
Automatic White-Box Testing of First-Order Logic Ontologies

JAVIER ÁLVEZ, MONTSERRAT HERMO, PAQUI LUCIO, GERMAN RIGAU

Facultad de Informática, University of the Basque Country UPV/EHU,
Paseo Manuel de Lardizabal, 1, 20018-San Sebastián, Spain.

Formal ontologies are axiomatizations in a logic-based formalism. The development of formal
ontologies is generating considerable research on the use of automated reasoning techniques
and tools that help in ontology engineering. One of the main aims is to refine and to improve
axiomatizations for enabling automated reasoning tools to efficiently infer reliable informa-
tion. Defects in the axiomatization can not only cause wrong inferences, but can also hinder
the inference of expected information, either by increasing the computational cost of, or even
preventing, the inference.
In this paper, we introduce a novel, fully automatic white-box testing framework for first-order
logic (FOL) ontologies. Our methodology is based on the detection of inference-based redun-
dancies in the given axiomatization. The application of the proposed testing method is fully
automatic since a) the automated generation of tests is guided only by the syntax of axioms and
b) the evaluation of tests is performed by automated theorem provers. Our proposal enables
the detection of defects and serves to certify the grade of suitability –for reasoning purposes–
of every axiom. We formally define the set of tests that are (automatically) generated from any
axiom and prove that every test is logically related to redundancies in the axiom from which
the test has been generated. We have implemented our method and used this implementation
to automatically detect several non-trivial defects that were hidden in various first-order logic
ontologies. Throughout the paper we provide illustrative examples of these defects, explain
how they were found, and how each proof –given by an automated theorem-prover–provides
useful hints on the nature of each defect. Additionally, by correcting all the detected defects,
we have obtained an improved version of one of the tested ontologies: Adimen-SUMO.

Keywords: Automated Theorem Proving, Fisrt-Order Logic, Ontology, Knowledge represen-
tation, White-box testing.

1. Introduction

Formal ontology development [46, 25, 23, 56] is a discipline whose goal is to repre-
sent explicit formal specifications (axiomatizations) of terms in a domain and relations
between them. Many research areas –such as Semantic Web, Knowledge Represen-
tation, Commonsense Representation and Reasoning [38, 40, 15]– have converged on
the adoption of formal ontologies as explicit conceptualizations that are able to support
automated reasoning. In this paper we focus on First-Order Logic (FOL) ontologies.
Description Logic (DL) [10] is a family of formal knowledge representation languages

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Logic
and Computation 29(5) : 723-751 (2019), copyright © The Author(s) 2019. Published by Oxford University Press. All
rights reserved. .To access the final edited and published work see https://doi.org/10.1093/logcom/exz001

2 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

that is very commonly used in the ontology area, but DL is less expressive than FOL.
Ontologies such as e.g. CYC [37], DOLCE [20] and SUMO [44] which are very use-
ful in some areas –e.g. commonsense reasoning and natural language processing– use
more expressive languages (FOL or higher). Moreover, DL is a sublanguage of FOL
and consequently the techniques presented in this paper can also be applied to DL
ontologies.1

As with other software artifacts, ontologies have to fulfill some previously spec-
ified requirements. Clear (and explicit) ontological distinctions and principles such
as those provided by OntoClean [25] reduce the risk of classification mistakes in the
ontology development process, and can simplify its maintenance. Both the creation
of ontologies and the verification of its requirements are usually semi-automatic tasks
that require a significant amount of human effort [2]. Once the ontology is stable
and consistent (or at least no inconsistencies can be found by automatic means), the
methods for ontology testing can be classified into two main categories: black-box
and white-box, as in the field of software testing [42]. Black-box methods are based
on the use of tests defined according to the requirements of the given ontology, while
white-box methods are characterized by the fact that tests are created upon the partic-
ular specification/codification of the knowledge. In this paper, every ontology to be
tested is considered to be the specification or codification, and a set of tests is auto-
matically constructed from the axioms of the considered ontology. The construction of
each test depends only on the syntactical form of an axiom. In this sense, our strategy
is white-box. As far as we know, the only testing method (for FOL ontologies) that
can be classified as white-box is proposed in [53], where the authors propose to cre-
ate potentially unsatisfiable subsets of axioms by applying SInE strategies [29] on the
basis of a selected seed symbol. In this way, large first-order knowledge bases can be
proved to be inconsistent if some inconsistent subset is found. Among black-box test-
ing methods, most frequent ones are based on consistency checking. State-of-the-art
reasoners such as FaCT++ [62], Pellet [55] or HermiT [22] enable consistency proving
in the case of DL ontologies. On the contrary, proving the consistency of ontologies
expressed in FOL such as SUMO or DOLCE is much harder. Additionally, ontology
testing methods include those based on the use of competency questions (CQs) [24] for
validating functional requirements. That is, the competency of an ontology is described
by means of a set of goals or problems that are expected to be answers according to
its requirements. The process of obtaining CQs is not automatic but creative [17]. De-
pending on the size and complexity of the ontology, creating a suitable set of CQs is by
itself a very challenging and costly task. In [3, 4], we propose a method for the semi-
automatic creation of CQs for SUMO-based FOL ontologies on the basis of WordNet

1Indeed, in this paper we report on the application of our techniques to the DL ontology DOLCE-CASL.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 3 of 38

[16] and its mapping into SUMO [45]. Alternatively, in [13] the authors propose a
tool that creates and processes CQs written in natural language for OWL ontologies.
Finally, some other testing methods are based on cross-checking ontologies against
another knowledge bases. For example, the authors of [48] propose to find errors in
DBpedia [9, 14] by its alignment to DOLCE, and contextual knowledge extracted from
DBpedia is used for detecting hidden errors in DL ontologies as described in [61].

Regarding ontology debugging methods, the classification is slightly different [47]:
black-box methods use reasoners as the oracle for a certain set of questions e.g., sub-
sumption, satisfiability, etc.; glass-box methods are based on information extracted
from the internals of reasoners, which are sometimes specifically adapted for the de-
bugging task. There exists a large variety of techniques which are used in both classes
of methods for DL ontologies. Among others, justification based techniques in black-
box methods [19, 31, 30, 54], axiom pinpointing in black-box [12] and glass-box meth-
ods [11], and checking unsatisfiable dependant paths in glass-box methods [64]. Fur-
ther, black- and glass-box methods are combined in some proposals, using both axiom
pinpointing [52] and justification based techniques [32].

In [24], the authors propose a methodology for the design and evaluation of on-
tologies on the basis of a set of CQs. The only requirement for applying the proposed
methodology is the existence of a decision algorithm for the underlying logic. An
adaptation of this methodology to FOL ontologies is introduced in [3], which enables
ontologies to be automatically evaluated by means of the use of FOL Automated The-
orem Provers (ATPs). In this adaptation, the set of CQs is partitioned into two sets:
truth-tests and falsity-tests, depending on whether one expects the conjecture to be en-
tailed by the ontology (truth-tests) or not (falsity-tests). An example of truth-test is
“Siblings have the same mother”, since it is expected to be entailed by an ontology
(Of course, the ontology should axiomatize the involved concepts). This truth-test be-
longs to the Commonsense Reasoning CSR domain of the Thousands of Problems for
Theorem Provers (TPTP) problem library2 [57] and the latter one is a CQ in the bench-
mark proposed in [3]. On the contrary, the conjecture “Some herbivores eat animals”
is a falsity-test since it is not expected to be entailed by the ontology, in spite that the
ontology should axiomatize the involved concepts.

In this paper, we introduce a completely automatic methodology for the evalua-
tion of FOL ontologies by means of a set of automatically generated falsity-tests and
truth-tests. We define the logical foundations of these sets of tests and prove the cor-
rectness of the methodology. We also describe the application of our methodology to
DOLCE [21], FPK (formal proof of the Kepler conjecture) [27] and Adimen-SUMO
[2]. In particular, we review in detail the kind of defects that have been detected in

2http://www.tptp.org

4 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

those ontologies. An improved version of Adimen-SUMO v2.6 has been obtained by
correcting all the defects detected following the introduced methodology. An example
of incorrect axiom that we have detect in Adimen-SUMO v2.4 following our method-
ology is part of the axiomatization of the relation sibling. The wrong axiom asserts
that “Any two members of the same broad are siblings”, instead of “Any two different
members of the same broad are siblings” (see Subsection 7.4 for details). The latter is
the correct version of the axiom in Adimen-SUMO v2.6.

The paper is organized as follows. First, we briefly describe the ontologies DOLCE,
FPK and Adimen-SUMO in Section 2. In Section 3, we introduce the proposed
methodology for evaluating ontologies utilizing ATPs. Next, in Section 4, we for-
mally define the set of tests that are proposed for a given axiom. Then, in Section 5,
we provide a detailed example illustrating the calculation of tests. In Section 6, we
prove the correctness of the proposed set of tests. In Section 7, we report on the main
kinds of defects that we have found in the evaluated ontologies, explaining specific
examples of four different types. We provide a summary of our experimental results in
Section 8. Finally, we give some conclusions and discuss future work.

2. FOL Ontologies

FOL formulas are constructed on an alphabet (or signature) of function and predicate
symbols, using the logical connectives of negation (¬), conjunction (∧), disjunction
(∨), implication (→) and double-implication (↔) , as well as the universal and exis-
tential quantifiers (resp. ∀ and ∃). The notation Qx stands for a sequence of quantifiers
(on variables) Q1x1 . . .Qnxn such that n ⩾ 0 and Qi ∈ {∃,∀} for each 1 ⩽ i ⩽ n. In the
FOL formulas in this paper, functions symbols (in particular, constants) start with a
capital letter, whereas predicates start with a lower-case and variables are lower-case
letters (possibly with subindices). We use sentence to refer to any FOL formula for
which all its variable occurrences are in the scope of (or bound by) a quantifier. We
assume that the reader has some familiarity with the syntax and basic notions of FOL.

FOL ontologies consist of a set of FOL sentences called axioms. Typically, on-
tology axioms are classified into rules and non-rules. Rules are universally closed
implications. An example of rule axiom in DOLCE is (1). It is also common to call
the left-hand part of the implication antecedent, and the right-hand part consequent.
In this section, we introduce the main features of the FOL ontologies that have been
used for the evaluation of our white-box testing strategy —DOLCE, FPK and Adimen-
SUMO— and provide some figures about their content. We also provide some exam-
ples of axioms and tests in the form of FOL sentences. Each FOL ontology uses its
own alphabet of functions and predicates, named with strings (e.g. world, mother,
agent, ...) that usually try to express its meaning, but their formal meaning is given by

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 5 of 38

their FOL axiomatization in the ontology.
DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is the

first-module of a Library of Foundational Ontologies being developed within the Won-
derWeb project [21]. Its main purpose is supporting effective cooperation between
multiple artificial agents and establishing consensus in a mixed society where artifi-
cial agents cooperate with human beings. The partial mappings from WordNet [16]
to DOLCE [20] enable the connection of DOLCE to other semantic resources such as
the Multilingual Central Repository (MCR) [8] and its application to advanced Natu-
ral Language Processing, Knowledge Engineering and Semantic Web tasks [63]. The
domain of discourse of DOLCE is restricted to the notion of particulars —entities
which have no instances. Similarly, particulars are characterized and organized around
a taxonomy of 37 universals—entities that can have instances— and universals are or-
ganized around the notion of world. However, no particular and no world is explicitly
defined. DOLCE is originally expressed in KIF according to the standard proposed
in [33]3 and simplified translations into various logical languages have been proposed
(DOLCE-Lite-Plus4). The KIF version of DOLCE uses row variables —which pro-
duces variable-arity relations— and quantified predicate symbols. Hence, we have
applied the translation described in [2] for its transformation into a pure FOL formula
(from now on, KIF-DOLCE). As result, we have obtained 257 rule-axioms such as the
following:

∀w ∀ f ((universal(f)∧world(w))→ nep(w, f)) (1)

where nep(w, f) stands for the non-emptiness of the universal f in the world w. Vam-
pire v4.1 [51, 34] proves that KIF-DOLCE is consistent. In addition, a simplified
translation of DOLCE into CASL [7] (from now on, CASL-DOLCE) is available in
Hets [41] and its consistency is proved in [36]. This translation consists of 416 non-
atomic formulas such as

∃y (pED(y)) (2)

where pED is used to state that the universal Endurant has some particular.5 Both
FOL versions of DOLCE —KIF-DOLCE and CASL-DOLCE— were expected to be
non-defective due to their reduced size and their mature state of development.

FPK (formal proof of the Kepler conjecture) is an ontology that has been derived
from the Flyspeck project [27] for its use in the CADE ATP System Competition CASC-
J8 [58]. The purpose of the Flyspeck project is to give a formal proof of the Kepler
conjecture, which asserts that no packing of congruent balls in three-dimensional Eu-
clidean space has a density greater than that of the face-centered cubic packing [26].

3http://logic.stanford.edu/kif/dpans.html
4http://www.loa.istc.cnr.it/old/DOLCE.html
537 formulas like (2) are used in CASL-DOLCE for stating the property in formula (1).

6 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

Its participants claim that it “is the most complex formal proof ever undertaken” and
estimate that it may take about twenty working-years to complete the formalization. To
this end, every logical inference is checked against the foundational axioms of math-
ematics with the help of a computer and, no matter how trivial they are, no step is
skipped. We have used the version of FPK that was provided for the CASC competi-
tion, since it already consists in a pure FOL axiomatization with 78,500 axioms, such
as the following:

∀a ∀x ∀y (s(a,x) = s(a,y) → s(a,y) = s(a,x))

Though FPK is much larger than DOLCE, FPK has also reached a very mature state of
development. Consequently, we did not expect to discover many defects in FPK either.

Finally, Adimen-SUMO has been derived from SUMO (Suggested Upper Merged
Ontology)6 [44], which was promoted by a group of engineers from the IEEE Standard
Upper Ontology Working Group as a formal ontology standard during the nineties of
the past century. Their goal was to develop a standard upper ontology to promote data
interoperability, information search and retrieval, automated inference and natural lan-
guage processing. SUMO is expressed in SUO-KIF (Standard Upper Ontology Knowl-
edge Interchange Format [49]), which is a dialect of KIF, and its syntax goes beyond
FOL. Consequently, SUMO cannot be directly used by FOL ATPs without a suitable
transformation. Furthermore, in order to support higher-order aspects, a translation of
SUMO is also required for its use by means of pure higher-order theorem provers [50].
In [2], the authors use ATPs for reengineering around 88% of the top and the middle
levels of SUMO into Adimen-SUMO,7 which can be expressed as a FOL formula. This
translation is based on a small set of meta-predicates —and its axiomatization— that
are required to define the knowledge of SUMO according to its organization around
four kinds of concepts: objects, classes, relations and properties. Some of these meta-
predicates are $instance, $subclass, $disjoint and $partition.8 In Adimen-SUMO, like
in other ontologies expressed in KIF (e.g. SUMO or KIF-DOLCE), instance is used
to assert that an object is in a class. For example, the atom instance(h,Herbivore),
instead of Herbivore(h), is used to express that object h is in the class Herbivore. In
addition, [2] provides a suitable translation of domain (or type) information of relations
which, in SUMO, is (separately) provided by means of domain axioms. For example,
in Adimen-SUMO, there are four non-rule axioms asserting that the first argument of
predicate $instance is an object, whereas the second one is a class, and that both argu-
ments of $subclass are classes. Adimen-SUMO has also three rules for axiomatizing

6http://www.ontologyportal.org
7The first version of Adimen-SUMO is v2.2.
8In Adimen-SUMO, meta-predicates names are marked with a $. In this paper, we omit these marks since ATPs deal with them

like any other predicate symbol in the alphabet.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 7 of 38

$subclass as a partial order, i.e. each rule respectively says that $subclass is reflexive,
antisymmetric and transitive. Additionally, the following rule axiomatizes $instance
in terms of $subclass:

∀x ∀y ∀z (($instance(x,y) ∧ $subclass(y,z)) → $instance(x,z)).

Many other meta-predicates are defined in terms of $subclass and $instance. For ex-
ample, the predicate $disjoint is defined by the following rule in Adimen-SUMO:

∀x ∀y ($dis joint(x,y) ↔ ∀z (¬$instance(z,x) ∨ ¬$instance(z,y))).

The interested reader is referred to [2] for a detailed description of the axiomatization
and the translation.

Adimen-SUMO —like DOLCE— also uses row variables and quantified predicate
symbols. In [3], we introduce an evolved version of Adimen-SUMO (namely, v2.4)
and demonstrate its inference capabilities in practice. More specificaly, we exploit
the whole mapping of WordNet to SUMO [45] in order to obtain a set of CQs by
following a black-box testing strategy. As reported in [3], we have experimentally
tested Adimen-SUMO v2.4 using the resulting set of CQs and no defect has been
detected. Additionally, we have used Adimen-SUMO v2.4 and the same set of CQs
for an experimental comparison of several FOL ATPs in [5]. The state of development
of Adimen-SUMO v2.4 was not mature and we were able to detect various defects
by following the white-box testing methodology introduced in this paper. As result of
correcting all the detected defects, we obtained Adimen-SUMO v2.6, which has been
already used in the experimentation reported in [1, 6].

Table 1: Some figures about the evaluated ontologies

Ontology Non-rules Rules Total

KIF-DOLCE 0 257 257
CASL-DOLCE 0 416 416
FPK 275 78,225 78,500
Adimen-SUMO v2.4 4,635 2,785 7,420
Adimen-SUMO v2.6 4,638 2,799 7,432

In Table 1, we summarize some figures about DOLCE, FPK and Adimen-SUMO
(v2.4 and v2.6): the number of (non-rule and rule) axioms that result from their trans-
formation into a pure FOL formula (no transformation is required for FPK).

8 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

3. Automatic Testing of FOL Ontologies

In this section, we describe the framework and methodology proposed in [3] for the
evaluation of FOL ontologies using an existing set of conjectures consisting of falsity-
tests and truth-tests.

A conjecture is decided to be entailed by the ontology only if the ATP is able to find
a proof within the provided execution-time limit. The proof (which can be reported by
the ATP) of a conjecture that is not-expected to be proved (i.e. a falsity-test) provides
hints on the defects of the axiomatization. In general, when a proof is not found, the
ATP can report, either that the conjecture is not entailed, or that the time limit was
reached. In the first case, the ATP could produce a countermodel showing that the
conjecture is not satisfied in a specific model of the ontology. Countermodels of truth-
tests –similarly proofs of falsity-tests– could be used as hints for detecting defects
in the ontology. For large ontologies, axiom selection methods [29] can be used to
increase the number of useful answers (countermodels or proofs), i.e. to reduce the
number of tests that exceeds the time limit. However, this approach is beyond the scope
of the methodology presented in this paper. In fact, this could be a future improvement
of our framework. Consequently, if ATPs find a proof, then truth-tests and falsity-
tests are classified as proved. Otherwise, if no proof is found, then we classify both
truth- and falsity-tests as unknown because we do not know whether the corresponding
conjectures are entailed or not. For example, the truth-test “Siblings have the same
mother” is given by the following FOL sentence:

∀o1 ∀o2 ∀o3 ((mother(o1,o2)∧ sibling(o1,o3))→ mother(o3,o2)) (3)

and it is easily proved by ATPs to be entailed by Adimen-SUMO v2.6. Thus, the truth-
test (3) is classified as proved. On the contrary, for the falsity-test “Some herbivores
eat animals”, that is given by the FOL sentence:

∃h ∃a ∃e (instance(h,Herbivore)∧ instance(a,Animal) (4)
∧ instance(e,Eating)∧agent(e,h)∧ patient(e,a))

is classified as unknown in Adimen-SUMO v2.6.
It is worth noting that truth-tests classified as proved will be used to grade the suit-

ability of the axiom they come from, whereas falsity-test classified as proved will be
used to detect defects in the axiomatization usually with the help of the proof reported
by the ATP. As a consequence, both, the grade of suitability of a formula, and the de-
tection on defects, rely on the ATPs utilized and also on the parameter configuration
set.

In our proposal, the set of conjectures is automatically constructed by following

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 9 of 38

white-box testing strategies. We create two sets9 of conjectures: FT (φ) and T T (φ),
for each axiom φ in the tested ontology, and this construction depends only on the
syntactical form of the axiom φ . The purpose of FT (φ) is to detect defects in the
axiomatization. Each conjecture α in FT (φ) is called a falsity-test because α is not
expected to be entailed by the ontology. If some α ∈ FT (φ) is inferred from the
ontology, then φ contains some redundant subformula. For example, we detect that
the following axiom, extracted from Adimen-SUMO [2], is defective:

∀c (instance(c,Circle) → ∃p (CenterO fCircleFn(c) = p)) (5)

by means of the falsity-test:

∀c ∃p (CenterO fCircleFn(c) = p) (6)

Conjecture (6) is trivially proved since equality is reflexive. In other words, from the
reflexivity axiom:

∀x (x = x)

it is easy to prove that

∀c (CenterO fCircleFn(c) =CenterO fCircleFn(c)) (7)

and then (6) is easily entailed from (7). We conclude that the antecedent (left-hand part
of the implication) of axiom (5) is redundant, i.e. the consequent (right-hand part of
the implication) is entailed whatever its antecedent would be. That makes axiom (5) to
be redundant itself, since by removing the redundant antecedent in (5), we get (6) and,
moreover, the latter is already entailed by the ontology.
Our notion of redundancy is related to its practical use in the reasoning process, and it
is formally introduced in Definition 6. However, sometimes redundancy is caused by
a different kind of defect ranging from typos (e.g. a misspelled or misplaced variable
symbol) to incorrect axioms (e.g. a necessary condition is not required). In particular,
our proposal enables defects to be detected that we have classified in the following four
classes: typos, redundant axioms, redundant subformulas (in axioms) and incorrect
(inaccurate) axioms.

The set T T (φ) consists of the negation of all the conjectures in FT (φ). They are
called truth-tests because they are expected to be inferred and they are used to grade
the suitability of axioms for reasoning purposes. That is, whenever no conjecture in
FT (φ) is classified as proved for the axiom φ , we identify three different grades of
suitability according to the conjectures in T T (φ) that are entailed by the ontology.
Axiom φ is completely suitable if the ontology entails all the truth-tests in T T (φ).

9They are formally defined in Definitions 2 and 4, respectively.

10 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

Otherwise φ is partially suitable if at least one conjecture in T T (φ) is proved; and φ is
unsuitable if no one conjecture in T T (φ) is proved. For example, the following axiom
obtained from Adimen-SUMO:

∀d (instance(d,Driving) →∃v (instance(v,Vehicle)∧ patient(d,v))) (8)

is classified as completely suitable by means of an automatically generated set of eight
different truth-tests used as conjectures by the ATPs.

4. Automatic Generation of Tests

In this section, we introduce the definition of two functions FT and T T that respec-
tively compute the sets of falsity- and truth-tests for a given axiom. These two func-
tions are defined by (structural) induction on the syntactic structure of the input axiom,
hence our automatic test generation is syntax-based.

We use lower-case Greek letters for arbitrary formulas and capital Greek letters
(e.g. Φ) for (finite) sets of sentences, that equivalently can be seen as conjunctions of
all their members. The notation φ [α] represents the formula φ and, at the same time,
means that α is a subformula of φ . We denote by φ [α/γ] the formula that results from
replacing every occurrence of α (as a subformula of φ) with γ . Given any FOL formula
φ , the expressions (φ)∃ and (φ)∀ respectively, denote the existential and universal
closure of φ . Note that if φ is a sentence, then (φ)∃ and (φ)∀ are identical to φ . Two
formulas φ and ψ are semantically (or logically) equivalent, in symbols φ ≡ ψ , if and
only if they have exactly the same models. Given any set of sentences Φ , we say that
two formulas α and β are Φ-equivalent if and only if Φ |= (α ↔ β)∀ (i.e. every model
of Φ is also a model of (α ↔ β)∀). Note that if α and β are sentences, then (α ↔ β)∀

and α ↔ β are the same formula.
Most of the axioms in an ontology are (universally closed) implications, e.g. see

axioms (5) and (8) above. Redundancy in the subformulas of axioms can be detected
by proving unexpected conjectures. For example, an axiom (γ → ψ)∀ is redundant in
an ontology Φ , whenever Φ entails one of the conjectures ψ∀ or (¬γ)∀. However, if
we consider a formula (γ → (φ ∨ψ))∀ such that Φ entails the conjecture (¬ψ)∀, then
the subformula ψ is redundant in the axiom, since (γ → (φ ∨ψ))∀ is Φ-equivalent to
(γ → φ)∀. Implication is an important connective in our test generation. However,
for the sake of a more uniform treatment and a clearer presentation, we use the equiv-
alence ψ → γ ≡ ¬ψ ∨ γ to transform implications into disjunctions. In this sense, a
subformula α ∨β can be seen as the result of transforming (and simplifying) the impli-
cation ¬α → β or the implication ¬β → α . Consequently, given a formula φ [α ∨β]

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 11 of 38

(where the subformula α ∨β is not in the scope of negation)10, we propose the follow-
ing falsity-tests for the detection of defects by searching redundant subformulas: α∀,
β∀, (¬α)∀ and (¬β)∀. Roughly speaking, when α∀ is entailed by Φ , we detect that
β is redundant. Symmetrically, the entailment of (β)∀ makes α redundant. Whenever
(¬α)∀ or (¬β)∀ are entailed, then α or β respectively, are redundant.

Next, we illustrate the idea for generating falsity-tests by means of an example.

Example 1. Consider the following set of four axioms of SUMO:

instance(sibling, Irre f lexiveRelation) (9)

domain(sibling,1,Organism) (10)

domain(sibling,2,Organism) (11)

∀m1 ∀m2 ∀b ((instance(b,Brood)∧member(m1,b)∧member(m2,b))
→ sibling(m1,m2)) (12)

According to the type information in axioms (10-11), both arguments of sibling are
restricted to be instance of Organism. Consequently, by translation (see [2] for more
details), axiom (12) gives raise to the following rule-axiom in Adimen-SUMO v2.4:

∀m1 ∀m2 ∀b ((instance(m1,Organism) ∧
instance(m2,Organism) ∧
instance(b,Brood) ∧
member(m1,b) ∧
member(m2,b)) →

sibling(m1,m2))

(13)

Since its inner subformula is logically equivalent to the following disjunction (in nega-
tion normal form):

(¬instance(m1,Organism) ∨
¬instance(m2,Organism) ∨
¬instance(b,Brood) ∨
¬member(m1,b) ∨
¬member(m2,b)) ∨ sibling(m1,m2)

(14)

The following four conjectures belong to the set of falsity-tests for axiom (13):

10In the formal definition, φ is in negation normal form (see explanations just above Definition 2).

12 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

∀m1 ∀m2 ∀b (¬instance(m1,Organism) ∨
¬instance(m2,Organism) ∨
¬instance(b,Brood) ∨
¬member(m1,b) ∨ ¬member(m2,b))

(15)

∀m1 ∀m2 (sibling(m1,m2)) (16)

∀m1 ∀m2 ∀b (instance(m1,Organism) ∧
instance(m2,Organism) ∧
instance(b,Brood) ∧
member(m1,b) ∧ member(m2,b))

(17)

∀m1 ∀m2 (¬ sibling(m1,m2)) (18)

Using the methodology described in Section 3, falsity-test (15) is classified as proved,
while the remaining falsity-tests (16-18) are classified as unknown. Thus, falsity-test
(15) enables a defect to be detected as explained in Subsection 7.4. In fact, axiom (12)
has been corrected in Adimen-SUMO v2.6.

The function FT is to be applied to every ontology axiom. Therefore, FT is defined
by structural induction on a formula φ that belongs to the language

φ ::= ℓ | φ ∨φ | φ ∧φ | ∀xφ | ∃xφ

where ℓ stands for literal (atom or negated atom). In addition, we can suppose that any
quantifier in φ has a different variable symbol. Our assumption is not a limitation since
it is well-known that any FOL formula can be transformed into a logically equivalent
one in the above language (see e.g. [18]). The transformation follows the three initial
steps of the standard algorithm that transforms any FOL formula into its conjunctive
normal form:

1. Rectification or elimination of variable clashing: rename clashing variables so
that each quantifier has a unique variable symbol.

2. Transformation into arrow-free form: repeatedly apply the following two logical
equivalences left-to-right until none can be applied:

• ψ ↔ γ ≡ (ψ → γ)∧ (γ → ψ)

• ψ → γ ≡ (¬ψ)∨ γ

3. Transformation into negation normal form: repeatedly apply the following five
logical equivalences (left-to-right) until none can be applied:

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 13 of 38

• ¬¬ψ ≡ ψ

• ¬(ψ ∧ γ)≡ (¬ψ)∨ (¬γ)

• ¬(ψ ∨ γ)≡ (¬ψ)∧ (¬γ)

• ¬∀x ψ ≡ ∃x ¬ψ

• ¬∃x ψ ≡ ∀x ¬ψ

In what follows, we say that the formulas in the above language are in arrow-free
and negation normal form (in abbreviated form, af-nnf). For example, formula (14) in
Example 1 is in af-nnf.

Definition 2. For any af-nnf formula φ , the function FT is recursively defined as

FT (φ) =



/0 if φ is a literal

FT0(φ) if φ = α ∨β

FT (α) ∪FT (β) if φ = α ∧β

FT (α) if φ = ∀x α or φ = ∃x α

where the function FT0 is defined as follows:

FT0(φ) =



/0 if φ is a literal

{ (α)∀, (β)∀, (¬α)∀, (¬β)∀ }
∪ FT0(α) ∪ FT0(β) if φ = α ∨β or φ = α ∧β

{ (α)∀, (¬α)∀ } ∪ FT0(α) if φ = ∀x α or φ = ∃x α

The idea behind Definition 2 can be summed up as follows: for any falsity-tests
{(δ)∀, (¬δ)∀} ⊆ FT (φ), the sentence φ is logically equivalent to a (possibly quanti-
fied) conjunction of two formulas such that the first one is equal to a disjunction with
Qy δ as subformula for some prefix of quantifiers Qy. Lemma 7 (in Section 6) formally
states this idea and it is the key result for proving the correctness of our method (see
Theorem 10 in Section 6).

Remark 3. For the sake of simplicity, in Definition 2 we consider the binary connec-
tives of conjunction and disjunction, however we have implemented its natural gener-
alization to n-ary connectives. For example, for φ = α ∧β ∧ γ:

FT0(φ) = { (α)∀, (β)∀, (γ)∀, (¬α)∀, (¬β)∀ (¬γ)∀} ∪FT0(α) ∪ FT0(β)∪ FT0(γ).

14 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

It is obvious that the function FT could produce many repeated tests. For example,
for φ = ∀x ((∃y α)∨ (∀z β)) we have that

FT (φ) = FT (∀x ((∃y α)∨ (∀z β)))

∀
= FT0((∃y α)∨ (∀z β))

∨
= { (∃y α)∀,(∀z β)∀,(¬∃y α)∀,(¬∀z β)∀ }∪

FT0(∃y α)∪FT0(∀z β)

∃,∀
= { (∃y α)∀,(∀z β)∀, (¬∃y α)∀,(¬∀z β)∀ }∪

{ (α)∀,(¬α)∀ }∪FT0(α)∪

{ (β)∀,(¬β)∀ }∪FT0(β)

where (∀z β)∀ and (β)∀ are both the same formula ∀x ∀z β . In addition, (¬∃y α)∀ and
(¬α)∀ (using nnf) are both ∀x ∀y ¬α . Our implementation avoids such repetitions.
We provide some figures about the final amount of different falsity- and truth-tests in
Section 8.

The truth-tests for an axiom φ are the negations of all the falsity-tests for φ . Hence,
in the case of an axiom of the form φ [α∨β], we generate (among others) the truth-tests
(¬α)∃, (¬β)∃, (α)∃ and (β)∃. Therefore, the function T T () is simply defined on the
basis of FT () as follows.

Definition 4. For any af-nnf formula φ , the function T T () is defined as:

T T (φ) = {¬θ | θ ∈ FT (φ)}

Example 5. For axiom (13) in Example 1, we obtain the following truth-tests by nega-
tion of falsity-tests (15-18)

∃m1 ∃m2 ∃b (instance(m1,Organism) ∧
instance(m2,Organism) ∧
instance(b,Brood) ∧
member(m1,b) ∧ member(m2,b))

(19)

∃m1 ∃m2 (¬ sibling(m1,m2)) (20)

∃m1 ∃m2 ∃b (¬ instance(m1,Organism) ∨
¬ instance(m2,Organism) ∨
¬ instance(b,Brood) ∨
¬ member(m1,b) ∨ ¬ member(m2,b))

(21)

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 15 of 38

∃m1 ∃m2 (sibling(m1,m2)) (22)

Conjecture (19) is classified as unknown (as expected, because its corresponding falsity-
test is classified as proved), while conjectures (20-22) are classified as proved, because
ATPs find a proof. Since, from Example 1, we already know that axiom (13) is defective,
this additional testing has no effect on the grade of suitability of axiom (13). However,
in the hypothetical case that falsity-test (15) would have been classified as unknown
(instead of proved), then axiom (13) would be considered partially suitable, since three
truth-tests are proved, but one is unknown.

5. A Detailed Example

In this section, we provide a complete example of the sets of tests that are obtained
from a formula by using the definitions introduced in Section 4.

The following three axioms are obtained from SUMO by renaming (for brevity) the
original predicate and function symbols as follows: the predicates instance and com-
ponent have been renamed as i and c respectively; the constants CorpuscularObject,
Atom, Proton and Electron have been renamed as CO, At, Pr and El respectively; and
the variables ?ATOM, ?PROTON and ?ELECTRON have been renamed as a, p and e
respectively.

domain(c,1,CO) (23)

domain(c,2,CO) (24)

∀a (i(a,At) → ∃p ∃e (c(p,a)∧ c(e,a)∧ i(p,Pr)∧ i(e,El))) (25)

Using the type information in axioms (23-24) (see [2]), (25) is transformed into a rule
axiom in Adimen-SUMO v2.4 that is logically equivalent to the following sentence in
af-nnf:

φ = ∀a (

ψ1︷ ︸︸ ︷
(¬i(a,CO))∨ (¬i(a,At)) ∨
∃p ∃e (i(p,CO)∧ i(e,CO) ∧

c(p,a)∧ c(e,a) ∧
i(p,Pr)∧ i(e,El)︸ ︷︷ ︸

ψ2

))

(26)

16 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

Then

FT (φ) = FT (∀a (ψ1 ∨∃p ∃e ψ2))

∀
= FT (ψ1 ∨∃p ∃e ψ2)

∨
= FT0(ψ1 ∨∃p ∃e ψ2)

∨
= { (ψ1)

∀, (∃p ∃e ψ2)
∀, (¬ψ1)

∀, (¬∃p ∃e ψ2)
∀ }∪

FT0(ψ1) ∪ FT0(∃p ∃e ψ2)

where (ψ1)
∀, (¬ψ1)

∀, (∃p ∃e ψ2)
∀ and (¬∃p ∃e ψ2)

∀ respectively denote the conjec-
tures:

∀a ((¬i(a,CO))∨ (¬i(a,At))) (27)

∀a ∃p ∃e (i(p,CO)∧ i(e,CO)∧ c(p,a)∧ c(e,a)∧
i(p,Pr)∧ i(e,El)) (28)

∀a (i(a,CO)∧ i(a,At)) (29)

∀a ¬ ∃p ∃e (i(p,CO)∧ i(e,CO)∧ c(p,a)∧ c(e,a)∧
i(p,Pr)∧ i(e,El)) (30)

Then, we proceed to obtain the falsity-test proposed for ψ1:

FT0(ψ1) = FT0((¬i(a,CO))∨ (¬i(a,At)))
∨
= { (¬i(a,CO))∀, (¬i(a,At))∀, (i(a,CO))∀, (i(a,At))∀}∪

∪ FT0(¬i(a,CO))∪FT0(¬i(a,At))

literal
= { (¬i(a,CO))∀, (¬i(a,At))∀, (i(a,CO))∀, (i(a,At))∀}

Next, the falsity-tests for ∃p ∃e ψ2 are calculated as follows:

FT0(∃p ∃e ψ2) = { (∃e ψ2)
∀,(¬∃e ψ2)

∀ }∪FT0(∃e ψ2)

∃
= { (∃e ψ2)

∀,(¬∃e ψ2)
∀ }∪

{ (ψ2)
∀,(¬(ψ2))

∀ }∪FT0(ψ2)

Of the above tests, (¬∃e ψ2)
∀ and (¬ψ2)

∀ are identical. Finally, the tests that are

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 17 of 38

obtained from ψ2 are (see Remark 3):

FT0(ψ2) = FT0(i(p,CO)∧ i(e,CO)∧ c(p,a)∧ c(e,a)∧ i(p,Pr)∧ i(e,El))

= { (i(p,CO))∀, (i(e,CO))∀, c(p,a))∀,

(c(e,a))∀, (i(p,Pr))∀, (i(e,El))∀} ∪

{ (¬i(p,CO))∀,(¬i(e,CO))∀, ¬c(p,a))∀,

(¬c(e,a))∀ ,(¬i(p,Pr))∀,(¬i(e,El))∀ }

Some of the tests in FT0(ψ2) are identical up to renaming of quantified variables. For
example, the tests (i(p,CO))∀ and (i(e,CO))∀ are identical up to renaming (u.t.r.) of
the universally quantified variable. Additionally, test (i(a,CO))∀, which is also u.t.r.
identical to both, is already in the set FT0(ψ1). Consequently, the number of tests in
FT (φ) can be substantially reduced by removing duplicates. In total, 28 falsity-tests
are obtained from FT (φ), from which 13 redundant tests can be removed. It is worth
noting that additional duplicated tests can arise when combining sets of falsity-tests
for different axioms. To sum up, the set of falsity-tests for φ is:

FT (φ) = { (ψ1)
∀,(¬ψ1)

∀,(∃e ψ2)
∀,(¬∃e ψ2)

∀,

(¬i(a,CO))∀,(i(a,CO))∀,(¬i(a,At))∀,

(i(a,At))∀,(ψ2)
∀,(c(p,a))∀,

(¬c(p,a))∀,(i(p,Pr))∀,(¬i(p,Pr))∀,

(i(e,El))∀,(¬i(e,El))∀ }

In Section 7 we report on defects found using this set of falsity-tests.
Regarding truth-tests, we obtain the following set of tests by negating the falsisty-

tests in FT (φ):

T T (φ) = { (¬ψ1)
∃,(ψ1)

∃,(¬∃e ψ2)
∃,(∃e ψ2)

∃,

(i(a,CO))∃,(¬i(a,CO))∃,(i(a,At))∃,

(¬i(a,At))∃,(¬ψ2)
∃,(¬c(p,a))∃,

(c(p,a))∃,(¬i(p,Pr))∃,(i(p,Pr))∃,

(¬i(e,El))∃,(i(e,El))∃ }

18 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

6. Correctness

As mentioned in Section 4, our falsity-tests are related to the search of redundancies
in axioms. In this section, we introduce a precise notion of redundancy and prove that
our falsity-tests are relevant (or correct) in the sense that they really detect redundancy.

Definition 6. Let Φ be a set of sentences and φ a sentence such that φ ∈Φ . We say that
φ contains a redundancy if there exists a sentence φ ′[α ∨β] that is logically equivalent
to φ such that φ ′[(α ∨ β)/γ] is Φ-equivalent to φ for γ ∈ {α,β}. Moreover, when
γ = α (resp. γ = β) we say that β (resp. α) is redundant in the subformula α ∨β .

In words, redundancy means that some subformula (of a sentence) can be eliminated
without loss of essential information, and indeed this subformula is redundant. The
sentence φ ′ mentioned in the above definition is the one provided by the following
Lemma 7, i.e. the formula associated to φ by the pair of falsity-tests {(δ)∀, (¬δ)∀}
(see Remark 8).

Lemma 7. For any af-nnf sentence φ , if {(δ)∀,(¬δ)∀} ⊆ FT (φ) then φ is logically
equivalent to a formula of the form

Qx (((Qy δ)∨ γ)∧ψ)

for some formulas γ and ψ and some (possibly empty) prefixes of quantifiers Qx and
Qy. Moreover, γ is always different from the constant false, but ψ could be the constant
true.

Proof. The proof is by induction on the number of calls to FT () and FT0() that are
made to check that {(δ)∀, (¬δ)∀} ⊆ FT (φ).

We are going to prove that for any subformula χ (could be a non-sentence) of φ ,
if {(δ)∀, (¬δ)∀} ⊆ FT (χ) then χ is logically equivalent to some formula of the form
Qx (((Qy δ)∨γ)∧ψ) and, moreover, variables x,y are the variables in some quantifier
of a subformula of χ . It is worth noting that φ has no variable clashing (see Section 4),
hence the variables occurring in some quantifier of a subformula χ cannot appear in any
quantifier of some subformula of φ different from χ . The base step is when χ = δ ∨ γ

so that FT (φ) = FT0(δ ∨γ) = {(δ)∀, (γ)∀, (¬δ)∀, (¬γ)∀}∪FT0(δ)∪FT0(γ). So that
the property holds for empty prefixes of quantifiers and ψ = true. Symmetrically for
χ = γ ∨δ .

For the inductive step, we distinguish the following cases according to the definition
of FT () and FT0():

• FT (χ)=FT0(α1∧β1)∨β)⊃FT0(α1∧β1)∪FT0(β), and then {(δ)∀, (¬δ)∀}⊇
FT0(α1) or {(δ)∀, (¬δ)∀} ⊆ FT0(β1).

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 19 of 38

We prove only the case {(δ)∀, (¬δ)∀} ⊇ FT0(α1), since for β1 the proof is
identical by commutativity of conjunction.

By induction hypothesis, if {(δ)∀, (¬δ)∀} ⊆ FT0(α1), then there exists γ ′ and
ψ ′ such that:

α1 ≡ Qx (((Qy δ)∨ γ
′)∧ψ

′)

where variables x,y cannot appear either in β1 or in β . Therefore:

χ ≡ ((Qx (((Qy δ)∨ γ
′)∧ψ

′))∧β1)∨β

≡ (Qx (((Qy δ)∨ γ
′)∧ (ψ ′∧β1)))∨β

≡ Qx (((Qy δ)∨ (γ ′∨β))∧ ((ψ ′∧β1)∨β))

Hence, we can take γ ′ ∨ β as γ and (ψ ′ ∧ β1)∨ β as ψ , and the property of
variables x,y is trivially preserved.

• FT (χ)=FT0((∀z α)∨β)⊃FT0(α)∪FT0(β), and then {(δ)∀, (¬δ)∀}⊆FT0(α).
By induction hypothesis, there exist γ ′ and ψ ′ such that:

α ≡ Qx (((Qy δ)∨ γ
′)∧ψ

′)

Therefore: χ ≡ ∀z (Qx (((Qy δ)∨ γ ′)∧ψ ′))∨ β . Since z and x,y do not
appear in β , we have that:

χ ≡ ∀z Qx (((Qy δ)∨ (γ ′∨β))∧ (ψ ′∨β))

Thus, the property holds for an extension of the outermost prefix with z, and for
γ ′∨β as γ and ψ ′∨β as ψ .

• The proof for FT (χ)=FT0((∃z α)∨β)⊃FT0(α)∪FT0(β) and {(δ)∀, (¬δ)∀}⊆
FT0(α), is identical to the previous one.

• Suppose that FT (χ) = FT (α ∧ β) = FT (α)∪ FT (β) and {(δ)∀, (¬δ)∀} ⊆
FT (α). By induction hypothesis

α ≡ Qx (((Qy δ)∨ γ
′)∧ψ

′)

for some γ ′ and ψ ′. Therefore, since x does not appear in β

χ ≡ (Qx (((Qy δ)∨ γ
′)∧ψ

′))∧β

≡ Qx (((Qy δ)∨ γ
′)∧ (ψ ′∧β))

and the lemma property is true for γ = γ ′ and ψ = ψ ′∧β .

20 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

• For FT (χ) = FT (∀z α) ⊃ FT (α) and {(δ)∀, (¬δ)∀} ⊆ FT (α). By induction
hypothesis

α ≡ Qx (((Qy δ)∨ γ)∧ψ)

for some γ and ψ . Therefore:

χ ≡ ∀z Qx (((Qy δ)∨ γ)∧ψ)

This ensures the lemma property by enlarging the outermost prefix of quantifiers
with ∀z.

• The proof for FT (χ) = FT (∃z α) ⊃ FT (α) and {(δ)∀, (¬δ)∀} ⊆ FT (α) is
identical to the previous one.

Therefore, for any {(δ)∀, (¬δ)∀} ⊆ FT (φ), the axiom φ is logically equivalent to a
formula of the form Qx (((Qy δ)∨ γ)∧ψ).

Remark 8. In what follows, we say that (Qy δ)∨ γ) is the (sub)formula associated to
φ by the pair of falsity-tests {(δ)∀, (¬δ)∀}.

Next, we introduce the notion of relevant falsity-test in order to set out the correct-
ness result in Theorem 10.

Definition 9. Let Φ be any set of af-nnf sentences and φ any sentence such that φ ∈ Φ .
If (δ)∀ ∈ FT (φ) (resp. (¬δ)∀ ∈ FT (φ)), we say that (δ)∀ (resp. (¬δ)∀) is a relevant
falsity-test for Φ whenever Φ |= δ∀ (resp. Φ |= (¬δ)∀).

If δ∀ or (¬δ)∀ is relevant, then the redundant subformula of φ ′ is a superformula
of δ and φ contains some redundancy. Redundant subformulas reveal the existence
of defects. In addition, the proof obtained for falsity-tests can assist the correction of
defects, but the correction itself is still a manual task. Some real examples on this issue
are described in Section 7.

Next, we provide a formal proof of the relevance of falsity-tests.

Theorem 10. For any consistent set of af-nnf sentences Φ such that φ ∈ Φ , each
conjecture in FT (φ) is a relevant falsity-test for Φ .

Proof. Let {(δ)∀, (¬δ)∀} ⊆ FT (φ). By Lemma 7, φ is logically equivalent to:

φ
′ = Qx ((Qy δ)∨ γ)∧ψ)

Hence, we check the following two statements:

(a) If Φ |= (δ)∀, then Φ |= φ ′ ↔ φ ′[((Qy δ)∨ γ)/(Qy δ)].

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 21 of 38

(b) If Φ |= (¬δ)∀, then Φ |= φ ′ ↔ φ ′[((Qy δ)∨ γ)/γ].

Note that each statement not only ensures that the corresponding subformula is redun-
dant in φ ′, but also the substitution specifies what the redundant subformula is.

In order to check (a) and (b), we proceed by substitutivity of subformulas that are
Φ-equivalent. For statement (a), if Φ |= (δ)∀, then it is trivial that Φ |= (Qy δ)∀.
Hence, (Qy δ)∨ γ is Φ-equivalent to Qy δ . For statement (b), if Φ |= (¬δ)∀, then
Φ |= (¬Qy δ)∀. Hence, (Qy δ)∨ γ is Φ-equivalent to γ .

Theorem 10 ensures the correctness of our method. By Theorem 10, whenever a
falsity-test α ∈ FT (φ) is proved to be entailed by the ontology (where φ belongs to),
we can ensure that there is a relevant redundancy in the axiom φ . Since truth-tests are
the negations of falsity-tests, the fact of proving a truth-test guarantees the absence of
a possible redundancy. Consequently, the complete suitability of an axiom φ in the
ontology depends on proving every test in T T (φ).

According to the above definitions and results, our method relies on testing whether
the whole ontology entails a set of tests. In particular, let α be a test that has been
generated from an axiom φ , then φ is included in the premises used by the ATP to
check whether α is entailed. From the practical point of view this is the easiest way
to perform the testing, since the set of premises is fixed for testing the whole set of
generated tests. From the theoretical point of view, Theorem 10 ensures that whenever
α is proved, there is a relevant redundancy in the axiom φ .11 Moreover, we can ensure
that deleting the axiom φ from the premises (when checking α) would prevent some
useful inferences revealing redundancies. Let us explain here a simplification of a real
example to illustrate this matter.

Example 11. Consider an ontology Φ formed by three axioms:

φ1 = ∀x ∀y ((p(x)∧q(x,y))→ r(x)) (31)
φ2 = ∀x (p(x)→¬r(x))
φ3 = ∀x ((∃y q(x,y))→¬r(x))

It is easy to see that a falsity-text in FT (φ1) is ∀x ∀y (¬p(x)∨¬q(x,y)) and also
that this falsity-test is entailed by Φ , but it is not entailed by Φ \ {φ1}. Hence, the
redundancy of the antecedent of (31) can be detected only if φ1 belongs to the the set
of premises.

11A different issue, that we discuss in Section 7, is to look for the defect that causes this redundancy.

22 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

The above example is an abstraction and simplification of the first example ex-
plained in Subsection 7.1, there we also explain that it is really caused by a simple
typo in φ1. In fact, the typo in the real example corresponds to have written r(x) in-
stead of r(y) in φ1 above.

7. Experimentation: Examples of Detected Defects

In this section, we illustrate with examples the defects that we have detected —using an
implementation of our methodology— in the ontologies DOLCE, FPK and Adimen-
SUMO (see Section 2 for an introduction to them). Our method is based on detecting
redundancies. To be more precise our technique is focussed in looking for redundant
subformulas inside axioms (using falsity-tests) or their absence (using truth-tests). In-
deed, according to Theorem 10, whenever an ATP proves the entailment of a falsity-test
α extracted from an axiom φ , there is a disjunction α ∨ β that is a subformula of φ

such that either α or β are redundant in the sense that the disjunction α ∨ β can be
substituted by one of its disjuncts (α or β) preserving equivalence. So, in some sense,
these redundancies are the defects we are basically looking for, but there are different
causes that provoke a subformula to be technically redundant in the sense of Theorem
10. On one hand, some redundancies arise because there is a different problem either
in the concerned axiom or in some set of axioms that define related concepts. For
example, a typo in the concerned axiom or some inaccuracy in the axioms defining a
concept related with the concerned axiom. In other words, sometimes the defect can
be fixed as expected (i.e. by eliminating a redundant subformula), but sometimes the
detected redundancy could be caused by a different defect. For example, the redun-
dancy detected in (31) would be (indeed, it is) really caused by a typo: the consequent
of (31) should by r(y) instead of r(x). On the other hand, sometimes redundant axioms
are intentionally introduced with different objectives, e.g. a) to facilitate the proof of
conjectures; b) to maintain an uniform style of modelling; c) to communicate design
decisions; d) to improve the documentation of the ontology. Additionally, automatic
transformations often introduce redundant subformulas. Since the correction of defects
is not automatic but manual, the ontologist/expert has to decide whether the detected
redundancies need to be corrected or not. In Subsections 7.1-7.4, we provide some
examples of detected redundancies that –for that reason– do not require any correc-
tion, along with other examples that require correction. For the sake of presentation
we split the founded defects in four categories: typos, redundant axioms, redundant
subformulas (in axioms) and incorrect (inaccurate) axioms. We provide examples of
each category in the following four subsections.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 23 of 38

7.1 Typos

Typos are syntactical errors that are very simple to correct. A first example of typo was
in the following axiom of Adimen-SUMO:

∀c ∀g ((instance(c,OrchestralConducting)∧ patient(c,g))
→ instance(c,Orchestra)) (32)

which aims to state that every participant in an instance of the process OrchestralCon-
ducting is an instance of Orchestra. However, the following falsity-test was proved:

∀c ∀g ((¬instance(c,OrchestralConducting)∨¬patient(c,g)) (33)

This suggest that the antecedent of axiom (32) is redundant, however the proof given
by the ATP utilizes an axiom stating that the first argument of patient (i.e. c in (32))
should be a Process. By disjointness of the class Process with the class Orchestra –
which is entailed passing through several superclasses of the latter– it is deduced that
c cannot be an instance of Orchestra, hence using axiom (32) itself, falsity-test (33)
is entailed. The hint that the conflict comes from the type of the first argument of
patient made us realize that it is the second (but not the first) argument of patient that
should be an Orchestra. Hence, in axiom (32), the third occurrence of c is a typo. In
Adimen-SUMO v2.6, it has been replaced by g:

∀c ∀g ((instance(c,OrchestralConducting)∧ patient(c,g))
→ instance(g,Orchestra)) (34)

An example of a typo that was detected in KIF-DOLCE is the following axiom,
where sb stands for the subsumption relation and psb stands for the proper subsumption
relation:

∀w ∀ f ∀g ((world(w)∧universal(f)∧universal(g))
→ (psb(w, f ,g)↔ (sb(w, f ,g)∧¬sb(w, f ,g)))) (35)

The following falsity-text was generated from this axiom:

∀w ∀x ∀y (¬psb(w,x,y)) (36)

It was classified as proved, and its proof reveals that, in axiom (35), the relation psb was
incorrectly defined: the last two occurrences of f and g in axiom (35) were swapped,
i.e. the last literal in (35) should be ¬sb(w,g, f). After correcting this typo, 606 falsity-
tests turned from proved into unknown.

24 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

7.2 Redundant Axioms

Redundant axioms are axioms that do not add any reasoning power to the ontology,
because they are already entailed. An example is the Adimen-SUMO axiom which
yields the formula (5) in Section 3. As explained there, this defect was detected by
means of falsity-test (6). In Adimen-SUMO v2.6 axiom (5) is removed, though a
proper axiomatization of CenterOfCircleFn would be more convenient.
We have also found an example of a redundant axiom in KIF-DOLCE (after we had
corrected axiom (35)). The role of the following axiom is to define the disjointness
relation dj of universals:

∀w ∀ f ∀g ((world(w)∧universal(f)∧universal(g))
→ (d j(w, f ,g)↔ φ)) (37)

where φ is the formula that states the disjointness of universals ?F and ?G, but it is not
relevant for the present discussion. The following falsity-test is proved:

∀w (¬world(w)) (38)

Therefore, the negation of the antecedent of axiom (37) is inferred from the ontology.
Hence, the consequent of axiom (37) is redundant, and thus the axiom itself is classi-
fied as redundant. This means that dj has no associated definition (axiomatization) in
KIF-DOLCE. By analysing the proof provided by the ATP, we discover that the axiom-
atization in KIF-DOLCE prevents the introduction of worlds and particulars. In fact,
in KIF-DOLCE the definition of any world or any particular yields to a contradiction.
This defect does not seem to be trivial to fix and it is beyond the scope of this paper.
In KIF-DOLCE, there are 91 different falsity-tests that were proved due to this defect.

In the ontology FPK, the following atom:

p(S(Bool,T)) (39)

encodes the boolean constant for truth as a formula, indeed it is called aTRUTH. Atom
(39) is used as a subformula in 19 axioms, which produces 14 unique falsity-tests en-
abling the detection of the redundant uses of p(S(Bool,T). For example, p(S(Bool,T))
is redundantly used in the following axiom (called aREFLu CLAUSE):

∀a ∀x ((S(a,x) = S(a,x)) → p(S(Bool,T)) (40)

Indeed, for this axiom, we generate the falsity-test:

∀a ∀x (S(a,x) = S(a,x)) (41)

which is easily proved since equality is defined as being reflexive in FOL. Conse-
quently, axiom (40) is redundant.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 25 of 38

7.3 Redundant Subformulas

Redundant subformulas (in axioms) can be simply removed from axioms without af-
fecting the set of conjectures that can be entailed from the ontology. This kind of
redundancy is often introduced by automatic transformation of axioms, such as the
translation of domain axioms in Adimen-SUMO or the transformation of KIF-DOLCE
into CASL-DOLCE. An example is given by the following axioms in CASL-DOLCE,
which define the disjointness of the top classes endurant, perdurant and quality with
abstract:

∀y0 (aB(y0) → pT (y0)) (42)
∀x1 (eDorPDorQ(x1) → pT (x1))) (43)

∀x0 (pT (x0) → ¬(aB(x0)∧ eDorPDorQ(x0))) (44)

It is easy to see that the falsity-test

∀x0 ¬(aB(x0)∧ eDorPDorQ(x0)) (45)

is entailed by axioms (42-44). This ensures that the antecedent of axiom (44) is redun-
dant. Therefore, we have replaced axiom (44) with (45).

7.4 Incorrect Axioms

Incorrect (or inaccurate) axioms are sentences giving an inaccurate definition of the
term they aim to define.
A first example of an incorrect axiom is given by axiom (12) from Adimen-SUMO.
Falsity-test (15) is proved, suggesting that the antecedent of axiom (12) is redundant.
The proof provided by the ATP reveals that the problem is related with axiom (9) which
ensures that the relation sibling is irreflexive. Consequently, in Adimen-SUMO v2.6,
we correct this defect by replacing axiom (12) with:

∀m1 ∀m2 ∀b ((instance(b,Brood)∧member(m1,b)∧member(m2,b)∧m1 ̸= m2)

→ sibling(m1,m2)) (46)

Another example of an incorrect axiom is given in Section 5: falsity-test (27) is
proved, and therefore the antecedent of the implication in axiom (25) seems to be
redundant. However, the proof of this falsity-test reveals that the class Atom (abbre-
viated At) is a subclass of Substance and the latter does not have common instances
with CorpuscularObject (abbr. CO), because Substance and CO are disjoint classes.
By axiom (24), on the domain of predicate c (recall component), the variable a must

26 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

be an instance of CO. We realized that the redundancy of the antecedent of axiom (25)
is due to this misuse of the relation c (recall component) in the consequent of (25). In
Adimen-SUMO v2.6, we fix this defect by replacing relation component (abbr. c) by
part in axiom (25). The new axiom is:

∀a (i(a,At) → ∃p ∃e (part(p,a)∧ part(e,a)∧ i(p,Pr)∧ i(e,El))) (47)

Before fixing that, falsity-test (30) was also proved as Proton (abbr. Pr) and Electron
(abbr. El) are also subclasses of Substance and, therefore, they do not have common
instances with CO (CorpuscularObject). This proved falsity-test is related to the re-
dundancy of the consequent of axiom (25), however the proof reveals the same misuse
of the relation c (or component), so that the repaired axiom (47) also serves to fix this
problem.

8. Experimentation Results for DOLCE, FPK and Adimen-SUMO

In this section, we report on the experimentation results we obtained by testing three
FOL ontologies: DOLCE, FPK and Adimen-SUMO.

Table 2: Number of (tested) rules and (unique) falsity-tests for each ontology

Rules Falsity-Tests
Total Tested Total Unique

KIF-DOLCE 257 215 10,151 2,138
CASL-DOLCE 416 378 6,637 1,266
FPK 78,225 5,753 163,751 37,698
Adimen-SUMO v2.4 2,785 1,622 27,392 7,996
Adimen-SUMO v2.6 2,799 1,629 27,499 8,010

We consider two different versions of DOLCE and Adimen-SUMO. In Table 2,
we provide some general figures about the three ontologies. Given an axiom φ , our
method generates at least one test for φ whenever the af-nnf of φ contains at least
one disjunction connective. Hence, axioms that do not satisfy this condition –e.g.
universally closed conjunctions of literals– are not tested by our method. In Table 2,
the two columns “Rules” respectively stand for the total number of rule axioms in each
ontology (also reported in Table 1) and the number of tested rules. In the columns
“Falsity-tests” we provide the total number of falsity-tests generated for each ontology
and the number of different falsity-tests. The number of truth-tests is equal to the
number of falsity-tests by definition.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 27 of 38

In the rest of this section, we report on the experimentation results for each ontology
in the respective Subsections 8.1, 8.2 and 8.3. Additionally, in Subsection 8.3 we also
report on the improvement Adimen-SUMO from v2.4 to v2.6. In our experimentation,
we have used three different vesions of the theorem prover Vampire [51, 34], especif-
icaly v2.6, v3.0 and v4.1, since they produce different results. We set an execution
time limit of 600 seconds, running on an Intel® Xeon ® CPU E5-2640v3@2.60GHz
with 2GB of RAM memory per processor. The five tested ontologies, the sets of tests
and the program for its generation, and the execution reports are freely available at
http://adimen.si.ehu.es.

Table (3) Experimentation results for DOLCE

Tests Axioms Coverage Time
#Ts. Pr. D. C.S. P.S. U. #Ax. Perc. ⩽1 >120

FT 2,138 112 213 - - - 71 27.63% 20 89
TT 2,138 407 - 0 2 0 44 17.12% 406 1
Total 4276 519 213 0 2 0 77 29.96% 426 90

(a) KIF-DOLCE

Tests Axioms Coverage Time
#Ts. Pr. D. C.S. P.S. U. #Ax. Perc. ⩽1 >120

FT 1,266 30 30 - - - 73 17.55% 30 0
TT 1,266 1,093 - 242 106 0 324 77.88% 1,075 0
Total 2,532 1,123 30 242 106 0 325 78.13% 1,105 0

(b) CASL-DOLCE
Tests.- #Ts.: Number of different tests; Pr.: Number of Proved tests.
Axioms.- Number of axioms classified as D: defective, C.S.: Completely Suitable;

P.S.: Partially Suitable; U.: Unknown.
Coverage.- #Ax.: Number of axioms that are involved in the set of proofs;

Perc.: Percentage over the total number of axioms in the ontology.
Time.- ⩽ s: Number of proofs that takes less than s seconds for s ∈ {1,10} ,

>120: Number of proofs that takes more than 120 seconds.

8.1 Testing DOLCE

We consider two different FOL versions of DOLCE: KIF-DOLCE, which was obtained
by following the translation described in [2], and CASL-DOLCE, which was obtained
from the simplified translation of DOLCE into CASL [7] that is available in Hets [41].

In Table 3a, we provide the results we have obtained testing KIF-DOLCE with

28 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

2,138 different tests of each type (FT and TT). The notes below the table explain the
quantities and abbreviations. We would like to point out that among the 2,138 falsity-
tests, only 112 (5.24%) were proved, while 407 truth-tests were proved. The proved
falsity-tests enable, at first sight, only 2 axioms (up to 215) be classified as partially
suitable, whereas the remaining 213 axioms (99.07%) are classified as defective. How-
ever, according to the coverage measure, only 77 axioms (29.96% of total) are used by
ATPs, of which 71 axioms are used in the proofs of falsity-tests. This low coverage is
due to the fact that the addition of any constant representing a world or a particular
yields to a contradiction in KIF-DOLCE, where world and particular are fundamen-
tal concepts. The small inconsistent susbset of formulas (caused by such addition) is
repeatedly used by ATPs to prove the entailment of the falsity-tests. Hence, this is a de-
fect of KIF-DOLCE, though it does not mean that most of the axioms in KIF-DOLCE
are defective.

For CASL-DOLCE, we have obtained 1,266 different falsity-tests to test 378 rules
axioms. The results of testing CASL-DOLCE are summarized in Table 3b. Only 30
falsity-tests (4.7%) were proved. In all cases, the detected defects consist in trivial re-
dundancies that are introduced by the automatic translation from CASL into TPTP syn-
tax. In particular, the translation of dj (disjointness of universals) artificially introduces
implications where its antecedent is redundant (detected by 20 different falsity-tests).
30 axioms were classified as defective, but all of them are correct although containing
trivial redundancies. In addition, 1,093 truth-tests (86.33%) were proved and 242 ax-
ioms are completely suitable (64.02% of tested axioms) and 106 axioms as partially
suitable (28.04% of tested axioms). 324 different axioms are used in the proofs of those
1,093 truth-tests, which account for 77.88% of total axioms. Consequently, we do not
detect any substantial defect in CASL-DOLCE and nearly two thirds of the axioms
are classified as completely suitable. Note also that most of the proofs were made in
less than one second. It is worth mentioning that CASL-DOLCE is a simplification of
KIF-DOLCE and that they are not equivalent. For example, we cannot check whether
conjecture (38) is entailed by CASL-DOLCE because the predicate world does not
occur in it.

8.2 Testing FPK

The results of testing 5,753 of the FPK axioms using 37,698 different falsity-tests and
the same number of (unique) truth-tests are summarized in Table 4a. Of the 37,698
falsity-tests, 581 (1.54%) were proved, enabling 610 axioms (10.60%) to be classi-
fied as defective. Fortunately, all detected defects are either redundant subformulas
or redundant axioms, such as the example at the end of Subsection 7.3. The level
of redundancy is not surprising since the main objective of the Flyspeck project is to

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 29 of 38

exhaustively check a complex mathematical proof. We conclude that not only is the
number of defects detected in FPK not high, but also that their nature is not critical.
Indeed, only 336 different axioms are used in the proofs of the 581 proved falsity-tests.

Table (4) Experimentation results for FPK

Tests Axioms Coverage Time
#Ts. Pr. D. C.S. P.S. U. #Ax. Perc. ⩽10 >120

FT 37,698 581 610 - - - 336 0.43% 115 443
TT 37,698 22,825 - 649 4,298 196 2,969 3.78% 7,508 12,796
Total 75,396 23,406 610 649 4,298 196 2,988 3.81% 7,623 13,239

(a) FPK

See table notes in Table 3.

With respect to suitability, 22,825 truth-tests (60.55%) are proved, enabling us to
decide that 649 axioms are completely suitable (11.28% of tested axioms). Regarding
the coverage measure, 2,988 formulas (3.81% from the total of 78,500 formulas) are
used in proofs and 5,753 formulas are tested (7.33%). The small number of tested
formulas is due to the fact that many formulas in the ontology do not contain any
disjunctive connective, thus they are out of the scope of our technique. In other words,
large parts of FPK remain untested due to its syntactic form. We guess that a different
(syntactically-based) test generation strategy could allow a larger coverage for FPK. It
is worth mentioning that the set of axioms used in the proofs of truth- and falsity-tests
are disjoint. The execution times reflect that FPK encodes a complex mathematical
proof. In fact, 443 of the 581 proofs of falsity-tests, and 12,796 of the 22,825 proofs
of truth-tests, take more than 120 seconds.

8.3 Testing and Improving Adimen-SUMO

In this subsection, we describe the process of testing and improving Adimen-SUMO
v2.4. Indeed, by correcting all the defects that were detected, we obtained Adimen-
SUMO v2.6, which was also evaluated.

We tested 1,622 axioms (58.24% of rules) in Adimen-SUMO v2.4 utilizing a set
of 7,996 different falsity-tests. The results of this experiment are summarized in Table
5a. Although no defect was found by using the set of CQs proposed in [3], most of
the new falsity-tests (7,991) have been proved. Moreover, all the tested axioms were
classified as defective, despite the ATPs proved the only 5 truth-tests that were built
as the negation of the 5 non-proved falsity-tests). The coverage for Adimen-SUMO
v2.4 is only 1.35%. This is due, likewise for KIF-DOLCE, to the fact that the proofs

30 of 38 J. ÁLVEZ, M. HERMO, P. LUCIO, G: RIGAU

of the whole set of falsity-tests are based on a very small subset of axioms: 96 axioms
(1.29%). We correct every defective axiom, and apply our testing methodology again
to the resulting ontology, producing once more a new set of defective axioms. Conse-
quently, we have iteratively proceeded in this way until no new defect is found. This
requires 9 iterations, after which we obtained Adimen-SUMO v2.6. In total, we have
corrected 21 typos, 3 redundant axioms, 17 incorrect axioms and 47 redundant subfor-
mulas (in axioms). In addition, 24 defective axioms –that were detected in preliminary
experimentations– have been corrected previously to this test.

Table (5) Experimentation results for Adimen-SUMO

Tests Axioms Coverage Time
#Ts. Pr. D. CS. P.S. U. #Ax. Perc. ⩽10 >120

FT 7,996 7,991 1,622 - - - 96 1.29% 2 7,955
TT 7,996 5 - 0 0 0 14 0.19% 5 0
Total 15,992 7,996 1,622 0 0 0 100 1.35% 7 7,955

(a) Adimen-SUMO v2.4

Tests Axioms Coverage Time
#Ts. Pr. D. CS. P.S. U. #Ax. Perc. ⩽10 >120

FT 8,010 0 0 - - - - - - -
TT 8,010 6,698 - 881 748 0 3,830 51,53% 6372 7

(b) Adimen-SUMO v2.6
See table notes in Table 3.

In Adimen-SUMO v2.6, see Table 5b, we tested 1,629 axioms (58.20% of 2,799
rules) with a set of 8,010 different falsity-tests (and the same number of truth-tests).
No falsity-test is proved, whereas 6,698 truth-tests (83.62%) are proved. The latter
result allows us to classify 881 axioms as being completely suitable (54.08% of tested
axioms) and 748 axioms as partially suitable (45.92%). The coverage of Adimen-
SUMO v2.6 is 51.53%: 3,830 different axioms are used in the set of truth-test proofs.
That coverage level is much more larger than the coverage we have ever accomplished
using black-box testing techniques [4]. Thus, we can conclude that more than a half
of Adimen-SUMO v2.6 has been validated using the methodology introduced in this
paper.

AUTOMATIC WHITE-BOX TESTING OF FIRST-ORDER LOGIC ONTOLOGIES 31 of 38

9. Conclusions and Future Work

This work offers a new practical insight towards the automatic testing of first-order
logic (FOL) ontologies using ATPs. In addition, we provide formal proofs of the cor-
rectness of the proposed tests and report on the practical application of our methodol-
ogy to four different FOL ontologies: Adimen-SUMO, KIF-DOLCE, CASL-DOLCE
and FPK. Using our methodology, we have been able to detect some defects in all of
those ontologies, although in the last two each defect can be trivially solved. In the
case of Adimen-SUMO, we have applied our white-box testing approach to Adimen-
SUMO v2.4 and manually corrected all defects that have been detected. Following 9
iterations of the process of testing and correcting, we obtained Adimen-SUMO v2.6,
where our implementation does not detect any defect. Moreover, 54.32% of the axioms
in Adimen-SUMO v2.6 were classified as completely suitable for reasoning purposes
and 83.25% of the tested axioms were classified as suitable.

It is worth highlighting that testing the suitability for reasoning purposes of ax-
ioms is often much more interesting than checking the consistency of ontologies. For
example, KIF-DOLCE is proved to be consistent by Vampire v4.1 although 99% of
its axioms are classified as defective and none is classified as suitable for reasoning
purposes. It is also particularly interesting to evaluate the competency of axioms by
following black-box testing strategies, such as the one proposed in [3].

All the resources that have been used and developed during this work are available
in a single package, including:12 a) the ontologies; b) tools for the creation of tests, the
experimentation and the analysis of results; and c) the resulting tests for each ontology
and the output obtained from different ATPs.

Regarding future work, ATPs are currently incorporating new techniques designed
for reducing the large axiom space, such as the axiom selection technique [59, 39, 29,
35] and the abstraction-refinement framework [60, 28]. Using these techniques we
hope that a part of the test that –in the experimentation reported in this paper– are un-
known can be proved, hence we would find more defects in Adimen-SUMO or classify
more axioms as being completely suitable. This shall also allow us to evaluate the dif-
ferent techniques available and possible strategies for these techniques. In addition, we
could explore techniques to minimize the computational effort performed for testing
based on automated reasoning algorithms for determining the impact of axioms (as in
[43]) and then perform the tests in decreasing order of the impact of the axioms that
generate each test.

We have introduced a correct method of white-box test generation based on finding
redundancies related to the disjunction (implication) logical operator. Other methods

12The package is available at http://adimen.si.ehu.es.

32 of 38 REFERENCES

for automatic generation of tests from an axiomatization can be obtained by focusing
in other kinds of redundancies. Thus, we plan to study new white-box testing strate-
gies in the future. We also plan to apply our white-box testing methodology to other
ontologies and to all the future versions of Adimen-SUMO.

Finally, the proposed white-box testing opens an alternative way of checking the
usefulness and non-defectiveness of axioms without proving the satisfiability of the
whole ontology: in particular, by proposing tests that are specific to single axioms and
by checking the use of axioms to prove the usefulness of other axioms.

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable comments
that improve this publication. This work has been partially funded by the Span-
ish Projects TUNER (TIN2015-65308-C5-1-R), COMMAS (TIN2013-46181-C2-2-
R), and GRAMM (TIN2017-86727-C2-2-R) and the Basque Projects GIU15/30 and
GIU18/182.

References

[1] J. Álvez, I. Gonzalez-Dios, and G. Rigau. Cross-checking WordNet and SUMO
using meronymy. In N. Calzolari, editor, Proc. of the 11th Int. Conf. on Lan-
guage Resources and Evaluation (LREC 2018). European Language Resources
Association (ELRA), 2018.

[2] J. Álvez, P. Lucio, and G. Rigau. Adimen-SUMO: Reengineering an ontology
for first-order reasoning. Int. J. Semantic Web Inf. Syst., 8(4):80–116, 2012.

[3] J. Álvez, P. Lucio, and G. Rigau. Improving the competency of first-order on-
tologies. In Ken Barker and José Manuél Gómez-Pérez, editors, Proc. of the 8th

Int. Conf. on Knowledge Capture (K-CAP 2015), pages 15:1–15:8. ACM, 2015.

[4] J. Álvez, P. Lucio, and G. Rigau. Black-box testing of first-order logic ontologies
using WordNet. CoRR, abs/1705.10217, 2017.

[5] J. Álvez, P. Lucio, and G. Rigau. Evaluating automated theorem provers using
Adimen-SUMO. In L. Kovács and A. Voronkov, editors, Proc. of the 3rd Vampire
Workshop (Vampire 2016), volume 44 of EPiC Series in Computing, pages 74–
82. EasyChair, 2017.

REFERENCES 33 of 38

[6] J. Álvez and G. Rigau. Towards cross-checking WordNet and SUMO using
meronymy. In P. Vossen, C. Fellbaum, and F. Bond, editors, Proc. of the 9th

Global WordNet Conference (GWC 2018), 2018.

[7] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. San-
nella, and A. Tarlecki. CASL: the Common Algebraic Specification Language.
Theoretical Computer Science, 286(2):153–196, 2002.

[8] J. Atserias, G. Rigau, and L. Villarejo. Spanish WordNet 1.6: Porting the Span-
ish WordNet across Princeton versions. In Proceedings of the 4th Int. Conf. on
Language Resources and Evaluation (LREC 2004), 2004.

[9] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia:
A nucleus for a web of open data. In Aberer, K. et al., editor, The Semantic Web,
LNCS 4825, pages 722–735. Springer, 2007.

[10] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider.
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, New York, NY, USA, 2nd edition, 2010.

[11] F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 20(1):5–34, 2010.

[12] F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+. In R. Cornet and K. A. Spackman, editors,
Proc. of the 3rd Int. Conf. on Knowledge Representation in Medicine ((KR-MED
2008), 2008.

[13] C. Bezerra, F. Freitas, and F. Santana. Evaluating ontologies with competency
questions. In 2013 IEEE/WIC/ACM International Joint Conferences on Web In-
telligence (WI) and Intelligent Agent Technologies (IAT), volume 3, pages 284–
285, 2013.

[14] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-
mann. DBpedia - A crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web, 7(3):154–165, 2009.

[15] E. Davis and G. Marcus. Commonsense reasoning and commonsense knowledge
in artificial intelligence. Commun. ACM, 58(9):92–103, aug 2015.

[16] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

34 of 38 REFERENCES

[17] M. Fernández-López, A. Gómez-Pérez, and M. C. Suárez-Figueroa. Methodolog-
ical guidelines for reusing general ontologies. Data & Knowledge Engineering,
86:242–275, 2013.

[18] M. Fitting. First-order Logic and Automated Theorem Proving. Springer-Verlag
New York, Inc., New York, NY, USA, 1990.

[19] G. Friedrich and K. Shchekotykhin. A general diagnosis method for ontologies.
In Y. Gil, E. Motta, V. R. Benjamins, and M. A. Musen, editors, The Semantic
Web – ISWC 2005, 4th International Semantic Web Conference, pages 232–246,
Berlin, Heidelberg, 2005. Springer.

[20] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WordNet
with DOLCE. AI Magazine, 24(3):13–24, 2003.

[21] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening
ontologies with DOLCE. In A. Gómez-Pérez et al., editor, Knowledge Engin. and
Knowledge Manag.: Ontologies and the Semantic Web, LNCS 2473, pages 166–
181. Springer, 2002.

[22] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. HermiT: An OWL 2
reasoner. Journal of Automated Reasoning, 53(3):245–269, Oct 2014.

[23] T. Gruber. Ontology. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of
Database Systems, pages 1963–1965. Springer US, 2009.

[24] M. Grüninger and M. S. Fox. Methodology for the design and evaluation of
ontologies. In Proc. of the Workshop on Basic Ontological Issues in Knowledge
Sharing (IJCAI 1995), 1995.

[25] N. Guarino and C. A. Welty. An overview of ontoclean. In S. Staab and R. Studer,
editors, Handbook on Ontologies, International Handbooks on Information Sys-
tems, pages 151–171. Springer Berlin Heidelberg, 2004.

[26] T. C. Hales and S. P. Ferguson. The Kepler conjecture. Discrete & Computational
Geometry, 36(1):1–269, 2006.

[27] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller.
A revision of the proof of the Kepler conjecture. Discrete & Computational
Geometry, 44(1):1–34, 2010.

REFERENCES 35 of 38

[28] Julio Cesar Lopez Hernandez and Konstantin Korovin. Towards an abstraction-
refinement framework for reasoning with large theories. In Thomas Eiter, David
Sands, Geoff Sutcliffe, and Andrei Voronkov, editors, IWIL Workshop and LPAR
Short Presentations, volume 1 of Kalpa Publications in Computing, pages 119–
123. EasyChair, 2017.

[29] K. Hoder and A. Voronkov. Sine qua non for large theory reasoning. In Niko-
laj Bjørner and Viorica Sofronie-Stokkermans, editors, Automated Deduction –
CADE-23, pages 299–314, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[30] M. Horridge. Justification based explanation in ontologies. PhD thesis, Univer-
sity of Manchester, UK, 2011.

[31] Q. Ji, G. Qi, and P. Haase. A relevance-directed algorithm for finding justifi-
cations of dl entailments. In A. Gómez-Pérez, Y. Yu, and Y. Ding, editors, The
Semantic Web, pages 306–320, Berlin, Heidelberg, 2009. Springer Berlin Heidel-
berg.

[32] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In K. Aberer, K.S. Choi, N. Noy, D. Allemang, K.I. Lee,
L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and
P. Cudré-Mauroux, editors, The Semantic Web 6th International Semantic Web-
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
volume 4825 of Lecture Notes in Computer Science, pages 267–280, Berlin, Hei-
delberg, 2007. Springer-Verlag.

[33] Knowledge Interchange Format draft proposed American National Standard
(dpANS) NCITS.T2/98-004, 1998.

[34] L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In
N. Sharygina and H. Veith, editors, Computer Aided Verification, LNCS 8044,
pages 1–35. Springer, 2013.

[35] E. Kuksa and T. Mossakowski. Prover-independent axiom selection for auto-
mated theorem proving in ontohub. In Pascal Fontaine, Stephan Schulz, and
Josef Urban, editors, Proceedings of the 5th Workshop on Practical Aspects of
Automated Reasoning co-located with International Joint Conference on Auto-
mated Reasoning (IJCAR 2016), Coimbra, Portugal, July 2nd, 2016., pages 56–
68, 2016.

[36] O. Kutz and T. Mossakowski. A modular consistency proof for DOLCE. In
Burgard W. et al., editor, Proc. of the 25th AAAI Conf. on Artif. Intell. (AAAI
2011). AAAI Press, 2011.

36 of 38 REFERENCES

[37] C. Matuszek, J. Cabral, M. J. Witbrock, and J. DeOliveira. An introduction to the
syntax and content of Cyc. In C. Baral, editor, Proc. of the Spring Symposium:
Formalizing and Compiling Background Knowledge and Its Appl. to Knowledge
Repr. and Question Answering, pages 44–49. AAAI Press, 2006.

[38] J. McCarthy. Artificial intelligence, logic and formalizing common sense. In
R. H. Thomason, editor, Philosophical Logic and Artificial Intelligence, pages
161–190. Springer, 1989.

[39] J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-generated
resolution problems. Journal of Applied Logic, 7(1):41 – 57, 2009. Special Issue:
Empirically Successful Computerized Reasoning.

[40] M. Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelli-
gence, and the Future of the Human Mind. Simon & Schuster, 2007.

[41] T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, Hets.
In O. Grumberg and M. Huth, editors, Proc. of the 13th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2007), LNCS
4424, pages 519–522. Springer, 2007.

[42] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley
& Sons, Inc., Hoboken, N.J., 2012.

[43] N. Nikitina, S. Rudolph, and B. Glimm. Interactive ontology revision. Journal
of Web Semantics: Science, Services and Agents on the World Wide Web, 12-
13:118–130, 2012.

[44] I. Niles and A. Pease. Towards a standard upper ontology. In Guarino N. et al.,
editor, Proc. of the 2nd Int. Conf. on Formal Ontology in Information Systems
(FOIS 2001), pages 2–9. ACM, 2001.

[45] I. Niles and A. Pease. Linking lexicons and ontologies: Mapping WordNet to the
Suggested Upper Merged Ontology. In H. R. Arabnia, editor, Proc. of the IEEE
Int. Conf. on Inf. and Knowledge Engin. (IKE 2003), volume 2, pages 412–416.
CSREA Press, 2003.

[46] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating
your first ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford
Knowledge Systems Laboratory and Stanford Medical Informatics, 2001.

REFERENCES 37 of 38

[47] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging owl ontologies. In Proceedings
of the 14th International Conference on World Wide Web, WWW ’05, pages 633–
640, New York, NY, USA, 2005. ACM.

[48] H. Paulheim and A. Gangemi. Serving dbpedia with dolce – more than just
adding a cherry on top. In M. Arenas, O. Corcho, E.Simperl, M.Strohmaier,
M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan,
and Steffen S. Staab, editors, The Semantic Web - ISWC 2015, pages 180–196,
Cham, 2015. Springer International Publishing.

[49] A. Pease. Standard Upper Ontology Knowledge Interchange Format. Retrieved
June 18, 2009, from http://sigmakee.cvs.sourceforge.net/sigmakee/

sigma/suo-kif.pdf, 2009.

[50] A. Pease and C. Benzmüller. Sigma: An integrated development environment for
formal ontology. AI Communications (Special Issue on Intelligent Engineering
Techniques for Knowledge Bases), 26(1):79–97, 2013.

[51] A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

[52] S. Schlobach, Z. Huang, R. Cornet, and F. van Harmelen. Debugging incoherent
terminologies. Journal of Automated Reasoning, 39(3):317–349, Oct 2007.

[53] S. Schulz, G. Sutcliffe, J. Urban, and A. Pease. Detecting inconsistencies in large
first-order knowledge bases. In Proceedings of the 26th International Confer-
ence on Automated Deduction (CADE 26), volume 10395 of Lecture Notes in
Computer Science, pages 310–325. Springer, 2017.

[54] K. Shchekotykhin, G. Friedrich, P. Fleiss, and P. Rodler. Interactive ontology
debugging: two query strategies for efficient fault localization. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, 12(0), 2012.

[55] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz. Pellet: A prac-
tical OWL-DL reasoner. Web Semantics: Science, Services and Agents on the
World Wide Web, 5(2):51–53, 2007.

[56] S. Staab and R. Studer. Handbook on Ontologies. Springer Publishing Company,
Incorporated, 2nd edition, 2009.

[57] G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Auto-
mated Reasoning, 43(4):337–362, 2009.

38 of 38 REFERENCES

[58] G. Sutcliffe. The CADE ATP system competition - CASC. AI Magazine,
37(2):99–101, 2016.

[59] G. Sutcliffe and A. Dvorský. Proving harder theorems by axiom reduction. In
Ingrid Russell and Susan M. Haller, editors, Proceedings of the Sixteenth Inter-
national Florida Artificial Intelligence Research Society Conference, May 12-14,
2003, St. Augustine, Florida, USA, pages 108–113, 2003.

[60] A. Teucke and C. Weidenbach. First-order logic theorem proving and model
building via approximation and instantiation. In Carsten Lutz and Silvio Ranise,
editors, Frontiers of Combining Systems, pages 85–100, Cham, 2015. Springer
International Publishing.

[61] M. Teymourlouie, A. Zaeri, M. Nematbakhsh, M. Thimm, and S. Staab. Detect-
ing hidden errors in an ontology using contextual knowledge. Expert Systems
with Applications, 95:312–323, 2018.

[62] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: system descrip-
tion. In Ulrich Furbach and Natarajan Shankar, editors, Proc. of the 3rd Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2006), volume 4130 of
Lecture Notes in Computer Science, pages 292–297. Springer Berlin Heidelberg,
2006.

[63] P. Vossen, E. Agirre, G. Rigau, and A. Soroa. Kyoto: A knowledge-rich approach
to the interoperable mining of events from text. In A. Oltramari, P. Vossen,
L. Qin, and E. Hovy, editors, New Trends of Research in Ontologies and Lexi-
cal Resources: Ideas, Projects, Systems, pages 65–90, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[64] Y. Zhang, D. Ouyang, and Y. Ye. Glass-box debugging algorithm based on un-
satisfiable dependent paths. IEEE Access, 5:18725–18736, 2017.

