <- data.frame(logvar=logvar_x1, iqr=iqr_x1)

# Similarly for units of class C2
projected_x2 <- plyr::llply(x2, function(x,W) t(W)%*%x, W=vectors)
logvar_x2 <- log(calc_info(projected_x2,'var'))
iqr_x2 <- calc_info(projected_x2,'iqr')
new_x2 <- data.frame(logvar=logvar_x2, iqr=iqr_x2)

# Create dataset for classification
labels <- rep(c('C1','C2'), times=c(n1,n2))
new_data <- rbind(new_x1,new_x2)
new_data$label <- factor(labels)
new_data_train <- new_data[c(trainind1, trainind2), ]
new_data_test <- new_data[!c(trainind1, trainind2), ]

# Random forest
trControl <- caret::trainControl(method = "none")
rf_default <- caret::train(label~.,

data = new_data_train,
method = "rf",
metric = "Accuracy",
trControl = trControl)

rf_default

# K-NN
knn_default <- caret::train(label~.,

data = new_data_train,
method = "knn",
metric = "Accuracy",
trControl = trControl)

knn_default

# Predictions and accuracies on test data
# Based on random forest classifier
pred_labels <- predict(rf_default, new_data_test)
predictions_rf <- caret::confusionMatrix(table(pred_labels,new_data_test$label))
predictions_rf

# Based on knn classifier
pred_labels <- predict(knn_default, new_data_test)
predictions_knn <- caret::confusionMatrix(table(pred_labels,new_data_test$label))
predictions_knn

Thus, it is easy to integrate results and objects that dbcsp builds so that they can be integrated
with other R packages and functions. This is interesting for more advanced users to perform their own
customized analysis.

6 Conclusions

In this work a new Distance-Based Common Spatial Pattern is introduced. It allows to perform the
classical Common Spatial Pattern when the Euclidean distance between signals is considered, but
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it can be extended to the use of any other appropriate distance between signals as well. All of it is
included in package the dbcsp. The package is easy to use for non-specialised users but, for the sake
of flexibility, more advanced analysis can be carried out combining the created object and obtained
results with already well-known R packages, such as caret, for instance.

Acknowledgements

This research was partially supported: IR by The Spanish Ministry of Science, Innovation and Univer-
sities (FPU18/04737 predoctoral grant). II by the Spanish Ministerio de Economia y Competitividad
(RTI2018-093337-B-I00; PID2019-106942RB-C31). CA by the Spanish Ministerio de Economia y Com-
petitividad (RTI2018-093337-B-I00, RTI2018-100968-B-I00) and by Grant 2017SGR622 (GRBIO) from
the Departament d’Economia i Coneixement de la Generalitat de Catalunya. BS II by the Spanish
Ministerio de Economia y Competitividad (RTI2018-093337-B-I00).

Author’s contributions

II and CA designed the study. IR and II wrote and debugged the software. IR, II and CA checked the
software. II, CA, IR and BS wrote and reviewed the manuscript. All authors have read and approved
the final manuscript.

Bibliography

A. Astigarraga, A. Arruti, J. Muguerza, R. Santana, J. I. Martin, and B. Sierra. User adapted motor-
imaginary brain-computer interface by means of EEG channel selection based on estimation of
distributed algorithms. Mathematical Problems in Engineering, page 1435321, 2016. URL https:
//doi.org/10.1155/2016/1435321. [p80]

B. Blankertz, M. Kawanabe, R. Tomioka, F. U. Hohlefeld, V. V. Nikulin, and K.-R. Müller. Invariant
common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In NIPS’07:
Proceedings of the 20th International Conference on Neural Information Processing, pages 113–120, 2007a.
[p80]

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller. Optimizing spatial filters
for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1):41–56, 2007b. URL
https://doi.org/10.1109/MSP.2008.4408441. [p80]

Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. OpenPose: realtime multi-person 2D pose
estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(1):172–186, 2019. URL https://doi.org/10.1109/TPAMI.2019.2929257. [p86]

K. Darvish Ghanbar, T. Yousefi Rezaii, A. Farzamnia, and I. Saad. Correlation-based common spatial
pattern (CCSP): A novel extension of CSP for classification of motor imagery signal. PLOS ONE,
16:1–18, 2021. doi: 10.1371/journal.pone.0248511. URL https://doi.org/10.1371/journal.pone.
0248511. [p80]

R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, New York, 2001. [p85]

K. Fukunaga and W. L. Koontz. Application of the Karhunen-Loève expansion to feature selection and
ordering. IEEE Transactions on Computers, 100(4):311–318, 1970. [p80]

T. Giorgino et al. Computing and visualizing dynamic time warping alignments in R: the dtw package.
Journal of statistical Software, 31(7):1–24, 2009. URL http://dx.doi.org/10.18637/jss.v031.i07.
[p84]

M. Grosse-Wentrup and M. Buss. Multiclass common spatial patterns and information theoretic
feature extraction. IEEE Transactions on Biomedical Engineering, 55(8):1991–2000, 2008. URL https:
//doi.org/10.1109/TBME.2008.921154. [p80]

M. I. Khalid, T. Alotaiby, S. A. Aldosari, S. A. Alshebeili, M. H. Al-Hameed, F. S. Y. Almohammed, and
T. S. Alotaibi. Epileptic MEG spikes detection using common spatial patterns and linear discriminant
analysis. IEEE Access, 4:4629–4634, 2016. URL https://doi.org/10.1109/access.2016.2602354.
[p80]

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://doi.org/10.1155/2016/1435321
https://doi.org/10.1155/2016/1435321
https://doi.org/10.1109/MSP.2008.4408441
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1371/journal.pone.0248511
https://doi.org/10.1371/journal.pone.0248511
http://dx.doi.org/10.18637/jss.v031.i07
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1109/TBME.2008.921154
https://doi.org/10.1109/access.2016.2602354


CONTRIBUTED RESEARCH ARTICLE 94

F. Lotte and C. Guan. Regularizing common spatial patterns to improve BCI designs: Unified
theory and new algorithms. Transactions on Biomedical Engineering, 58(2):355–362, 2011. URL
https://doi.org/10.1109/TBME.2010.2082539. [p80]

K. Mardia, J. Kent, and J. Bibby. Multivariate Analysis. Academic Press, London, 1979. [p80]

J. Müller-Gerking, G. Pfurtscheller, and H. Flyvbjerg. Designing optimal spatial filters for single-
trial EEG classification in a movement task. Clinical Neurophysiology, 110(5):787–798, 1999. URL
https://doi.org/10.1016/S1388-2457(98)00038-8. [p80]

R. Poppe. Common spatial patterns for real-time classification of human actions. In Machine Learning
for Human Motion Analysis: Theory and Practice, pages 55–73. IGI Global, 2010. [p80]

I. Rodríguez-Moreno, J. M. Martínez-Otzeta, I. Goienetxea, I. Rodriguez-Rodriguez, and B. Sierra.
Shedding light on people action recognition in social robotics by means of common spatial patterns.
Sensors, 20(8):2436, 2020. [p87]

I. Rodríguez-Moreno, J. M. Martínez-Otzeta, B. Sierra, I. Irigoien, I. Rodriguez-Rodriguez, and
I. Goienetxea. Using common spatial patterns to select relevant pixels for video activity recognition.
Applied Sciences, 10(22), 2020. URL https://www.mdpi.com/2076-3417/10/22/8075. [p80]

W. Samek, M. Kawanabe, and K.-R. Müller. Divergence-based framework for common spatial patterns
algorithms. IEEE Reviews in Biomedical Engineering, 7:50–72, 2014. URL https://doi.org/10.1109/
RBME.2013.2290621. [p80]

H. Wang, Q. Tang, and W. Zheng. L1-norm-based common spatial patterns. IEEE Transactions on
Biomedical Engineering, 59(3):653–662, 2012. URL https://doi.org/10.1109/TBME.2011.2177523.
[p80]

S.-L. Wu, C.-W. Wu, N. R. Pal, C.-Y. Chen, S.-A. Chen, and C.-T. Lin. Common spatial pattern and linear
discriminant analysis for motor imagery classification. In 2013 IEEE Symposium on Computational
Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), pages 146–151. IEEE, 2013. [p80]

H. Yu, H. Lu, S. Wang, K. Xia, Y. Jiang, and P. Qian. A general common spatial patterns for EEG
analysis with applications to vigilance detection. IEEE Access, 7:111102–111114, 2019. URL https:
//doi.org/10.1109/ACCESS.2019.2934519. [p80]

Itsaso Rodríguez
Department of Computation Science and Artificial Intelligence, University of the Basque Country UPV/EHU
Manuel Lardizabal 1, Donostia
Spain
itsaso.rodriguez@ehu.eus

Itziar Irigoien
Department of Computation Science and Artificial Intelligence, University of the Basque Country UPV/EHU
Manuel Lardizabal 1, Donostia
Spain
itziar.irigoien@ehu.eus

Basilio Sierra
Department of Computation Science and Artificial Intelligence, University of the Basque Country UPV/EHU
Manuel Lardizabal 1, Donostia
Spain
b.sierra@ehu.eus

Concepción Arenas
Department of Genetics, Microbiology and Statistics. Statistics Section, University of Barcelona UB
Diagonal 645, Barcelona
Spain
carenas@ub.edu

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.1016/S1388-2457(98)00038-8
https://www.mdpi.com/2076-3417/10/22/8075
https://doi.org/10.1109/RBME.2013.2290621
https://doi.org/10.1109/RBME.2013.2290621
https://doi.org/10.1109/TBME.2011.2177523
https://doi.org/10.1109/ACCESS.2019.2934519
https://doi.org/10.1109/ACCESS.2019.2934519
mailto:itsaso.rodriguez@ehu.eus
mailto:itziar.irigoien@ehu.eus
mailto:b.sierra@ehu.eus
mailto:carenas@ub.edu

	dbcsp: User-friendly R package for Distance-Based Common Spatial Patterns
	Background
	CSP and DB-CSP
	Implementation
	Input
	```̃'`dbcsp object

	User guide with a real example
	Basic/classic analysis
	Basic/classic analysis selecting the value of q
	Basic/classic analysis new unit classification

	Extending the example
	Conclusions


