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Abstract

Nowadays, many contributions deal with R-peak detection in Electrocardio-
graphic (ECG) signals. Although they present an accurate performance in
detection, most of these are presented as offline solutions, both to be pro-
cessed in high performance platforms (under a big cost), or to be analysed
in laboratories without constraints in time, neither in computational load.
Owing to this, it is also very important to take one step further, trying to
develop new solutions which work in portable/wearable low-cost platforms,
with constraints in time and in computational load.
In this work, an accurate and computationally efficient method for online and
robust detection of R-Peaks is presented. This method is divided in three
main stages: first, in the pre-processing stage, a complete elimination of ar-
tifacts is performed based on a noise and signal intensity approach; second,
R-peaks detection is carried out through an efficient “area over the curve”
method; finally, in the third stage, a novel iterative algorithm consisting in
three sequential state machines performs the correct detection of the R-peaks
applying heart period distance rules. Moreover, the method is performed over
time in short length sliding windows.
The algorithm has been tested using all 48 full-length ECG records of the
MIT-BIH Arrhythmia Database, achieving 99.54% sensitivity and 99.60%
positive predictivity in R-peak detection.
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1. Introduction

The electrocardiogram (ECG) is the most used technology for recording
complex waveforms generated from heart electrical activity in the myocardial
contraction [1, 2]. The electrical propagation is measured from the patient’s
body surface using a set of electrodes. For a normal human heartbeat, the5

ECG signal has the characteristic shape shown in Fig. 1.
The R-peak located in the QRS complex is the most characteristic waveform
and is usually employed as a reference for the ECG analysis [2]. Once the
location of R-peak is defined, then other wave components of ECG signal
can be determined. Therefore accurate detection of R-peaks is the most im-10

portant objective in automatic ECG signal analysis.

Figure 1: Intervals on the PQRST complex.

The use of increasingly modern technologies is leading to the development of
portable devices, which carry out the acquisition of the ECG using a single
lead [3], two leads [4] or Einthoven’s triangle configuration [5, 6]. These con-
figurations are vulnerable to artifacts, causing the correct beats recognition15

being impeded by power-line interference, electromyogram noise and baseline
wander often present in the ECG signal [7, 8, 9, 10, 11]. These artifacts are
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shown in Fig. 2, where graphs (a-d) correspond to different sections of one of
the records acquired using Biopac MP150, in which 4 main types of artifacts
are distinguished.
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Figure 2: Artifacts present in an ECG signal acquired with Biopac MP150 in a daily
situation: a) Baseline wander b) White noise c) Network 50Hz electromagnetic interference
d) Loss of sensor conduction results in a loss of signal strength.

20

Numerous algorithms based on different techniques have been developed dur-
ing the last decades for ECG analysis [12]. These are derivatives [13, 14], digi-
tal filters [15, 16, 17, 18, 19], wavelet-transform [20, 21, 22, 23, 24, 25, 26], neu-
ral networks [27], genetic algorithms [28], support vector machine (SVM) [29],
k-means [30], combined threshold method [31], moving averaging method [32]25

and Hilbert Transform method [33] among others.
Additionally, some proposals in the ECG processing use short length sliding
windows for the detection of physiological events in real-time [5, 6]. This
type of processing requires a reliable detection of R-peaks, since an error in
the detection can generate an even greater error in the frequency, nonlinear30

and temporal parameters extracted from detected R-peaks as the duration
of the analyzed window is shorter.
An accurate detection of R-peaks is important in the study of the ECG to
enable subsequent signal processing, both to calculate the parameters derived
from heart rate and to obtain the locations of the P, Q, S and T waves that35

shape each PQRST complex. This paper focuses on the robust detection of
R-peaks in noisy ECGs by applying a novel iterative computing approach in
a low computational load algorithm. As this work studies noisy ECGs, P,
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Q, S and T waves detection becomes impracticable as shown in Fig. 2b. A
representative scheme of the different phases that compose the full algorithm40

is shown in Fig. 3. First robust elimination of the artifacts is carried out in
the preprocessing stage, followed by an accurate detection of R-peaks using
an original area over the QRS complex-based approach. Finally the detected
R-peaks are analyzed using a smart iterative method, which is composed of
three state machines that are executed sequentially to detect possible false45

negatives (non-detected R-peaks) and false positives (surplus R-peaks) and
correct them. The proposal has been tested on large scale using the standard
MIT/BIH Arrhythmia Database [4] and achieved results and computational
load have been compared with other existing methods.

Baseline wander

(BW) removal
Noise elimination

Preprocessing: ECG cleaning Iterative smart processing

State machine I: Lost R-peak detection

State machine II: Extra R-peak elimination

- normal sinus rhythm approach

State machine III: Extra R-peak advanced

elimination - arrhythmia approach

Area-based R-peak detection

Figure 3: Schematic representation of the proposed R-peak detection algorithm.

This paper is organized as follows. Section 2 explains the datasets used50

for the development and validation of the algorithm. Section 3 focuses on
the proposed methodology. In section 4 the results obtained are presented,
discussed and compared with other methods. Finally, section 5 describes
conclusions.

2. ECG databases55

The proposed algorithm has been created using two different datasets.
The first one for development, consisting on noisy ECG records. The second
one for validation and comparison.
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For development 60 records of 15 minutes each have been collected at a sam-
pling frequency (fs) of 1000 Hz using the Biopac MP150 system (Biopac Sys-60

tems Inc., USA) with a three-lead Einthoven’s triangle configuration. These
records were acquired in real life situations and so, they correspond to real
ECG fragments as mentioned above. As it is possible to see in Fig. 2, the
registers were affected by a wide variety of artifacts.
To validate the algorithm performance against other proposals in the litera-65

ture, a widely used MIT-BIH Arrhythmia Database has been processed [4].
These 30-minute recordings were sampled at 360 Hz with 11-bit resolution
over a 10 mV range. The database is strongly affected by arrhythmia events
and includes annotations with beat class information verified by MIT-BIH
experts.70

3. Material and methods

In general, the R-peak detection is mainly divided in two parts: the first
part consist on a preprocessing stage where noise removal is carried out,
and second is R-peak detection. This work proposes different methodologies
focused on both the preprocessing and the processing of the ECG signal75

in order to carry out a robust detection of the R-peaks. The methodology
proposed in the following steps focuses on the study of the ECG in short
duration ECG windows and with low computational load requirements that
make it implementable in real-time applications. Specifically, a 20-second
sliding window has been used, since it contains enough information to carry80

out an accurate real-time analysis of the ECG [5, 6].

3.1. Preprocessing: ECG cleaning

In order to carry out the elimination of artifacts that affect the ECG, a
two phase signal preprocessing has been developed using time domain meth-
ods. Frequency domain methods have been discarded due to the high com-85

putational load and the distortions generated in the R-peaks positions when
modifying the spectrum [12]. The first phase deals with baseline wander
(BW) elimination. In the second phase, the artifacts due to power-line in-
terference and electromyogram noise are removed. Fig. 4 shows the ECG
signal before and after the removal of artifacts.90
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Figure 4: ECG signal from MIT/BIH Arrhythmia Database (record 104) before and after
preprocessing. The resulting signal consists of the normalized R-peaks.

3.1.1. Baseline wander removal

The BW is a low-frequency artifact which is caused due to interaction
between the electrodes and skin [7, 9, 24]. For the elimination of BW sev-
eral techniques have been proposed in the literature such as high pass filters,
adaptive filters and Wavelet filters among others [7, 8, 10, 34].95

In this work a computationally efficient stepped moving median filtering to-
gether with a cubic interpolation is proposed for BW removal. The use of a
moving median filter is ideal for BW elimination due to R-peaks morphology,
which is similar to a high intensity and short-duration wave [7, 10, 24, 33, 34].
Calculating the value of the median for each sample, however, requires a high100

computational load, which makes it inefficient. In this work an approach
based on a stepped median points (pi) linked together by calculating the
cubic interpolation has been proposed according to formulas (1) and (2) re-
spectively, where Si

x is the section defined by the median filter width in the
ith step.105

pi(x) = mediant∈Si
x
{ECG(t)} (1)

BW i+1
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To set up the width of the median filter and the size of the step, the width of110

the R-peaks and the width of the median filter itself have been considered,
respectively. One of the premises is that the width of the median filter must
be greater than twice the width of the R-peak so that it is not filtered. At the
same time, the width should not be too large to preserve an acceptable com-
putational load. Based on the fact that the normal R-peak width is around115

60 milliseconds [35], a 150-millisecond median filter has been configured. For
the step width configuration, a value corresponding to half of the width of
the median filter has been established, thus maintaining a considerable over-
lap. Achieved performance is illustrated in Fig. 5 where the BW is perfectly
removed according to formula (3), giving ECG′ the resulting filtered ECG.120

ECG′ = ECG−BW. (3)
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Figure 5: Signal ECG affected by the BW in the upper graph. Result of the elimination
of the BW in the lower graph.

3.1.2. Noise elimination

The ECG signal also contains artifacts due to power-line interference and
electromyogram noise. This work proposes a noise elimination algorithm125

based on signal and noise intensity measures in which a dynamic cutting line
(CL: black line in Fig. 6) is calculated according to the formula (6). The aim
of CL is to cut the ECG, keeping R-peaks (regardless of their morphology)
intact and eliminating the noise below based on formula (7) where ECG′′ is
the resulting cut signal. CL depends on three main parameters:130
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• Signal Intensity (SI): Consists of a sliding window (width: 1 second,
step: 0.5 second) that crosses the signal calculating the maximum value
of the ECG according to (4) (green line in Fig. 6). This corresponds
to the largest R-peak amplitude in the window.

SIi(x) = maxt∈Si
x
{ECG′(t)}. (4)135

• Noise Intensity (NI): Consists of another sliding window (width: 1
second, step: 0.5 second) where the standard deviation is calculated
according to formula (5). Since the standard deviation is proportional
to noise, the final value is multiplied by 2 so that 95% of the noise is
below the resulting value (pink line in Fig. 6).140

NIi = 2 ∗

√√√√ 1

fs− 1

i+fs/2∑
j=i−fs/2

(ECG′j − ECG′)2. (5)

• Aggressiveness level (α): This parameter is used to calibrate the ag-
gressiveness level in the elimination of noise when applying the cut,
which is calculated according to formula (6). Best empirical results
have been obtained with an α value equal to 5 for the whole dataset.145

This value should be set according to the quality of the signal acquired
by the device in which it is implemented, with 1 the most aggressive
value and 10 the least aggressive.

CLi = NIi + (SIi −NIi) ∗
10− α

9
{α ∈ R | 1 ≤ α ≤ 10} (6)

ECG′′i =

{
ECG′i − CLi : ECG′i > CLi

0 : ECG′i ≤ CLi
. (7)150

After calculating ECG′′, a normalization is carried out (ECG′′′) in a range
of 0 to 1 according to formula (8) where ECG′′′ is the resulting normalized
signal. The result is visible in the lower graph of Fig. 6.

ECG′′′i =
ECG′′i

SIi −NIi
(8)155
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Figure 6: Signal ECG affected by electromagnetic interference in the form of white noise
in the upper graph. Result of the elimination of white noise under CL and intensity
normalization in the lower graph.

3.2. R-peak detection method

The detection of R-peaks is divided into two complementary phases. The
first one consists of an initial detection of R-peaks applying an “area over the
curve”-based approach [3]. In the second phase a novel state machine (SM)160

structure-based methodology has been developed, in which detected R-peaks
are evaluated through a set of conditions that decide whether a detected
peaks correspond to erroneous detections or not or if the signal presents
some inconsistency due to undetected R-peaks.

3.2.1. Area-based R-peak detection165

Based on the morphology of the R-peaks, the hypothesis that R-peaks
have a high and narrow shape have been considered, defining the neighbors
(N) for each local maximum in ECG′′′ and letting M be the amplitude of
the local maximum [3]. These neighbors correspond to half the value of the
duration of the QRS complex (W). Depending on these parameters the area170

over the curve is calculated according to formula (9), which coincides with the
blue area represented in Fig. 7. When a local maximum is high and narrow
the corresponding area is high, this is the case of an R-peak. The other
peaks correspond to the remaining waves of the PQRST complex that do
not have such a large area. In this study, a QRS duration of 100 ms has been175
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considered (W=100 ms, N=50 ms) based on the literature [2, 3, 35, 36, 37].

area =
1

2 ∗N

N∗fs∑
i=−N∗fs

(M − ECG′′′i ) (9)

Figure 7: Areas over the curve (blue shading) for each local maximum (P, R, T) in a
PQRST complex.

An important parameter to be defined in this approach is the cut-off value
of the area from which a local maximum is considered to be an R-peak. To180

define the optimum value of the cut-off point, all area distributions obtained
from the development dataset have been studied and represented in Fig. 8
using a logarithmic scale to improve visualization.
Optimal balance between false positives (FP) and false negatives (FN) has
been obtained with a cut-off value of 0.55, reaching the highest accuracy in185

the detection of R-peaks in the development dataset.

3.2.2. Iterative smart processing method

The result obtained using the area-based R-peak detection method is ef-
fective when the morphology of the R-peak corresponds to the theoretical
shape shown in Fig. 7. When an important pathology such as premature190

ventricular contraction (PVC) occurs, this morphology differs from the theo-
retical shape as illustrated in Fig. 9. This may result in the value of the area
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Figure 8: Probability histogram for all detected peaks areas (blue line) and areas corre-
sponding only to R-peaks (red line) in the development dataset.

over the curve being below the defined cut-off point, leading to a FN. More-
over, when very noisy sections are removed, the amplitude of some R-peaks
appears very reduced, not reaching the cut-off area value as in the processing195

represented in Fig. 10.
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Figure 9: Premature ventricular contraction phenomenon at time 1519 seconds.

In both cases a FN is a serious problem when analyzing short duration win-
dows. An error in the detection leads to significant variations in the parame-
ters calculated from detected R-peaks. The same happens when a FP occurs.
In the following subsections, three sequentially executed state-machines are200

presented for the selective detection and elimination of FN and FP. These
algorithms are based on a set of conditions that relate previously detected
R-peaks to carry out an intelligent optimization. The first SM carries out the
detection of the undetected R-peaks. The second SM eliminates the surplus
R-peaks according to a normal sinus rhythm (NSR) HP conditions. Finally,205

the third SM eliminates the remaining FP considering the possibility of ar-
rhythmias.
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Figure 10: Example of non-detected R-peaks that do not reach the minimum cut-off
area value: a) Original ECG signal frame, b) Filtered ECG and cutting line, c) Cut and
normalized ECG, d) R-Peak detection with some non-detected peaks.

The conditions rest on heart period (HP) measurements to carry out an
analysis based on contiguous R-peaks. HP is defined as an N-1 length ar-
ray calculated according to equation (10), being R Peaks an N length array210

composed of the R-peaks timestamps.

HPi = R Peaksi −R Peaksi−1 (10)

In addition to raw HP, parameters such as median HP (median(HP )), max-
imum HP (HPmax) and minimum HP (HPmin) are used to normalize the
conditions so that they are applicable to every register equally. All con-215

ditions are composed of logical operations which are scaled with constant
values calculated interactively in the experiments performed on the develop-
ment dataset.

SM I - Lost R-peak detection

Having all the possible R-peaks detected is a fundamental step that pro-220

vides enough information to carry out the elimination of those that are FP.
In order to ensure the detection of all possible R-peaks, the first SM has
been designed as shown in Fig. 11. The processing is based on an iterative
analysis of HP that analyzes each of the spaces between R-peaks in search
of anomalous situations that indicate the lack of one or several R-peaks.225

This first SM depends on condition 1, which is represented in equation (11)
and considers the cases in which a FN occurs. When condition 1 is met, it is
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considered that the algorithm has detected a FN and a search for the missing
R-peak begins between the two consecutive R-peaks where the missing one is
supposed to be. The cut-off point is reduced to 0.4 in this interval, allowing230

to detect possible R-peaks that could have been overlooked with the previous
cut-off value. If there exist peaks with an area over the curve greater than
0.4, the largest one is taken. If none exists, the largest local maximum is
selected as the missing R-peak.

Condition1 =

(HPi > HPmax) ∩ (HPi > 1.7 ·median(HP ))∩
(1.3 ·HPi−1 < HPi) ∪ (HPi > 1.3 ·HPi+1)∩
(HPi > 1.5 ·HPi+1) ∩ (HPi > 1.5 ·HPi−1)∩
(1.3 ·HPi−1 < HPi) ∪ (1.3 ·HPi−2 < HPi)∩
(1.3 ·HPi+1 < HPi) ∪ (1.3 ·HPi+2 < HPi)

(11)235

 area-based R-peak 
detection  in 
 window 

INITIALIZATION
i = 0; R_Peaks

i <= length(HP) AND
CONDITION_1

 HP calculation 
i = i + 1

 find local 
maximum  in 
 window 

Area < 0.4

Area >= 0.4

 add new R-peak 

Area >= 0.25Area < 0.25

i <= length(HP) AND
~CONDITION_1

i > length(HP)

END

Figure 11: State machine I for lost R-peak detection.“window” is the signal fragment that
goes from R Peaksi to R Peaksi+1. “area-based R-peak detection” is the processing
carried out in section 3.2.1. “find local maximum” looks for a maximum peak in
“window”. “add new R-peak” is a function that adds the new R-Peak in the correct
position.

SM II - Extra R-peak elimination: normal sinus rhythm approach

Second SM analyzes HPs obtained from the first SM in search of FP
considering that the HP morphology corresponds to a NSR. It is based on
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the fact that each HP must be related to the contiguous HPs, so that certain240

distances between contiguous R-peaks are not exceeded. To control that the
distances are within a fixed ranges the Condition 2.1 and Condition 2.2 have
been defined in equations (12) and (13) respectively. Both conditions are
based on the duration of a parameter called “window” (Wt), defined in the
SM of Fig. 12. This “window” is generated dynamically and contains series245

of R-peaks corresponding to consecutive HPs in which their values meet the
conditions HPi < HPmin and HPi < 0.6 ∗ median(HP ). If Condition 2.1
is true, it is considered that the R-peak corresponding to the current index
“i” is a FP. If Condition 2.2 is true, more than one consecutive R-peak are
considered to be FP and a selective elimination is carried out.250

Condition2.1 = (HPi < HPmin)∪
(HPi < 0.6 ·median(HP )) ∪ (Wt < 2.5 ·median(HP ))

(12)

Condition2.2 = (HPi < HPmin)∪
(HPi < 0.6 ·median(HP )) ∪ (Wt ≥ 2.5 ·median(HP ))

(13)

This state machine does not consider possible cases of arrhythmias since it255

is focused on carrying out a general cleaning of FP in NSR conditions. This
requires a third SM to perform a more thorough cleaning, considering the
morphology of the HP in arrhythmia situations.

SM III - Extra R-peak advanced elimination: arrhythmia approach

In the third SM an elimination of FP is carried out using a more complex260

process focused on arrhythmia events due to the difficulty of detecting FP
when the ratio of distances between R-peaks becomes irregular. The algo-
rithm analyzes the current HP in a broader context focusing on a wider range
of contiguous HPs. This makes the SM very sensitive to an excess of FP in
the analyzed range. Hence, a first raw elimination of the surplus R-peaks265

was necessary in the second SM.
To detect the remaining FP, the morphology of the HP when arrhythmia
occurs has been modeled empirically in 5 conditions defined in (14), (15),
(16), (17) and (18). Possible irregularities have been considered due to this
pathology in which the R-peaks use to be displaced (relative to their expected270

position in NSR conditions) more or less close to contiguous R-peaks. If any
of the 5 conditions is true during the analysis of a particular HP, current
R-peak (index “i”) is considered to be a FP and is eliminated. A schematic

14



 one R-peak 
elimination  in 

 window 

INITIALIZATION
i = 0; R_peaks

i <= length(HP) AND
CONDITION_2.1

 HP calculation 
i = i + 1

i <= length(HP) AND
~CONDITION_2.1 AND

~CONDITION_2.2

i > length(HP)

END

 multiple R-peak 
elimination  in 

 window 
i <= length(HP) AND

CONDITION_2.2

Figure 12: State machine II for extra R-peak elimination: “window” is the signal fragment
in which consecutive series of anomalous R-peaks have been detected. “one R-peak
elimination” is executed considering that in “window” there is only one erroneous R-
peak to find and eliminate. “multiple R-peak elimination” is executed considering
that in “window” there are two or more consecutive erroneous R-peaks.

representation of the SM is shown in Fig. 13.

Condition3.1 =

(1.2 · (HP1 +HP2) > HP3 > (HP1 +HP2)/1.2)∪
(1.2 · (HP1 +HP2) > HP4 > (HP1 +HP2)/1.2)∪

(HP3 > HPmin) ∪ (HP4 > HPmin)

(14)275

Condition3.2 =

(1.2 · (HPi+1 +HPi+2) > HPi > (HPi+1 +HPi+2)/1.2)∪
(1.2 · (HPi+1 +HPi+2) > HPi+3 > (HPi+1 +HPi+2)/1.2)∪

(HPi > HPmin) ∪ (HPi+3 > HPmin)

(15)
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Condition3.3 =

(1.2 · (HPN−1 +HPN) > HPN−2 > (HPN−1 +HPN)/1.2)∪
(1.2 · (HPN−1 +HPN) > HPN−3 > (HPN−1 +HPN)/1.2)∪

(HPN−2 > HPmin) ∪ (HPN−3 > HPmin)

(16)

280

Condition3.4 =

(1.2 · (HPi+1 +HPi+2) > HPi+2 > (HPi+1 +HPi+2)/1.2)∪
(1.2 · (HPi+1 +HPi+2) > HPi+3 > (HPi+1 +HPi+2)/1.2)∪

(1.1 ·HPi+3 > HPi+2 > HPi+3/1.1)∪
(1.1 ·HPi+2 > HPi+3 > HPi+2/1.1)∪

(HPi+2 > HPmin) ∪ (HPi+3 > HPmin)∪
(HPi +HPi+1 > HPmin) ∪ (HPi +HPi+1 < HPmax)

(17)

Condition3.5 =

(1.2 · (HPi+2 +HPi+3) > HPi > (HPi+2 +HPi+3)/1.2)∪
(1.2 · (HPi+2 +HPi+3) > HPi+1 > (HPi+2 +HPi+3)/1.2)∪

(HPi > HPmin) ∪ (HPi+1 > HPmin)

(18)

The result of the three state machines implementation is a complete detection285

of the R-peaks illustrated in Fig. 14. This figure corresponds to the same
example previously shown in Fig. 10 prior to the iterative smart processing
method.

4. Results and discussion

The designed algorithm has been validated and compared with the meth-290

ods available in the literature using MIT-BIH Arrhythmia Database [4]. The
performance of the algorithm is given in Table 1 based on the number of
True Positives (TP), False Positives (FP) and False Negatives (FN) obtained.
From these values, sensitivity (Se) (19) and positive predictivity (P+) (20)
have been calculated to analyze the performance of the proposed algorithm295

according to the formulas:

Se =
TP

TP + FN
(%) (19)
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initialization 
i = 0; Part = 2

i > length(HP) AND
Part == 1

 eliminate 
R_peaks(i+1) 

 eliminate 
R_peaks(i+3) 

i <= length(HP)-3 AND
CONDITION_3.4 AND

Part == 2

i <= length(HP)-3 AND
CONDITION_3.5 AND

~CONDITION_3.4 AND
Part == 2

CONDITION_3.5

i <= length(HP) AND
[~CONDITION_3.1 AND
~CONDITION_3.2 AND
~CONDITION_3.3 AND

Part == 1] OR
[~CONDITION_3.4 AND
~CONDITION_3.5 AND

Part == 2]

Figure 13: State machine III for extra R-peak advanced elimination. “second part ini-
tialization” initializes the parameters to execute the second part conditions. “eliminate
R peaks(x)” removes R-peaks corresponding to position x .

P+ =
TP

TP + FP
(%) (20)

Table 1: Results of evaluating the proposed algorithm
performance on MIT-BIH Arrhythmia Database.

Tape No. #annotations TP FP FN Se(%) P+(%)
100 2273 2273 0 0 100.00 100.00
101 1865 1864 3 1 99.95 99.84
102 2186 2185 2 1 99.95 99.91
103 2084 2084 0 0 100.00 100.00
104 2228 2227 3 1 99.96 99.87
105 2559 2557 9 2 99.92 99.65

Continued on next page
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Table 1 – Continued from previous page
Tape No. #annotations TP FP FN Se(%) P+(%)

106 1978 1970 0 8 99.60 100.00
107 2099 2093 3 6 99.71 99.86
108 1755 1753 73 2 99.89 96.00
109 2521 2519 0 2 99.92 100.00
111 2124 2124 0 0 100.00 100.00
112 2539 2539 0 0 100.00 100.00
113 1795 1795 0 0 100.00 100.00
114 1875 1874 183 1 99.95 91.10
115 1953 1953 0 0 100.00 100.00
116 2393 2390 1 3 99.87 99.96
117 1533 1532 0 1 99.93 100.00
118 2275 2275 0 0 100.00 100.00
119 1958 1953 0 5 99.74 100.00
121 1863 1862 0 1 99.95 100.00
122 2476 2476 0 0 100.00 100.00
123 1516 1515 0 1 99.93 100.00
124 1614 1613 0 1 99.94 100.00
200 2587 2585 8 2 99.92 99.69
201 1806 1783 1 23 98.73 99.94
202 2124 2122 1 2 99.91 99.95
203 2557 2496 24 61 97.61 99.05
205 2627 2622 0 5 99.81 100.00
207 1803 1794 89 9 99.50 95.27
208 2424 2348 4 76 96.86 99.83
209 3004 3003 0 1 99.97 100.00
210 2531 2514 1 17 99.33 99.96
212 2748 2748 0 0 100.00 100.00
213 3212 3206 0 6 99.81 100.00
214 2216 2209 1 7 99.68 99.95
215 3304 3295 1 9 99.73 99.97
217 2207 2206 1 1 99.95 99.95
219 2115 2109 0 6 99.72 100.00
220 2036 2034 0 2 99.90 100.00
221 2405 2401 0 4 99.83 100.00
222 2414 2403 0 11 99.54 100.00

Continued on next page
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Table 1 – Continued from previous page
Tape No. #annotations TP FP FN Se(%) P+(%)

223 2458 2436 0 22 99.10 100.00
228 2042 2040 9 2 99.90 99.56
230 2254 2253 0 1 99.96 100.00
231 1886 1885 2 1 99.95 99.89
232 1136 1043 12 93 91.81 98.86
233 2472 2385 0 87 96.48 100.00
234 2751 2750 0 1 99.96 100.00

Total 106581 106096 431 485 99.54 99.60

Results with a high percentage of success in the detection of R-peaks300

have been achieved with a sensitivity value of 99.54%. The number of false
detections or FP is low, which corresponds to a 99.60% positive predictivity
value.
Some R-peaks are undetected due to their large width, as in PVC. The mor-
phology of PVC differs from the standard R-peak, which hinders the analysis305

when “area over the curve” method-based detection is performed. This phe-
nomenon can be observed in some of the records processed such as 114, 207
and 208.
Even though the PVCs of register 114 are uniform, their morphology has
led to erroneous detections using “area over the curve” method. Record 207310

was extremely difficult to process. The predominant rhythm is normal sinus
with first-degree atrioventricular block and left bundle branch block. In ad-
dition, since PVCs are multiform, they greatly hindered detection. Record
208 contains several uniform PVCs, in addition to ventricular and normal
beat fusions, leading to undetected R-peaks. The amount of FP obtained315

in register 108 is also remarkable, mainly due to first-degree atrioventricular
block and multiform PVCs. Finally, during the state machines processing
of register 232, several R-peaks were undetected. This happened because
distance-based rules were used to perform the detections in a register affected
by numerous long intervals between R-peaks (up to 6 seconds in duration).320

Table 2 compares the performance of the proposed algorithm with other well-
known works. All of them have used signals from the MIT-BIH Arrhythmia
Database for validation, which makes a fair comparison possible. Computa-
tional load has been considered according to Kohler et al. [12], who suggested
measuring the computational load as low, medium and high according to the325

generation of signal features and the complexity of the used techniques.
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Table 2: R-peak detection performance comparison on MIT-BIH Arrhythmia Database
(first channel).
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Figure 14: Result of the detection of R-peaks using the proposed algorithm in an ECG
signal affected by several artifacts.

Looking at the performance obtained in sensitivity and positive predictivity
values in table 2, all are similar for the compared works. Values greater than
99.50% have been achieved in both Se and P+ measures with the exception
of Choouakri et al. [23], who gets somewhat lower results.330

Computational load is an important parameter to be considered since many
ECG processing applications requires to be implemented in online processes
with real-time constraint. This also affects energy expenditure, which can
be critical in portable devices focused on long term ECG acquisition. In the
proposed work this factor has been considered looking at the complexity of335

the used methods and verifying its real-time execution in low-cost portable
devices such as Raspberry Pi Zero and Arduino Micro models. This leads
to an implementation and development of a computationally light algorithm
and achieves an effective and robust real-time R-peak detection.

5. Conclusions340

This work presents a real-time R-peak detection algorithm based on a
robust sliding window strategy. This algorithm reliably detects R-peaks us-
ing a computationally light preprocessing for artifacts elimination, as well
as an efficient “area over the curve” approach for a raw R-peak detection
and a novel iterative analysis on detected R-peaks oriented to FP and FN345

elimination. The iterative analysis is carried out sequentially through three
state machines. For each state machine a set of conditions, which evaluate
the HP at every instant searching erroneous detections, has been designed.
Several works propose computationally more expensive techniques based on
time and frequency analysis to obtain the position of R-peaks. The proposed350

algorithm achieves results comparable to those well-known works, and is im-
plementable in real-time with a low computational load and is capable of
dealing with a wide range of noise contaminations.

21



Acknowledgments

This work has been performed thanks to the support of the University355

of the Basque Country (UPV/EHU), the Intelligent Control Research Group
of the UPV/EHU, the Pacific Atlantic Network for Technical Higher Edu-
cation and Research (PANTHER) program and the Institute of Biomedical
Technologies (IBTec) of the Auckland University of Technology, to which the
authors are very grateful. The authors also like to thank Javier Mendez for360

his collaboration in the paper edition.

References
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