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Abstract

Background and objective: Detection and labelling of an increment in the human 

stress level is a contribution focused principally on improving the quality of life of 

people. This work is aimed to develop a biophysical real-time stress 

identification and classification system, analysing two noninvasive signals, the 

galvanic skin response and the heart rate variability.

Methods: An experimental procedure was designed and configured in order to 

elicit a stressful situation that is similar to those found in real cases. A total of 

166 subjects participated in this experimental stage. The set of registered 

signals of each subject was considered as one experiment. A preliminary 

qualitative analysis of the signals collected was made, based on previous 

counselling received from neurophysiologists and psychologists. This study 

revealed a relationship between changes in the temporal signals and the 

induced stress states in each subject. To identify and classify such states, a 

subsequent quantitative analysis was performed in order to determine specific 

numerical information related to the above mentioned relationship. This second 

analysis gives the particular details to design the finally proposed classification 

algorithm, based on a Finite State Machine.

Results: The proposed system is able to classify the detected stress stages at 

three levels: low, medium, and high. Furthermore, the system identifies 

persistent stress situations or momentary alerts, depending on the subject's 

arousal. The system reaches an F1 score of 0.984 in the case of high level, an 

F1 score of 0.970 for medium level, and an F1 score of 0.943 for low level.

Conclusion: The resulting system is able to detect and classify different stress 

stages only based on two non invasive signals. These signals can be collected 

in people during their monitoring and be processed in a real-time sense, as the 
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system can be previously preconfigured. Therefore, it could easily be 

implemented in a wearable prototype that could be worn by end users without 

feeling to be monitored. Besides, due to its low computational, the computation 

of the signals slopes is easy to do and its deployment in real-time applications is 

feasible.
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1. Introduction

Nowadays, the study of stress in persons is an issue of high relevance into 

the research community, due to its effect in our society, as it has great influence 

on the health and the wellness of human beings. Focused on this issue, our 

multidisciplinary research group, composed of engineers, neuro-physiologics, 

medicals and people from the assistive field, has set as one of the main 

objectives to detect, identify and classify the different stress levels that a person 

lives in stressful situations. This proposal could be applied in fields as different 

as emotional intelligence, where emotion recognition has an important role [1,2], 

or in medicine, where disorders into the Autonomous Nervous System (ANS) 

needs being identified [3], trying to improve the quality of life of people, 

especially in persons with disabilities or some form of disease [4,5].  

Therefore, a key issue to be investigated is how emotional responses to 

certain stress events occur in people. Thus, it is necessary to classify them and 

to observe how they affect their personal autonomy, and hence, their daily life. 

To this end, this work performs a study focused on physiological signals that 

can be measured in a non-invasive way. This solution will be able to accurately 

identify, at the earliest possible moment, when an individual is facing an 

emotional block situation, and to generate the corresponding alert signals to 

his/her caregivers or relatives in these cases. The proposed system is 

performed by analysing data collected from several volunteers, which are non-

disabled people, in order to establish a method to carry out into collectives of 

people with disabilities, later on.



When stress is defined as an adaptive mechanism, the first postulates 

concerning sympathetic activation proposed by Cannon are often cited [6]. 

Cannon established the term "arousal" for defining the activation of the nervous 

system when a person reacts to a situation that requires his/her attention: from 

stressful activities to danger episodes. Subsequently, lot of studies based on 

aforementioned Cannon theory extended these fundamentals to analyze how 

the nervous system reacts to emotional states and stressful tasks, 

demonstrating that the sympathetic activation response evolves in a similar 

way, as presented in the review of Kreibig [7]. 

In order to deal with any of these situations, the organism response consists 

of the activation of the body systems, basically into the Autonomous Nervous 

System (ANS) [8-12], resulting in a psycho-physiological change with the aim of 

maintaining the homeostasis. 

 It is necessary to take into account that faced with the same situation not 

everyone responds in the same way, considering that each person has a 

different perception of the stressful situation being faced. Thus, personal 

arousal is greater, the higher the risk level is perceived to be, and it lasts as 

long the person feels that the risk or danger persists [13].

In order to address how the arousal suffered by an individual leads into an 

activation level and how this person perceives a situation as a stressful episode, 

several authors have studied the way to identify and label them. In this sense, 

Selye [14] introduced the concept of General Adaptation Syndrome (GAS), 

otherwise known as the stress response. GAS involves three phases: Alarm 

Phase, Stage of Resistance, and Stage of Exhaustion. In addition, Selye [14] 

modeled that stress response, as shown in Fig. 1(a), presenting theoretically 

the three phases involved over time. Afterwards, in order to provide quantitative 

values to the different levels that the response can reach, Kim et al. [15] 

proposed a quantitative approximation of the GAS model, which presents a 

stress response consistent with this model. In this new approximation of GAS 

model, presented in Fig. 1(b), the shape of the graph is determined by slope of 

the response (α) and maximum capacity of the resistance to stress (β). The 

solution developed in this work is based on this approximation of GAS model, 

where the analysis of slopes will permit a classification of low, medium and high 

activation levels.



Alarm
Stage

Resistance
Stage

Exhaustion
Stage

Normal level
of resistance

time

Re
si

st
an

ce
 to

 s
tr

es
s

Stress
Resolved

time

β

Normal level
of resistance

(a) (b)

Fig. 1 -   (a) General Adaptation Syndrome (GAS) model; (b) quantitative 
approximation of the GAS model

Furthermore, another relevant aspect to consider is how long the 

physiological perception of the stress is maintained. Among other studies, Ursin 

and Eriksen [16] presented a cognitive activation theory of stress, where they 

studied the duration of stressful situations and performed the labeling of such 

situations, dividing them into alerts and stress. Following this line, in this work 

we have evaluated how the activation levels appear and how long they remain, 

in order to distinguish between both situations, considering the latency of the 

activation and inhibition phases, as presented in the work of Ursin and Eriksen.

Considering the relationship between the body physiology and emotional 

states, the proper approach to identifying stressful situations appears to be the 

analysis of several physiological signals and the search for correlations 

between them.  Several studies have tested the relationship between stress and 

physiological signals [2,17-24]. In this paper, we only use the galvanic skin 

response (GSR) and electrocardiogram (ECG) signals, since they give us 

enough information about the ANS functioning [3,12] and both can be collected 

with non-invasive wearable devices [17]. 

Most of the contributions based on the study of stress attempt to differentiate 

between stress and relaxation states, with the aim of identifying whether the 

individual is suffering a stress situation [19,20,23]. Therefore, in an effort to 

develop solutions for the analysis and detection of emotional changes 

generated by stressful situations, it is fundamental to be able to identify such 

changes precisely when they take place. The work presented in this paper 

studies how to carry out the detection of such stressful events, taking into 

account the detailed activation levels of the individual. The previous analysis 

was based on the works of Santos et al. [22] and Healy and Picard [24]  



incorporating a specific algorithm into the detection phase later on, which 

allowed the physiological signals to be processed in real time and provided a 

classification of the stress type detected.

There is a great diversity of techniques used to classify stress situations. In 

this work we will use state machines to detect stressful situations in real time. 

The application of this kind of technique provides an innovative aspect to this 

work, since specific examples using state machines to detect and classify 

stressful situations were not found in the bibliography. We adopted this 

technique due to its good results in the context of classification problems in 

other areas [25-29] and we hypothesised that this good behaviour could be 

transferred to our own work.

2. Materials and Methods

This section describes the selected methodology for this work, similar to 

previous works [22-24,30]. The development of this work begins with an 

experimental stage performed into a laboratory, where two non-intrusive 

physiological variables are measured from each subject.

From an initial experimental stage, two different databases are created: one 

related to the physiological signals measured, and a second with the 

behavioural data collected, both correlated in time. Considering collected 

information, data are divided in 2/3 and 1/3, in order to face design and 

validation phases, respectively.

Subsequently, the design phase is divided in three stages; a preliminary 

qualitative analysis, following by a quantitative analysis, and finally the design of 

a Finite State Machine (FSM), as shown in Fig. 2. 

2.1 Experimental setup

There exist different proposals to elicit stressful situations into laboratories. 

The method of performing tasks is often used by researchers, as cited in the 

review by Alberdi et al. [30]. Among others, the most commonly used methods 



are “stop-signal tasks” [23], “stroop color-word” [23, 31], “arithmetical tasks” 

[32], and “puzzle tasks” [33,34], which our experiment belongs to.

 

Fig. 2 -   Development of a Real-Time Stress Classification System. 

The experimental procedure used in this work was an innovative task with 

the aim of eliciting emotional changes in a group of volunteers leading to a 

stressful situation. This experimental phase was carried out in a controlled 

environment at the laboratory, and in a similar as possible way to a real 

situation. The challenge or stressful task proposed to the participants was the 

resolution of a 3D-wooden puzzle within a limited time.

During the experiment, physiological signal samples were collected, which 

were subsequently anonymised, to be further analysed in order to seek out 

stress patterns. As we mentioned, we only used GSR and ECG signals. In the 

signal analysis stage, instead of using ECG, the Heart Rate Variability (HRV) 

calculated from the ECG was used, as a measure of the time changes between 

each heart beat. HRV is a widely studied signal that reflects heart dynamics 

[35]. The physiological signals of the subjects were collected by the professional 

data acquisition system BIOPAC MP36 (Biopac Systems Inc., USA) at a sample 

rate of 1000 Hz. Biopac Acqknowledge 3.7.1 (Biopac Systems Inc., USA) was 

the software used for data acquisition and the units of GSR and ECG were 

microSiemen and volts respectively.

In the experimental stage, a total of 166 participants (125 males and 41 

females), 19-45 years old (mean = 22.88, SD= 3.1) took part voluntarily. All the 
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subjects were engineering students at the University of the Basque Country 

(UPV/EHU).

The subjects´ response analysis was carried out through three kinds of 

emotional assessment: notes and marks, a questionnaire and an interview. The 

first assessment method was with notes and marks (M), and they were inserted 

during the recording to mark specific episodes which enabled the identification 

of the time point when the stressful events occur, such as experiment onset, a 

piece of the puzzle falling, etc. The second one was a pictographic non-verbal 

questionnaire (Self-Assessment Manikin, SAM [36]) to evaluate emotional 

states in a dimensional way, which has been used in a large number of works 

due to its performance and appropriate evaluation [37,38]. In this questionnaire, 

emotions are classified into 3 dimensions (valence, arousal and dominance). 

For the third assessment method, participants underwent a short interview to 

find out how they had felt facing the different experiment phases.

For the experiment, a laboratory with 4 seats was prepared. On each seat 

there were an unsolved puzzle with its resolution, the documents to be 

completed and the necessary equipment for the collection of physiological 

variables (data acquisition system, a laptop, electrodes, transducers and 

wiring).

Participants stood waiting outside the laboratory and, once everything was 

ready, they were assigned to a seat in the laboratory. First, they were informed 

about the purpose of the tests and what they involved. Then, they were told 

about the documents they should fill in: the SAM questionnaire, a social-

demographic data sheet, and a consent form that had to be signed, which 

explained this procedure has been certified by the corresponding ethical 

committee CEISH-UPV/EHU, BOPV 32 (M10_2016_189) and that all privacy 

rights were preserved and laws related to these experimental procedures were 

being respected [39]. After connecting all the electrodes for data collection and 

before starting to solve the puzzle, the subjects were led to a baseline 

emotional state with a relaxing video. Shortly after the end of the video, each 

participant began to solve the puzzle, within a pre-established and known 

period of time. When time was over, the subjects watched the same video in 

order to be led back to a baseline level. The last step of the experiment was the 

emotional evaluation stage.



2.2 Qualitative analysis

In order to analyse appropriately the signals registered in each experiment, 

the opinion of experts coming from different institutions sited in Spain was 

gathered: Department of Neurology in the Cruces University Hospital, where a 

relevant research line is focused on Parkinson diseases [40]; Department of 

Social Psychology and Behavioral Science Methodology in the University of the 

Basque Country, with an emotion recognition research line based on 

physiological analysis [41]; and Department of Developmental and Educational 

Psychology of the University of Valencia, where complementary studies about 

dynamic complex problem-solving task are made [42]. 

The arousal in response to a stressful event is reflected in the physiological 

signals with an increment in the sweat rate and a decrement in HRV. Therefore, 

it is necessary to carry out a preliminary study based on the evolution of these 

signals over time.

An analysis of the GSR and HRV behaviour within the time domain, together 

with the marks and comments recorded during the experiment, and the answers 

given by the participants in the questionnaire/interview phase showed different 

levels of stress inter and intra-subject. As an example, Fig. 3 shows the 

evolution of HRV and GSR signals from two different subjects, A and B, 

together with the numbered mark where they experienced the stressful events. 

Subject A corresponds to Fig. 3(a), and Subject B with Fig. 3(b). 

On the time axis, there are three important moments that have been marked: 

the beginning of the experiment (0 s), the basal end of the first video, that 

coincides in time with the beginning of the puzzle resolution (123 s), and the 

end of the pre-established time for resolving it (720 s).

In a first analysis of physiological responses and following the ideas 

mentioned in the introduction, two important characteristics can be identified.

The first is that the effects of stressors on physiological response depend on 

the importance of the situational appraisal and the cognitive interpretation of 

that arousal. This can be observed in the graphs of Fig. 3. At the time the basal 

video ends and the puzzle resolution phase (M1) begins, subjects feel that the 

"danger" is significant and their bodies respond with a high level of arousal to 

face it.
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Fig. 3 - The physiological data collected from the HRV and the GSR 
corresponding to Subjects A and B (figures (a) and (b), respectively).

The response is different when one piece of the puzzle falls (M2 for subject A 



and M3 for B) when the arousal is lower. It can be seen how at M1 signals 

change more significantly than at other marks.

The second important aspect to consider is the perception that each subject 

has of the durability of the danger: it may be a momentary alert or continuous 

stress. Taking into account the information from the personal interviews after 

the experiment, it can be said that the subjects A and B, had a different 

response to facing the start to solving the puzzle (M1). 

In the case of Subject A continuous stress occurred and, just at that moment, 

the HRV lowered and stayed around this value for a few seconds, moreover, 

the GSR signal increased quickly and did not fall. By contrast, Subject B 

underwent a 3 momentary alert and therefore their signals changed to cope with 

this event, but without maintaining the changed levels.

After a thorough analysis of all subjects, considering the accomplishment of 

the tasks, the marks introduced during the experiment, the emotional evaluation 

performed through a questionnaire, and analysing the variation of the signal 

magnitude based on the proposal of Selye [14] and the development made by 

Kim et al. [15], three degrees of activation were able to be identified: low, 

medium and high. Moreover, regarding the duration of the changes in the 

signals based on works as the one of Ursin and Eriksen [16], two behaviours 

were detected: momentarily generating an alert condition, or continuously 

producing a stressful situation. This allowed us to focus this work on developing 

a system that classifies activation in 6 states: “Low Alert (LA)”, “Medium Alert 

(MA)”, “High Alert (HA)”, “Low Stress (LS)”, “Medium Stress (MS)” and “High 

Stress (HS)”.

2.3 Quantitative analysis

Following the qualitative analysis in which 6 different states were identified, a 

quantitative analysis will be presented below. This analysis has been based on 

processing of the ECG and GSR signals. From the ECG, in order to get the 

HRV, the intervals between beats were calculated by detecting R peaks (RR), 

developing several functions in the MATLAB® software platform. In addition, in 

order to obtain approximations of curves of the HRV and GSR signals a low-

pass filter with a cut-off frequency of 0.04 Hz was implemented. We developed 



an algorithm able to detect, identify, classify and grade the subjects’ arousal in 

real time. To do that, we used 56 out of 166 subjects’ compiled data. The 

remaining 110 subjects have been used to estimate the system performance. 

To do the time analysis of the signal in real-time, a sliding window approach 

has been applied. This technique is often used in the signal processing area 

[21-24]. 

It is therefore necessary to define and select the features of the signals to be 

analysed in each frame or window. Although in research related to emotional 

behaviour, some analyses are based on the extraction of various statistical, 

frequency and non-linear features [22,24], our proposal focuses on a single 

feature extracted from the signals: the value of the slope of them. This decision 

was adopted because this slope gives information about the speed at which the 

signal evolves and also whether it increases or decreases, premises that were 

established and used in the previous qualitative analysis. Moreover, in this work 

has been possible to establish that slopes analyzed in physiological signals 

have a direct relation with the “slope concept” introduced by Kim et al. in their 

quantitative approximation of the GAS model [15].

Once the feature has been determined, the duration or length of the window 

must be defined according to the temporal needs of the selected feature. 

Santos et al. used a 10 second window [22], while Healey and Picard selected a 

150 second one due to the frequency signal analysis they carried out [24]. In 

our work we have chosen a 20 second window, less than that proposed by 

Healy and Picard because no frequency signal analysis is performed, and 

greater than the one selected by Santos et al. because we wish to recognise 

the stress level. Besides, since the algorithm is also intended to be able to 

distinguish between a momentary activation alert and continued stress, it is 

necessary to study the signal evolution over a longer time period. To do this, the 

slopes in 3 consecutive windows shifted 5 seconds are analyse. Therefore, to 

identify a stressful event a minimum of 35 seconds will be required.

The six arousal states defined in the qualitative phase are reflected in this 

quantitative phase through the study of the HRV slope (sHRV) and GSR slope 

(sGSR). A continuous analysis of the signals was performed by the shifting 

window approach and, when nervous system activation is detected, the 

algorithm recognizes a hypothetical alert with the corresponding arousal level. A 



stressful situation can only be recognised if this arousal is maintained 15 

seconds; otherwise, the event indicates only a momentary alert.

Fig. 4 shows three of the six possible arousal states. It can be seen that Fig. 

4(a) shows an insignificant arousal identified with a low alert state, while Fig. 

4(b) and Fig. 4(c) undergo greater changes, detecting high alert states. The 

three following shifting windows in Fig. 4(a) and Fig. 4(b) maintain the arousal 

and therefore in the last window a stressful state is recognized. By contrast, Fig. 

4(c) shows a decrease of the arousal in the second shift, so that a stressful 

situation is ruled out and the event is labelled as a high alert.

Fig. 4 - Examples of 3 arousal states: (a) belongs to low-stress level, (b) high-
stress and (c) high-alert.

To carry out a continuous evaluation of the subject's state in real time, it is 

necessary to find an automatic detection system. We decided to use a Finite 



State Machine based approach since it allows us to determine the behaviour of 

a system by a program. A set of possible states are defined in which the system 

can be found, and also a series of transitions between states are defined. 

These transitions are associated with different events (entries) that are able to 

appear in the system.

2.4 FSM for automatic detection of arousal states

In an informal description, we can say that a state machine runs sequentially 

throughout an input sequence. Starting from an initial state, at each step the 

machine takes one element of the input sequence and changes its state based 

on the state transition that the input event triggers. This process iterates until it 

reaches the end of the input sequence [29]. Therefore, the FMS can be defined 

as following: A=(Q, s, E, q0, F), where Q is the set of possible states, s is the 

possible state transition matrix, E is the set of the corresponding conditions for 

the transitions, q0 is the initial state and F is the final state. 

Based on the identification processes described above, 6 different arousal 

states are found, and the transitions between the states have been identified. 

Thus, a FSM has been built with the following parameters: Q={1-6} where 

1=Low Alert, 2=Low Stress, 3=Medium Alert, 4=Medium Stress, 5=High Alert y 

6=High Stress, q0={0}, without there being a final state because of its cyclical 

nature. 

Similar to the implementation of functions for signal processing, the software 

platform MATLAB® has been used for the development of the presented FSM. 

This FSM is designed to analyse the slopes of the HRV (sHRV) and GSR 

(sGSR) in a 20-s window with 5-s shift. The transition conditions depend on the 

thresholds of the slopes of both signals, along with the duration of each arousal 

episode, evaluated by means of an alert state counter (n) that permits a 

transition, as shown in Table 1. The particular value of each threshold 

(Threshold_HRV1, Threshold_HRV2, Threshold_HRV3, Threshold_HRV4, 

Threshold_GSR1, Threshold_GSR2, Threshold_GSR3 and Threshold_GSR4,) is 

different, but their values remain the same to evaluate all participants. These 

values have been dimensioned from the classification obtained after the 

qualitative and quantitative analysis of the signals collected from the 110 



preliminary participants (2/3 of the data), carried out by the experts who have 

collaborated in this work. E={AR1, AR2, AR3, not(AR1,AR2,AR3), S_AR, 

not(S_AR), n=3 y Next}. The AR1, AR2 and AR3 transition conditions occur 

when the slopes indicate a low, medium and high arousal. As a consequence, 

the state machine reaches an alert state (1, 3 or 5, respectively). Once any 

state of alert is reached, if the slopes keep within a small range (S_AR) during 

at least 3 windows (n=3) the system reaches a stress state (2, 4 or 6, 

depending on the intensity of the alert state, low, medium or high, respectively). 

The conditions S_AR and not(S_AR) are used to control the counter and to 

return to the 0 state when the slopes are not maintained. The Next transition 

condition is to indicate a non-conditional transition of the state machine. 

Table 1 – Conditions and transitions in the FSM.

Fig.  5 shows the proposed FSM. In order to make the figure clearer the state 

0 has been drawn twice, but both states marked with 0 are a unique state, the 

initial state q0={0}. 

Table 2 presents the matrix of the possible transitions between states. 'From' 

states are represented by columns, and ''To' states by rows. The symbol '-' 

means no transition between two states. 

Transitions Conditions

Low Arousal
(AR1) (sHRV < - Threshold_HRV1) & (sGSR >  Threshold _GSR1)

Medium Arousal
(AR2) (sHRV < - Threshold_HRV2) & (sGSR >  Threshold _GSR2)

High Arousal
(AR3) (sHRV < - Threshold_HRV3) & (sGSR >  Threshold _GSR3)

Maintained Arousal
(S_AR) (sHRV < - Threshold_HRV4) & (sGSR >  Threshold _GSR4)

Next Mandatory transition

n = 3 If n = 3



Table 2 - Transition matrix for the FSM in Fig. 5.

s Null L.A L.S. M.A. M.S. H.A. H.S.

Null
 

Not(AR1,AR2,AR3) AR1  - AR2  - AR3  - 
L.A not(S_AR) AR1 n=3 AR2  - AR3  - 
L.S. Next  -  - AR2  - AR3  - 
M.A. not(S_AR)  -  - S_AR n=3 AR3  - 
M.S. Next  -  -  -  - AR3  - 
H.A. not(S_AR)  -  -  -  - S_AR n=3
H.S. Next  -  -  -  -  -  - 
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Fig.  5 - Finite State Machine transition diagram for the different alert and stress 
states. 



3. Results

This section presents the performance of the proposed FSM based system to 

detect the different arousal states in the data obtained from the subjects. All the 

events automatically detected by the system were compared with the manually 

introduced marks. Fig. 6 shows three examples with manually introduced marks 

and events automatically detected by the FSM based system. For all cases, 

firstly, the original signals (green line) and the filtered ones (black line) are 

presented for both signals (HRV and GSR); and following these are the states 

of the system in each moment. The manually marked events are represented by 

the vertical lines cutting the three temporal diagrams and represent the events 

that were recorded during the experimental phase with the subjects. 
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Fig.  6 - Three examples of detection. For each case, HRV signals (upper), 
GSR signals (middle) and the automatic detection by FSM (lower). On top of 
each figure the manually classified events are displayed.

0.5

1

H
R

V
 (s

ec
)

20

25

30

Time (s)

G
S

R
 (m

S
)

38 188
0
1
2
3
4
5
6

S
TA

TE
S

HRV

HRV Filt.

GSR 

GSR Filt.

123

(c) M.S.

35

40

45

G
S

R
 (m

S
)

Time (s)
400 420
0

2

4

6

1

3

5

S
T

A
T

E
S

0.6
0.8

1
1.2
1.4

H
R

V
 (s

ec
)

HRV 

HRV Filt.

GSR

GSR Filt

(d) L.S.



The collected data were analysed in order to determine the effectiveness of 

the FSM. The statistical estimators selected for this purpose were the precision, 

the recall and the F1 score [43].

For the calculation of the estimators, it is necessary to obtain: True Positive 

(TP), the number of states correctly detected by the FSM; False Negative (FN), 

the number of states that the system should have detected but has not been 

able to; False Positive (FP), the states classified as positive by the system but 

without being manually labelled.

Furthermore, F1 considers both the precision (P) and the recall (R) of the 

system: P is the number of correct positive results divided by the number of all 

positive detections made by the system (see equation 1), and R is the number 

of correct positive results divided by the number of positive results that should 

have been returned (see equation 2). The F1 score can be interpreted as a 

weighted average of the precision and recall (see equation 3), it reflects a trade-

off between the precision and recall measures and it reaches its best value at 1 

and the worst at 0.

 

                                                                                                                (1)𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

                              (2)𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

         (3)𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅

As showed in Table 3, the results for the high arousal classifications have 

achieved a precision of 0.974, a recall of 1.000 and F1 score of 0.987 for high 

alert, and 1.000, 0.963 and 0.981 for high stress. The precision, recall and F1 

score achieved for medium arousal states are 0.989, 0.968 and 0.978 for 

medium alert, and 0.923, 0.960 and 0.941 for medium stress. Finally, the results 

obtained for low level alert and stress states reach a precision of 0.890, a recall 

of 1.000 and F1 score of 0.942 for low alerts, and 1.000, 1.000 and 1.000 for low 

stress. 



Table 3 - Results of the FSM system for medium and high arousal states. 

Manual FSM 

State Label TP FN FP Precision Recall F1

High
High Alert 37 37 0 1 0.974 1.000 0.987
High Stress 27 26 1 0 1.000 0.963 0.981

Total High 64 63 1 1 0.984 0.984 0.984

Medium
Medium Alert 93 90 3 1 0.989 0.968 0.978
Medium 
Stress 25 24 1 2 0.923 0.960 0.941

Total Medium 118 114 4 3 0.974 0.966 0.970

Low
Low Alert 382 382 0 47 0.890 1.000 0.942
Low Stress 13 13 0 0 1.000 1.000 1.000

Total Low 395 395 0 47 0.894 1.000 0.943

Finally, we tried to classify the patterns applying machine learning algorithms. 

We tested 7 known supervised learning algorithms: Naive Bayes (NB), 1R rule, 

1-NN neighbour classifier, Multilayer Perceptron (MLP), Bagging (Bag, 

combining 10 decision trees), Ada Boost (AdaB, also combining 10 decision 

trees) and Support Vector Machines (SVM). We use their Weka [44] 

implementation by applying the default values for their structure and 

parameters. The input information to the classifiers is the same as that used for 

the FSM, the slopes extracted from the GSR and HRV signals. We use the 

same division of the data in order to face the training and validation phases, that 

is, 2/3 and 1/3 of the collected information, respectively. Table 4 shows the 

averaged performance achieved with the tested classifiers for discriminating 

among the defined six classes (alert or stress states, and three activation levels 

in each state). In all cases, taking into account the F1 score, the best results 

were slightly worse than the obtained by the FSM (last row in the table).



Table 4 – Averaged performance of the machine learning classifiers. 

4. Discussion

In this study, we presented an automatic stress classification system, 

analysing two physiological signals: Galvanic Skin Response and 

Electrocardiography. We have selected both signals to achieve a more reliable 

and robust detection system, as Bakker et al. pointed out in their work [45].

An analysis of the behaviour of GSR and HRV within the time domain, 

together with the marks and comments recorded during each experiment and 

the answers given by the participants in the questionnaire/interview phase 

revealed different levels of stress inter and intra-subject, as can be seen in 

Figure 6. This is due to the expression of the individual perception that each 

person has for a particular stressor. These results confirm the hypothesis of 

Schachter and Singer about behavioural individuality to stress [13].

Therefore a qualitative analysis of the temporal evolution of the signals and 

stressful events has been carried out in order to identify different states of 

stress. One of the most significant and innovative proposals of this work is that, 

besides achieving the identification of stressful episodes, the FSM is able to 

classify stressful states in different categories. From this analysis, it has been 

concluded that it is possible to define six activation states: Low Alert, medium 

alert, high alert, low stress, medium stress, and high stress. The main difference 

between alert and stress states is the duration of the activation, as mentioned 

Precision Recall F1

NB 0.671 0.322 0.435
1R 0.829 0.851 0.840
1-NN 0.746 0.740 0.743
MLP 0.839 0.869 0.854
Bag 0.937 0.956 0.946
AdaB 0.946 0.962 0.954
SVM 0.854 0.517 0.644

FSM 0.921 0.991 0.955



by Ursin and Eriksen [16], being longer for the stress states than for the alert 

states. The emotional impact caused by the stressor is quantified by the level of 

the stress (high, medium or low).

In order to design a system able to automatically detect the defined stress 

states in real time, a Finite State Machine based system was built. The input for 

the system is a 20-s window with 5-s shift. 

It should be noted that the input of the system is an easily calculable feature, 

the slope, extracted from two signals that were able to be acquired in a non-

invasive way. The calculation of such slope is directly related with the proposal 

of Kim et al. [15].These aspects make the system suitable for real-time 

detection of stressful states and appropriate for its integration in an end device. 

Another advantage of this approach is that the solution provided is independent 

to the individual and the numeric range of the measured signals.

The performance of this system has been evaluated by means of F1 score, 

achieving 0.984, 0.970 and 0.943 for high, medium and low arousal states, 

respectively. A deeper analysis of the FN cases was carried out. The level for 

the arousal of 4 out of 5 errors was correctly identified. The problem was with 

the final state: two medium alerts were identified as medium stress states, one 

medium stress was misidentified as a medium alert, and one high stress case 

was misidentified as a high alert. The fifth FN error corresponds to a medium 

alert; the GSR signal rises at the moment the stressor appears, and, although 

the HRV signal changes, the change occurs outside the analysed time frame. 

Consequently, the system is not able to identify the event correctly. It could be 

considered that the FN errors made by the FSM system are a consequence of 

exceptional aspects in the behaviour of the signals that divert identification to 

similar states.

 In order to compare and validate the results obtained by the FSM, other 

machine learning techniques have been tested in Weka [44]. Among all cases, 

the best results appeared in general slightly worse than the obtained by the 

FSM. However, in view of these preliminary results, we intend to deepen this 

study by testing more algorithms and tuning their parameters.

Summarizing, the proposed FSM based system is able to automatically 

classify arousal states into the six different categories. The most critical states, 

that is, high and medium level states, are successfully detected, as well as the 



low stress state. The lowest F1 score is achieved for the least critical states. 

Specifically the system has found some low alert states to be not manually 

labelled because either they had been considered irrelevant, or because there 

were no visible emotional changes. 

5. Conclusions

In this paper, a new system able to detect six different stress categories in 

real-time has been presented. Two different kinds of activations with three 

different levels are differentiated into a time frame from 20 to 35 seconds. The 

inputs of the system are the HRV and GSR non-invasive signals. These signals 

can be collected in people during monitoring tasks, and be processed in a real-

time sense, as the system can be previously preconfigured. The system 

architecture is based on a Finite State Machine composed of seven different 

states.

The experimental results validate the proposed system, since a satisfactory 

identification and classification of stress states has been reached. This system 

is performed by analysing data collected from several volunteers. Due to the 

satisfactory results obtained, this proposal will be carried out in a more critical 

collective, such as that of people with disabilities.
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