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Abstract 

Past theoretical models suggest fishing disease-impacted stocks can reduce parasite 
transmission, but this is a good management strategy only when the exploitation required to 
reduce transmission does not overfish the stock. We applied this concept to a red abalone 
fishery so impacted by an infectious disease (withering syndrome) that stock densities 
plummeted and managers closed the fishery. In addition to the non-selective fishing strategy 
considered by past disease-fishingmodels, we modelled targeting (culling)infected 
individuals, which is plausible in red abalone because modern diagnostic tools can determine 
infection without harming landed abalone and the diagnostic cost is minor relative to the 
catch value. The non-selective abalone fishing required to eradicate parasites exceeded 
thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to 
generate yield and reduce parasite prevalence while maintaining stock densities at or above 
the densities attainable if the population was closed to fishing. The effect was strong enough 
that stock and yield increased even when the catch was one-third uninfected abalone. These 
results could apply to other fisheries as the diagnostic costs decline relative to catch value. 

1. Introduction
Worth a hundred oysters, the red abalone is the biggest and most prized aba- lone species.
Beginning in the 1980s, a new abalone disease called withering syndrome (WS) devastated
southern and central California’s valuable abalone (Haliotis spp.) fisheries. By autumn 1997,
the California Fish and Game Com- mission closed the fishery, an understandable action,
given the crisis [1]. Despite WS persisting for decades, some red abalone (H. rufescens)
populations have maintained high densities in southern California. The remaining abalones’
high market value has created interest in reopening a limited fishery.
Some fishery models suggest that harvesting an infected population might be more
sustainable than closure. If the host threshold density for transmission is higher than the
maximum sustainable yield, reducing population abundance can eliminate the disease
from the system while maintaining sustainable harvest [2– 4]. Indeed, some parasites are less
abundant where fishing is intense [5]. Work in terrestrial ecosystems supports the fishing-out-
parasites hypothesis [6 – 8], but with dispersive planktonic transmission stages [9], the
fishing required to eradi- cate a marine disease is likely to exceed levels needed in terrestrial
systems, and thus can surpass sustainable thresholds [2,4]. In other words, you might be
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able to fish out a parasite, but at the risk of also overfishing the stock.
An intermediate strategy is to target and cull infected animals before they infect additional
hosts. Many marine diseases remain asymptomatic until late in infection, and before those
late stages such infections do not degrade landing value. In these cases, culled hosts are 
included in the fishery harvest (e.g. [10]). Culling infected hosts is a standard yet often 
contentious way to manage terrestrial wildlife diseases [11–13]. In marine systems, this 
strategy faces added challenges, such as difficulties and costs associated with diagnosing 
cryptic infections. Recently, presumptive diag- noses of many marine diseases have been 
streamlined with rapid, inexpensive and non-invasive methods (table 1), including observing 
external parasites [14,16,23,26], morphological and behavioural changes in hosts [20,27,30], 
and non-lethal immunological and molecular assays [29,31]. For instance, polymerase chain 
reaction (PCR) methods can detect genes specific to theWS bacterium in abalone faeces 
[29]. Detecting infection in harvested stocks makes it easier for targeted fishing to reduce 
parasite transmission. We parametrized a general fisheries model for the California red 
abalone (Haliotis rufescens) infected by the WS rickettsial bacterium Candidatus Xenohaliotis 
californiensis (WS-RLO) [32]. We used this model to contrast how fishery closure, culling 
infected hosts, and harvesting uninfected hosts affect parasite prevalence, fishery yield and 
abalone density, finding that a successful management strategy could sustain a modest 
harvest while protecting the stock from disease mortality. We conclude by considering 
strategies to maximize yield while conserving disease-affected fisheries.

 

  



After some transformations (see the electronic supplementary material), we 
calculated the stock 
density at the endemic disease equilibrium N* as:

This solution gives two important insights into harvesting uninfected hosts ( fS ) 
and targeted culling (fI ): (i) harvesting uninfected hosts, as expected, will drive 
down population density, because the endemic equilibrium infection prevalence 
(i*) must always be less than 1; and (ii) targeted culling’s effect on N* will be 
scaled by its effect on i*. The solution for i* was not interpretable, so we used 
the next-generation matrix solution [33] to define the parasite’s basic 
reproduction number (R0 ) at the disease-free equilibrium S ¼ N, I ¼ 0, P ¼ 0 
(see the electronic supplementary material), finding the condition for disease 
persistence:

We interpreted this as the probability that an infectious parasite stage contacts 
a host before it dies (a function that saturates with host density, bN=ðd þ bNÞÞ 
times the number of infectious stages produced over an infected host’s life 
(s=ðm þ cN þ f I þ aÞÞ. Harvesting uninfected hosts did not directly reduce 
infection rate because f S did not enter into equation (2.6). Rather, harvesting 
uninfected hosts reduced Ro only indirectly, by its effect on host population 
density (N). This agrees with past models [4], demonstrating that fishing can 
remove parasites by driving the fished population below the density threshold 
for transmission, so long as this density threshold exceeds thresholds defining 
maximum sustainable yield. However, there are two ways that limit the extent 
that increased fishing interferes with transmission. First, if infective stages are 
lived long in the environment, infection follows a saturating functional response, 
making transmission less sensitive to reductions from high host density. 
Second, as Potapov et al. [34] observed, when crowding limits host abundance 
through adult mortality, fishing increases an infected host’s lifespan along with 
the infectious stages it produces. On the other hand, when we added targeted 
culling ( fI ) into equation (2.6), infection rate decreased with fishing.

Given the general results above, we turn to how culling affects WS-RLO 
infection in California red abalone and interacts with general harvest to shape 
abalone yields, density and sustainability. Since WS emerged in the 1980s, it 
spread throughout southern California [35,36]. Diver surveys over 3 years 
(2006–2008) showed that red abalone density on south San Miguel Island, 
California, USA, was among the highest anywhere [37], motivating a proposal 
by former abalone divers to open a limited-entry fishery in this region. However, 
WSRLO infects half the abalone at San Miguel Island [35–37], and concerns 
over fishing populations already affected by disease led managers to deny the 
request. We used published red abalone density and WS-RLO prevalence from 



San Miguel Island to ask whether this denial was warranted and to also 
consider how to manage harvest to moderate disease impacts.

Without disease (b ¼ 0), natural, density-dependent mortality regulates 
unfished abalone populations ( f S ¼ f I ¼ 0 yr21 ) [38]. Red abalone densities 
at San Miguel Island often exceeded 6000 abalone ha 21 before WS, and, from 
the maximum densities reported in the California Abalone Recovery and 
Management Plan, we estimated the disease-free carrying capacity (KH ) as 
6800 abalone ha 21 [39]. By simplifying equation (2.4), we estimated the 
abalone fishery’s disease-free maximum sustainable yield as:

  

  

   



We estimated the abalone carrying capacity impacted by disease as K D ¼ 2889 abalone ha21 . 
Maximum population growth without fishing ( f S ¼ f I ¼ 0 yr21 ), and the maximum sustainable 
yield for harvest that is non-selective with respect to infection (MSYD ), was 49 abalone ha 21 yr 21 
at a population maintained at 1374 abalone ha21 . As should be expected, WS reduced the 
expected equilibrium abundance and maximum sustainable yield.

We then asked if fishing could drive abalone populations down below the threshold density for 
transmission (NT ) and eliminate the WS-RLO at San Miguel Island. In part, this depends on how far 
infective stages can travel from outside the stock. For WS-RLO, transmission occurs when abalone 
ingest water-borne stages derived from contaminated faeces [44]. Infectious stages are short-lived 
and dilute in the water column once released by hosts. This short lifespan is supported by 
observations that the highest WS-RLO densities in seawater occur only near effluent from abalone 
farms effluent [45], which often contain many WS-RLO infected abalone [42]. San Miguel Island is 
located almost 50 km from farms on the California mainland and, at its closest point, is 5 km from 
abalone on neighbouring Santa Rosa Island. Small remnant black abalone populations persist on 
both San Miguel and Santa Rosa Islands [46], but these alternate host populations seem to 
contribute little to WS-RLO transmission in red abalone. For this reason, we suspect that San 
Miguel Island can be modelled as a closed system for the WS-RLO pathogen. The short infective 
stage lifespan also suggests that parasite stages lost to host contacts are negligible compared with 
parasite mortality in the water column (i.e. bNP ( dP), allowing us to simplify equation (2.3) to

which simplifies the condition for disease persistence (see the electronic supplementary material) 
to

We used the transmission coefficient b ¼ 0.03 m 2 abalone21  estimated from red abalone at San 

     



Miguel Island [41] to obtain the threshold population density for transmission as N T ¼ 120 abalone 
ha21 . This is well below the population density at maximum sustainable yield when disease is 
present (figure 1). Removing the WS-RLO by fishing abalone populations down below N T is, 
therefore, not a reasonable option for management, because the estimated exploitation required to 
eradicate this parasite is unsustainable. Furthermore, sustainable yield leads to a stock density or 
biomass that is 50–75% lower than unfished stocks, but a more conservative yield is often 
mandated for fisheries impacted by disease, including California abalone [39]. For this reason, the 
decision to not reopen the red abalone to general fishing seems warranted. 

We then considered conservative scenarios where targeted culling reduced transmission and thus 
death from disease, allowing harvested stocks to maintain population densities at or above K D (i.e. 
a fishery strategy that ironically increased abalone abundance). We numerically simulated 
equations (2.1), (2.2) and (3.2) for f S ¼ 0 : 0.5 yr 21 and f I ¼ 0 : 0.5 yr 21 for T ¼ 1000 years, 
using initial population densities of S 0 ¼ 3 abalone m22 , I 0 ¼ 1 abalone m 22 and P 0 ¼ 1 
parasite m22 . For each f S and f I combination, we obtained abalone population density, WS-RLO 
prevalence and fishery yield. Mathematical details and Matlab (Mathworks, Natick, MA, USA) code 
reproducing the simulations are available in the electronic supplementary material. 

Culling infected abalone allowed abalone density (NF ) to exceed the carrying capacity (KD ) when 
disease was present (figure 2). However, this occurred only with targeted culling . 0.22 yr 21 when 
f S ¼ 0 yr21 . This introduced an important result relevant for managing abalone fisheries impacted 
by WS: minor efforts to cull abalone infected with the WS-RLO ( f I , 0.22 yr21 ) were ineffective 
because the compensatory decreases in disease transmission from culling were not enough to 
balance the direct decline in population density from removing infected abalone. Moreover, adding 
a susceptible abalone harvest increased the culling rate required for N F ! K D in a near linear 
fashion, leading to a second key result: the fished population was maintained at or above K D when 
the infected culling rate was no less than twice the susceptible harvest rate, plus the initial culling 
rate required for N F ! K D ð f I % 2 f S þ 0:22Þ. Equivalence in population density between fished 
and unfished populations was therefore maintained even when uninfected abalone were harvested, 
so long as f I increased with fS . This equivalence was no longer possible when f S . 0.1, because 
here, WS-RLO prevalence was near zero (figure 3a) and increasing the uninfected abalone harvest 
led to overfishing (figure 3b). Increasing f I decreased the uninfected abalone harvest rate that 
maximized yield. In other words, a fishery that also culled diseased abalone attained higher yields 
at lower harvest rates. These harvests exceeded the maximum sustainable yield attainable when 
fishing was non-selective with respect to infection (MSYD ; figure 1) and approached the maximum 
sustainable yield attainable before WS (MSYH ). This highlights our third result relevant to 
management: diseaseimpacted abalone populations were managed conservatively, at densities 
equal to or greater than those if the fishery were closed (N F ! KD ), while generating modest yields 
and maintaining an intermediate WS-RLO prevalence. Unfortunately, removing the WS-RLO 
altogether required harvesting beyond sustainable thresholds, even when culling was included as a 
harvest strategy. In other words, the fishery could live with the disease but should not expect to 
eradicate it. 



Figure 2. Isocline showing combinations of susceptible host harvest rate ( fS ) and targeted culling 
rate ( fI ) when the disease-impacted fished population density (NF ) is equal to the unfished 
disease-impacted population (KD ).

4.Discussion

For red abalone, and perhaps for other fishery species, targeting infected animals means that 
fishing can enhance stock abundance and sustainable yield, whereas non-selective fishing can 
further imperil a disease-impacted stock. Culling infected hosts leads to a compensatory decrease 
in disease-induced mortality, in turn producing harvestable stock that is unavailable in unfished or 
closed fisheries. With targeted harvesting, the effective decrease in natural mortality can allow 
fisheries to operate while maintaining stock densities at or above the maximum densities attainable 
were the populations closed to fishing. However, this result depends on details. First, culling must 
be intensive enough for the compensatory decrease in diseaseinduced mortality to balance direct 
losses to the stock due to removing infected individuals from the population. More importantly, 
although culling decreases the fishing effort that maximizes fishery yield, exploited populations are 
more sensitive to overfishing when they are also culled. Managing disease-impacted fisheries 
therefore sustains a modest harvest and protects the population at large from disease by (i) 
reducing parasite prevalence and (ii) maintaining stock density near, at or above the densities 
achieved by fishery closure.

Culling is a standard but often contentious way to control terrestrial wildlife diseases [11,13], 
bringing animal welfare, economic and conservation considerations into conflict [12]. Wild capture 
fisheries resolve this conflict in part because fish are treated more as a commodity than as wildlife 
[17,47]. The public perception of wild capture fisheries, seafood’s popularity and the management 
infrastructure already in place suggest that the costs and animal welfare concerns do not prohibit 
this strategy in managing fisheries impacted by disease [48].

Our results do not apply to allfisheries. First, not all infectious diseases impact fisheries. Also, in 
practice, culling infected animals requires fisheries or fishery managers to non-destructively 
identifyan infection at harvest or soon after. This can be time-consuming and costly apart from 
high-value fisheries such as abalonewhere the diagnostic cost (approx. $5 USD) is minor relative to 
the landing value. For abalone and the WS-RLO, presumptive diagnoses can be achieved by a PCR 
assay [31] applied to faeces collected from landed abalone or by swabbing a wild abalone’s first 
open respiratory pore, where discharged faeces accumulate (T. Ben-Horin and D. Witting 2013, 



unpublished data). Although such molecular assays suggest parasite presence, PCR assays 
indicate only target DNA rather than established and viable infections [49,50], and therefore include 
inherent though quantifiable uncertainty. Regardless, the substantial additive mortality due to WS-
RLO, coupled with the ability to diagnose wild abalone and abalone’s high market value, makes our 
proposed strategy tractable.

How could managers implement this strategy? In practical terms, separate quotas could be set for 
uninfected and infected abalone, and all harvested abalone swabbed for WS-RLO once landed. The 
fishery might then operate until reaching the uninfected abalone quota. Beyond separate quotas, 
fishery-independent divers could use numbered tags to identify abalone within designated fishing 
areas and swab them for WS-RLO. After the PCR results were entered into a database, commercial 
divers could record these numbers and then either harvest abalone with numbers corresponding to 
a positive infection or harvest fromhigh-prevalencefishingareas. Althoughthis process sounds 
onerous, a single abalone can sell for $100 (USD) or more, and the alternative is a fishery that 
remains closed to harvest.

Our results might apply to some other fisheries for which infections can be diagnosed with non-
lethal methods. We considered perfect and cost-free infection diagnosis in our model, but most 
diagnoses have inherent uncertainty and take effort [49,51]. Our simple deterministic model is 
extendable to stochastic frameworks, and including uncertainty in the infection status would allow 
one to determine how much information about infection status one needs to target infected hosts. 
Furthermore, in addition to individual diagnoses such as PCR for WSRLO, factors such as 
punctuated mortalityevents, environmental factors such as water temperature and salinity, and for 
chronic diseases, the stock size orage structure, can help predict and forecast the infection status 
at a site [14,26,52–54], leading to an analogous fishing strategy based on targeting sites rather than 
individuals. Regardless, assessing other fisheries would require specific models, including 
subtracting diagnostic cost from the yield function.

Ecosystem-based fisheries management has gained traction as an alternative to single-species 
fisheries management [55,56], casting a wider focus on ecosystems and how fisheries affect them. 
Although parasites are in all ecosystems, modern fisheries management does not often consider 
marine diseases. When it does, the default responses are to ignore disease or shut fisheries down. 
Our model informs fisheries management to consider the interactions between fishing and marine 
disease, showing that considering disease in fisheries management can benefit both fisheries yield 
and sustainability.
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