This is the accepted manuscript of the article that appeared in final form in Materials Today 21(4): 419-436 (2018), which has been published in final form at <u>https://doi.org/10.1016/j.mattod.2018.01.035</u>. © 2018 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Materials for Supercapacitors: When Li-Ion Battery Power is Not Enough

Z. Lin^{1,2}, E Goikolea^{3,4}, A. Balducci^{5,6}, K. Naoi^{7,8}, P.L. Taberna^{1,2}, M. Salanne^{2,9}, G. Yushin¹⁰,

P. Simon^{1,2}

¹ CIRIMAT, UMR CNRS 5085, Université Paul Sabatier, Bat. 2R1, 118 route de Narbonne, 31062 Toulouse Cedex 9. France

² Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France

³ CIC Energique, Albert Einstein 48, Araba Technology Park, 01510, Miñano, Vitoria-Gasteiz, Spain

⁴ Inorganic Chemistry Department, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain

⁵ Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany

⁶ Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany

⁷ Institute of Global Innovation Research (GIR), Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558, Japan

⁸ Advanced Capacitor Research Center, Tokyo University of Agriculture & Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8558, Japan

⁹ Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris, France

¹⁰ School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Supercapacitors, also known as electrochemical capacitors, have witnessed a fast evolution for the recent years, but challenges remain. This review covers the fundamentals and stateof-the-art developments for supercapacitors. Conventional and novel electrode materials, including porous carbon electrode materials for electrical double layer capacitors (EDLCs) and transition metal oxides, carbide and/or nitride (...) electrode materials for pseudocapacitors are described, as well as advanced techniques / tools recently proposed for their characterizations. Current limitations and recent breakthroughs in terms of electrolytes and understanding of the charge storage mechanism for supercapacitors are discussed. Strategies aiming at improving energy and power performance by developing new electrode materials and electrolytes are also discussed.

1. Introduction

Renewable energy technologies, energy efficient industrial equipment, individual, freight and public transport vehicles, portable electronic devices, and drones share a common requirement: they all need reliable electricity storage solutions. However, depending on the nature of the need (e.g., amount of energy, rate of charge or discharge, cycle stability, temperature of operations, etc.) and the location (e.g., in a centralized industrial power plant, in a direct contact with a consumer, etc.), the best available solutions may differ dramatically.

For example, the majority of the current energy storage facilities that offset the difference in the energy generation and electricity demands for the electrical grids are based on pumped hydroelectric energy storage, in which the electricity is reversibly converted into potential energy. Such an energy storage solution is relatively low cost, but not always available for centralized locations and mostly not accessible for small scale applications. In addition, it does not allow rapid electric energy conversion and release.

In case of portable applications, the use of solutions based on electrochemical energy storage systems is now well established. Among a large portfolio of the available technologies, the two currently most important ones are Li-ion batteries (LIBs) [1] and supercapacitors [2,3] that offer different but often complementary performance characteristics. LIBs can deliver very large energy densities but commonly suffer from limited power densities and short cycle stability. They are, therefore, mostly used in applications where relatively small current densities are needed for longer (minutes to hours) time periods, such as portable electronics (cellular phones, laptops, tablets, headsets, fitness trackers, etc.), electric or hybrid electric vehicles (EVs and HEVs), and small-to-medium size stationary energy storage projects. At the same time, supercapacitors or electrochemical capacitors (ECs) can operate at high charge and discharge rates over an almost unlimited number of cycles. These are high power devices that can be fully charged and discharged within a few tens of seconds. Typical applications of supercapacitors in transportation cover stop and start and regenerative braking systems in HEVs, which occurs on a timescale of a few seconds [2]. Tramways and buses have also already benefited from the development of supercapacitors and there are numerous examples of supercapacitor-powered electric buses (charging rapidly at bus stops) around the world, especially in China. Numerous cities in Europe, the US and worldwide are developing

tramways and trains with on-board supercapacitor modules for braking energy recovery and short-distance electric drive (to pass crossings) in urban areas [4]. All those emerging applications for ECs in the automotive ecosystem suggest a bright future for this technology.

The main difference between LIBs and ECs lies in the charge storage mechanism: in short, the former involve redox reactions in the bulk of the active materials, while the latter operate through the accumulation of electrons at the surface of the electrode particles (as shown in Figure 1). While clearly more electrons can be stored in the bulk, but kinetics limitation arise from the slow diffusion of the ions. In addition, LIBs operate in the electrochemical window where electrolyte is thermodynamically unstable. While the formation of passivation solid electrolyte interphase layer on the anode (SEI) and the cathode (typically called CEI) and the use of relatively large active particles (with small surface area in contact with electrolyte) may slow down electrolyte decomposition dramatically and permit 500-3000 or more deep cycles, such cycle stability is still very short compared to ECs which typically undergo 1,000,000 or more cycles before degrading to 80% of the initial capacitance. Furthermore, replacement of electrolyte in ECs typically restores the initial performance.

Figure 1: Schematic of an Electrical Double Layer Capacitor (EDLC) and enlargement of a porous carbon electrode interface.

In this review, we will focus on the materials employed for supercapacitor applications. Two main families are considered: electrical double-layer capacitors (EDLCs), which use nanoporous carbon electrodes; and pseudocapacitors, which involve materials containing redox-active transition metals with multiple oxidation states. Those are generally oxide-based, but other sub-families of pseudocapacitive materials have recently been proposed. Even inside these families, the charge storage mechanisms are multiple and depend on both the electrode material (not only its chemical nature, but also its porosity, its texture, etc) and the electrolyte. In cases with constant capacitances, the energy W (equation 1) and the maximum power densities P (equation 2) are respectively given by

$$W = \frac{1}{2}CV^2 \qquad (J) \tag{1}$$

$$P_m = \frac{V^2}{4R} \qquad (W) \tag{2}$$

where *C* is the specific capacitance (unit: F g⁻¹), *V* is the operating voltage (unit: V) and *R* is the equivalent series resistance (unit: Ω) of the device.

This set of equations is only applicable to systems that show linear charge-discharge and rectangular cyclic voltammetry (CV) electrochemical signatures, i.e. when the charge Q (A.s) changes linearly with the potential. In the general way, the discharged energy is obtained by integrating the potential V (in V) and the current I (in A) during the discharge time t (h) (equation 3):

$$W = \int V(t)I(t)dt \quad \text{(Wh)} \tag{3}$$

and the power is the product of the potential multiplied by the current (equation 4)

$$P = V(t)I(t) \tag{4}$$

Current values for the commercial supercapacitor devic es reach 8 Wh kg⁻¹ (\approx 250 Wh kg⁻¹ for LIB) for the energy density and go beyond 10 kW kg⁻¹ (\approx 1 kW kg⁻¹ for LIB) for the power density. These performance characteristics typically change little (within 5-20%) for more than 1,000,000 cycles of charge and discharge. After detailing the main factors and mechanisms that affect these performances for both EDCLs and pseudocapacitors, we will provide some perspectives on the materials and electrolytes that may be used in the future.

2. Electrical double layer capacitors

2.1 Carbon materials

2.1.1 Synthesis of porous carbons

From the synthetic viewpoint, carbon offers the largest panel of choice for the porous electrodes. In fact, parameters such as material dimensionality (i.e. from zero dimensional to three dimensional materials), specific surface area, pore size distribution, particle size and

texture can be easily tuned by controlling the synthetic route parameters (albeit they can be difficult to characterize faithfully). Activated carbons (ACs) [5], carbide derived carbons (CDCs) [6], templated carbons [5], and more recently graphene [7] have been the most explored as EDLC electrode materials. Carbon structures are still much more diverse, and carbon nanotubes (CNTs), carbon onions and mesoporous carbons have also been investigated [8,9].

ACs are the materials of choice for EDLC applications. They display a disordered structure obtained from the physical or chemical activation (partial oxidation) of a charcoal, hydrochar and other natural or synthetic organic precursors [10-13]. Physical activation is achieved at high temperature under a mixed inert/oxidizing atmosphere using typically steam or carbon dioxide as activation agents [11], whereas chemical activation is also performed at high temperature but mixing the precursor carbon with alkalis, carbonates, chlorides, acids or similar reagents (e.g. KOH, K₂CO₃, H₃PO₄, H₂SO₄, ZnCl₂, among others) [5,11]. Most of the commercial EDLCs employ extra-pure steam activated ACs derived from coconut shells [5,11]. Chemical activation is mainly performed at the laboratory scale. It offers advantages in terms of pore size distribution control [5]. The maximum capacitance values in organic electrolyte are about 200 F g⁻¹ and 80 F cm⁻³ in EMI-TFSI ionic liquid (IL) electrolyte has been attained in EDLCs using ACs [14].

CDCs were tested as EDLC materials at the beginning of the 2000s [15]. CDCs are microporous carbons (which means that their pore sizes are smaller than 2 nm) with a very narrow pore size distribution. They are produced from high-temperature etching of metal carbides (TiC, SiC and VC among others) under chlorine gas atmosphere [16-18] or vacuum deposition [19,20]. They yield capacitance values up to 220 F g⁻¹ and 126 F cm⁻³ in KOH and 150 F g⁻¹ and 70 F cm⁻³ in organic electrolyte [16-20]. Commercial EDLCs based on CDC materials offer superior energy densities. High power can be achieved as well, for instance, by introducing mesopore channels for fast ion transport [21] or using nano-felts like CDC electrodes [22]. However, the cost of CDC materials is higher than that of ACs, which limits their applications.

Templated carbons using zeolite as a sacrificial porous structure directing agent have been developed [23-25]. These carbons exhibit extremely narrow pore size distribution, with a high specific surface area. Such optimum properties lead to both very high gravimetric (about 150 F g^{-1}) and volumetric (80 F cm⁻³) capacitance in non-aqueous electrolyte. However, the

preparation of zeolite-templated carbons has been limited to the laboratory-scale due to the challenges in scaling-up the synthesis process while maintaining material uniformity and the high costs associated with the need of HF for dissolving the hard template.

Graphene and graphene-like carbons became recently popular, but conventional commercial graphene powders suffer from (i) restacking of graphene layers, which drastically reduces the surface area and capacitance values, and (ii) low electrode density, which results in poor volumetric capacitance values. Chemical activation with KOH can be used to produce activated graphene with a large specific surface area and a broad pore size distribution (ranging between 0.6 and 5 nm). Such activated graphene delivers a capacitance of 160 F g⁻¹ and 60 F cm⁻³ in acetonitrile-based non aqueous electrolyte [26]. This is one of the few examples [26-29] showing electrochemical performance comparable to ACs. Since in most cases, the low density of graphene limits the energy density of the device both in gravimetric and volumetric terms [30]. Beyond graphene, there are many other two-dimensional carbons, such as reduced graphene oxide, or exfoliated graphite flakes. To avoid confusing, it's important to use appropriate nomenclature instead of "Graphene" for all two-dimensional carbons [31].

Surface functional groups on various nanostructured carbons (carbon onions, activated carbon, graphene, CNTs, etc.) may enhance capacitance in both organic and aqueous electrolytes substantially, but at the expense of undesired gassing during operation, faster self-discharge [32,33] and reduced stability when assembled into fully functional, dense, multi-layered hermetic devices, particularly at elevated temperatures.

In summary, many different forms of carbon materials have been prepared and tested for supercapacitor applications during the past 20 years. New synthesis methods have been proposed to prepare high-capacitance materials at the laboratory scale. The various strategies consisted in controlling the porosity, the average pore size and pore size distributions, as well as the texture and defect content [5,10,23,34] of the materials. This knowledge has then been transferred to the case of ACs, which remains the materials of choice for commercial EDLC devices for cost reasons. In the following we will discuss more precisely the current knowledge on the role played by the key parameters in the enhancement of the performances.

2.1.2 Specific surface area and pore size distributions in porous carbons

According to the first model proposed by Helmholtz [2,35,36], the capacitance of the double-layer is given by

$$C = \frac{\varepsilon_r \varepsilon_o A}{d} \text{ or } \frac{C}{A} = \frac{\varepsilon_r \varepsilon_o}{d}$$
(5)

where *d* is the distance between the layer of charge on the electrode and the layer of adsorbed ions, ε_r is the electrolyte dielectric constant, ε_0 is the permittivity of vacuum and *A* is the electrode surface area. Equation (5) suggests that capacitance increases linearly with the latter, so that developing high specific surface area (SSA) carbons has long been the main strategy for optimizing EDLCs.

Yet, the SSA value depends substantially on both the measurement and analysis methods, in particular in the presence of micropores and polar groups in the material. The International Union of Pure and Applied Chemistry has recently confirmed that the widely used Brunauer-Emmett-Teller analysis (BET) is not recommended for microporous carbons analysis because it underestimates the surface of ultramicroporous (< 0.7 nm) carbons and overrates the surface of large micropores (> 0.7 nm) [3,37]. Other methods available for evaluating carbon textural properties, such as the Dubinin-Radushkevich equation or immersion calorimetry, also lack the precision needed for providing conclusion on the dependence of capacitance on pore size [38]. To avoid the interaction of functional groups or heteroatoms in carbon with molecular electric quadrupole moment of N₂ or molecular electric dipole moment of CO₂, the determination of the SSA of microporous carbons should preferably be done by measuring the adsorption of Ar gas at 87 K. Then the analysis of the isotherms using Density Functional Theory (DFT), Non Local DFT (NLDFT) or Quenched Solid Density Functional Theory (QSDFT) mathematical models provide the pore size distribution and the mean pore size diameter, in addition to the SSA [39]. However, commercial software packages utilizing these methods currently rely on the simple models for the shape of the pores (e.g., infinitely wide slit pores or infinitely long cylindrical pores), which are not accurate. Furthermore, the key quantity that should be considered to calculate the specific capacity (in F m⁻²) of the porous carbons is the surface area accessible to the ions of the electrolyte (e.g., defined by considering the pore sizes larger than the neat ion size [40]). In addition, whatever the approach used, estimations based on gas adsorption always rely on mathematical models. Finally, other parameters such as surface chemistry (presence of heteroatoms, surface groups or defects) or texture also affect the capacitance [34,41] and such impacts depend on electrolyte used due to the complex

interactions between electrolyte solvent molecules, electrolyte ions, functional groups and carbon surface. Due to the difficulty of linking the performance of the materials to a few well-controlled parameters, advanced experimental techniques such as X-Ray [42,43] or neutron scattering [44] combined with modelling have been developed over the past years to get a better understanding of the ion confinement effect in carbon nanopores and the associated capacitance increase. In general, these studies aim at characterizing directly the adsorption of the ions, and hence they focus on the interface rather than on the carbon material only.

2.2 Electrolytes

2.2.1 Ideal electrolyte for electrical double layer capacitors

The charge storage mechanism in electrical double layer capacitors (EDLCs), relies on the adsorption of the ions of an electrolyte onto the pore surface of a porous electrode. For this reason, the electrolyte has to be considered as an active material just like the electrode materials [2,45-48]. Typically, an EDLC electrolyte contains a salt (in a concentration of 1 mol L^{-1} or higher) and a solvent.

As indicated above (see Eq. 1 and 2), both the energy and the power of EDLCs depend on the square of the operating voltage, and thus on the electrochemical stability of the electrolyte, because the formation of SEI or CEI on EDLC electrodes would dramatically reduce their performance and cycle life. The stability is therefore one of the most important properties to optimize. Additionally, the fast and efficient storage process required for EDLC highlights the needs for low viscosity (commonly correlated with high ion mobility) and high conductivity (proportional to the multiple of the ion mobility and ion concentration) electrolytes in a broad range of operating temperatures. In order to guarantee a long cycle life, which is one of the strengths of EDLCs, the integrity of the electrolyte solvents and salts need to be preserved. Consequently, a high (electro)chemical stability is also a very important requirement for the electrolyte components. In order to maximize addressable markets, EDLCs should ideally be able to operate safely in temperatures ranging between -60 °C and 100 °C. In order to establish a safe operation in this broad operative range, low melting, high boiling points and high flash point of the electrolytes are required. Finally, all these properties should be displayed by a cheap electrolyte based on low-cost and preferably low-toxicity salts and solvents, which is needed for the successful commercialization of any electrochemical storage device for large markets.

2.2.2 State-of-the-art: organic electrolytes

Commercial EDLCs contain either aqueous or organic-based electrolytes [2,45,46]. Aqueous systems are currently limited to low cell voltage, so the state-of-the-art organic electrolytes consist of solutions containing 1M of the salt tetraethylammonium tetrafluroroborate (Et₄NBF₄) in acetonitrile (ACN) or propylene carbonate (PC) [2,45,46]. These electrolytes display good transport properties, and their use makes possible the realization of EDLCs with operative voltage in the order of 2.7-2.8 V, able to work in a rather broad temperature range. Typically, ACN-based EDLC display higher power and higher performance at low temperatures compared to PC-based EDLCs. However, many studies showed that these electrolytes cannot operate at voltages higher than 2.8-3.0 V without a dramatic reduction of their cycle life [46-48]. As a consequence, the development of innovative electrolytes allowing higher voltages is considered as a priority for this technology.

2.2.3 Alternative electrolytes for EDLCs

Figure 2 shows a schematic summary of the various electrolyte components recently reported, and Table 1 lists some of the chemical-physical properties as well as the operative voltage of EDLCs of these innovative electrolytes. In the following, these results will be considered and critically analysed.

Conventional electrolytes for EDLCs				
SolventsAcetonitrile (ACN)Propylene Carbonate (PC)	Salts Cation • Tetra-ethylammonium (Et ₄ N Anion • Tetra fluoroborate (BF ⁴)	N+)		
Alternative electrolytes for EDLCs				
Solvents Nitriles Glutaronitrile (GTN) Adiponitrile (ADN) Butyronitrile (BTN) 2-Methylglutaronitrile (2-MGN)	Carbonate Butilene Carbonate (BC) Etilen Carbonate (EC) Sulfonate Ethyl isopropyl sufone (EiPS) 	Ester and Cyano ester • 3-cyanopropionic acid methyl ester (CPAME) • Methyl acetate (MA) • Methyl formate (MF))		
Salts Cation • Pyrrolidinium (Pyr) • Imidazolium (Im) • Azepanoum (Azp) • Sulfonium (Me ₃ S) • Cyclic sulfonium (CS)	 Anion Bis(trifluoromethansulfonyl) Bis(fluorosulfonyl)imide (FSI Dicyanamide (DCA⁻) Tricyanomethanide (C(CN)₃⁻ Hexafluorophosphate (PF₆⁻))imide (TFSI ⁻) ⁻)) Solvent-free electrolytes		

Figure 2: Overview of the solvents and salts utilized in conventional and alternative electrolytes for EDLCs.

2.2.3.an Alternative solvents and conducting salts

In the last years, several nitriles-based electrolytes such as glutaronitrile (GTN) [49-51], adiponitrile (ADN) [51-56], butyronitrile (BTN) [54,55] and 2-methylglutaronitrile (2-MGN) [51], have been investigated as replacements of ACN. These solvents have been used in combination with Et₄NBF₄ as well as other conducting salts [49-57]. They typically display lower ionic conductivities compared to ACN-based electrolyte. Nevertheless, their use makes possible, in many cases, the realization of EDLC with higher voltage compare to the state-of-the-art [48]. For example, ADN-based electrolytes allow an operating voltage as high as 3.5 V, and good overall performance at room temperature [51,52]. Nevertheless, due to the relatively high viscosity of these electrolytes, their performance in power density is significantly lower [52].

Carbonates, e.g. ethylene carbonate (EC) and dimethyl carbonate (DMC) are largely used as solvent electrolytes in lithium-ion batteries (LIBs) [58]. In the past years, mixtures of these carbonates in combination with lithium hexa-fluorophosphate (LiPF₆) have been proposed as electrolytes for EDLCs. These mixtures display high conductivity and rather large electrochemical stability, and it has been shown that their use enables operating voltage higher than 3 V [59-61]. However, the performance and the safety of these devices is limited by their electrochemical stability and the high flammability of the solvents, as well as by the poor chemical and thermal stability of LiPF₆ [58]. Also, butylene carbonate (BC) has been considered as alternative for PC to increase the operating voltage beyond 3 V [62]. Nevertheless, the overall performance of BC-based EDLCs does not appear superior to the one of conventional systems.

Beside nitriles and carbonates, other categories of solvents have also been investigated in the past. Sulfone based electrolytes (e.g. ethyl isopropyl sulfone) have been proposed, to design 3.2 V EDLC cells with good electrochemical performance [63]. Very recently, Balducci and co-worker proposed 3-cyanopropionic acid methyl ester (CPAME) as new solvent for EDLCs [64,65]. It has been shown that CPAME-based EDLCs could display operating voltage as high as 3.5 V and high capacitance retention during float test carried out at 3.2 V [64]. It is interesting to notice that CPAME has been identified using a computational screening method,

a novel strategy which will be further detailed in the perspective section of this review. The use of ether and ester co-solvents, such as methyl acetate (MA), methyl formate (MF), and 1,3-dioxolane (DIOX), has been explored to enhance low temperature performance of EDLCs down to -60 and -70 °C [66-69], although at the expense of reduced high temperature stability and little-to-no positive impact on the maximum operating voltage.

Since the ions of the conducting salt are directly involved on the double layer formation and structure, the composition of the conducting salt also is of crucial importance. However, surprisingly, only relatively few alternative salts have been considered in the past [45,47,48]. Among them, quaternary ammonium and phosphonium-based cations have been the first to be proposed, most of the time in combination with tetrafluoroborate (BF₄⁻) [50,66,70]. More recently, salts based on the pyrrolidinium cation have been also proposed [50,70,71]. Regarding the anion, aside from BF₄⁻, the bis(trifluoromethansulfonyl)imide (TFSI⁻), anion has been the most investigated [47,70]. Several cation-anion combinations were considered for the realization of innovative salts, and have been used in combination with PC and ACN [70,72]. These studies showed that a proper ion selection is crucial for the realization of advanced electrolytes and makes possible, especially when PC is used as a solvent, the realization of EDLCs with operating voltages of 3.3 to 3.5V, leading to high energy and power density [70,72]. Nevertheless, more systematic investigations about the influence of the anion-cation and ion-solvent interactions on the chemical-physical and electrochemical properties in these novel electrolytes is still needed.

2.2.3.b Solvent-free electrolytes: ionic liquids and their derivatives

Since the solvent does not directly contribute to the storage process, it was originally hypothesized that its content should be as low as possible in order to maximize the energy and the power densities of the device [48,73-75]. Ionic liquids (ILs), which are solvent-free electrolyte, have therefore attracted much interest as alternative electrolytes for EDLC applications. The best candidates display high electrochemical and chemical stability [76-78], and melting points below 0°C [46,77]. Many publications have been dedicated to the use of aprotic IL (AILs) in EDLCs [46,47,76,77]. Different type of cations, e.g. pyrrolidinium [79-86], imidazolium [87-92], azepanium [93-95], sulfonium and cyclic sufonium [96-99] and anions, e.g. TFSI⁻ [45-48], bis(fluorosulfonyl)imide (FSI⁻) [45,84,91,100], dicyanamide (DCA⁻) [101-103], tricyanomethanide (C(CN)₃⁻) [104], BF₄⁻ [45,71,76], PF₆⁻ [45,71,105] have been investigated.

These studies indicated that, when a proper anion-cation combination is selected, ILs allow to reach high voltage (> 3 V) devices, which are able to work in a wide range of temperature (especially when eutectic mixture of ILs are used) [9,76]. Their power performance is, however, limited by the relative high viscosity of ILs, especially at room temperature and below.

Protic ionic liquids (PILs) have also been investigated for use in EDLCs [77,106-109]. PILsbased EDLCs show stable performance, within a broad range of temperature [109]. However, the presence of labile proton(s) in the cation is limiting the electrochemical stability, and, consequently, the operative voltage of PIL-based EDLCs is significantly lower than that of AILbased devices (2.5 V for PIL vs. 3-3.5 V for AILs) [109]. For this reason, their use in EDLC does not appear to be particularly interesting.

More recently, a new class of ILs attracted a considerable attention: the redox active ILs [110-112]. These ILs contain redox-active moieties, e.g. anthraquinone and TEMPO, which are actively contributing to the energy storage through fast and highly reversible faradic reactions. The use of these ILs appears very interesting since the simultaneous utilization of non-faradic and faradic storage processes drastically improves the EDLC's energy. Nevertheless, many aspects related to the use of these electrolytes, e.g. self-discharge and cycle life, need to be further clarified to really assess the advantages related to the use of this class of ILs.

In parallel with the work in liquid-based IL electrolytes, IL-based solid electrolytes have been investigated. Polymeric ionic liquids [113], polymeric electrolytes containing IL [114] and IL confined in ionogel [115] have been proposed and tested. The results of these investigations appear promising at room and elevated temperatures. Nevertheless, the impacts of these solid electrolytes on the power density at low temperatures and the long-term electrochemical performance need to be better understood. The use of alternative conducting salts appears currently the most effective strategy to design EDLCs with high energy, high cycle life and acceptable power (see Figure 3) [47,48]. Nevertheless, further studies are required to understand the behaviour at high/low temperatures of EDLCs containing these alternative salts. The introduction of novel solvents is certainly a promising strategy, and encouraging results have been obtained in the last years. However, the power of EDCLs containing these solvents should be improved [48]. In that aim, more systematic investigations of the solvent-salt interactions appear urgently needed.

In conclusion, alternative electrolytes based on ILs and their derivative often allow to go beyond the state-of-the-art for the operative voltage, but this is generally made at the price of poorer transport properties, reduced operating voltage, increased costs or other limitations. The last important parameter for assessing the performance is the capacitance, which commonly does not depend on the electrolyte in a pure EDLC (as soon as good wetting is achieved in all the pores) since the double layer formation is an interfacial property. The current knowledge on how this quantity can be maximized is discussed next.

Figure 3: Comparison of **(a)** operative voltage; **(b)** energy density at low current density (0.1 A g^{-1}) ; **(c)** energy density at high current density (>1 A g⁻¹); **(d)** power density at room temperature; **(e)** power density at high temperature and **(f)** power density at low temperature of conventional and alternative electrolytes for EDLCs. Adapted with permission from reference [48].

Table 1. Comparison of viscosities and conductivities of conventional and alternatives

 electrolytes for EDLCs. The table indicates also the operative voltage of EDLCs containing these

 electrolytes.

Electrolyte	Viscosity (mPa s)	Conductivity (mS cm-¹)	Operating voltage (V)
Conventional			
1M Et ₄ NBF ₄ in ACN [46] 1M Et ₄ NBF ₄ in PC [46]	0.6 2.5	56 15	2.7 2.7
Alternative			
Solvents Nitrile			
1M Et ₄ NBF ₄ in GTN [51] 0.7M Et ₄ NBF ₄ in ADN [51] 0.2M PYR ₁₄ TFSI in BTN [54] 0.5M Et ₄ NBF ₄ in 2-MGN [51]	8 9.5 3 9	6.1 3.5 17 2.3	2.7 3.5 3.2 3.0
<i>Carbonate</i> 0.8 Et ₄ NBF ₄ in 2,3 BC [49] 1M Li-PF ₆ in EC-DMC (3:7) [61]	4 2.7	7.5 11.8	3.2 3.0
S <i>ulfonate</i> 0.6M Et ₄ NBF ₄ in EiPS [50]	5.6	n.a	3.2
<i>Cyano ester</i> 0.6M Et ₄ NBF ₄ in CPAME [64]	5.5	4.3	3.2
Salts 1M PYR ₁₄ TFSI in ACN [72] 1M PYR ₁₄ TFSI in PC [70] 1M PYR ₁₄ BF ₄ in PC [70] 1M PYR ₁₄ BF ₄ in ACN [72]	1.6 5 4 0.8	40 10 10 50	3.1 3.5 3.2 3.1
Solvent-free PYR ₁₄ TFSI [76] Azp ₁₄ TFSI (60°C) [94] PYR ₁₄ DCA [103] PYR ₁₄ ESI-PIP ₄₂ ESI [9]	60 38 37	2.6 3.6 10	3.5 3.5 2.5 3.5
EMIM-TFSI [76] Et ₃ NHTFSI [109] 0.5M Biredox in BMIMTFSI [110]	28 n.a. n.a.	8.4 4 3.2	3.5 2.4 2.8

ACN (acetonitrile), PC (propylene carbonate), Et4NBF₄ (tetraethylammonium tetrafluoroborate), GTN (glutaronitrile), ADN (adiponitrile), BTN (butyronitrile),2-MGN (2-methylglutaronitrile, 2,3 BC (2,3butylene carbonate), EC (ethylene carbonate), DMC (dimethyl carbonate), LiPF₆ (lithium hexafluorophosphate), EiPS (ethyl isopropyl sulfone), CPAME (3-cyanopropionic acid methyl ester, PYR14TFSI (N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide), PYR14BF4 (N-butyl-Nmethylpyrrolidinium tetrafluoroborate), Azp₁₄TFSI (1-Butyl-1-methylazepanium bis(trifluoromethanesulfonyl) imide), PYR₁₄DCA (N-butyl-Nmethylpyrrolidinium dicyanamide) PYR₁₄FSI (N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide), PIP₁₃FSI (N-methyl-Npropylpiperidinium bis(fluorosulfonyl)imide), Et₃NHTFSI (triethylammonium bis(tetrafluoromethylsulfonyl)imide) biredox (containing perfluorosulfonate anion bearing anthraquinone and a methyl imidazolium cation bearing TEMPO) BMIMTFSI butylmethyl imidazolium bis(trifluoromethylsulfonimide) n.a. (not available).

2.3 Charge storage mechanisms at the electrolyte/carbon interface

Major advances have been made in the understanding of the ion transfer and adsorption in carbon pores during the past fifteen years. Following initial work from several groups in the world [18,116-118], the key contribution of pores with a size smaller than 1 nm to the charge storage mechanism was evidenced from electrochemical experiments using CDC carbons with controlled pore sizes as model materials [2,15,119]. These first studies were performed in organic electrolytes, in which the size of the solvation shell of ions such as NEt₄ or BF₄ is above carbon pore size. The partial ion desolvation was proposed to explain the capacitance increase in these nanopores [15,119]. Further electrochemical experiments in solvent-free ionic liquid electrolytes have shown a maximum capacitance when the ion size was close to the carbon pore size [120].

At that point, conventional electrochemical experiments failed short bringing additional information about the ion organization and environment in confined pores because of the sensitivity needed to explore the microscopic scale. An important step was achieved in the understanding of the charge storage mechanism thanks to the key contribution of theoreticians, who joined the field and developed models to depict the "double layer" structure in nanopores [121-124]. The first simulations involved ideal carbon structures such as carbon nanotubes or 2-dimensional slit-shaped pores, in which the capacitance increase in nanopores was qualitatively reproduced [125,126]. A key result was the prediction of a "superionic state": ions carrying similar charges can be densely packed together inside

nanopores thanks to the creation of image charges onto the carbon surface that screens the Coulombic repulsion between them (Figure 4a) [127].

Figure 4: Formation of a superionic state in electrified nanopores: from theory to experiments. (a) Mean field-theory have first predicted that the presence of image charges at the surface of the nanoporous carbon exponentially screen out the electrostatic interactions of ions, leading to the packing of ions of the same sign; (b) Molecular dynamics simulations of a supercapacitor formed with a CDC electrode and a BMI-PF₆ ionic liquid have displayed the formation of such structures (green: PF₆⁻ anions, red: BMI⁺ cations, turquoise sticks: carbon-carbon bonds). Reproduced with permission from reference [128]; (c) Scattering experiments have finally confirmed the existence of anion-anion correlations in the nearest-neighbor region when they are adsorbed in 0.7 nm pores. Reproduced with permission from reference [129].

Then, the use of realistic 3D carbon structures to perform simulations led to important advances (Figure 4b, 5a). CDC carbon structures were used in a series of molecular dynamics simulations to study ion adsorption from neat ionic liquid and ionic plus solvent mixtures. In neat BMI-PF₆ ionic liquid electrolyte, the capacitance increase was ascribed to the breaking of the layered arrangement which is observed on planar surface, which led to the absence of over-screening effect. As a consequence, a closer approach of the adsorbed ions to the carbon surface was obtained [128]. When dissolved in acetonitrile, BMI⁺ and PF6⁻ ions confined into nanopores were found to be partially desolvated compared to bulk electrolyte (see Figure 5a) [128,130]. However, only acetonitrile molecules were present in the highly confined pores at null potential. Interestingly, under external polarization, ions tend to replace them inside

these confined pores leading to an efficient charge storage mechanism. This effect was quantified by showing the relationship between the surface charge and the degree of confinement of the ions.

Figure 5: Impact of the degree of confinement of the ions on the local surface charge. **(a)** Molecular dynamics simulations have evidenced the existence of various adsorption sites for the ions inside nanoporous carbons, for which a degree of confinement (DoC) can be confined. Here PF6- anions (green spheres) adsorbed on sites with increasing DoC are shown from left to right (blue: ACN molecules, red: 1-butyl-3- methylimidazolium cations, grey spheres and sticks: carbon electrode). Reproduced with permission from reference [130]; **(b)** In situ small-angle X-ray scattering experiments have confirmed the correlation between the magnitude on the local electrode charge with the DoC of the adsorbed ions for a CsCl aqueous electrolyte adsorbed in various nanoporous carbons (AC1, AC2 and CDC). Reproduced with permission from reference [131].

Those modelling results have drawn the interest of experimentalists who started to design advanced techniques or combined techniques to track ion fluxes in porous carbon electrodes.

Electrochemical quartz microbalance (EQCM) [132,133], nuclear magnetic resonance (NMR) [134,135], small-angle X-ray spectroscopy (SAXS) [136] and small angle neutron scattering (SANS) [137] are examples of in-situ or operando advanced techniques which have been recently successfully used to study the ion adsorption mechanism and ion environment in carbon nanopores.

EQCM technique has been used for tracking ion dynamics into porous carbon electrodes. In gravimetric mode, EQCM measures the carbon electrode mass changes during electrochemical polarization [133,138]. Pioneer studies using aqueous-based electrolytes highlighted the potential of gravimetric EQCM for the analysis of ion concentration and compositional changes as well as the solvation state within the AC pore volume [138,139].

More recently, a similar approach has also been proposed in non-aqueous electrolytes [133]. The partial desolvation of ions in carbon nanopores (< 1 nm size) suggested by simulation results was experimentally evidenced from gravimetric measurements in acetonitrile-based electrolytes, with a loss of 50% of the cation solvation shell when confined in narrow pores. Surprisingly, two different charge storage mechanisms were reported, depending on the electrode polarity: counter-ion (cation) adsorption at negatively charged electrodes and ion exchange during positive polarization [133].

Besides the gravimetric EQCM technique, another approach has been proposed by M. Levi et al. [139,140] who developed the Electrochemical QCM with dissipation monitoring technique (EQCM-D) for batteries and supercapacitor studies. Fitting the EQCM-D data with suitable hydrodynamic models allows tracking the change of the geometric parameters of porous electrodes in contact with an electrolyte. Such technique, that uses complex mathematical analysis, offers interesting opportunities to study the structural change of the electrodes [139].

NMR is an element selective technique that has also been used for studying ion electrosorption in microporous carbons. A preliminary *ex-situ* NMR study shed some light on the cation/anion population in different porous carbon sites upon charging [141]. *In-situ* NMR experiments first confirmed the ion adsorption in nanopores in the absence of polarization (at 0 V) thanks to the shift of the NMR signal at low frequency [142,143]. The comparison of different charge mechanism was made by introducing the charging mechanism parameter "X", calculated from *in-situ* NMR experiments or from molecular dynamic (MD) simulations [143]. Results have shown that ion swapping plays an important role in the charge storage process in supercapacitor electrodes. Ion swapping also was established as the main feature of ion dynamics for aqueous neutral electrolytes using *in-situ* SAXS measurements [143]. SAXS is short-range order structural characterization technique able to provide information on ion concentration and location.

Due to high penetrative power of neutrons and the sensitivity of neutron scattering to isotope substitution, SANS allows one to directly observe changes in the ion concentration as a function of the applied potential and the pore size, independently of other parameters (such as carbon surface chemistry, carbon microstructure, etc.) [44]. *In-situ* SANS experiments demonstrated that depending on the carbon pore walls – electrolyte interactions and the resulting interfacial energy, both reduced and enhanced ion sorption is possible in sub-nm

pores [44]. Furthermore, SANS allowed visualization of the organic electrolyte electrowetting in the smallest pores at higher applied potentials [137].

Additionally, new methodologies based on the combinatory approach of various *in-situ* techniques have opened new horizons in the understanding and prediction of ion electrosorption in microporous carbons. *In-situ* EQCM and NMR [144] techniques confirmed the difference in the charge storage mechanism in acetonitrile-based electrolyte, with cation adsorption under negative polarization and ion swapping during positive polarization.

The most recent experimental studies confirmed the main concepts introduced by theoretical and simulation studies. For example, the relationship between the degree of confinement and the local surface charge [128] was confirmed by Prehal et al. [131]. They studied the confinement and desolvation in nanometer-sized carbon pores of 1M CsCl in water electrolyte, by combining in-situ SAXS together with Monte Carlo simulations. By modelling back the experimental SAXS data, they found that the extend of desolvation was increased when decreasing the average pore size of microporous carbons (see Figure 5b). Interestingly, the partial desolvation also occurred in carbon larger mesopores, although limited to about 1 % water molecules removed from the solvation shell, suggesting that ion desolvation could be a universal phenomenon [131]. In another example, the existence of the superionic state introduced by Kondrat and Kornyshev [127] (Figure 4a and b) was experimentally proven by performing scattering experiments to resolve the structure of the EMI-TFSI ionic liquid confined inside nanoporous carbons [129]. Indeed, the latter study showed that Coulombic ordering (cations alternatively with anions) was partly reduced when the pores were small enough to accommodate only one single layer of ions (Figure 4c). Instead, equally-charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering was further enhanced in the presence of an applied external electric potential. This approach provides guidelines for designing porous carbons for supercapacitors, i.e. with high electrical conductivity and pore structure inducing larger image charges at the surface. The conclusions of this study should be applicable to other conducting materials forming slit-pores, such as between 2D layers of transition metal dichalcogenides, MXene and metal oxides (as will be discussed in the next sections).

Going beyond simple understanding, these fundamental studies have allowed to adapt the synthesis routes of the manufacturers. They now aim at AC materials with controlled

average pore size and pore size distributions in the microporous range (see e.g. the YP series microporous carbons from Kuraray, a leading company in porous carbons for EDLCs [145]) that offer enhanced volumetric capacitance and try to achieve carbon surface cleaned from surface groups that offer improved cycle and voltage stability and reduced self-discharge [146].

3. Pseudocapacitive materials and hybrid devices

3.1 Metal oxide pseudocapacitive materials

Improving the capacitance of materials can be achieved by moving from porous carbon, which store the charge in the double layer by ion adsorption at the carbon surface, to so-called pseudocapacitive materials. In the 1970's, Conway and others recognized that when reversible (fast) redox reactions occur at or near the surface of an appropriate electrode material, the electrochemical features are those of an EDLC, but with significantly greater charge storage because of the presence of redox reactions [36]. The pseudocapacitive mechanism was firstly described in RuO₂ materials (Figure 6a), where the capacitive-like behavior - rectangular shape of the voltammogram - was attributed to the existence of a wide energy distribution for the adsorbed protons in accessible sites located on the surface of RuO₂ particles (Frumkin-like behavior with non-potential dependent capacitance) [36,147]. A pseudocapacitive process shows several key features such as i) a continuous change of the charge with the potential, ii) the absence of phase change and iii) an absence of diffusion limitation over a wide range of weep rates [148-150]. Thanks to the redox reaction contribution, RuO₂ electrodes can achieve extremely high capacitance over 700 F g⁻¹ in H₂SO₄ electrolyte [151], that is about 6 times increase versus porous carbon materials.

However, RuO₂ is still limited in practical application due to the cost, lack of abundance, and toxicity [152]. Instead, with merits of low cost and environmentally friendly character, manganese dioxide (MnO₂) has attracted attentions as another pseudocapacitive material. The charge-transfer reactions in MnO₂ are achieved from cation insertion in highly accessible sites located at the near-surface of the MnO₂ particles [84,153-156] or thin films [157]. As a result, the electrochemical signature of a MnO₂ electrode (Figure 6b) also indicates a pseudocapacitive charge storage mechanism. In contrast to RuO₂, however, low intrinsic electron conductivity of MnO₂ and many other metal oxides (MO_x) may hinder their practical applications [158].

 Mn_3O_4 , Fe_3O_4 , and $MnFe_2O_4$ are materials with the spinel structure that show pseudocapacitive behavior in aqueous electrolytes [149]. Like MnO_2 , Mn_3O_4 [159] suffers from low electrical conductivity and mainly thin coatings can be prepared. Capacitance of Fe_3O_4 and $MnFe_2O_4$ remain modest.

In addition to the use of pseudocapacitive materials in aqueous solutions, researchers expanded the concept of pseudocapacitance to materials operating in non-aqueous electrolytes in order to improve energy density further. For example, nano-crystals of Nb₂O₅ with tetragonal structure demonstrated intercalation of Li⁺ ions at a very high rate (full charge in 3.6 s) at a mean potential of 1.5 V versus Li⁺/Li [160-164]. The existence of 2D transport pathways in the structure and minimal volume and structural changes in Nb₂O₅ upon Li⁺ intercalation led to fast Li⁺ ion mobility and allowed 125 mAh g⁻¹ (70% of theoretical capacity) be accessed within 1 minute discharge [160]. This reaction, often termed "intercalation pseudocapacitance", offer a generic promise of exploiting intercalation pseudocapacitance to obtain high-rate charge storage devices with tailored-designed nanostructured materials [160,162-167]. Depending on the crystalline structure, Nb₂O₅ demonstrated capacity of up to 720 C g⁻¹ [164]. Nano-crystalline MoO₂ also shows pseudocapacitive responses which stores nearly 200 mAh g⁻¹ in 2 minutes [165]. The concept was recently extended to prepare reduced MoO_{3-x} pseudocapacitive material [166] by introducing oxygen vacancies into orthorhombic MoO₃. Such a reduced MoO_{3-x} rapidly delivers higher capacity than fully oxidized MoO₃. Many other nanostructured MO_x may be hypothesized to exhibit similarly high rate performance in organic electrolytes. Studies on Na⁺, K⁺ and Li⁺ ion batteries may guide the selection of suitable pseudocapacitive materials.

Figure 6: CV profile of **(a)** $RuO_2 \cdot 0.58H_2O$ electrode in 0.5 M H_2SO_4 at 2 mVs⁻¹. Adapted with permission from[147]. Copyright (2017) American Chemical Society; **(b)** MnO₂ electrode in 2M Na_2SO_4 at 10 mVs⁻¹

¹. Adapted with permission from [168]; (c) Nb₂O₅ phase in 1M LiClO₄/PC at 10 mV s⁻¹. Reproduced with permission from reference [163].

Despite the rich chemistry of metal oxides as pseudocapacitive materials, multiple barriers toward practical applications still exist, such as commonly observed reduced rate performance of thicker (100+ μ m) electrodes with low fraction of conductive additives, lower cycle stability and faster self-discharge rates when compared to EDLCs, particularly at elevated temperatures, in some cases high synthesis or material cost and increased toxicity, in some cases moderate capacitance in organic electrolytes, among others. Yet, the overall strategy to introduce intercalation pseudocapacitive materials in non-aqueous electrolytes appears promising to develop cost-effective and high performance pseudocapacitors.

3.2 2D MXene materials

MXenes are two-dimensional (2D) early transition metal carbides and/or nitrides which are produced by selective etching of the A group element from MAX phases, where M represents transition metals (such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, etc.), A is A group element (such as Al, Si, S, Ga, Ge, As, Cd, In, Sn, etc) and X is carbon and/or nitrogen (Figure 8a) [169-171]. Thanks to their unique properties such as 2D structure and high electrical conductivity (> 5000 S m⁻¹), MXenes have shown great potential as electrode materials for supercapacitor applications [172-175]. One of the most studied MXene is the Ti₃C₂T_x carbide obtained from the selective Al etching of Ti₃AlC₂ MAX phase. After washing in water and drying, Ti₃C₂Tx powder is obtained, where "Tx" represent the surface functional groups (such as -OH and -F terminations) present on surface coming from the etching process.

MXenes have been intensively studied in aqueous electrolytes. The pseudocapacitive charge storage mechanism in $Ti_3C_2T_x$ MXene results from a change in the oxidation state of Ti, such as evidenced by using XANES technique [176]. A MXene $Ti_3C_2T_x$ clay-like electrode achieved a volumetric capacitance exceeding 900 F cm⁻³ in H_2SO_4 electrolyte [174], suggesting that the proton intercalation between the $Ti_3C_2T_x$ MXene is mainly responsible for the redox activity of Ti. Freestanding $Ti_3C_2T_x$ paper electrode has shown smaller yet still impressive volumetric capacitance (300-400 F cm⁻³) in neutral and basic electrolytes where the proton

concentration is lower [172].

Recently, new strategies were developed to push further the performance of MXenes to reach ultra-high charge / discharge rates in H_2SO_4 electrolyte, exceeding those of conventional EDLCs, with higher volumetric and areal capacitance than ACs (see Figure 7) [177]. For instance, a volumetric capacitance of 1500 F cm⁻³ together with an areal capacitance of 4 F cm⁻² could be delivered by a Ti₃C₂T_x MXene hydrogel film electrode prepared by pre-intercalating H_2SO_4 molecules between the 2D MXene layers.

Although the capacitance of MXene electrodes outperforms the best values reported so far for all carbons and most pseudocapacitive materials, the narrow voltage window offered by aqueous electrolytes still hampers the massive development of MXene-based supercapacitors. MXenes were thus further studied in non-aqueous electrolytes; however, significantly more modest characteristics have been demonstrated so far. For example, $Ti_3C_2T_x$ -CNT MXene composite electrode showed a capacitance of 85 F g⁻¹ (2 mV s⁻¹) within a potential window of 1.8 V in 1 M EMI-TFSI/acetonitrile organic electrolyte [178]. Furthermore, capacitance of 70 F g⁻¹ (20 mV s⁻¹) within a larger voltage window of 3 V was obtained in solvent-free, neat EMI-TFSI ionic liquid (IL) electrolyte [179]. *In-situ* XRD measurement as well as *in-situ* dilatometry experiments revealed the intercalation/de-intercalation behavior of IL cations and anions [180]. Despite the large voltage window achieved in IL electrolytes, the modest capacitance achieved so far in these electrolytes does not nowadays match the expectations. The capacitance improvement of MXene electrodes in non-aqueous electrolytes is the next challenge; this will pass through a better understanding of the metal redox activity in these electrolytes.

Figure 7: (a) Schematic illustration of MXene structure: MXenes possess excellent conductivity owing

to conductive carbide inner layers along with transition metal oxide-like surfaces. Intercalated water molecules enable high accessibility of the redox-active sites on MXene surfaces to ions, i.e. protons; (b) Cyclic voltammetry profiles of macro-porous $Ti_3C_2T_x$ film with 0.43 mg cm⁻² loading and 13 µm thickness collected in 3 M H₂SO₄ at scan rates from 100 to 10,000 mV s⁻¹. Adapted with permission from reference [177].

3.3 Conductive polymers

The pseudocapacitance in Electronically Conducting Polymers (ECPs) is based on the reversible redox reactions of their electrochemical doping/de-doping [181,182]. The most common conductive polymers used as pseudocapacitive materials include polyaniline (PANI), polypyrrole (PPy), polythiophene (PT) or its derivatives, and poly(3,4-ethylenedioxythiophene) (PEDOT). These have been tested in both aqueous and organic electrolytes and showed specific capacitance in the range from ≈ 100 F g⁻¹ to over 600 F g⁻¹, depending on the electrolyte composition (typically less than 200 F g⁻¹ in organic electrolytes), polymer morphology, doping level and type, the presence and distribution of conductive additives and electrode potential range [183-190].

A significant disadvantage of most conducting polymer electrodes is relatively low cycle stability because of doping on trapping and significant volume changes during charge-discharge cycles, leading to mechanical disintegration [191-193]. The common approaches to overcome this limitation involve formation of polymer-ceramic [194-197] polymer-metal [193,198] and polymer-carbon [184,199-208] composite materials, where thin films of ECPs coated onto carbon or ceramic are used. This approach allows for mitigating the polymer volume changes, introduces additional pores and stabilizes the electrode against mechanical failures. Figure 8 shows examples of PANI-based composites with a specific capacitance of over 600 F g⁻¹ achieved in symmetric two electrode configuration with no reduction in the capacitance after 10,000-30,000 cycles (Figure 8b, f) and excellent rate capability (Figure 8d, e) [184,190]. Developing conductive polymers that exhibit high specific and volumetric capacitance in organic electrolytes remains a challenging task.

Figure 8: Selected examples of the conductive polymer-carbon composites and their electrochemical behavior, such as **(a)** SEM micrographs of PANI with 3 wt. % of nanodiamond (ND) soot incorporated into the PANI particles during synthesis; and **(b)** CV of a symmetric pseudocapacitor with ND-PANI electrodes; **(c)** SEM of PANI electrodeposited on CNT fabric at the smallest current density of 2 mA cm⁻²; **(d)** its capacitance retention at high current densities; **(e)** frequency response in comparison with commonly used AC (YP-17D) and CNT fabric with no PANI; and **(f)** cycle stability showing over 30,000 stable cycles in H₂SO₄ aqueous electrolyte. Adapted with permission from references [184,190].

3.4 High-rate materials for hybrid devices

Hybrid supercapacitors, which combine an activated carbon electrode together with a large capacity faradic (pseudocapacitive or battery) electrode, offer a promising strategy for further improving the performance of carbon-based supercapacitors. The concept has been firstly developed in aqueous electrolytes, with the C/Ni(OOH) [209-211], C/MnO₂ [212,213] or C/PbO₂ [214] hybrid devices that showed improved energy density versus C/C EDLC systems operating in aqueous electrolytes [74,210,214,215]. However, the narrow voltage window available in aqueous electrolytes limits their energy density.

An important step has been made by moving from aqueous to non-aqueous electrolytes, with a drastic gain in energy density thanks to the improved voltage window (Figure 9). One of the first hybrid devices was proposed in 2001, where LTO ($Li_4Ti_5O_{12}$) was combined with a positive AC electrode in acetonitrile electrolyte [216] to achieve 3V maximum voltage, 20 Wh kg⁻¹ energy density and stability for 4,000 cycles. LTO exhibits high theoretical capacity of 175 mAh g⁻¹, safe charging and discharging at a constant potential of 1.55 V vs. Li⁺/Li (above SEI formation region and well above Li to avoid plating), very small volumetric changes (0.2%) and

somewhat low cost [217]. However, the limited power performance achieved in the original device together with the fact that supercapacitor market was not well established at that time hampered the commercial development of these cells. The previously discussed formation of nanocomposites with conductive carbons overcome the limitations of pure pseudocapacitive or battery electrode materials. For example, the follow-up developments of nanostructured C-LTO composites (such as those described in Figure 10h and others) enhanced rate performance of LTO anodes dramatically [218-220].

Today, the combination of a lithium-intercalation graphite anode with a capacitive porous carbon cathode where anion adsorption/desorption occurs, known as the Li-ion capacitor (LiC) technology, is the most commercially successful hybrid device [221]. It is produced by JMEnergy under the name Ultimo Cell[™]. While the cell voltage of a symmetric C/C EDLC can reach 3 V, the combination of a positive EDLC electrode with a negative graphite electrode of a Li-ion battery with Li⁺ intercalation potential below 0.2 V vs. Li/Li⁺ allows increasing the cell voltage up to 4.3 V (Figure 9a). At the same time, the capacity of the negative electrode being much higher than that of the positive one, the cell capacity is enhanced [222-225]. However, this increase in voltage that can lead to safety problems associated with lithium plating at fast charge rates, moderate cycling stability and poor power response. Also, due to the absence of a Li-ion intercalation positive electrode to balance the irreversible Li⁺ ion consumption upon SEI formation at the negative electrode during the first cycle, LiC cells use a pre-lithiated graphite negative electrode [222,226,227], which increase device assembling complexity and cost.

Intensive research efforts have been developed to propose alternatives to the graphite negative electrode in non-aqueous electrolytes by designing pseudocapacitive or high rate battery materials to be combined with porous carbon electrodes (Figure 9c, d).

Figure 9: (a) Typical voltage profiles for an EDLC cell and an LIC cell; schematics of **(b)** EDLC with activated carbon electrode as both positive and negative electrodes; **(c)** conventional hybrid capacitor with a battery negative electrode and activated carbon (AC) positive electrode and **(d)** nanohybrid capacitor with a pseudocapacitive or an ultrafast nano-structured battery negative electrode combined with an activated carbon (AC) positive electrode. Adapted from reference [219].

For example, Nb₂O₅ / C hybrid cells have shown improved energy and power densities versus EDLC systems [163]. This approach has been recently successfully extended to other materials such as oxygen-defective MoO_{3-x} that can be used as positive electrodes [166]. Despite the impressive electrochemical performance, the use of somewhat expensive Nb or Mo transition metals might limit the development of such devices. However, an important step forward has been recently made by Sun et al. [228], who reported the design of a three-dimensional (3D) holey-graphene-Nb₂O₅ composite for ultrahigh-rate energy storage at practical levels of mass loading Nb₂O₅.

Other material systems are also being explored in order to accelerate the commercialization of hybrid supercapacitors to offer alternatives to high power batteries. A promising way is the design of high rate battery materials which can be achieved by finetuning the material structure and particle size, and preparing composite material to improve the material ionic and electrical percolation networks. Also, in these nanostructured thin films or nanoparticles, the presence of surface defects comes generally with a pseudocapacitivelike electrochemical signature [148-150]. Vanadium oxides (VO_x, such as V₂O₅, VO₂, etc.) are dramatically less expensive than RuO₂, but still noticeably costlier than MnO₂. Depending on the crystal size and phase, VO_x may exhibit both pseudocapacitive and battery-like behavior with capacitance over 1300 F g^{-1} in aqueous LiCl electrolyte [229-231]. VO_x suffers from low electrical conductivity and typically requires close proximity of the electrochemically active sites to conductive additives to attain high capacitance values so that mainly thin coatings can be prepared. Other transition metal oxides, such as cobalt oxide (Co₃O₄) in the form of mesoporous particles [232], nanowires [233], nickel oxide (NiO) in the form of thin films [234-237] and nanosheets [238], mixed Ni-Co oxides [239] and Ni-Co hydroxides [240], mixed Bi-Fe oxide [241], and others also showed medium-to-high capacitance values in neutral or basic aqueous electrolytes. Out of these, Ni comprising materials showed the highest capacitance values, with Ni-Co oxide exhibiting up to 1840 F g⁻¹ in 1M NaOH + 0.5M Na₂SO₄ electrolyte [239] and Ni-Co layered double hydroxide exhibiting up to 2100 F g⁻¹ in 1M KOH solution [240]. Both Co and Ni are sufficiently toxic though. Besides transition metal oxides, oxides of pure metals, such as tin oxide (SnO₂) [242], indium oxide (In₂O₃) [243], and bismuth oxide (Bi₂O₃) [244] also showed capacitance in the range from 100 F g⁻¹ to 300 F g⁻¹ in aqueous salt-based electrolytes (such as Na₂SO₄ or KCl).

To overcome relatively low electrical conductivity of most transition metal oxides (which becomes particularly important for thicker, higher-loading electrodes commonly used in industry), the use of highly conductive CNTs and graphene additives as well as formation CNT-MO_x (Figures 10a, b) [219,220,229], graphene - MO_x [245], porous carbon (C) - MO_x (Figures 10c-h) [218,246,247], conductive polymer - MO_x [196], nanoporous metal - MO_x [198,230] and other (nano)composites have been successfully explored. Still, several factors need to be considered for future industrial impact of such composite technologies. First, it is important to utilize or develop material synthesis routes that offer precisely well-controlled parameters

(e.g., size of the MO_x, uniformity of MO_x dispersions, weight fraction, pore size distribution, overall porosity, etc.) while being inexpensive and scalable to large industrial volumes. Second, produced (nano)composites should ideally be compatible with current electrode manufacturing equipment employed in cell production and also maintain sufficiently high volumetric capacitance (or capacity) at the electrode level. Finally, all the device-level performance characteristics important for a given application (specific and volumetric energy and power density, self-discharge, cycle stability, calendar life, etc.) should be carefully characterized.

Vapor deposition techniques, such as chemical vapor deposition (CVD) and atomic layer deposition (ALD) have historically been considered too costly for deposition of active materials on conductive substrates and formation of nanocomposites. Yet, the remarkable control they offer in dimensions, chemistry, uniformity and microstructure of the deposited active materials in combination with the industrial development of large-scale, lower-cost deposition systems will likely make them commercially attractive in the future [248]. Most CVD/ALD research focused on the deposition of traditionally and well-studied Li-ion battery intercalation materials, such as LiCoO₂ (LCO) [249], LiMn₂O₄ (LMO) [250], LiFePO₄ (LFP) [251], vanadium oxide (VO_x) [229] and titanium oxide (TiO₂) [252,253]. These vapor deposition techniques have been applied on both flat substrates (thin films) and on the surface of conductive carbons or metal nanowires for high rate performance in batteries or ECs. For example, ALD deposition of thin conformal layer of VO_x onto CNT fabric resulted in some of the highest capacitances and fastest rate performance reported for this material (Figure 10a, b). The main concern of those vapor deposition techniques lies in the small amount (thinfilms) of active materials deposited, often resulting in a low areal electrode capacitance (mAh cm⁻²).

Solution-based approaches may offer a combination of reasonably well controlled and yet noticeably lower-cost composite synthesis. In one interesting approach small LTO nanoparticles were synthesized within 0.5-4 nm carbon pores by uniform infiltration of LTO precursor into porous carbon followed by calcination. Carbon pore walls serve as spatial confinements of LTO and provide effective pathways to supply electrons directly to individual LTO nanoparticles. The interconnected open pores remaining in the C-LTO composites allow for the rapid transport of ions, leading to over 100 mAh g⁻¹ specific capacity during \sim 6 s

discharge [246].

Another interesting approach to bond nano-sized materials directly on a broad range of nanocarbons utilizes "ultracentrifugation" and is called UC treatment [220]. The CNT-LTO [219,220], amorphous C-LFP [246], C-TiO₂(B) [254] or C-Li₃VO₄ [255] nanocomposites prepared using a UC treatment process showed very promising performance characteristics. For example, CNT-Li₄Ti₅O₁₂ (LTO) composite electrodes showed LTO capacity of 130 mAh g⁻¹ at 10 C rate (10 C = 6-minute discharge) and ≈80 mAh g⁻¹ at 1200 C rate. Such a remarkably high rate capability of the nanocomposite is achieved through a good dispersion of LTO nanoparticles within a porous matrix of conductive carbon.

In another example, LFP-C (Figure 10c,d) showed LFP capacity of over 80 mAh g^{-1} at 1 C rate and over 35 mAh g^{-1} at 300 C rate (Figure 10e) [246].

Figure 10: Selected examples of transition metal oxide composites and their electrochemical performances, such as **(a)** SEM micrographs showing conformal ALD coating of VO_x on the surface of CNTs; and **(b)** rate response of this composite in a symmetric device using aqueous 8M LiCl electrolyte as a function of ALD layer thickness (number of ALD cycles), all reproduced from [229] with permission; **(c)** SEM micrographs and **(d)** dark-field images of the UC-derived LFP-graphitic carbon composites, whereby LFP particles are encapsulated within a hollow carbon shell and **(e)** rate response of this composite in a Li half-cell with an organic electrolyte based on LiPF₆-solution in carbonates, an inset shows typical charge-discharge profiles at different C rates, all reproduced from [246] with permission; **(f)** TEM and **(g)** SEM micrographs showing LTO-AC composite particles, where LTO nanoparticles are synthesized within nanopores (< 3 nm) of activated carbon spheres and (h) rate response of this composite in a full cell with LTO-AC anode and AC cathode with an organic electrolyte based on LiPF₆-

solution in carbonates, all reproduced from [218] with permission.

UC treatment has also been used to prepare high-rate positive electrodes. A striking example is the preparation of nanosized LiFePO₄ (LFP) crystals encapsulated within hollow-structured graphitic carbons [246]. The composite material has an LFP core [crystalline (core 1) - amorphous (core 2)] - graphitic carbon shell structure as shown in Figure 10c-e. The amorphous part of the LFP core contains about 50% of Fe³⁺ defects. Unlike conventional LFP where Li⁺ intercalation is achieved at constant potential through a two-phase reaction mechanism, galvanostatic charge/discharge profiles of the UC-LFP showed different electrochemical signatures both with plateau and sloping region (Figure 10e).

The sloping profiles below 3.4 V corresponds to amorphous LFP containing Fe³⁺ defects, and the Li⁺ diffusion coefficient of the amorphous LFP (10–11 cm² s⁻¹) has been found to be two orders of magnitude higher than that of crystalline LFP core phase (10–13 cm² s⁻¹) in the plateau region. The LFP-graphitic carbon composites have an extremely high rate capability both in charge and discharge, still delivering about 30 mAh g⁻¹ at 400 C rate (9 s charge or discharge). Such a linear relationship means that the composites can offer a high-power capability of the material in discharge as well as in charge, such as expected for the practical use of hybrid supercapacitors.

Energy storage devices based on hybrid supercapacitors are just being recently commercialized, and this underscores the importance of these new materials. Although the stability of the nanostructured electrode/electrolyte interfaces is still an important issue to be solved, this technology has the potential to offer alternatives to high power batteries.

4. Perspectives

Carbon-based supercapacitors

Thanks to the combination of in-situ techniques and modelling, important progresses have been made in the understanding of ion transport and adsorption in carbon nanopores during the past years. Within the past ten years, we moved from a basic representation of the double layer charge using the Helmholtz model to concepts where ions are partially desolvated and can form co-ion pairs thanks to the creation of image charges at the carbon surface [129]. However, we still fail to explain the existence of different charge compensation at the negative

and positive electrode (ion swapping and counter-ion adsorption for instance), as well as the fast ion transport in the nanopores. Research efforts in the future will have to address these points which are of great importance for designing the optimum porous structures in carbon electrodes to maximize the capacitance. Also, the contribution of the image charges from the carbon surface indicates that not only the pore size but also the carbon chemistry and microstructure (presence of defects, dopants, charge carrier density, ionophilic/ionophobic character, etc.) play a role in the establishment of the capacitive behavior. The combination of in-situ techniques (X-Ray and neutron scattering, NMR, IR, among others) together with modelling approaches integrating those aspects from the carbon side will help in better depicting the electrochemical processes occurring at porous carbon electrodes.

Advanced electrochemical techniques will also have an important role to play for characterizing the porous carbon / electrolyte interface where the charge separation occurs. Moving from the conventional gravimetric EQCM to EQCM-D (with dissipation) has improved the sensitivity of the technique since local structural changes in the electrode could be tracked [139]. The use of AC-EQCM will allow one to identify the response from individual ions and solvent molecules.

AC-Electrogravimetry or AC-EQCM [256] is another EQCM technique where a sinusoidal perturbation is over-imposed to the bias signal such as achieved in impedance spectroscopy. Differently from gravimetric EQCM, AC-EQCM allows the decomposition of a global gravimetric EQCM response into individual cations, anions and solvent molecules. Perrot's group reported in 2016 the first use of AC-EQCM to study the double layer charging at carbon nanotube electrodes in aqueous electrolyte [257], where they were able to distinguish between low rate processes (proton adsorption), medium rate (H₂O exchange) and high rate (solvated Na⁺ adsorption) at negative potentials. This technique sounds really powerful to investigate the charge storage mechanism in supercapacitor electrodes, since it can, among other, distinguish between the adsorption of different anions or different cations [257].

Finally, strategies to increase the carbon capacitance were proposed by adding a pseudocapacitive contribution to the double layer capacitance or by increasing the electron density of states in porous carbons. Doping carbons with N or B elements have led to substantial capacitance increase in aqueous electrolytes, possibly due to pseudocapacitive contributions, although the voltage window remains modest [41]. Also, the decoration of porous carbons with selected redox groups has led to substantial increase in the capacitance

[258-260]; however, the presence of redox reactions affects the cyclability. Additionally, the formulation of electrolytes is able to achieve wider voltage window [261] or to use pores / ions of different sizes at both electrodes to improve the capacitance and power performance [262,263].

Electrolytes

In the near future new solvents, salts and ionic liquids should be identified and characterized. The aim of this search should be the creation of a "new wave" of advanced electrolyte components, which are making possible realization of EDLCs with low flammability, wide operation temperature ranges, high energy and high power. In order to generate this new generation of electrolytes, several aspects should be carefully addressed.

First of all, the identification of new components should be carried out using a rational approach. The number of chemicals which could be potentially used as electrolytes in EDLCs is enormous and clearly, this makes the selection of possible alternatives to the state-of-theart extremely challenging. In this context, the introduction of an effective search process appears of great importance. Recently, it has been shown that the use of computational screening represents a valid strategy to identify new solvents, e.g. CPAME discussed in the previous session [51]. This approach (which is schematically illustrated in Figure 11) represents a novel and powerful tool for the identification of new electrolyte components suitable for EDLCs [51,64]. Nevertheless, further investigations are needed to optimize such a screening and to understand the real advantages associated with this approach [64]. In particular, accounting for interfacial effects and the adsorption properties inside nanopores will be mandatory for predicting the capacitance.

In the past, a systematic investigation of the chemical-physical properties of new electrolyte components, solvents and salts, has not been always fully accomplished [45,46,48]. In the future, greater attention should be dedicated to the investigation of the transport and thermal properties, as well as to the ion-ion and ion-solvent interactions. This information is essential to understand the influence of an electrolyte on the double layer formation and, thus, for the realization of advanced systems. Recently, interdisciplinary studies, in which theoretical and experimental investigation have combined, have been able to supply novel and important insight about the dynamic of the double layer formation and ion-solvent interactions [3,128,264]. This approach appears as a very valuable strategy, and should be strengthened in the future.

Finally, another aspect which should be carefully considered in the future are the interaction occurring between the novel electrolytes and the inactive electrode components [45,48]. Until now, this aspect has been only marginally considered. However, it has been shown that processes like anodic dissolution of Al current collectors and binder dissolution might strongly reduce the performance of EDLCs. For that, also these detrimental processes should be addressed while searching and developing new electrolytes.

Pseudocapacitive materials and hybrid devices

The outstanding performance of 2D MXene in sulfuric acid electrolyte has revitalized the field of pseudocapacitive materials which were largely limited for years to MnO₂ and RuO₂. A key challenge is to unlock the redox activity of the transition metal (Ti inTi₃C₂T_x MXene for instance) in non-aqueous electrolytes to drastically increase the capacitance and reach similar performance than that in aqueous electrolytes (C > 500 F g⁻¹). One will also need to investigate the charge storage mechanism as well as the role of the surface groups in the ion intercalation in MXene in non-aqueous electrolytes.

High rate Li⁺ intercalation achieved in pseudocapacitive nano-crystalline transition metal oxides (such as Nb₂O₅ [161] and others) enabled one to extend the concept of pseudocapacitance to non-aqueous electrolytes. The large voltage window offered by non-aqueous electrolytes versus aqueous solution is clearly a key advantage to boost the energy density. Thus, designing metal oxides with controlled structure showing high rate intercalation pseudocapacitive behaviour sounds a promising research route to follow as shown in the previous section.

Novel techniques for the low-cost formation of uniform nanocomposites based on pseudocapacitive materials and conductive carbons should be developed to achieve a combination of high capacity, high areal loading and high-rate capability at high mass loading (>10 mg cm⁻²). This is a critical step forward toward practical applications such as in hybrid supercapacitors where the combination of high rate and high energy is needed. It will also be critical to conduct systematic studies on the impact of various electrolytes and surface chemistry of these materials on self-discharge, side-reactions, cycle stability and calendar life to identify material systems suitable for a broad range of industrial applications.

Also, thanks to the recent advances made in the development of pseudocapacitive materials operating in non-aqueous electrolytes, it becomes possible to assemble high power, high energy hybrid systems by combining two high rate redox electrodes in the same device.

Finally, similar to what achieved for Electrical Double Layer porous carbon electrodes, we may expect major advances in the basic understanding of the pseudocapacitive charge storage mechanism in metal oxide and MXene materials, thanks to the use of computational modelling. This will require efforts to take into account the presence of redox active sites as well as the presence of local charges in the models, but this will certainly be a major research direction in the next coming years.

References

[1] Armand, M., and Tarascon, J. M., Building better batteries. *Nature* (2008) 451 (7179), 652-657

[2] Simon, P., and Gogotsi, Y., Materials for electrochemical capacitors. *Nature Materials* (2008) 7 (11), 845-854

[3] Salanne, M., Rotenberg, B., Naoi, K., Kaneko, K., Taberna, P. L., Grey, C. P., Dunn, B., Simon, P., Efficient storage mechanisms for building better supercapacitors. *Nature Energy* (2016) 1, Article number: 16070

[4] Pratt, A., Lari, L., Hovorka, O., Shah, A., Woffinden, C., Tear, S. P., Binns, C., Kröger, R., Enhanced oxidation of nanoparticles through strain-mediated ionic transport. *Nature Materials* (2014) 13, 26-30

[5] Gu, W., and Yushin, G., Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. *Wiley Interdisciplinary Reviews: Energy and Environment* (2014) 3 (5), 424-473

[6] Simon, P., and Gogotsi, Y., Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. *Accounts Chem. Res.* (2013) 46 (5), 1094-1103

[7] Zhang, X., Zhang, H., Li, C., Wang, K., Sun, X., Ma, Y., Recent advances in porous graphene materials for supercapacitor applications. *RSC Advances* (2014) 4 (86), 45862-45884

[8] McDonough, J. K., Frolov, A. I., Presser, V., Niu, J., Miller, C. H., Ubieto, T., Fedorov, M. V., Gogotsi, Y., Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. *Carbon* (2012) 50 (9), 3298-3309

[9] Lin, R. Y., Taberna, P. L., Fantini, S., Presser, V., Perez, C. R., Malbosc, F., Rupesinghe, N. L., Teo, K. B. K., Gogotsi, Y., Simon, P., Capacitive Energy Storage from -50 to 100 degrees C Using an Ionic Liquid Electrolyte. *Journal of Physical Chemistry Letters* (2011) 2 (19), 2396-2401

[10] Sevilla, M., and Mokaya, R., Energy storage applications of activated carbons: supercapacitors and hydrogen storage. *Energy Environ. Sci.* (2014) 7 (4), 1250-1280

[11] Shi, H., Activated carbons and double layer capacitance. *Electrochim. Acta* (1996) 41 (10), 1633-1639

[12] Wei, L., and Yushin, G., Nanostructured activated carbons from natural precursors for electrical double layer capacitors. *Nano Energy* (2012) 1 (4), 552-565

[13] Wei, L., Sevilla, M., Fuertesc, A. B., Mokaya, R., Yushin, G., Hydrothermal Carbonisation of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. *Adv. Energy Mater.* (2011) 1, 356-361

[14] Redondo, E., Tsai, W.-Y., Daffos, B., Taberna, P.-L., Simon, P., Goikolea, E., Mysyk, R., Outstanding room-temperature capacitance of biomass-derived microporous carbons in ionic liquid electrolyte. *Electrochem. Commun.* (2017) 79 (Supplement C), 5-8

[15] Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P. L., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. *Science* (2006) 313 (5794), 1760-1763

[16] Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J. E., Yi, B., Foley, H. C., Barsoum, M. W., Nanoporous carbide-derived carbon with tunable pore size. *Nat Mater* (2003) 2 (9), 591-594

[17] Gogotsi, Y. G., Jeon, I.-D., McNallan, M. J., Carbon coatings on silicon carbide by reaction with chlorine-containing gases. *J. Mater. Chem.* (1997) 7 (9), 1841-1848

[18] Jänes, A., Permann, L., Arulepp, M., Lust, E., Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. *Electrochem. Commun.* (2004) 6 (3), 313-318

[19] Cambaz, Z. G., Yushin, G. N., Gogotsi, Y., Vyshnyakova, K. L., Pereselentseva, L. N., Formation of Carbide-Derived Carbon on β -Silicon Carbide Whiskers. *Journal of the American Ceramic Society* (2006) 89 (2), 509-514

[20] Jänes, A., Thomberg, T., Lust, E., Synthesis and characterisation of nanoporous carbide-derived carbon by chlorination of vanadium carbide. *Carbon* (2007) 45 (14), 2717-2722

[21] Korenblit, Y., Rose, M., Kockrick, E., Borchardt, L., Kvit, A., Kaskel, S., Yushin, G., High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon. *ACS Nano* (2010) 4 (3), 1337-1344

[22] Gao, Y., Presser, V., Zhang, L., Niu, J. J., McDonough, J. K., Pérez, C. R., Lin, H., Fong, H., Gogotsi, Y., High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. *Journal of Power Sources* (2012) 201, 368-375

[23] Itoi, H., Nishihara, H., Kogure, T., Kyotani, T., Three-Dimensionally Arrayed and Mutually Connected 1.2-nm Nanopores for High-Performance Electric Double Layer Capacitor. *Journal of the American Chemical Society* (2011) 133 (5), 1165-1167

[24] Nishihara, H., and Kyotani, T., Templated Nanocarbons for Energy Storage. *Advanced Materials* (2012) 24 (33), 4473-4498

[25] Kajdos, A., Kvit, A., Jones, F., Jagiello, J., Yushin, G., Tailoring the pore alignment for rapid ion transport in microporous carbons. *J Am Chem Soc* (2010) 132 (10), 3252-3253

[26] Zhu, Y. W., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W. W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A., Ruoff, R. S., Carbon-Based Supercapacitors Produced by Activation of Graphene. *Science* (2011) 332 (6037), 1537-1541

[27] Yang, X. W., Cheng, C., Wang, Y. F., Qiu, L., Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage. *Science* (2013) 341 (6145), 534-537

[28] Li, H., Tao, Y., Zheng, X., Luo, J., Kang, F., Cheng, H.-M., Yang, Q.-H., Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. *Energy Environ. Sci.* (2016) 9 (10), 3135-3142

[29] Tao, Y., Xie, X., Lv, W., Tang, D.-M., Kong, D., Huang, Z., Nishihara, H., Ishii, T., Li, B., Golberg, D., Kang, F., Kyotani, T., Yang, Q.-H., Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. *Scientific Reports* (2013) 3, 2975

[30] Gogotsi, Y., and Simon, P., True Performance Metrics in Electrochemical Energy Storage. *Science* (2011) 334 (6058), 917-918

[31] Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C. R., Tascon, J. M. D., Zhang, J., All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. *Carbon* (2013) 65 (Supplement C), 1-6

[32] Gu, W. T., Sevilla, M., Magasinski, A., Fuertes, A. B., Yushin, G., Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. *Energy Environ. Sci.* (2013) 6 (8), 2465-2476

[33] Gu, W. T., Peters, N., Yushin, G., Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices. *Carbon* (2013) 53, 292-301

[34] Moussa, G., Matei Ghimbeu, C., Taberna, P.-L., Simon, P., Vix-Guterl, C., Relationship between the carbon nano-onions (CNOs) surface chemistry/defects and their capacitance in aqueous and organic electrolytes. *Carbon* (2016) 105 (Supplement C), 628-637

[35] Helmholtz, H., Studien über electrische Grenzschichten. *Annalen der Physik und Chemie* (1879) 243 (7), 337-382

[36] Conway, B. E., *Electrochemical supercapacitors: scientific fundamentals and technological applications*. Kluwer Academic / Plenum: New York, 1999

[37] Thommes, M., Kaneko, K., Neimark Alexander, V., Olivier James, P., Rodriguez-Reinoso, F., Rouquerol, J., Sing Kenneth, S. W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure and Applied Chemistry* (2015) 87 (9-10), 1051–1069

[38] Neimark, A. V., Lin, Y., Ravikovitch, P. I., Thommes, M., Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. *Carbon* (2009) 47 (7), 1617-1628

[39] Centeno, T. A., Sereda, O., Stoeckli, F., Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern. *Phys. Chem. Chem. Phys.* (2011) 13 (27), 12403-12406

[40] Jäckel, N., Simon, P., Gogotsi, Y., Presser, V., Increase in Capacitance by Subnanometer Pores in Carbon. *ACS Energy Letters* (2016) 1 (6), 1262-1265

[41] Lin, T., Chen, I.-W., Liu, F., Yang, C., Bi, H., Xu, F., Huang, F., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. *Science* (2015) 350 (6267), 1508-1513

[42] Chu, M. Q., Miller, M., Dutta, P., Crowding and Anomalous Capacitance at an Electrode-Ionic Liquid Interface Observed Using Operando X-ray Scattering. *ACS Central Science* (2016) 2 (3), 175-180

[43] Uysal, A., Zhou, H., Feng, G., Lee, S. S., Li, S., Cummings, P. T., Fulvio, P. F., Dai, S., McDonough, J. K., Gogotsi, Y., Fenter, P., Interfacial ionic 'liquids': connecting static and dynamic structures. *Journal of Physics-Condensed Matter* (2015) 27 (3), Article number: 032101

[44] Boukhalfa, S., He, L., Melnichenko, Y. B., Yushin, G., Small-Angle Neutron Scattering for InSitu Probing of Ion Adsorption Inside Micropores. *Angew. Chem.-Int. Edit.* (2013) 52 (17), 4618-4622

[45] Béguin, F., Presser, V., Balducci, A., Frackowiak, E., Carbons and Electrolytes for Advanced Supercapacitors. *Advanced Materials* (2014) 26 (14), 2219-2251

[46] Beguin, F., and Frackowiak, E., Supercapacitors Materials, Systems, and Applications. Beguin, F., and Frackowiak, E., (eds.) Wiley-VCH Verlag GmbH & Co. KGaA(2013)10.1002/9783527646661, p 568

[47] Zhong, C., Deng, Y., Hu, W., Qiao, J., Zhang, L., Zhang, J., A review of electrolyte materials and compositions for electrochemical supercapacitors. *Chem. Soc. Rev.* (2015) 44 (21), 7484-7539

[48] Balducci, A., Electrolytes for high voltage electrochemical double layer capacitors: A perspective article. *Journal of Power Sources* (2016) 326, 534-540

[49] Ue, M., Takeda, M., Takehara, M., Mori, S., Electrochemical properties of quaternary ammonium salts for electrochemical capacitors. *Journal of the Electrochemical Society* (1997) 144 (8), 2684-2688

[50] Ue, M., Ida, K., Mori, S., Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors. *Journal of the Electrochemical Society* (1994) 141 (11), 2989-2996

[51] Schütter, C., Husch, T., Korth, M., Balducci, A., Toward New Solvents for EDLCs: From Computational Screening to Electrochemical Validation. *The Journal of Physical Chemistry C* (2015) 119 (24), 13413-13424

[52] Brandt, A., Isken, P., Lex-Balducci, A., Balducci, A., Adiponitrile-based electrochemical double layer capacitor. *Journal of Power Sources* (2012) 204 (0), 213-219

[53] Ghamouss, F., Brugere, A., Jacquemin, J., Physicochemical Investigation of Adiponitrile-Based Electrolytes for Electrical Double Layer Capacitor. *J. Phys. Chem. C* (2014) 118 (26), 14107-14123

[54] Neale, A. R., Schütter, C., Wilde, P., Goodrich, P., Hardacre, C., Passerini, S., Balducci, A., Jacquemin, J., Physical–Chemical Characterization of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Bis{(trifluoromethyl)sulfonyl}imide and Aliphatic Nitrile Solvents as Potential Electrolytes for Electrochemical Energy Storage Applications. *Journal of Chemical & Engineering Data* (2016) 62 (1), 376-390

[55] Schütter, C., Neale, A. R., Wilde, P., Goodrich, P., Hardacre, C., Passerini, S., Jacquemin, J., Balducci, A., The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. *Electrochim. Acta* (2016) 220, 146-155

[56] Hanna, O., Luski, S., Aurbach, D., High-Voltage Supercapacitors with Solutions Based on Adiponitrile Solvent. *Journal of the Electrochemical Society* (2017) 164 (2), A231-A236

[57] Krummacher, J., Hess, L. H., Balducci, A., Anodic dissolution of Al current collectors in unconventional solvents for high voltage electrochemical double layer capacitors. *ChemSusChem* (2017) 10 (21), 4178-4189

[58] Kalhoff, J., Eshetu, G. G., Bresser, D., Passerini, S., Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. *ChemSusChem* (2015) 8 (13), 2154-2175

[59] Laheäär, A., Jänes, A., Lust, E., Lithium bis(oxalato)borate as an electrolyte for micromesoporous carbide-derived carbon based supercapacitors. *Journal of Electroanalytical Chemistry* (2012) 669, 67-72

[60] Laheäär, A., Jänes, A., Lust, E., Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts. *Electrochim. Acta* (2011) 56 (25), 9048-9055

[61] Schroeder, M., Isken, P., Winter, M., Passerini, S., Lex-Balducci, A., Balducci, A., An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices. *Journal of the Electrochemical Society* (2013) 160 (10), A1753-A1758

[62] Chiba, K., Ueda, T., Yamaguchi, Y., Oki, Y., Saiki, F., Naoi, K., Electrolyte Systems for High Withstand Voltage and Durability II. Alkylated Cyclic Carbonates for Electric Double-Layer Capacitors. *Journal of the Electrochemical Society* (2011) 158 (12), A1320-A1327

[63] Chiba, K., Ueda, T., Yamaguchi, Y., Oki, Y., Shimodate, F., Naoi, K., Electrolyte Systems for High Withstand Voltage and Durability I. Linear Sulfones for Electric Double-Layer Capacitors. *Journal of The Electrochemical Society* (2011) 158 (8), A872-A882

[64] Schütter, C., Husch, T., Viswanathan, V., Passerini, S., Balducci, A., Korth, M., Rational design of new electrolyte materials for electrochemical double layer capacitors. *Journal of Power Sources* (2016) 326, 541-548

[65] Schütter, C., Passerini, S., Korth, M., Balducci, A., Cyano Ester as Solvent for High Voltage Electrochemical Double Layer Capacitors. *Electrochim. Acta* (2017) 224, 278-284

[66] Korenblit, Y., Kajdos, A., West, W. C., Smart, M. C., Brandon, E. J., Kvit, A., Jagiello, J., Yushin, G., In Situ Studies of Ion Transport in Microporous Supercapacitor Electrodes at Ultralow Temperatures. *Advanced Functional Materials* (2012) 22 (8), 1655-1662

[67] West, W. C., Smart, M. C., Brandon, E. J., Whitcanack, L. D., Plett, G. A., Doublelayer capacitor electrolytes using 1,3-dioxolane for low temperature operation. *Journal of the Electrochemical Society* (2008) 155 (10), A716-A720

[68] Brandon, E. J., West, W. C., Smart, M. C., Whitcanack, L. D., Plett, G. A., Extending the low temperature operational limit of double-layer capacitors. *Journal of Power Sources* (2007) 170 (1), 225-232

[69] Iwama, E., Taberna, P. L., Azais, P., Brégeon, L., Simon, P., Characterization of commercial supercapacitors for low temperature applications. *Journal of Power Sources* (2012) 219 (Supplement C), 235-239

[70] Pohlmann, S., Ramirez-Castro, C., Balducci, A., The Influence of Conductive Salt Ion Selection on EDLC Electrolyte Characteristics and Carbon-Electrolyte Interaction. *Journal of the Electrochemical Society* (2015) 162 (5), A5020-A5030

[71] Pohlmann, S., and Balducci, A., A new conducting salt for high voltage propylene carbonate-based electrochemical double layer capacitors. *Electrochim. Acta* (2013) 110 (0), 221-227

[72] Krummacher, J., Schütter, C., Passerini, S., Balducci, A., Characterization of Different Conductive Salts in ACN-Based Electrolytes for Electrochemical Double-Layer Capacitors. *ChemElectroChem* (2017) 4 (2), 353-361

[73] Brandt, A., and Balducci, A., Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. *Journal of Power Sources* (2014) 250, 343-351

[74] Zheng, J. P., The Limitations of Energy Density of Battery/Double-Layer Capacitor Asymmetric Cells. *Journal of The Electrochemical Society* (2003) 150 (4), A484-A492

[75] Zheng, J. P., Huang, J., Jow, T. R., The limitations of energy density for electrochemical capacitors. *Journal of the Electrochemical Society* (1997) 144 (6), 2026-2031

[76] Brandt, A., Pohlmann, S., Varzi, A., Balducci, A., Passerini, S., Ionic liquids in supercapacitors. *MRS Bulletin* (2013) 38 (07), 554-559

[77] MacFarlane, D. R., Tachikawa, N., Forsyth, M., Pringle, J. M., Howlett, P. C., Elliott, G. D., Davis, J. H., Watanabe, M., Simon, P., Angell, C. A., Energy applications of ionic liquids. *Energy Environ. Sci.* (2014) 7 (1), 232-250

[78] Salanne, M., Ionic Liquids for Supercapacitor Applications. *Topics Curr Chem* (2017) 375 (3), Article number: 63

[79] Balducci, A., Dugas, R., Taberna, P. L., Simon, P., Plée, D., Mastragostino, M., Passerini, S., High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. *Journal of Power Sources* (2007) 165 (2), 922-927

[80] Lazzari, M., Mastragostino, M., Pandolfo, A. G., Ruiz, V., Soavi, F., Role of Carbon Porosity and Ion Size in the Development of Ionic Liquid Based Supercapacitors. *Journal of The Electrochemical Society* (2011) 158 (1), A22-A25

[81] Largeot, C., Taberna, P. L., Gogotsi, Y., Simon, P., Microporous Carbon-Based Electrical Double Layer Capacitor Operating at High Temperature in Ionic Liquid Electrolyte. *Electrochem Solid St* (2011) 14 (12), A174-A176

[82] Lazzari, M., Soavi, F., Mastragostino, M., High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. *Journal of Power Sources* (2008) 178 (1), 490-496

[83] Arbizzani, C., Biso, M., Cericola, D., Lazzari, M., Soavi, F., Mastragostino, M., Safe, high-energy supercapacitors based on solvent-free ionic liquid electrolytes. *Journal of Power Sources* (2008) 185 (2), 1575-1579

[84] Boisset, A., Athouël, L., Jacquemin, J., Porion, P., Brousse, T., Anouti, M., Comparative Performances of Birnessite and Cryptomelane MnO2 as Electrode Material in Neutral Aqueous Lithium Salt for Supercapacitor Application. *The Journal of Physical Chemistry C* (2013) 117 (15), 7408-7422

[85] Ruiz, V., Huynh, T., Sivakkumar, S. R., Pandolfo, A. G., Ionic liquid–solvent mixtures as supercapacitor electrolytes for extreme temperature operation. *RSC Advances* (2012) 2 (13), 5591-5598

[86] Krause, A., and Balducci, A., High voltage electrochemical double layer capacitor containing mixtures of ionic liquids and organic carbonate as electrolytes. *Electrochem. Commun.* (2011) 13 (8), 814-817

[87] Palm, R., Kurig, H., Tõnurist, K., Jänes, A., Lust, E., Is the mixture of 1-ethyl-3methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? *Electrochem. Commun.* (2012) 22, 203-206

[88] Shim, Y., Kim, H. J., Jung, Y., Graphene-based supercapacitors in the parallel-plate electrode configuration: lonic liquids versus organic electrolytes. *Faraday Discussions* (2012) 154, 249-263

[89] Handa, N., Sugimoto, T., Yamagata, M., Kikuta, M., Kono, M., Ishikawa, M., A neat ionic liquid electrolyte based on FSI anion for electric double layer capacitor. *Journal of Power Sources* (2008) 185 (2), 1585-1588

[90] Yamagata, M., Soeda, K., Ikebe, S., Yamazaki, S., Ishikawa, M., Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors. *Electrochim. Acta* (2013) 100, 275-280

[91] Wei, L., and Yushin, G., Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. *Journal of Power Sources* (2011) 196 (8), 4072-4079

[92] Lewandowski, A., Olejniczak, A., Galinski, M., Stepniak, I., Performance of carbon– carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. *Journal of Power Sources* (2010) 195 (17), 5814-5819

[93] Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., Seddon, K. R., Srinivasan, G., Whiston, K., Azepanium ionic liquids. *Green Chem* (2011) 13 (11), 3137-3155

[94] Pohlmann, S., Olyschläger, T., Goodrich, P., Alvarez Vicente, J., Jacquemin, J., Balducci, A., Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. *Journal of Power Sources* (2015) 273, 931-936

[95] Pohlmann, S., Olyschlager, T., Goodrich, P., Vicente, J. A., Jacquemin, J., Balducci, A., Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. *Electrochim. Acta* (2015) 153, 426-432

[96] Coadou, E., Timperman, L., Jacquemin, J., Galiano, H., Hardacre, C., Anouti, M., Comparative Study on Performances of Trimethyl-Sulfonium and Trimethyl-Ammonium Based Ionic Liquids in Molecular Solvents as Electrolyte for Electrochemical Double Layer Capacitors. *The Journal of Physical Chemistry C* (2013) 117 (20), 10315-10325

[97] Anouti, M., Timperman, L., el Hilali, M., Boisset, A., Galiano, H., Sulfonium Bis(trifluorosulfonimide) Plastic Crystal Ionic Liquid as an Electrolyte at Elevated

Temperature for High-Energy Supercapacitors. J. Phys. Chem. C (2012) 116 (17), 9412-9418

[98] Neale, A. R., Murphy, S., Goodrich, P., Schütter, C., Hardacre, C., Passerini, S., Balducci, A., Jacquemin, J., An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors. *Journal of Power Sources* (2016) 326, 549-559

[99] Brandt, A., Ramirez-Castro, C., Anouti, M., Balducci, A., An investigation about the use of mixtures of sulfonium-based ionic liquids and propylene carbonate as electrolytes for supercapacitors. *J. Mater. Chem. A* (2013) 1 (40), 12669-12678

[100] Kühnel, R. S., and Balducci, A., Comparison of the anodic behavior of aluminum current collectors in imide-based ionic liquids and consequences on the stability of high voltage supercapacitors. *Journal of Power Sources* (2014) 249, 163-171

[101] Simons, T. J., Bayley, P. M., Zhang, Z., Howlett, P. C., MacFarlane, D. R., Madsen, L. A., Forsyth, M., Influence of Zn2+ and Water on the Transport Properties of a Pyrrolidinium Dicyanamide Ionic Liquid. *J. Phys. Chem. B* (2014) 118 (18), 4895-4905

[102] Huang, P. L., Luo, X. F., Peng, Y. Y., Pu, N. W., Ger, M. D., Yang, C. H., Wu, T. Y., Chang, J. K., Ionic Liquid Electrolytes with Various Constituent Ions for Graphene-based Supercapacitors. *Electrochim. Acta* (2015) 161, 371-377

[103] Wolff, C., Jeong, S., Paillard, E., Balducci, A., Passerini, S., High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. *Journal of Power Sources* (2015) 293, 65-70

[104] Martins, V. L., Rennie, A. J. R., Torresi, R. M., Hall, P. J., Ionic liquids containing tricyanomethanide anions: physicochemical characterisation and performance as electrochemical double-layer capacitor electrolytes. *Phys. Chem. Chem. Phys.* (2017) 19 (25), 16867-16874

[105] Zhang, X. F., Kühnel, R. S., Schroeder, M., Balducci, A., Revisiting Li3V2(PO4)(3) as an anode - an outstanding negative electrode for high power energy storage devices. *J. Mater. Chem. A* (2014) 2 (42), 17906-17913

[106] Mayrand-Provencher, L., and Rochefort, D., Influence of the Conductivity and Viscosity of Protic Ionic Liquids Electrolytes on the Pseudocapacitance of RuO2 Electrodes. *J. Phys. Chem. C* (2009) 113 (4), 1632-1639

[107] Rochefort, D., and Pont, A. L., Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid. *Electrochem. Commun.* (2006) 8 (9), 1539-1543

[108] Mysyk, R., Raymundo-Piñero, E., Anouti, M., Lemordant, D., Beguin, F., Pseudocapacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. *Electrochem. Commun.* (2010) 12 (3), 414-417

[109] Brandt, A., Pires, J., Anouti, M., Balducci, A., An investigation about the cycling stability of supercapacitors containing protic ionic liquids as electrolyte components. *Electrochim. Acta* (2013) 108, 226-231

[110] Mourad, E., Coustan, L., Lannelongue, P., Zigah, D., Mehdi, A., Vioux, A., Freunberger, S. A., Favier, F., Fontaine, O., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. *Nat Mater* (2017) 16 (4), 446-453

[111] Bodin, C., Mourad, E., Zigah, D., Le Vot, S., Freunberger, S. A., Favier, F., Olivier, F., Biredox Ionic Liquids: New Opportunities Toward High Performances Supercapacitors. *Faraday Discussions* (2017) 10.1039/C7FD00174F

[112] Xie, H. J., Gelinas, B., Rochefort, D., Redox-active electrolyte supercapacitors using electroactive ionic liquids. *Electrochem. Commun.* (2016) 66, 42-45

[113] Tiruye, G. A., Munoz-Torrero, D., Palma, J., Anderson, M., Marcilla, R., Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. *Journal of Power Sources* (2016) 326, 560-568

[114] Chaudoy, V., Van, F. T., Deschamps, M., Ghamouss, F., Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor. *Journal of Power Sources* (2017) 342, 872-878

[115] Brachet, M., Brousse, T., Le Bideau, J., All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte. *Ecs Electrochem Lett* (2014) 3 (11), A112-A115

[116] Eliad, L., Salitra, G., Soffer, A., Aurbach, D., Ion Sieving Effects in the Electrical Double Layer of Porous Carbon Electrodes: Estimating Effective Ion Size in Electrolytic Solutions. *The Journal of Physical Chemistry B* (2001) 105 (29), 6880-6887

[117] Eliad, L., Salitra, G., Soffer, A., Aurbach, D., On the Mechanism of Selective Electroadsorption of Protons in the Pores of Carbon Molecular Sieves. *Langmuir* (2005) 21 (7), 3198-3202

[118] Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebe, M., Parmentier, J., Béguin, F., Electrochemical energy storage in ordered porous carbon materials. *Carbon* (2005) 43 (6), 1293-1302

[119] Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P., Gogotsi, Y., Desolvation of Ions in Subnanometer Pores and Its Effect on Capacitance and Double-Layer Theory. *Angewandte Chemie International Edition* (2008) 47 (18), 3392-3395

[120] Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., Simon, P., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. *Journal of the American Chemical Society* (2008) 130 (9), 2730-2731

[121] Xing, L., Vatamanu, J., Borodin, O., Bedrov, D., On the Atomistic Nature of Capacitance Enhancement Generated by Ionic Liquid Electrolyte Confined in Subnanometer Pores. *The Journal of Physical Chemistry Letters* (2013) 4 (1), 132-140

[122] Feng, G., Qiao, R., Huang, J., Sumpter, B. G., Meunier, V., Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors. *The Journal of Physical Chemistry C* (2010) 114 (41), 18012-18016

[123] Zhan, C., Lian, C., Zhang, Y., Thompson, M. W., Xie, Y., Wu, J., Kent, P. R. C., Cummings, P. T., Jiang, D.-e., Wesolowski, D. J., Computational Insights into Materials and Interfaces for Capacitive Energy Storage. *Adv Sci (Weinh)* (2017)

[124] Vatamanu, J., Borodin, O., Smith, G. D., Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. *Phys. Chem. Chem. Phys.* (2010) 12 (1), 170-182

[125] Feng, G., and Cummings, P. T., Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size. *The Journal of Physical Chemistry Letters* (2011) 2 (22), 2859-2864

[126] Jiang, D.-e., Jin, Z., Wu, J., Oscillation of Capacitance inside Nanopores. *Nano Lett.* (2011) 11 (12), 5373-5377

[127] Kondrat, S., and Kornyshev, A., Superionic state in double-layer capacitors with nanoporous electrodes. *Journal of Physics: Condensed Matter* (2011) 23 (2), Article number: 022201

[128] Merlet, C., Rotenberg, B., Madden, P. A., Taberna, P. L., Simon, P., Gogotsi, Y., Salanne, M., On the molecular origin of supercapacitance in nanoporous carbon electrodes. *Nat Mater* (2012) 11 (4), 306-310

[129] Futamura, R., Iiyama, T., Takasaki, Y., Gogotsi, Y., Biggs, M. J., Salanne, M., Ségalini, J., Simon, P., Kaneko, K., Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores. *Nat Mater* (2017) 16 (12), 1225-1232

[130] Merlet, C., Pean, C., Rotenberg, B., Madden, P. A., Daffos, B., Taberna, P. L., Simon, P., Salanne, M., Highly confined ions store charge more efficiently in supercapacitors. *Nat. Commun.* (2013) 4, Article number: 2701

[131] Prehal, C., Koczwara, C., Jackel, N., Schreiber, A., Burian, M., Amenitsch, H., Hartmann, M. A., Presser, V., Paris, O., Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. *Nature Energy* (2017) 2 (3), Article number: 16215

[132] Levi, M. D., Salitra, G., Levy, N., Aurbach, D., Maier, J., Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. *Nat Mater* (2009) 8 (11), 872-875

[133] Tsai, W. Y., Taberna, P. L., Simon, P., Electrochemical Quartz Crystal Microbalance (EQCM) Study of Ion Dynamics in Nanoporous Carbons. *Journal of the American Chemical Society* (2014) 136 (24), 8722-8728

[134] Griffin, J. M., Forse, A. C., Grey, C. P., Solid-state NMR studies of supercapacitors. *Solid State Nuclear Magnetic Resonance* (2016) 74 (Supplement C), 16-35

[135] Oschatz, M., Borchardt, L., Hippauf, F., Nickel, W., Kaskel, S., Brunner, E., Interactions Between Electrolytes and Carbon-Based Materials-NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. In *Annual Reports on Nmr Spectroscopy, Vol 87*, Webb, G. A., (ed.) (2016), Vol. 87, pp 237-318

[136] Prehal, C., Weingarth, D., Perre, E., Lechner, R. T., Amenitsch, H., Paris, O., Presser, V., Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. *Energy Environ. Sci.* (2015) 8 (6), 1725-1735

[137] Boukhalfa, S., Gordon, D., He, L., Melnichenko, Y. B., Nitta, N., Magasinski, A., Yushin, G., In Situ Small Angle Neutron Scattering Revealing Ion Sorption in Microporous Carbon Electrical Double Layer Capacitors. *ACS Nano* (2014) 8 (3), 2495-2503 [138] Levi, M. D., Sigalov, S., Salitra, G., Elazari, R., Aurbach, D., Assessing the Solvation Numbers of Electrolytic Ions Confined in Carbon Nanopores under Dynamic Charging Conditions. *The Journal of Physical Chemistry Letters* (2011) 2 (2), 120-124

[139] Levi, M. D., Shpigel, N., Sigalov, S., Dargel, V., Daikhin, L., Aurbach, D., In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: a Review. *Electrochim. Acta* (2017) 232, 271-284

[140] Levi, M. D., Sigalov, S., Aurbach, D., Daikhin, L., In Situ Electrochemical Quartz Crystal Admittance Methodology for Tracking Compositional and Mechanical Changes in Porous Carbon Electrodes. *The Journal of Physical Chemistry C* (2013) 117 (29), 14876-14889

[141] Deschamps, M., Gilbert, E., Azais, P., Raymundo-Piñero, E., Ammar, M. R., Simon, P., Massiot, D., Béguin, F., Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. *Nat Mater* (2013) 12 (4), 351-358

[142] Griffin, J. M., Forse, A. C., Wang, H., Trease, N. M., Taberna, P.-L., Simon, P., Grey, C. P., Ion counting in supercapacitor electrodes using NMR spectroscopy. *Faraday Discussions* (2014) 176 (0), 49-68

[143] Forse, Alexander C., Griffin, John M., Merlet, C., Carretero-Gonzalez, J., Raji, A.-Rahman O., Trease, Nicole M., Grey, Clare P., Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. *Nature Energy* (2017) 2 (3), Article number: 16216

[144] Griffin, J. M., Forse, A. C., Tsai, W.-Y., Taberna, P.-L., Simon, P., Grey, C. P., In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. *Nat Mater* (2015) 14 (8), 812-819

[145] Chen, Q., Hu, Y., Hu, C., Cheng, H., Zhang, Z., Shao, H., Qu, L., Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. *Phys. Chem. Chem. Phys.* (2014) 16 (36), 19307-19313

[146] Lee, A. A., Kondrat, S., Oshanin, G., Kornyshev, A. A., Charging dynamics of supercapacitors with narrow cylindrical nanopores. *Nanotechnology* (2014) 25 (31), Article number: 315401

[147] Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T., Rolison, D. R., Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO2 from X-ray Scattering. *The Journal of Physical Chemistry B* (2002) 106 (49), 12677-12683

[148] Simon, P., Gogotsi, Y., Dunn, B., Where Do Batteries End and Supercapacitors Begin? *Science* (2014) 343 (6176), 1210-1211

[149] Augustyn, V., Simon, P., Dunn, B., Pseudocapacitive oxide materials for high-rate electrochemical energy storage. *Energy Environ. Sci.* (2014) 7 (5), 1597-1614

[150] Brousse, T., Bélanger, D., Long, J. W., To Be or Not To Be Pseudocapacitive? *Journal of The Electrochemical Society* (2015) 162 (5), A5185-A5189

[151] Zheng, J. P., Cygan, P. J., Jow, T. R., Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. *Journal of The Electrochemical Society* (1995) 142 (8), 2699-2703

[152] Frackowiak, E., Electrode Materials with Pseudocapacitive Properties. In *Supercapacitors*, Wiley-VCH Verlag GmbH & Co. KGaA(2013)10.1002/9783527646661.ch6, pp 207-237

[153] Lee, H. Y., Manivannan, V., Goodenough, J. B., Electrochemical capacitors with KCl electrolyte. *Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry* (1999) 2 (11-13), 565-577

[154] Toupin, M., Brousse, T., Bélanger, D., Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. *Chem. Mat.* (2004) 16 (16), 3184-3190

[155] Ghodbane, O., Ataherian, F., Wu, N.-L., Favier, F., In situ crystallographic investigations of charge storage mechanisms in MnO2-based electrochemical capacitors. *Journal of Power Sources* (2012) 206 (Supplement C), 454-462

[156] Pan, H.-A., Ghodbane, O., Weng, Y.-T., Sheu, H.-S., Lee, J.-F., Favier, F., Wu, N.-L., Investigating Mechanisms Underlying Elevated-Temperature-Induced Capacity Fading of Aqueous MnO2 Polymorph Supercapacitors: Cryptomelane and Birnessite. *Journal of The Electrochemical Society* (2015) 162 (5), A5106-A5114

[157] Pang, S. C., Anderson, M. A., Chapman, T. W., Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. *Journal of the Electrochemical Society* (2000) 147 (2), 444-450

[158] Wang, G. P., Zhang, L., Zhang, J. J., A review of electrode materials for electrochemical supercapacitors. *Chem. Soc. Rev.* (2012) 41 (2), 797-828

[159] Dubal, D. P., Dhawale, D. S., Salunkhe, R. R., Pawar, S. M., Lokhande, C. D., A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. *Applied Surface Science* (2010) 256 (14), 4411-4416

[160] Kim, J. W., Augustyn, V., Dunn, B., The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb2O5. *Adv. Energy Mater.* (2012) 2 (1), 141-148

[161] Augustyn, V., Come, J., Lowe, M. A., Kim, J. W., Taberna, P.-L., Tolbert, S. H., Abruña, H. D., Simon, P., Dunn, B., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. *Nat Mater* (2013) 12 (6), 518-522

[162] Lubimtsev, A. A., Kent, P. R. C., Sumpter, B. G., Ganesh, P., Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. *J. Mater. Chem. A* (2013) 1 (47), 14951-14956

[163] Come, J., Augustyn, V., Kim, J. W., Rozier, P., Taberna, P.-L., Gogotsi, P., Long, J. W., Dunn, B., Simon, P., Electrochemical Kinetics of Nanostructured Nb2O5 Electrodes. *Journal of The Electrochemical Society* (2014) 161 (5), A718-A725

[164] Ohzuku, T., Sawai, K., Hirai, T., Electrochemistry of L-niobium pentoxide a lithium/non-aqueous cell. *Journal of Power Sources* (1987) 19 (4), 287-299

[165] Kim, H.-S., Cook, J. B., Tolbert, S. H., Dunn, B., The Development of Pseudocapacitive Properties in Nanosized-MoO2. *Journal of The Electrochemical Society* (2015) 162 (5), A5083-A5090

[166] Kim, H.-S., Cook, J. B., Lin, H., Ko, J. S., Tolbert, S. H., Ozolins, V., Dunn, B., Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. *Nat Mater* (2017) 16 (4), 454-460

[167] Brezesinski, T., Wang, J., Tolbert, S. H., Dunn, B., Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. *Nat Mater* (2010) 9 (2), 146-151

[168] Ye, C., Lin, Z. M., Hui, S. Z., Electrochemical and capacitance properties of rodshaped MnO2 for supercapacitor. *Journal of the Electrochemical Society* (2005) 152 (6), A1272-A1278

[169] Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W., Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. *Advanced Materials* (2011) 23 (37), 4248-4253

[170] Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y., Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). *Chem. Mat.* (2017) 29 (18), 7633-7644

[171] Anasori, B., Lukatskaya, M. R., Gogotsi, Y., 2D metal carbides and nitrides (MXenes) for energy storage. *Nature Reviews Materials* (2017) 2 (2), Article number: 16098

[172] Lukatskaya, M. R., Mashtalir, O., Ren, C. E., Dall'Agnese, Y., Rozier, P., Taberna, P. L., Naguib, M., Simon, P., Barsoum, M. W., Gogotsi, Y., Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. *Science* (2013) 341 (6153), 1502-1505

[173] Hu, M., Li, Z., Zhang, H., Hu, T., Zhang, C., Wu, Z., Wang, X., Self-assembled Ti3C2Tx MXene film with high gravimetric capacitance. *Chem. Commun.* (2015) 51 (70), 13531-13533

[174] Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y., Barsoum, M. W., Conductive two-dimensional titanium carbide `clay' with high volumetric capacitance. *Nature* (2014) 516 (7529), 78-81

[175] Wang, X. F., Shen, X., Gao, Y. R., Wang, Z. X., Yu, R. C., Chen, L. Q., Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2TX. *Journal of the American Chemical Society* (2015) 137 (7), 2715-2721

[176] Lukatskaya, M. R., Bak, S.-M., Yu, X., Yang, X.-Q., Barsoum, M. W., Gogotsi, Y., Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy. *Adv. Energy Mater.* (2015) 5 (15), Aricle number: 1500589

[177] Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M.-Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P.-L., Barsoum, M. W., Simon, P., Gogotsi, Y., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. *Nature Energy* (2017) 2 (8), Article number: 17105

[178] Dall'Agnese, Y., Rozier, P., Taberna, P.-L., Gogotsi, Y., Simon, P., Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. *Journal of Power Sources* (2016) 306, 510-515

[179] Lin, Z., Barbara, D., Taberna, P.-L., Van Aken, K. L., Anasori, B., Gogotsi, Y., Simon, P., Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte. *Journal of Power Sources* (2016) 326, 575-579

[180] Lin, Z., Rozier, P., Duployer, B., Taberna, P.-L., Anasori, B., Gogotsi, Y., Simon, P., Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. *Electrochem. Commun.* (2016) 72, 50-53

[181] Conway, B. E., Transition from Supercapacitor to Battery Behavior in Electrochemical Energy-Storage. *Journal of the Electrochemical Society* (1991) 138 (6), 1539-1548

[182] Vol'fkovich, Y. M., and Serdyuk, T. M., Electrochemical capacitors. *Russian Journal of Electrochemistry* (2002) 38 (9), 935-958

[183] Fusalba, F., Gouerec, P., Villers, D., Belanger, D., Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. *Journal of the Electrochemical Society* (2001) 148 (1), A1-A6

[184] Kovalenko, I., Bucknall, D. G., Yushin, G., Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors. *Advanced Functional Materials* (2010) 20 (22), 3979-3986

[185] Wang, J., Xu, Y. L., Yan, F., Zhu, J. B., Wang, J. P., Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. *Journal of Power Sources* (2011) 196 (4), 2373-2379

[186] Fan, L. Z., and Maier, J., High-performance polypyrrole electrode materials for redox supercapacitors. *Electrochem. Commun.* (2006) 8 (6), 937-940

[187] Mallouki, M., Tran-Van, F., Sarrazin, C., Simon, P., Daffos, B., De, A., Chevrot, C., Fauvarque, J.-F., Polypyrrole-Fe2O3 nanohybrid materials for electrochemical storage. *J. Solid State Electrochem.* (2007) 11 (3), 398-406

[188] Fusalba, F., Ho, H. A., Breau, L., Belanger, D., Poly(cyano-substituted diheteroareneethylene) as active electrode material for electrochemical supercapacitors. *Chem. Mat.* (2000) 12 (9), 2581-2589

[189] Wang, J., Xu, Y. L., Chen, X., Du, X. F., Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite. *Journal of Power Sources* (2007) 163 (2), 1120-1125

[190] Benson, J., Kovalenko, I., Boukhalfa, S., Lashmore, D., Sanghadasa, M., Yushin, G., Multifunctional CNT-Polymer Composites for Ultra-Tough Structural Supercapacitors and Desalination Devices. *Advanced Materials* (2013) 25 (45), 6625-6632

[191] Snook, G. A., Kao, P., Best, A. S., Conducting-polymer-based supercapacitor devices and electrodes. *Journal of Power Sources* (2011) 196 (1), 1-12

[192] Tu, L. L., and Jia, C. Y., Conducting Polymers as Electrode Materials for Supercapacitors. *Progress in Chemistry* (2010) 22 (8), 1610-1618

[193] Aradilla, D., Estrany, F., Aleman, C., Symmetric Supercapacitors Based on Multilayers of Conducting Polymers. *J. Phys. Chem. C* (2011) 115 (16), 8430-8438

[194] Jaidev, Jafri, R. I., Mishra, A. K., Ramaprabhu, S., Polyaniline–MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte. *J. Mater. Chem.* (2011) 21 (44), 17601-17605

[195] Chen, L., Sun, L.-J., Luan, F., Liang, Y., Li, Y., Liu, X.-X., Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. *Journal of Power Sources* (2010) 195 (11), 3742-3747

[196] Liu, F.-J., Electrodeposition of manganese dioxide in three-dimensional poly(3,4ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor. *Journal of Power Sources* (2008) 182 (1), 383-388

[197] Zhang, X., Ji, L., Zhang, S., Yang, W., Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. *Journal of Power Sources* (2007) 173 (2), 1017-1023

[198] Lang, X., Hirata, A., Fujita, T., Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. *Nat. Nanotechnol.* (2011) 6 (4), 232-236

[199] Gupta, V., and Miura, N., Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. *Electrochim. Acta* (2006) 52 (4), 1721-1726

[200] Zhou, G.-m., Wang, D.-w., Li, F., Zhang, L.-I., Weng, Z., Cheng, H.-M., The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. *New Carbon Mater.* (2011) 26 (3), 180-186

[201] Zheng, L., Wang, X., An, H., Wang, X., Yi, L., Bai, L., The preparation and performance of flocculent polyaniline/carbon nanotubes composite electrode material for supercapacitors. *J. Solid State Electrochem.* (2010) 15 (4), 675-681

[202] Liu, W.-x., Liu, N., Song, H.-h., Chen, X.-h., Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors. *New Carbon Mater.* (2011) 26 (3), 217-223

[203] Ge, J., Cheng, G., Chen, L., Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. *Nanoscale* (2011) 3 (8), 3084-3088

[204] Yuan, C., Shen, L., Zhang, F., Lu, X., Zhang, X., Reactive Template Fabrication of Uniform Core–Shell Polyaniline/Multiwalled Carbon Nanotube Nanocomposite and Its Electrochemical Capacitance. *Chemistry Letters* (2010) 39 (8), 850-851

[205] Yang, M., Cheng, B., Song, H., Chen, X., Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. *Electrochim. Acta* (2010) 55 (23), 7021-7027

[206] Gómez, H., Ram, M. K., Alvi, F., Villalba, P., Stefanakos, E., Kumar, A., Grapheneconducting polymer nanocomposite as novel electrode for supercapacitors. *Journal of Power Sources* (2011) 196 (8), 4102-4108

[207] Zhang, K., Zhang, L. L., Zhao, X. S., Wu, J., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. *Chem. Mat.* (2010) 22 (4), 1392-1401 [208] Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M., Wei, F., Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. *Carbon* (2010) 48 (2), 487-493

[209] Simon, P., Brousse, T., Favier, F., Hybrid and/or Asymmetric Systems. In *Supercapacitors Based on Carbon or Pseudocapacitive Materials*, John Wiley & Sons, Inc.(2017)10.1002/9781119007333.ch4, pp 57-75

[210] Varakin, I. N., Stepanov, A. B., Menukhov, V. V., Capacitor with a double electrical layer. Google Patents(1997)

[211] Stepanov, A. B., Varakin, I. N., Menukhov, V. V., Double-layer capacitor. Google Patents(1999)

[212] Hong, M. S., Lee, S. H., Kim , S. W., Use of KCI Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor. *Electrochemical and Solid-State Letters* (2002) 5 (10), A227-A230

[213] Khomenko, V., Raymundo-Piñero, E., Béguin, F., Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. *Journal of Power Sources* (2006) 153 (1), 183-190

[214] Pell, W. G., and Conway, B. E., Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes. *Journal of Power Sources* (2004) 136 (2), 334-345

[215] Razoumov, S., Klementov, A., Litvinenko, S., Beliakov, A., Asymmetric electrochemical capacitor and method of making. Google Patents(2001)

[216] Amatucci, G. G., Badway, F., Du Pasquier, A., Zheng, T., An Asymmetric Hybrid Nonaqueous Energy Storage Cell. *Journal of The Electrochemical Society* (2001) 148 (8), A930-A939

[217] Rauhala, T., Leis, J., Kallio, T., Vuorilehto, K., Lithium-ion capacitors using carbidederived carbon as the positive electrode – A comparison of cells with graphite and Li4Ti5O12 as the negative electrode. *Journal of Power Sources* (2016) 331 (Supplement C), 156-166

[218] Zhao, E., Qin, C., Jung, H.-R., Berdichevsky, G., Nese, A., Marder, S., Yushin, G., Lithium Titanate Confined in Carbon Nanopores for Asymmetric supercapacitors. *Acs Nano* (2016) 10 (4), 3977-3984

[219] Naoi, K., Ishimoto, S., Miyamoto, J.-i., Naoi, W., Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices. *Energy Environ. Sci.* (2012) 5 (11), 9363-9373

[220] Naoi, K., Ishimoto, S., Isobe, Y., Aoyagi, S., High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. *Journal of Power Sources* (2010) 195 (18), 6250-6254

[221] Galiński, M., Lewandowski, A., Stępniak, I., Ionic liquids as electrolytes. *Electrochim. Acta* (2006) 51 (26), 5567-5580

[222] Sivakkumar, S. R., Nerkar, J. Y., Pandolfo, A. G., Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. *Electrochim. Acta* (2010) 55 (9), 3330-3335

[223] Krause, A., Kossyrev, P., Oljaca, M., Passerini, S., Winter, M., Balducci, A., Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. *Journal of Power Sources* (2011) 196 (20), 8836-8842

[224] Sivakkumar, S. R., and Pandolfo, A. G., Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. *Electrochim. Acta* (2012) 65 (Supplement C), 280-287

[225] Ding, J., Wang, H., Li, Z., Cui, K., Karpuzov, D., Tan, X., Kohandehghan, A., Mitlin, D., Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. *Energy Environ. Sci.* (2015) 8 (3), 941-955

[226] Decaux, C., Lota, G., Raymundo-Piñero, E., Frackowiak, E., Béguin, F., Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. *Electrochim. Acta* (2012) 86 (Supplement C), 282-286

[227] Sivakkumar, S. R., Milev, A. S., Pandolfo, A. G., Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. *Electrochim. Acta* (2011) 56 (27), 9700-9706

[228] Sun, H., Mei, L., Liang, J., Zhao, Z., Lee, C., Fei, H., Ding, M., Lau, J., Li, M., Wang, C., Xu, X., Hao, G., Papandrea, B., Shakir, I., Dunn, B., Huang, Y., Duan, X., Threedimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. *Science* (2017) 356 (6338), 599-604

[229] Boukhalfa, S., Evanoff, K., Yushin, G., Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. *Energy Environ. Sci.* (2012) 5 (5), 6872-6879

[230] Benson, J., Boukhalfa, S., Magasinski, A., Kvit, A., Yushin, G., Chemical Vapor Deposition of Aluminum Nanowires on Metal Substrates for Electrical Energy Storage Applications. *Acs Nano* (2012) 6 (1), 118-125

[231] Sun, D., Kwon, C. W., Baure, G., Richman, E., MacLean, J., Dunn, B., Tolbert, S. H., The relationship between nanoscale structure and electrochemical properties of vanadium oxide nanorolls. *Advanced Functional Materials* (2004) 14 (12), 1197-1204

[232] Wang, D. W., Wang, Q. H., Wang, T. M., Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co(3)O(4) Nanostructures for Application in Supercapacitors. *Inorganic Chemistry* (2011) 50 (14), 6482-6492

[233] Xia, X.-h., Tu, J.-p., Mai, Y.-j., Wang, X.-l., Gu, C.-d., Zhao, X.-b., Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. *J. Mater. Chem.* (2011) 21 (25), 9319-9325

[234] Nam, K. W., Yoon, W. S., Kim, K. B., X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors. *Electrochim. Acta* (2002) 47 (19), 3201-3209

[235] Kalu, E. E., Nwoga, T. T., Srinivasan, V., Weidner, J. W., Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide. *Journal of Power Sources* (2001) 92 (1-2), 163-167

[236] Srinivasan, V., and Weidner, J. W., Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration. *Journal of the Electrochemical Society* (2000) 147 (3), 880-885

[237] Liu, K. C., and Anderson, M. A., Porous nickel oxide/nickel films for electrochemical capacitors. *Journal of the Electrochemical Society* (1996) 143 (1), 124-130

[238] Purushothaman, K. K., Manohara Babu, I., Sethuraman, B., Muralidharan, G., Nanosheet-Assembled NiO Microstructures for High-Performance Supercapacitors. *ACS Appl. Mater. Interfaces* (2013) 5 (21), 10767-10773

[239] Wang, G., Zhang, L., Kim, J., Zhang, J., Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. *Journal of Power Sources* (2012) 217, 554-561

[240] Gupta, V., Gupta, S., Miura, N., Statically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors. *Journal of Power Sources* (2008) 175 (1), 680-685

[241] Lokhande, C. D., Gujar, T. P., Shinde, V. R., Mane, R. S., Han, S. H., Electrochemical supercapacitor application of pervoskite thin films. *Electrochem. Commun.* (2007) 9 (7), 1805-1809

[242] Prasad, K. R., and Miura, N., Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors. *Electrochem. Commun.* (2004) 6 (8), 849-852

[243] Prasad, K. R., Koga, K., Miura, N., Electrochemical deposition of nanostructured indium oxide: High-performance electrode material for redox supercapacitors. *Chem. Mat.* (2004) 16 (10), 1845-1847

[244] Zheng, F.-L., Li, G.-R., Ou, Y.-N., Wang, Z.-L., Su, C.-Y., Tong, Y.-X., Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. *Chem. Commun.* (2010) 46 (27), 5021-5023

[245] Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z., Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping. *Nano Lett.* (2011) 11 (10), 4438-4442

[246] Naoi, K., Kisu, K., Iwama, E., Nakashima, S., Sakai, Y., Orikasa, Y., Leone, P., Dupre, N., Brousse, T., Rozier, P., Naoi, W., Simon, P., Ultrafast charge-discharge characteristics of a nanosized core-shell structured LiFePO4 material for hybrid supercapacitor applications. *Energy Environ. Sci.* (2016) 9 (6), 2143-2151

[247] Chen, Z., Qin, Y. C., Weng, D., Xiao, Q. F., Peng, Y. T., Wang, X. L., Li, H. X., Wei, F., Lu, Y. F., Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. *Advanced Functional Materials* (2009) 19 (21), 3420-3426

[248] Wang, X., and Yushin, G., Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. *Energy Environ. Sci.* (2015) 8 (7), 1889-1904

[249] Donders, M. E., Arnoldbik, W. M., Knoops, H. C. M., Kessels, W. M. M., Notten, P. H. L., Atomic Layer Deposition of LiCoO2 Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries. *Journal of the Electrochemical Society* (2013) 160 (5), A3066-A3071

[250] Tadanaga, K., Yamaguchi, A., Sakuda, A., Hayashi, A., Tatsumisago, M., Duran, A., Aparacio, M., Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process. *Materials Research Bulletin* (2014) 53 (0), 196-198

[251] Wu, C. Y., Cao, G. S., Yu, H. M., Xie, J., Zhao, X. B., In Situ Synthesis of LiFePO4/Carbon Fiber Composite by Chemical Vapor Deposition with Improved Electrochemical Performance. *The Journal of Physical Chemistry C* (2011) 115 (46), 23090-23095

[252] Lee, M. L., Su, C. Y., Lin, Y. H., Liao, S. C., Chen, J. M., Perng, T. P., Yeh, J. W., Shih, H. C., Atomic layer deposition of TiO2 on negative electrode for lithium ion batteries. *Journal of Power Sources* (2013) 244, 410-416

[253] Sun, X., Xie, M., Wang, G. K., Sun, H. T., Cavanagh, A. S., Travis, J. J., George, S. M., Lian, J., Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors. *Journal of the Electrochemical Society* (2012) 159 (4), A364-A369

[254] Naoi, K., Kurita, T., Abe, M., Furuhashi, T., Abe, Y., Okazaki, K., Miyamoto, J., Iwama, E., Aoyagi, S., Naoi, W., Simon, P., Ultrafast Nanocrystalline-TiO2(B)/Carbon Nanotube Hyperdispersion Prepared via Combined Ultracentrifugation and Hydrothermal Treatments for Hybrid Supercapacitors. *Advanced Materials* (2016) 28 (31), 6751-6757

[255] Iwama, E., Kawabata, N., Nishio, N., Kisu, K., Miyamoto, J., Naoi, W., Rozier, P., Simon, P., Naoi, K., Enhanced Electrochemical Performance of Ultracentrifugation-Derived nc-Li3VO4/MWCNT Composites for Hybrid Supercapacitors. *ACS Nano* (2016) 10 (5), 5398-5404

[256] Gabrielli, C., Keddam, M., Perrot, H., Pham, M. C., Torresi, R., Separation of ionic and solvent transport during charge compensation processes in electroactive polymers by a.c. electrogravimetry. *Electrochim. Acta* (1999) 44 (24), 4217-4225

[257] Escobar-Teran, F., Arnau, A., Garcia, J. V., Jiménez, Y., Perrot, H., Sel, O., Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry. *Electrochem. Commun.* (2016) 70 (Supplement C), 73-77

[258] Lebegue, E., Madec, L., Brousse, T., Gaubicher, J., Levillain, E., Cougnon, C., Modification of activated carbons based on diazonium ionsin situ produced from aminobenzene organic acid without addition of other acid. *J. Mater. Chem.* (2011) 21 (33), 12221-12223

[259] Lebegue, E., Brousse, T., Gaubicher, J., Retoux, R., Cougnon, C., Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules. *J. Mater. Chem. A* (2014) 2 (23), 8599-8602

[260] Torriero, A. A. J., Characterization of decamethylferrocene and ferrocene in ionic liquids: argon and vacuum effect on their electrochemical properties. *Electrochim. Acta* (2014) 137 (Supplement C), 235-244

[261] Van Aken, K. L., Beidaghi, M., Gogotsi, Y., Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors. *Angewandte Chemie International Edition* (2015) 54 (16), 4806-4809

[262] Wang, X., Mehandzhiyski, A. Y., Arstad, B., Van Aken, K. L., Mathis, T. S., Gallegos, A., Tian, Z., Ren, D., Sheridan, E., Grimes, B. A., Jiang, D.-e., Wu, J., Gogotsi, Y., Chen, D., Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. *Journal of the American Chemical Society* (2017) 139 (51), 18681-18687

[263] Segalini, J., Iwama, E., Taberna, P.-L., Gogotsi, Y., Simon, P., Steric effects in adsorption of ions from mixed electrolytes into microporous carbon. *Electrochem. Commun.* (2012) 15 (1), 63-65

[264] Ray, P., Dohm, S., Husch, T., Schütter, C., Persson, K. A., Balducci, A., Kirchner, B., Korth, M., Insights into Bulk Electrolyte Effects on the Operative Voltage of Electrochemical Double-Layer Capacitors. *The Journal of Physical Chemistry C* (2016) 120 (23), 12325-12336