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We outline a numerical procedure to incorporate the crystal symmetries in the Helmholtz Fermi-
surface harmonics basis set, which are the solutions of the Helmholtz equation defined on the Fermi
surface. This improvement allows for an optimal representation of anisotropic quantities defined on
the Fermi surface in terms of few symmetric elements of the set. We demonstrate the general validity
of our approach by identifying the fully symmetric Helmholtz Fermi-surface harmonics subset for
several representative systems with different crystal structures, namely, FCC-Cu, HEX-MgB2, and
BCC-YH6. Furthermore, we illustrate the potential of the method applied to the electron-phonon
problem, showing that the anisotropic electron-phonon mass-enhancement parameter λk can be
represented to high accuracy by a handful of coefficients. This works as an effective filter, paving
the way for a reduction of several orders of magnitude in the computation of superconductivity,
impurity problems, or any other Fermi surface dependent property of metals from first principles.

I. INTRODUCTION

Due to the Pauli exclusion principle, the low-energy
electronic excitations in a metal are restricted to a very
narrow window around its Fermi surface (FS). Conse-
quently, the transport properties of metals at finite tem-
peratures and/or external electromagnetic fields are gov-
erned by the specific shape and topology of its FS, and
by the details of the matrix elements defining the scat-
tering processes on it. One of the most important scat-
tering source for electrons in metals is their interaction
with the lattice vibrations or phonons [1]. The electron-
phonon interaction yields a renormalization of the elec-
tronic quasiparticles near the FS, modifying their effec-
tive mass and their lifetime, which ultimately gives rise
to observable macroscopic phenomena such as the tem-
perature dependent resistivity [2], or even conventional
superconductivity [3, 4].

The ubiquitous presence of the electron-phonon inter-
action has led to a persistent effort to model this phys-
ical process ever since the early days of the quantum
theory of solids. However, practical ab initio calcula-
tions with the ability to accurately predict complex ma-
terials properties related to the electron-phonon inter-
action have been possible only recently [5]. The main
obstacle to overcome has been the ability to compute,
at a reasonable cost, the electron-phonon matrix ele-
ments on dense meshes sampling the Brillouin Zone (BZ),
which is necessary to capture the fine details of the FS
anisotropy. Several efficient numerical techniques have
been developed during the last years for this purpose
[6–8], which have boosted tremendously the accuracy of
theoretical studies on electron-phonon driven phenom-
ena, such as temperature-dependent charge transport
[9, 10], non-adiabatic corrections to phonon dispersions
[11–13], quasiparticle renormalization signatures in angle
resolved photoemission spectra [14–16], or gap anisotropy

in phonon-mediated superconductors [17].
Nevertheless, these studies have also shown explicitly

that extremely fine samplings of the BZ are necessary to
obtain converged results, requiring more than 105 points
in the reciprocal space in typical cases [7]. Apart from
the obvious issues related to computer memory demands,
the amount of information to be handled on the Fermi
surface makes the data analysis of anisotropic quanti-
ties certainly difficult, and relegates the comparison be-
tween calculations performed with different meshes to a
qualitative level. More importantly, for electron-phonon
problems such as the Eliashberg equations of supercon-
ductivity [4, 17], in which integral equations have to
be solved self-consistently on the FS, the computational
workload gets exceedingly high. This has made the high-
throughput calculations of superconducting properties a
challenging task up to date. Thus, developing a method
to effectively treat the anisotropy of the electron-phonon
interaction while keeping full accuracy seems very ap-
pealing.

Almost half a century ago, Allen proposed a procedure
by which scalar quantities defined on the FS could be
transformed into a new basis set composed of polynomi-
als of electron velocities orthogonalized on the FS, which
he called Fermi-surface harmonics (FSH) [18]. He further
anticipated that, if the expansion of anisotropic quanti-
ties on FSHs was rapidly convergent, integral problems
like the Eliashberg equations could be solved in a par-
ticularly simple and efficient way. Despite the interest
that the potential of the method sparked in the com-
munity, it has only been applied after imposing further
approximations in the anisotropy of the electron-phonon
interaction [19], or only very recently for relatively simple
systems in scarce occasions [20, 21]. Among the possi-
ble reasons behind the lack of systematic applicability of
the method are the difficulty in the construction of the
basis set, which involves several semi-analytic steps and
requires a different procedure for each crystal structure,
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and the fact that the completeness of the basis set cannot
be guaranteed for general surfaces.

An alternative definition of the FSH basis set was
put forward by some of the authors in Ref. [22], which
overcome the limitations of Allen’s proposal. In this
novel approach, the orthonormal basis functions, called
Helmholtz Fermi-surface harmonics (HFSH), are ob-
tained by a purely numerical procedure as eigenfunctions
of the Laplace-Beltrami operator on a triangularly tessel-
lated Fermi surface, allowing for a systematic construc-
tion of the basis set on any FS topology. However, the
crystal symmetries were incorporated only approximately
in the triangulated FS —and as a result in the properties
of the basis set—, limiting the potential of the method
in the compression of physical anisotropic quantities.

In this paper, we improve on Ref. [22] by incorpo-
rating the symmetries of the crystal in the HFSH ba-
sis set. We propose a numerical procedure to obtain a
fully-symmetric triangulated FS, which is general and
applicable to any crystal structure. The main outcome
of the upgrade is the ability to detect functions within
the HFSH set that are invariant under all the symme-
try operations of the crystal. As any scalar physical
quantity defined on the FS must also follow this sym-
metry restriction, its expansion on the HFSH basis set
will have finite coefficients only in the fully-symmetric
subset. This implies an extra reduction of about an or-
der of magnitude in the compression of anisotropic FS
quantities with respect to Ref. [22]. We describe the pro-
cedure using FCC-Cu as an example, and demonstrate
its potential in the electron-phonon problem by showing
that the mass-enchancement parameter of the anisotropic
superconductors HEX-MgB2 and BCC-YH6 can be rep-
resented to high accuracy by a handful of coefficients.

The rest of the paper is structured as follows. In Sec.II,
we describe the details of the implementation to obtain a
fully symmetric triangulated Fermi surface. In Sec.III, we
analyze the effects of the symmetries of the triangulated
mesh in the HFSH basis set. Using FCC-Cu as an ex-
ample, we detect the fully symmetric HFSH subset, and
confirm that only coefficients of this subset contribute
to the expansion of any symmetric quantity defined on
the FS. In Sec.IV, we apply the method to two distinct
phonon-mediated superconductors with different crystal
symmetries and FS topologies, namely HEX-MgB2 and
BCC-YH6, demonstrating the general validity and the
potential of the method.

II. FULLY SYMMETRIC TRIANGULATED
FERMI SURFACE

In this section we describe a numerical procedure to
obtain from first principles a triangular tessellation of
the Fermi surface of any metal, which fulfills all the point
group symmetries of its crystal structure.

In principle, a robust method for accomplishing such
a task is the linear tetrahedron method [23]. In its orig-

inal formulation, the tetrahedral tessellation of the BZ
is performed in crystal coordinates, where a k-point grid
translates into cubes which can be trivially decomposed
in six tetrahedra. This approach was used in Ref. [22].
However, when analyzing in detail the resulting trian-
gulated isosurface, one finds that the symmetries of the
crystal are not incorporated in the FS. In other words,
the triangulated FS obtained is not invariant under all
the symmetry operations of the crystal —as it should—,
due to the broken symmetries introduced by the initial
tetrahedral tessellation of the BZ.

This led us to modify the original method, and to find
an irreducible isosurface in a previously detected irre-
ducible BZ in Cartesian coordinates. As we will see in
the next sections, this variation provides an elegant and
effective way of obtaining a fully symmetric triangulated
Fermi surface, but also poses some technical difficulties,
which are nevertheless overcome by our procedure.

We describe our approach following several steps.
First, the irreducible volume of the BZ (IBZ) is identified.
Then a tetrahedral tessellation of the IBZ is generated,
from which a triangulated irreducible Fermi surface (IFS)
is obtained using the linear tetrahedron method. As an
optional intermediate step, different mesh improvement
techniques are proposed and implemented in order to in-
crease the quality of the triangular mesh. Finally, the
IFS is rotated using all the symmetries of the crystal, re-
sulting in a high-quality and fully symmetric triangulated
Fermi surface.

A. Detection of the irreducible wedge of the
Brillouin zone

In any crystal system, an irreducible wedge of the Bril-
louin zone exists from which the full BZ can be recovered
by applying all the symmetry operations that the crys-
tal possesses. The first task in our procedure will be to
identify such an irreducible volume of the Brillouin zone,
for any system crystallizing in a given space group.

Geometrically speaking, the BZ is a polyhedron com-
posed of polygonal faces joined by edges. We first make
the observation that, apart from the Γ point that lies in
the center of the BZ, the high symmetry points of the 14
types of Bravais lattices always lie either in the center of a
face, or in the corner or the middle-point of an edge [24].
As an illustrative example, we show in Fig. 1(a) the BZ
of the FCC lattice (space group Fm3m), in which all the
corners, the centers of the faces and the middle-points of
the edges have been highlighted with blue dots.

Joining each of the points in the edges with the points
at their nearest corners, and these two in turn with the
points at the center of their corresponding face, we can
create a triangular tessellation of the polygonal faces of
the BZ. Moreover, joining all of these points with the
Γ point in the center of the BZ, we can obtain a star
tetrahedral tessellation of the whole BZ volume. Given
that, by definition, all the non-equivalent high symmetry
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FIG. 1. Numerical procedure to obtain a fully symmetric triangulated Fermi surface. (a) Star tetrahedral tessellation of the full
BZ, from which the irreducible BZ volume can be detected (b). Irreducible faces at the IBZ boundary are highlighted in blue.
(c),(d),(e) Fine tetrahedral tessellation of the IBZ. The IBZ boundary faces are first triangulated (c), extra Steiner points are
added within the IBZ volume (d), and a Delaunay tetrahedralization is performed constrained by the triangular facets at the
boundary (e). The linear tetrahedron method is applied in the fine tetrahedra (f), from which a triangulated irreducible Fermi
surface is obtained (g). (h),(i),(j) Mesh-refinement techniques are applied to the IFS, resulting in a high-quality triangulated
mesh. (k),(l) In a last step, all the symmetry operations are applied to the IFS (k), obtaining a fully symmetric triangulated
FS (l).

points have to be included in the irreducible wedge of
the BZ, we can represent the IBZ as the sum of several
of these tetrahedra. We show in Fig. 1(a) the coarse
tetrahedral tessellation of the FCC BZ volume obtained
in this way, in which some tetrahedra have been removed
for ease of visualization.

In order to determine which are the irreducible tetra-
hedra that we have to include in order to form the IBZ of
a given system, we need to know the particular symmetry
operations belonging to its space group. The procedure
is similar to the one used to detect the irreducible num-
ber of k-points within a regular grid that can form a
full mesh in the BZ by applying all the symmetry opera-
tions of a particular system. In a first step, one selects an
arbitrary tetrahedron and applies all the symmetry oper-
ations allowed by the point group. In this way, we detect
the volume of the BZ connected by symmetry to the ini-
tially selected tetrahedron. We repeat this operation for
all the tetrahedra in the initial tessellation of the BZ vol-
ume, constructing in this way the irreducible volume of
the BZ. As an example, the resulting IBZ volume for the
FCC lattice, which is composed by three tetrahedra, is
shown in Fig. 1(b).

As a result of the translational invariance of crystals, at
the BZ boundary the Fermi surface possesses extra sym-
metries beyond the point group. In this respect, we have
to check for further reduction of the irreducible wedge
at the BZ boundary. For this purpose, we repeat a sim-
ilar procedure as the one described above, but only for
the triangular facets on the boundary of the IBZ volume.
We now apply S +G operations, where S is a symmetry

rotation and G is a reciprocal lattice vector, and check
if any of the facets can be recovered from an irreducible
subgroup. Following with the FCC example, we find that
one of the three triangular facets (F3) can be recovered
in this way from its neighbor facet (F2). The irreducible
facets of the IBZ (F1 and F2) are highlighted in blue in
Fig. 1(b).

B. Tetrahedral tessellation of the irreducible wedge
of the Brillouin zone

The next step in our procedure will be to obtain a fine
tetrahedral tessellation of the irreducible wedge of the
Brillouin zone identified in the previous section. The
tetrahedral tessellation of a general polyhedron defin-
ing the IBZ in Cartesian coordinates is not trivial, and
the S +G symmetries mentioned in the previous section
forces us to proceed with care. We describe the scheme
we have implemented for this purpose in the following.

The first task will be to triangulate the faces of the IBZ
volume in such a way that all the S + G symmetries are
fulfilled. To this end, in a first step we triangulate the
irreducible facets that are related to the non-irreducible
ones by symmetry (F2 in Fig. 1(c)). In a second step,
we obtain the triangulation of the non-irreducible facets
by applying the corresponding symmetry operations (F3

in Fig. 1(c)). In a third step, we triangulate all the rest
of the irreducible facets, considering the constraints im-
posed by the nodes already present in the facet-joining
edges.
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For the triangulation of each facet, we first distribute
nodes throughout the facet-plane. This distribution is
done in such a way that the projection of a given mesh
of points in the reciprocal-lattice vectors {nk1 , nk2 , nk3}
onto the facet-plane is approximately matched, setting
the condition that the nodes on each edge are regularly
spaced. Then a constrained Delaunay triangulation is
constructed from these nodes using the Triangle code
[25], in which the edges of the facet are maintained. As an
example, the triangulation obtained in such a way for the
boundary of the FCC IBZ volume is shown in Fig.1(c),
where the facet obtained by symmetry is highlighted in
red.

Next, as shown in Fig. 1(d), we populate the IBZ vol-
ume with a set of regularly spaced points, selected from
the points of the {nk1 , nk2 , nk3}mesh that fall within this
volume.

Finally, a constrained Delaunay tetrahedralization is
constructed using the TetGen code [26], in which the
boundary triangulation is maintained and the volume-
nodes are added as Steiner points. The resulting tetra-
hedral tessellation of the FCC IBZ example is shown in
Fig. 1(e), in which some of the tetrahedra on the upper
part have been removed for ease of visualization.

C. Linear tetrahedron method and triangle mesh
refinement

Filling the IBZ volume with tetrahedra, as described
above, allows us to apply the linear tetrahedron method
[23] in order to obtain a numerical representation of the
irreducible Fermi surface in terms of a triangle mesh.

Each tetrahedron marks four points in the reciprocal
space in which the energies have to be computed, as
represented schematically in Fig. 1(f) by (ε1, ε2, ε3, ε4).
Then we check if the energy corresponding to the iso-
surface lies within the values at the corners of the tetra-
hedron. In the affirmative case, a linear interpolation
among the values at the corners gives an approximation
to the points in which the isosurface crosses the tetra-
hedral edges. Depending on the number of edges that
the isosurface crosses, one or two triangles can be formed
inside the tetrahedron, as discussed in detail, for exam-
ple, in Ref.[22]. The simplest case is shown in Fig. 1(f),
in which the isosurface (denoted as εF) crosses three of
the tetrahedral edges, directly forming a triangle inside.
All the triangles constructed in this way form a two-
dimensional triangle mesh, representing numerically the
Fermi surface within the IBZ.

As an illustrative example, we show in Fig. 1(g) the
isosurface obtained for FCC-Cu from the tetrahedral tes-
sellation of the IBZ shown in Fig. 1(e) [27] . A clearer
view of the triangle mesh formed in this example is shown
in Fig. 1(h).

As it can be noted from this figure, even if a good
initial tetrahedral tessellation is provided, the resulting
triangular mesh may be of a low quality, meaning that

the isosurface may present an inhomogeneous density of
vertices which will most likely form a set of triangles with
a poor aspect ratio. Although not strictly necessary, it
is highly desirable to incorporate procedures to improve
the quality of the mesh, possibly eliminating redundant
and poor-quality triangles. We have implemented two
different mesh refinement techniques, namely the mesh-
simplification and the vertex-relaxation procedures [28].
Special care has been taken with the vertices at the BZ
boundary, so that the borders of the irreducible Fermi
surface are preserved, and the S + G symmetries are
maintained after the refinement process.

In the mesh-simplification procedure, triangles with a
poor shape-quality are detected first, following the cri-
teria that one of their edges is much shorter than the
perimeter of the triangle, up to a given threshold value.
This short edge is collapsed, so that one vertex and one
triangle are removed from the mesh, though maintain-
ing the original topology. This procedure is repeated it-
eratively until all poor shape-quality triangles are elimi-
nated. The simplified mesh obtained after this procedure
in the FCC-Cu example is shown in Fig. 1(i).

The so-called vertex-relaxation procedure consists of
two steps. First, a tangential relaxation of the vertices
is performed. Each vertex is moved from its position
seeking a homogeneous distance with respect to all of
its neighbor vertices. However, this movement is con-
strained to the tangential plane of the vertex, defined by
its velocity vector, vnk = ∇εnk/h̄. Note that this vector
for a k-point at the Fermi surface is, by definition, the
normal vector of the Fermi surface at this point. The
Fermi velocities vnk at the triangular vertices are com-
puted efficiently by means of the Wannier interpolation
method [29–31]. This procedure is repeated iteratively
for all the vertices in the mesh, resulting in a homoge-
neous distribution of triangles with similar areas. Fi-
nally, the vertices are relaxed along their normal vector.
This additional step compensates the error introduced by
the linear interpolation in the regular linear tetrahedron
method, so that the final relaxed vertices are located at
εF to a great accuracy [22].

The final refined mesh for the FCC-Cu example is
shown in Fig. 1(j), where the improvement in the quality
of the mesh is clearly appreciated. These mesh refine-
ment techniques translate into a considerable accuracy
and efficiency gain in the computation of Fermi surface
integrals.

D. Rotation to a fully symmetric Fermi surface

The very last step in our procedure consists of applying
all the symmetry operations to the irreducible Fermi sur-
face described in the previous sections, in order to obtain
a fully symmetric Fermi surface mesh, which is invariant
under all the symmetry operations of the crystal up to
numerical precision.

The irreducible part of the Fermi surface of the FCC-
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Cu example is shown within the full BZ in Fig. 1(k).
The complete Fermi surface mesh obtained by rotation
of the irreducible part is shown in Fig. 1(l). As can be
appreciated in the figure, our procedure provides a high-
quality triangulated Fermi surface, which fulfills all the
symmetries of the crystal. We note that working on the
IBZ as a prior step, and making use of efficient com-
putational geometry packages [25, 26] and the Wannier
interpolation method [29–31], turns the computational
cost of constructing the fully symmetric triangular mesh
minimal as compared, for example, to a typical ground
state calculation.

As a last remark, we mention that even though the
linear tetrahedron method has been already used in other
works to obtain a triangulated Fermi surface [9, 32, 33], to
the best of our knowledge the symmetries of the FS have
not been incorporated exactly in the triangulated mesh
in these works, as it is done in our procedure. In the next
sections we will show the importance of this aspect in the
construction of the Helmholtz Fermi-surface harmonics
basis set, and in its application to compress anisotropic
quantities on the Fermi surface into a few coefficients.

III. SYMMETRIES ON THE HELMHOLTZ
FERMI-SURFACE HARMONICS BASIS SET

In this section, we show how the fully symmetric tri-
angulated Fermi surface obtained by the procedure de-
scribed in Sec. II provides a direct way to incorporate the
symmetries of the crystal in the HFSH basis set.

For completeness, we first review the main aspects of
the method proposed in Ref. [22] to obtain the basis set.
The HFSHs are defined as the eigenmodes of a velocity-
weighted Laplace-Beltrami operator on the curved Fermi
surface,

v(k)∇2
kΦL(k) + ωLΦL(k) = 0, (1)

where ωL are the eigenvalues associated with the HFSH
set functions {ΦL(k)}, which obey the following orthog-
onality condition,∫

d2sk
v(k)

ΦL′(k)ΦL(k) = δL′,L

∫
d2sk
v(k)

. (2)

The triangular tessellation of the Fermi surface allows
for a numerical solution of a discretized version of Eq. 1,
which is transformed into a generalized sparse eigenvalue
problem:

v(ki)

Si

∑
j

Ωi,jΦL(kj) = ωLΦL(ki) . (3)

In this expression, i and j are indices for vertices on the
triangulated mesh, ki represents the coordinates of a ver-
tex i in the reciprocal space, and Si its control area, de-
fined as the sum of 1

3 of its neighboring triangle areas.

The discretized Laplace-Beltrami operator Ωi,j takes the
form

Ωi,j =

{
− 1

2 [cot(αi,j) + cot(βi,j)] i 6= j∑
i6=j Ωi,j i = j

, (4)

where αi,j and βi,j are the two opposite angles of the
triangles sharing the edge joining the vertices i and j.

By virtue of its completeness, we can efficiently repre-
sent any anisotropic function F (ki) defined on the trian-
gulated Fermi surface by performing an expansion in the
HFSH basis set,

F (ki) =
∑
L

cL(F )ΦL(ki) , (5)

where the expansion coefficients are defined by the fol-
lowing FS integrals:

cL(F ) ≡

∫
SF

d2sk
v(k) ΦL(k)F (k)∫
SF

d2sk
v(k)

≈
∑
i

Si

v(ki)
ΦL(ki)F (ki)∑
i

Si

v(ki)

.

(6)
We refer the reader to Ref. [22] for further details and

properties of the HFSH basis set.

A. Degenerate subspaces

Clearly, the symmetries of the surface on which Eq. 1 is
defined translate into symmetric properties of the HFSH
basis set. Given that the symmetries of the surface are
exactly maintained in the triangulated mesh, these prop-
erties will be preserved in the discretized form of Eq. 3.
The fulfillment of this requirement is guaranteed if the
mesh is constructed following the procedure described in
Sec. II. We note that any symmetric mesh obtained by
any other alternative procedure is also valid for the con-
clusions drawn in the rest of the paper.

A straight consequence of retaining the symmetries on
the surface appears in the degeneracies of the energy lev-
els ωL. For instance, in a perfect sphere, the full rota-
tional symmetry enforces the threefold and fivefold de-
generacies in the p and d spherical harmonics, respec-
tively. Even though the full rotational symmetry of the
sphere is broken in a realistic Fermi surface due to the
crystal field, the possible discrete rotational symmetries
of the crystal may enforce subspaces within the HFSH
basis set which are exactly degenerate.

Continuing with the FCC-Cu example, we show in
Fig. 2(a) the first nine HFSH basis functions ΦL(k), ob-
tained as solutions of Eq. 3 on the symmetric mesh pro-
duced in Sec. II. The corresponding eigenvalues ωL are
shown in Fig. 2(b), compared with the eigenvalues ob-
tained on a mesh in which the crystal symmetries are
not explicitly enforced, as in Ref [22]. As discussed in
Ref. [22], the threefold degeneracy in the p-like harmon-
ics is maintained, but the energies of the d-like states are
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split into two subspaces of threefold and twofold degen-
eracies.

However, a closer look reveals that these degeneracies
are fulfilled only approximately on the non-symmetric
mesh, as shown in Fig. 2(c) for the energies of the p-like
harmonics. As we can see in this figure, not incorporating
the symmetries exactly on the mesh can introduce errors
of ∼ 0.15% in the energies. In contrast, when using the
exactly symmetric mesh we obtain equal energies up to
numerical accuracy, with relative differences of the order
of ∼ 10−10 in this particular example. Similar results
are obtained for all the degenerate subspaces of the full
HFSH basis set.

B. Fully symmetric HFSHs

As the triangular mesh in which Eq. 3 is solved and
in which the ΦL(ki) functions are defined is exactly
symmetric, we can identify numerically those functions
within the HFSH basis set that are invariant under all
the symmetry operations of the crystal. We will name
this subset the fully symmetric HFSHs, and label them
with the symbol L̃. Formally, they are identified as the
functions within the HFSH basis set that satisfy the fol-
lowing condition:

ΦL̃(Snki) = ΦL̃(ki) , (7)

for all n, where Sn is a symmetry operation of the crystal.
As an example, in the FCC-Cu case, out of the first 400
HFSH functions only 12 satisfy Eq. (7) and are shown in
Fig. 3(a).

The fact that most of the physical properties defined
on the Fermi surface are invariant under all the symme-
try operations of the crystal imposes severe restrictions
on their expansion in the HFSH basis set. As can be
directly deduced from Eq. 5, if a given function F (ki) is
fully symmetric on the FS, only those coefficients corre-
sponding to the fully symmetric HFSHs can give a finite
contribution in the expansion.

We now demonstrate that this restriction is satisfied
in our implementation up to numerical precision. As an
illustrative example, we consider the squared of the Fermi
velocity, F (k) = v2(k), clearly a fully symmetric function
[see inset of Fig. 3(b)]. We show in Fig. 3(b) the first
400 coefficients of the expansion of this function in the
HFSH basis set [see Eq. 6], relative to the value of the
first coefficient, i.e. the FS average v20 ≡ 〈v2(k)〉FS.

As appreciated from this figure, the values of the ex-
pansion coefficients decrease rapidly for larger HFSH in-
dices. This trend goes in line with the fact that HFSHs
with higher energies oscillate more intensely, and there-
fore only add finer details to the anisotropy of the ex-
panded function. The more isotropic is the quantity to
be transformed, the less are the coefficients needed for a
faithful representation of its anisotropy. In the extreme
case of a constant function, only the first coefficient will
be finite.

(a)

(b)

(c)

L=0 L=1 L=2 L=3

L=4 L=5 L=6 L=7 L=8

(a
rb

. 
u
.)

ΦL(k)   
min max

(a
rb

. 
u
.)

FIG. 2. Degeneracies in the HFSH eigenmodes. (a) First
nine HFSH basis functions for FCC-Cu, and (b) their cor-
responding eigenvalues. The eigenvalues obtained using the
fully symmetric mesh are shown in blue, and the eigenvalues
obtained in Ref. [22] are shown in orange for comparison. (c)
Zoom on the first non-zero eigenvalues, highlighting the nu-
merical accuracy of the degeneracy in the symmetric mesh.

Most importantly, we see that only those coefficients
corresponding to the fully symmetric HFSHs shown in
Fig. 3(a) have a finite value, the rest being all strictly
zero up to numerical precision. We show this more clearly
in Fig. 3(c), which zooms into the last two finite coeffi-
cients of Fig. 3(b). The magnitude of these coefficients
is only ∼ 0.5% of the average value, showing that we
can achieve this accuracy in the representation of the
anisotropic function v2(k) of this example by using only
12 coefficients.

All in all, the use of a fully symmetric Fermi sur-
face for the construction of the HFSH basis set, and
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the identification of the fully symmetric HFSH subset,
allows us to obtain an extra reduction of at least one
order of magnitude in the computational workload to de-
scribe anisotropic quantitites on the FS with respect to
Ref. [22]. Note that this method already introduced a
saving factor of approximately two orders of magnitude
with respect to the conventional k-space representation.
In the next section we apply this methodology to the
electron-phonon problem, where the k-space representa-
tion of the related quantities generates a major bottle-
neck in the computation of prominent properties of met-
als, such as superconductivity.

IV. ELECTRON-PHONON ANISOTROPY IN
THE HFSH REPRESENTATION

Given that the energy scale of phonons (∼meV) is
roughly three orders of magnitude smaller than the en-
ergy scale of the electrons (∼eV), the electron-phonon
scattering events are, to a good approximation for most
metals, limited to the Fermi surface. Nonetheless, the
variation of the electronic wave functions and velocities
on the FS is usually sizable, and so is the variation of
the phonon frequencies and change of potential for the
different momentum vectors joining the electron states
on the FS. This implies that, for an accurate description
of electron-phonon problems, the anisotropy of the ma-
trix elements and the related quantities on the FS have
to be accurately taken into account, which poses a ma-
jor computational bottleneck in practical calculations. In
this section we will show that the HFSH representation
presented in Sec. III provides an elegant and extremely
efficient solution to this difficulty.

As a representative anisotropic quantity related to the
electron-phonon problem, we consider the momentum-
dependent mass enhancement parameter for electron
states at the FS,

λnk =
2

ΩBZ

∑
mν

∫
SF

d2sk′

v(k′)

|gνmn(k,k′)|2

ωνk′−k
, (8)

where ΩBZ is the BZ volume, n and m represent elec-
tron band indices, ωνk′−k is the frequency of the phonon
mode ν at momenta q ≡ k′ − k, and gνmn(k,k′) is the
electron-phonon matrix element for the scattering of an
electron nk to mk′ via emission/absorption of a phonon
νq . The λnk parameter is the most meaningful measure
of the quasiparticle renormalization driven by electron-
phonon interactions, directly affecting several transport
properties such as the electronic heat capacity or the am-
plitude of the de Haas-van Alphen oscillations [1]. Its
average over the FS is a central parameter in simplified
expressions for the critical temperature of superconduc-
tors [34, 35], and its two-index and frequency-dependent
generalization is crucial in the full Eliashberg theory of
superconductivity [4]. We note, however, that the com-
pression described below is equally applicable to any

anisotropic quantity defined on the FS, such as transport
scattering rates 1/τk, or the superconducting energy gap
∆k.

A. HEX-MgB2

As a first example we consider the prototypi-
cal anisotropic phonon-mediated superconductor MgB2.

L=0 L=17 L=33 L=63

L=121 L=131 L=162 L=217

L=257 L=281 L=336 L=375

(a)

(b)

ΦL(k)   
min max

v2(k)   (a.u.)

0.35

0.15

(c)

FIG. 3. Fully symmetric HFSHs. (a) First 12 fully symmetric
HFSH basis functions for FCC-Cu, together with their index
in the full HFSH basis set. (b) First 400 expansion coefficients
in the HFSH basis set for the squared modulus of the electron
velocity, relative to the L = 0 coefficient. The magnitude and
anisotropy of v2(k) over the FS is shown in the inset in atomic
units. Only the fully symmetric HFSH functions shown in (a)
give finite contributions, as highlighted in (c) where a zoom
on the last two finite coefficients is shown.



8

(a) (b) (c)

0.35 1.37

λk   ΦL(k)   
min max

FIG. 4. (a) Anisotropic electron-phonon mass-enhancement parameter λk on the Fermi surface of MgB2, separated in the
four different FS sheets. (b) First four fully symmetric HFSH basis functions for each FS sheet. The hexagonal BZ and the
corresponding IBZ is shown in the top left corner. (c) First ten expansion coefficients of λk for each FS sheet in the fully
symmetric HFSH subset. The inset shows the same result with a logarithmic scale on the y-axis.

The calculation parameters have been chosen with the
aim of making the comparison with previous works as
direct as possible. The ground state calculations have
been performed with the Quantum ESPRESSO pack-
age [36] within the local density approximation of den-
sity functional theory [37] in a 243 k-point grid, using
norm-conserving pseudopotentials and a kinetic energy
cutoff of 60Ry in the plane-wave expansion of valence
electronic wave functions. The lattice parameters have
been set to the experimental values of a = 5.832 bohr
and c/a = 1.142 [38]. Phonon properties have been com-
puted within density functional perturbation theory [6]
on a 83 q-point grid. Electron-phonon matrix elements
have been computed on a coarse (83, 83) k and q-point
grid, and the Wannier interpolation method [7, 8, 29–31]
has been used to interpolate the matrix elements to the
triangular vertices [8, 13, 16, 39–41]. As a last remark,
we note that the high-quality triangulated Fermi surface
as obtained by the method presented in Sec. II allows for
an efficient numerical integration of Eq. (8),

λnki ≈
2

ΩBZ

∑
mν

∑
j

Sj
v(kj)

|gνmn(ki,kj)|2

ωνkj−ki

, (9)

where only the matrix elements at the k-points lying on
the FS vertices are needed.

We show in Fig. 4(a) our results for the anisotropic
mass-enhancement parameter of MgB2, in which the four
different FS sheets have been separated for clarity. In
agreement with previous works [8, 17, 42], we find that
λnk takes considerably large values in the range of 1.00–
1.37 on the cylinder-like FS sheets corresponding to the
σ bands. In contrast, the FS sheets formed by the π
bands couple much less efficiently to phonons, resulting
in smaller λnk values in the range of 0.35–0.47. Apart
from the arrangement of the absolute values of the λnk
parameter in two main groups, this figure also shows that
its anisotropy within each FS sheet is sizable.

For the Fermi surface averaged mass-enhancement pa-
rameter we obtain λ = 0.73, also in very good agreement
with previous calculations [8, 17, 42]. In particular, we
find that our results agree very well with the values pre-
sented in Ref. [17], where a systematic convergence test of
λ with respect to the k-point sampling was performed.
Remarkably, while they showed that ∼ 105 points are
needed in the three-dimensional BZ to obtain converged
results when approximating the FS with a smearing func-
tion, we already obtain convergence in the average value
and the distribution of λk with ∼ 8 × 103 points in the
triangulated Fermi surface.

Now we move on to the HFSH representation. Being a
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scalar quantity, the λnk parameter is invariant under all
the symmetry operations of the crystal, as can be appre-
ciated in Fig. 4(a). Therefore, as discussed in Sec. III B,
its expansion will only have finite coefficients in the fully
symmetric HFSH subset:

λn,L̃ =

∫
SFn

d2sk
v(k) Φn,L̃(k) λnk∫
SFn

d2sk
v(k)

. (10)

Note that the HFSH functions for each FS sheet are in-
dependent by construction [22] , and that the integrals
are performed over the corresponding sheet SFn

.
We show in Fig. 4(b) the first four fully symmetric

HFSH functions for the different FS sheets of MgB2. The
first HFSH function is always the trivial constant solution
with eigenvalue ωL̃ = 0, and the following ones oscillate
more and more rapidly in direct analogy with the nor-
mal modes of a vibrating membrane. The first ten λn,L̃
coefficients given by Eq. (10) are shown in Fig. 4(c). As
it can be anticipated from Eq. (5) and by looking at the

HFSH functions of Fig. 4(b), the L̃ = 0 coefficient gives
the average value of λnk in each FS sheet, and the subse-
quent coefficients add finer and finer anisotropic details.
It is therefore reassuring to see that the magnitude of the
λn,L̃-s decay very quickly for bigger L̃-s. What is more
remarkable is the rate at which the coefficients decay. In
order to analyze this point further, we plot in the insets
of Fig. 4(c) the same result but using a logarithmic scale
in the y axis, revealing that the value of the coefficients
decay very rapidly.

Indeed, this result demonstrates that the transforma-
tion from k-space to the HFSH representation turns out
strikingly beneficial, as all the details of the λnk parame-
ter can be compressed with an accuracy of at least 10−3 in
as few coefficients as 10 λL̃-s per FS sheet. In comparison
with the ∼ 8000 triangular vertices needed in k-space,
this simplification implies a saving factor of ∼ 2 × 102

with no loss of accuracy.

B. BCC-YH6

In order to validate that our method is robust and
applicable to different systems, we apply the very same
procedure presented in the previous sections to BCC-
YH6.

Compressed hydrides have been attracting an enor-
mous interest during the last years, especially since
the prediction and discovery of conventional high-
temperature superconductivity in hydrogen sulfide under
high pressures [43–45]. Developing methods to allevi-
ate the computational cost of calculating superconduct-
ing properties appears particularly interesting in this re-
search field, in which theoretical predictions of new can-
didates guide the experimental efforts to find materials
with increasingly favorable properties [46]. YH6 repre-
sents an interesting case within this class of materials, as

the very recent experimental confirmation of supercon-
ductivity in this system [47, 48] has revealed a sizable
deviation in the measured critical temperature with re-
spect to the theoretical predictions [49–51].

We have considered YH6 at 300GPa in the BCC
structure, whith the lattice parameter reported in
Ref. [51]. Ground state calculations have been per-
formed in a 123 k-point grid within the generalized gra-
dient approximation of density functional theory [52], us-
ing norm-conserving pseudopotentials of the Goedecker-
Hartwigsen-Hutter-Teter table [53]. Phonon properties
and electron-phonon matrix elements have been com-
puted on a coarse 43 q-point grid, and later interpolated
to the triangular vertices forming the FS by the Wan-
nier interpolation method. A tessellation consisting of
∼ 7.5 × 103 vertices has been needed in this case to ob-
tain converged results.

λk   

0.74

1.90

1.32

(a)

(b) (c)

(d)

ΦL(k)   
min max

(e)

L=0

L=0

L=2 L=3

L=1

L=2 L=3

L=1

FIG. 5. (a)Anisotropic electron-phonon mass-enhancement
parameter on the six different FS sheets of YH6 at 300GPa.
The BCC Brillouin zone and the corresponding IBZ is shown
in the top left corner. First four fully symmetric HFSH basis
functions for the (b) second and (c) third FS sheets of BCC-
YH6. First ten expansion coefficients of λk for the (d) second
and (e) third FS sheets in the fully symmetric HFSH subset.
The insets show the same result with a logarithmic scale on
the y-axis.



10

Figure 5(a) shows our results for the anisotropic mass-
enhancement parameter on the six FS sheets of YH6 at
300Gpa. As can be appreciated in this figure, λk varies
considerably among the different FS sheets, ranging from
∼ 1.0 on the small electron pockets to ∼ 1.9 on some re-
gions of the biggest sheet. Most importantly, λk varies
substantially within the second and third sheets, which
in turn show strongly anisotropic and intricate topolo-
gies, serving as a challenging test for our method. We
obtain a FS averaged mass-enhancement parameter of
λ = 1.5, somewhat smaller than the λ = 1.9 reported in
Ref. [51]. We ascribe the discrepancy to the different FS
integration method, and note that our high-quality trian-
gulated mesh gives a superconducting transition temper-
ature which is in better agreement with the experimental
results [47, 48], as discussed in Ref. [54].

We present in Figs. 5(b) and (c) the first four fully
symmetric HFSH functions of the second and third FS
sheets, respectively. Their corresponding λL̃ parameters
are shown in Figs. 5(d) and (e), respectively. Similar to
HEX-MgB2, here we observe that the values of the coeffi-
cients decay very rapidly in this case as well. This means
that a relative accuracy of ∼ 10−2 can be obtained in the
description of the anisotropy of λk with less than ten co-
efficients in both sheets. This results demonstrates that
our methodology is equally valid for systems with any
kind of symmetry or FS topology, and that it appears
remarkably beneficial even in extremely anisotropic sce-
narios.

V. CONCLUSIONS

In summary, we have presented a method to describe
anisotropic Fermi surface quantities very efficiently. This
work constitutes an improvement over the HFSH basis
set presented in Ref. [22]. The major advance is the in-
corporation of crystal symmetries through the construc-
tion of a fully symmetric triangulated Fermi surface. We
have shown the general applicability of the method in
systems with different symmetries.

As an application, we have demonstrated that the
method is extremely efficient for compressing quantities
related to the electron-phonon interaction in prototypi-
cal anisotropic superconductors. The full potential of the
method will be further illustrated in an accompanying
paper [54], in which it is shown that the fully anisotropic
Eliashberg equations of superconductivity can be solved
in a very efficient and physically meaningful way in the
HFSH representation. In the case of conventional s-wave
superconductors, only the fully symmetric HFSH subset
introduced in this paper is needed.

Besides computational time and memory saving ad-
vantages, we believe that this work opens a path towards
a quantitative comparison between different calculations
—and ultimately with experiments— able to capture
anisotropic effects. Further ahead, we anticipate that this
method can provide a tabulation of coefficients describing
anisotropic physical quantities that could be included in
material databases. The need for anisotropy descriptors
in the prediction of the superconducting critical temper-
ature through machine-learning algorithms has been re-
cently pointed out, for instance, in Ref. [55]. We believe
that the coefficients obtained through the procedure pre-
sented in this work are perfect candidates to be used as
such descriptors.
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