
New Steps on the Exact Learning of CNF

Montserrat Hermo1 and Ana Ozaki2

1Languages and Information Systems, Univ. of the Basque Country, Spain
2Department of Computer Science, Univ. of Brası́lia, Brazil

January 30, 2024

Abstract

A major problem in computational learning theory is whether the class
of formulas in conjunctive normal form (CNF) is efficiently learnable. Al-
though it is known that this class cannot be polynomially learned using either
membership or equivalence queries alone, it is open whether CNF can be
polynomially learned using both types of queries. One of the most important
results concerning a restriction of the class CNF is that propositional Horn
formulas are polynomial time learnable in Angluin’s exact learning model
with membership and equivalence queries. In this work we push this bound-
ary and show that the class of multivalued dependency formulas (MVDF)
is polynomially learnable from interpretations. We then provide a notion
of reduction between learning problems in Angluin’s model, showing that
a transformation of the algorithm suffices to efficiently learn multivalued
database dependencies from data relations. We also show via reductions that
our main result extends well known previous results and allows us to find
alternative solutions for them.

1 Introduction

In the exact learning model, proposed by Angluin [2], a learner tries to identify an
abstract target set by posing queries to an oracle. The most successful protocol uses
membership and equivalence queries [20]. The exact learning model is distinguished
by many other machine learning techniques for being a purely deductive reasoning
approach. Since its proposal, a number of researchers have investigated which
concept classes can be polynomially learned and it is known that algorithms in
this model can be transformed into solutions for other well known settings such
as the PAC [29, 3] and the online machine learning [24] models extended with
membership queries.

Restrictions of CNF and DNF which have been proved to be polynomially
learnable with membership and equivalence queries include: monotone DNF (DNF
formulas with no negated variables) [3]; k-clause CNF (CNF formulas with at

1

This is the accepted manuscript of:
Hermo, M., Ozaki, A. (2015). Exact Learning of Multivalued Dependencies. In: Chaudhuri, K., GENTILE, C., Zilles, S.
(eds) Algorithmic Learning Theory. ALT 2015. Lecture Notes in Computer Science(), vol 9355. Springer, Cham.
Copyright © 2015, Springer International Publishing Switzerland
https://doi.org/10.1007/978-3-319-24486-0_5

most k clauses) [1] and read-twice DNF (DNF where each variable occurs at most
twice) [26]. The CDNF class (boolean functions whose CNF size is polynomial in
its DNF size) [9] is also known to be learnable in polynomial time with both types
of queries. Despite the intense effort to establish the complexity of learning the
full classes of CNF and DNF, the complexity of these classes in the exact learning
model with both queries remains open. It is known that these classes cannot be
polynomially learned using either membership or equivalence queries alone [3, 4]
and some advances in proving hardness of DNF with both queries appears in [15].

A classical result concerning a restriction of the class CNF appears in [5],
where propositional Horn formulas are proved to be polynomially learnable with
membership and equivalence queries. In fact, Horn is a special case of a class called
k-quasi-Horn: clauses with at most k unnegated literals. However, it is pointed
out by Angluin et. al [5] that, even for k = 2, learning the class of k-quasi-Horn
formulas is as hard as learning CNF (Corollary 25 of [14]). Thus, if exact learning
CNF is indeed intractable, the boundary of what can be learned in polynomial time
with queries lies between 1-quasi-Horn (or simply Horn) and 2-quasi-Horn formulas.
In this work we study the class of multivalued dependency formulas (MVDF) [28],
which (as we explain in the Preliminaries) is a natural restriction of 2-quasi-Horn
and a non-trivial generalization of Horn.

Another motivation to study the complexity of learning MVDF is that this class
is the logical theory behind multivalued dependencies (MVD) [28, 8], in the sense
that one can map a set of multivalued dependencies to a multivalued dependency
formula preserving the logical consequence relation. A similar equivalence between
functional dependencies and propositional Horn formulas is given by the authors
of [10]. Although data dependencies are usually determined from the semantic
attributes, they may not be known a priori by database designers. Discovering
functional and multivalued dependencies from examples of data relations using
inductive reasoning has been investigated by [18, 25, 17, 12]. Here we study this
problem in Angluin’s model. In this paper, we give a polynomial time algorithm that
exactly learns multivalued dependencies formulas (MVDF) from interpretations.
We then provide a formal notion of reduction for the exact learning model and use
this notion to reduce the problem of learning MVD from data relations (and other
problems below) to the problem of learning MVDF from interpretations.

Previous results. A large part of the related work was already mentioned. We
now discuss some previous results which are extended by the present work. A
polynomial time algorithm for exact learning (with membership and equivalence
queries) propositional Horn from interpretations was first presented by Angluin
et. al [5] (also, see [7]). One year later, Frazier and Pitt presented a polynomial
time algorithm for exact learning propositional Horn from entailments [13]. More
recently, Lavı́n proved polynomial time exact learnability of CRFMVF (resp.,
CRFMVD), which is a restriction of MVDF (resp., MVD) [23]. Then, a polynomial
time algorithm for exact learning the full class MVDF from 2-quasi-Horn clauses
was presented by the authors of [16].

2

MVDFI

HORNI CRFMVFIMVDRMVDFQ

HORNE CRFMVDR

MVDFE
?

?

Figure 1: Reductions among learning problems

Figure 1 shows the relationship among learning problems via reductions, where
CE → C �

E� means that: the problem of exactly learning (with membership and
equivalence queries) the class C from the examples E is reducible in polynomial
time to the problem of exactly learning the class C � from E�. We use I for interpre-
tations, E for entailments, Q for 2-quasi-Horn clauses and R for data relations. As
shown in Figure 1, the problem MVDFI , solved in the present work, extends previ-
ous results on the efficient learnability of data dependencies and their corresponding
propositional formulas. Our positive result for MVDFI is a non-trivial extension of
HORNI (in [5]) and CRFMVFI (in [23]) and allow us to prove for the first time
the polynomial time learnability of the full class of multivalued dependencies from
data relations (MVDR). As shown in Figure 1, one can reduce HORNE to HORNI .
However, we did not find a way of reducing MVDFE to MVDFI and we leave open
the question of whether MVDFE is polynomial time exactly learnable.

2 Preliminaries

Exact Learning Let E be a set of examples (also called domain or instance space).
A concept over E is a subset of E and a concept class is a set C of concepts over
E. Each concept c over E induces a dichotomy of positive and negative examples,
meaning that e ∈ c is a positive example and e ∈ E \ c is a negative example.
For computational purposes, concepts need to be specified by some representation.
So we define a learning framework to be a triple (E,L, µ), where E is a set of
examples, L is a set of concept representations and µ is a surjective function from
L to a concept class C of concepts over E.

Given a learning framework F = (E,L, µ), for each l ∈ L, denote by MEMl,F

the oracle that takes as input some e ∈ E and returns ‘yes’ if e ∈ µ(l) and ‘no’
otherwise. A membership query is a call to an oracle MEMl,F with some e ∈ E as
input, for l ∈ L and E. Similarly, for every l ∈ L, we denote by EQl,F the oracle
that takes as input a concept representation h ∈ L and returns ‘yes’, if µ(h) = µ(l),
or a counterexample e ∈ µ(h)⊕ µ(l), otherwise. An equivalence query is a call to
an oracle EQl,F with some h ∈ L as input, for l ∈ L and E. We say that a learning
framework (E,L, µ) is exactly learnable if there is an algorithm A such that for any
target l ∈ L the algorithm A always halts and outputs l� ∈ L such that µ(l) = µ(l�)
using membership and equivalence queries answered by the oracles MEMl,F and

3

EQl,F, respectively. A learning framework (E,L, µ) is polynomial time exactly
learnable if it is exactly learnable by a deterministic algorithm A such that at every
step of computation the time used by A up to that step is bounded by a polynomial
p(|l|, |e|), where l is the target and e ∈ E is the largest counterexample seen so far1.

Multivalued Dependency Formulas Let V be a finite set of symbols, repre-
senting boolean variables. The logical constant true is represented by T and the
logical constant false is represented by F. A multivalued (for short mvd) clause is
an implication X → Y ∨ Z, where X , Y and Z are pairwise disjoint conjunctions
of variables from V and X ∪ Y ∪ Z = V . We note that some of X,Y, Z may be
empty. An mvd formula is a conjunction of mvd clauses. A k-quasi-Horn clause
is a propositional clause containing at most k unnegated literals. A k-quasi-Horn
formula is a conjunction of k-quasi-Horn clauses. A Horn clause (resp., Horn
formula) is a k-quasi-Horn clause (resp., k-quasi-Horn formula) with k = 1.
Remark: From the definition of an mvd clause and a k-quasi-Horn clause it is easy
to see that:

1. any Horn clause is logically equivalent to a set of 2 mvd clauses. For instance,
the Horn clause 135 → 4, is equivalent to: {12356 → 4, 135 → 4 ∨ 26};

2. any mvd clause is logically equivalent to a conjunction of 2-quasi-Horn
clauses with size polynomial in the number of variables. For instance, the
mvd clause 1 → 23 ∨ 456, by distribution, is equivalent to: {1 → 2 ∨ 4, 1 →
2 ∨ 5, 1 → 2 ∨ 6, 1 → 3 ∨ 4, 1 → 3 ∨ 5, 1 → 3 ∨ 6}.

To simplify the notation, we treat sometimes conjunctions as sets and vice
versa. Also, if for example V = {v1, v2, v3, v4, v5, v6} is a set of variables and
ϕ = (v1 → (v2 ∧ v3) ∨ (v4 ∧ v5 ∧ v6)) ∧ ((v2 ∧ v3) → (v1 ∧ v5 ∧ v6) ∨ v4) is a
formula then we write ϕ in this shorter way: {1 → 23∨456, 23 → 156∨4}, where
conjunctions between variables are omitted and each propositional variable vi ∈ V
is mapped to i ∈ N. For the purposes of this paper, we treat X → Y ∨ Z and
X → Z ∨ Y as distinct mvd clauses, where Y and Z are non-empty. For example,
12 → 34 ∨ 56 and 12 → 56 ∨ 34 are counted as two distinct mvd clauses.

An interpretation I is a mapping from V ∪ {T,F} to {true, false}, where
I(T) = true and I(F) = false. We denote by true(I) the set of variables
assigned to true in I. In the same way, let false(I) be the set of variables assigned
to false in I. Observe that false(I) = V \ true(I). We follow the terminology
provided by [5] and say that an interpretation I covers X → Y ∨Z if X ⊆ true(I).
An interpretation I violates X → Y ∨ Z if I covers X → Y ∨ Z and: (a) Y and
Z are non-empty and there are v ∈ Y and w ∈ Z such that v, w ∈ false(I); or
(b) one of Y,Z is empty and there is v ∈ Y ∪ Z such that false(I) = {v}; or (c)
false(I) = ∅ and X → Y ∨ Z is the mvd clause V → F. If I does not violate
X → Y ∨ Z then we write I |= X → Y ∨ Z.

1We count each call to an oracle as one step of computation. Also, we assume some natural notion
of length for an example e and a concept representation l, denoted by |e| and |l|, respectively.

4

Given two interpretations I and I �, we define I∩I � to be the interpretation such
that true(I ∩ I �) = true(I) ∩ true(I �). If S is a sequence of interpretations and I
is an interpretation occurring at position i then we write Ii ∈ S. Also, we denote
by S · I the result of appending I to S. The learning MVDF from interpretations
framework is defined as F(MVDFI) = (EI ,LM, µI), where EI is the set of all
interpretations in the propositional variables V under consideration, LM is the set
of all sets of mvd clauses that can be expressed in V and, for every T ∈ LM,
µI(T) = {I ∈ EI | I |= T }.

3 Learning MVDF from Interpretations

In this section we present an algorithm that learns the class MVDF from inter-
pretations. More precisely, we show that the learning framework F(MVDFI) is
polynomial time exactly learnable.

The learning algorithm for F(MVDFI) is given by Algorithm 1. Algorithm
1 maintains a sequence P of interpretations which are positive examples for the
target T and a sequence L of interpretations which are negative examples (for the
target T). The learner’s hypothesis H is constructed using both P and L. In order
to learn all of the mvd clauses in T , we would like that mvd clauses induced by
the elements of P and L approximate distinct mvd clauses in T . This will happen
if at most polynomially many elements in L violate the same mvd clause in T .
Overzealous refinement of a sequence of interpretations is a situation described by
[5]. It may result in a loop where we have several elements of the sequence violating
the same clause in the target. We avoid this in Algorithm 1 by (1) refining negative
counterexamples with elements of L (Line 9) and (2) refining at most one (the first)
element of L per iteration (Line 13). We use the following notion, provided by
[16], to describe under which conditions the learner should refine either a negative
counterexample or an element of L.

Definition 1 A pair (I, I �) of interpretations is a goodCandidate if: (i) true(I ∩
I �) ⊂ true(I); (ii) I ∩ I � |= H; and (iii) I ∩ I � �|= T .

In the following we provide the main ideas of our proof (omitted proofs are
given in full detail in the appendix). If Algorithm 1 terminates, then it obviously has
found a hypothesis H that is logically equivalent to T , formulated with variables in
V . It thus remains to show that Algorithm 1 terminates in polynomial time. In each
iteration, one of the following three cases happens:

1. a positive counterexample is added to the sequence P (Line 7); or

2. a negative example in L is replaced (Line 13); or

3. a negative counterexample is appended to the sequence L (Line 16).

To prove polynomial time learnability, we need to ensure that each iteration is
done in polynomial time in the size of T and that the total number of iterations is

5

Algorithm 1 Learning algorithm for MVDF from Interpretations
1: Let L be a sequence of negative examples and P a sequence of positive exam-

ples
2: Set H0 := {V → F | T |= V → F} ∪ {V \ {v} → v | v ∈ V and T |=

V \ {v} → v}
3: Set L := ∅, P := ∅ and H := H0

4: while H �≡ T do
5: Let I be a counterexample
6: if I �|= H then
7: Append I to P
8: else
9: Set J := REFINECOUNTEREXAMPLE(I,L)

10: if there is Ik ∈ L such that goodCandidate(Ik,J) then
11: Let Ii be the first in L such that goodCandidate(Ii,J)
12: Set P� := UPDATEPOSITIVEEXAMPLES(J ,P,L) and P := P�

13: Replace Ii ∈ L by J
14: Remove all Ij ∈ L \ {J } such that Ij �|=BUILDCLAUSES(J ,P)
15: else
16: Append J to L
17: end if
18: end if
19: Construct H := H0 ∪

�
I∈LBUILDCLAUSES(I,P)

20: end while

also bounded. That is, the number of times Cases 1, 2 and 3 happen is polynomial
in the size of T . For Case 2 we note that each time a negative example is replaced,
the number of variables assigned to true strictly decreases (Point (i) of Definition 1).
Then, Algorithm 1 replaces each element of L at most |V | times.

Before we give a bound for Cases 1 and 3, we explain the bound on the number
of recursive calls. We first note that in each recursive call of Function ‘RefineCoun-
terexample’ (Algorithm 2) the number of variables assigned to true in a negative
counterexample strictly decreases (Point (i) of Definition 1). This means that in each
iteration of Algorithm 1 the number of recursive calls of Function ‘RefineCounterex-
ample’ is at most |V |. To see the bound on the number of recursive calls of Function
‘UpdatePositiveExamples’ (Algorithm 4) we use Lemma 2. By construction of H0

(Line 2 of Algorithm 1) we can assume that all negative examples we deal with vio-
late X → Y ∨ Z ∈ T with Y,Z non-empty2. We write BUILDCLAUSES(I,P) for
the set of mvd clauses returned as output of Function ‘BuildClauses’ (Algorithm 3)
with I and P as input.

Lemma 2 Let I be a negative example. Let BUILDCLAUSES(I,P) = {true(I) →
2We note that one can easily check whether ‘T |= V → F’ and ‘T |= V \ {v} → v’ with

membership queries that receive interpretations as input.

6

Algorithm 2 Function RefineCounterexample (I,L)
Set J := I
if there is Ik ∈ L such that goodCandidate(I, Ik) then

Let Ii be the first in L such that goodCandidate(I, Ii)
J :=REFINECOUNTEREXAMPLE(I ∩ Ii,L)

end if
return(J)

Y1 ∨ Z1, . . . , true(I) → Yk ∨ Zk}. Then, for all i, j, such that 1 ≤ i < j ≤ k,
we have that: Yi ∩ Yj = ∅ and

�k
j=1 Yj = false(I). Moreover, for any true(I) →

Yi ∨ Zi, 1 ≤ i ≤ k, we have that Yi, Zi are non-empty.

Algorithm 3 Function BuildClauses (I,P)
Set X := true(I) and C := {X → v ∨ V \ (X ∪ {v}) | v ∈ V \X}
for each Il ∈ P do

Let X → Y1 ∨ Z1, . . . , X → Yk ∨ Zk be the mvd clauses in C violated by
Il

Replace in C all these mvd clauses by X → �k
j=1 Yj ∨ (

�k
j=1 Zj \

�k
j=1 Yj)

end for
return (C)

Algorithm 4 Function UpdatePositiveExamples (K,P,L)
Set P� := P
if there are distinct Ik, Il ∈ L such that Ik ∩ Il �|=BUILDCLAUSES(K,P) and
Ik ∩ Il |= T then

Append Ik ∩ Il to P
P� :=UPDATEPOSITIVEEXAMPLES(K,P,L)

end if
return (P�)

By Lemma 2 above we have that the ‘Y ’ consequents of mvd clauses re-
turned by Function ‘BuildClauses’ (Algorithm 3) are non-empty and mutually
disjoint. So the number of mvd clauses returned by this function is bounded
by |V |. Regarding Function ‘UpdatePositiveExamples’ (Algorithm 4) called in
Line 12, we note that K = J is a negative example and that in Line 3, we have
that Ik ∩ Il �|=BUILDCLAUSES(K,P). Then, the next lemma ensures that in each
recursive call of Function ‘UpdatePositiveExamples’ (Algorithm 4) the number
of mvd clauses returned by Function ‘BuildClauses’ (Algorithm 3) with K and
P as input, strictly decreases. Since (by Lemma 2 above) the number of mvd
clauses returned by Function ‘BuildClauses’ (Algorithm 3) is at most |V |, the next

7

lemma bounds the number of recursive calls of Function ‘UpdatePositiveExamples’
(Algorithm 4) to |V |.

Lemma 3 Let I be a negative example. If P �|= BUILDCLAUSES(I,P) then the
number of mvd clauses returned by BUILDCLAUSES(I,P · P) is strictly smaller
than the number of mvd clauses returned by BUILDCLAUSES(I,P).

Proof. Suppose that true(I) → Yi ∨ Zi ∈ BUILDCLAUSES(I,P) is violated
by P . Then, there is v ∈ Yi and w ∈ Zi such that v, w ∈ false(P). By Lemma 2
there is true(I) → Yj ∨Zj ∈ BUILDCLAUSES(I,P) such that w ∈ Yj and v ∈ Zj .
In Line 4, Algorithm 3 replaces (at least) these two mvd clauses by a single mvd
clause. So the number of mvd clauses strictly decreases, as required. ❏

By Lemma 4 below if any two interpretations Ii, Ij ∈ L violate the same mvd
clause in T then their sets of false variables are mutually disjoint. By construction
of H0 we can assume that their sets of false variables are non-empty. Then, the
number of interpretations violating any mvd clause in T is bounded by |V |.

Lemma 4 Let Ii, Ij ∈ L and assume i < j. At the end of each iteration, if
Ii, Ij ∈ L violate c ∈ T then false(Ii) ∩ false(Ij) = ∅.

Corollary 5 At the end of each iteration every c ∈ T is violated by at most |V |
interpretations in L.

So, at all times the number of elements in L is bounded by |T | · |V |. We now show
that the number of iterations of Algorithm 1 is polynomial in the size of T . We first
present in Lemma 7 a polynomial upper bound on the number of iterations where
Algorithm 1 receives a negative counterexample. Note that we obtain this upper
bound even though the learner does not know the size |T | of the target. Lemma 7
requires the following technical lemma.

Lemma 6 In Line 14 of Algorithm 1, the following holds:

1. if Ij is removed after the replacement of some Ii ∈ L by J (Line 13) then
false(Ii) ∩ false(Ij) = ∅ (Ii before the replacement);

2. if Ij , Ik with j < k are removed after the replacement of some Ii ∈ L by J
(Line 13) then false(Ij) ∩ false(Ik) = ∅.

Lemma 7 Let N be |V |2 · |T |. The expression E = |L|+ (N −�
I∈L |false(I)|)

always evaluates to a natural number inside the loop body and decreases on every
iteration where Algorithm 1 receives a negative counterexample.

8

Proof. By Corollary 5, the size of L is bounded at all times by |V | · |T |. Thus, by
Corollary 5, N is an upper bound for

�
I∈L |false(I)|. If a negative counterexample

is received then there are three possibilities: (1) an element I is appended to L.
Then, |L| increases by one but |false(I)| ≥ 2 and, therefore, E decreases; (2)
an element is replaced and no element is removed. Then, E trivially decreases.
Otherwise, (3) we have that an element Ii is replaced and p interpretations are
removed from L in Line 14 of Algorithm 1. By Point 2 of Lemma 6, if Ii is replaced
by J and Ij , Ik are removed then false(Ij) ∩ false(Ik) = ∅. This means that
if p interpretations are removed then their sets of false variables are all mutually
disjoint. By Point 1 of Lemma 6, if Ii is replaced by J and some Ij is removed
then false(Ij) ∩ false(Ii) = ∅. Then, the p interpretations also have sets of false
variables disjoint from false(Ii). For each interpretation Ij removed we have
false(Ij) ⊆ false(J) (because Ij �|=BUILDCLAUSES(J ,P). Then, the number of
‘falses’ is at least as large as before. However |L| decreases and, thus, we can ensure
that E decreases. ❏

By Lemma 7 the total number of iterations where Algorithm 1 receives a
negative counterexample is bounded by N = |V |2 · |T |. It remains to show a
polynomial bound on the total number of iterations where Algorithm 1 receives a
positive counterexample. By Corollary 5, the size of L is bounded at all times by
|V | · |T |. By Lemma 2, the number of clauses induced by each Ii ∈ L is bounded
by |V |. This means that the size of H is bounded at all times by N . If a positive
counterexample is received then, by Lemma 3, the size of H strictly decreases.
So after giving at most |H| ≤ N positive examples the oracle is forced to give a
negative example. Since the number of negative counterexamples received is also
bounded by N , the total number of iterations where Algorithm 1 receives a positive
counterexample is bounded by N2.

Theorem 8 The problem of learning MVDF from interpretations, more precisely,
the learning framework F(MVDFI), is polynomial time exactly learnable.

3.1 An Example Run

We describe an example run of Algorithm 1. In this example, if Function ‘Build-
Clauses’ (Algorithm 3) returns as output mvd clauses of the form X → Y ∨ Z and
X → Z ∨ Y then we write only one of them. Suppose that our target MVDF is:

T = {2345 → 1, 123 → 4 ∨ 5, 235 → 1 ∨ 4, 2 → 3 ∨ 145}.

Initially, the sequence P of positive examples and the sequence L of negative exam-
ples are both empty. In Line 2 of Algorithm 1, we construct H0 = {2345 → 1}.
Suppose that the counterexample to our first equivalence query with H = H0 as
input is the negative example I1, with true(I1) = {1, 2, 3} (note that I1 violates
the second mvd clause in T). Since L is empty, Algorithm 1 simply appends I1 to
L. In Line 19, Algorithm 1 calls Function ‘BuildClauses’ (Algorithm 3) with I1,P

9

as input and receive {123 → 4 ∨ 5} as output. At this moment, P, L and H are as
follows.

P = ∅ L = {I1} H = {2345 → 1, 123 → 4 ∨ 5}
Suppose that the counterexample to our second equivalence query with H as input
is I2, with true(I2) = {2, 3, 5}. Since I2 ∩ I1 satisfies T , the pair (I2, I1) is not
a goodCandidate. So Algorithm 1 appends I2 to L. In Line 19, Algorithm 1 calls
Function ‘BuildClauses’ (Algorithm 3) with I1,P and I2,P as inputs. We have
that P, L and H are as follows.

P = ∅ L = {I1, I2} H = {2345 → 1, 123 → 4 ∨ 5, 235 → 1 ∨ 4}

Now assume that the next counterexample is I3, with true(I3) = {2, 4}. In Line 9,
Algorithm 1 calls Function ‘RefineCounterexample’ (Algorithm 2) with I3 and L as
input and verifies that the pair (I3, I1) is a goodCandidate. The return of Function
‘RefineCounterexample’ (Algorithm 2) is J = (I3 ∩ I1). In Line 10, Algorithm 1
verifies that I1 is the first element in L such that (I1,J) is a goodCandidate. Then,
Algorithm 1 calls Function ‘UpdatePositiveExamples’ (Algorithm 4) with K = J
(note that true(K) = {2}), P and L as input. We have that

BUILDCLAUSES(K, ∅) = {2 → 1∨345, 2 → 3∨145, 2 → 4∨135, 2 → 5∨134}.

As (I1 ∩ I2) �|= BUILDCLAUSES(K, ∅) and (I1 ∩ I2) |= T , the condition in Line 2
of Function ‘UpdatePositiveExamples’ (Algorithm 4) is satisfied. Then, Function
‘UpdatePositiveExamples’ appends I1 ∩ I2 to P and makes a recursive call with K,
P and L as input. Now,

BUILDCLAUSES(K, {I1 ∩ I2}) = {2 → 145 ∨ 3},

and, so, (I1 ∩ I2) |= BUILDCLAUSES(K, {I1 ∩ I2}). The output of Function
‘UpdatePositiveExamples’ (Algorithm 4) is {I1 ∩ I2}. In Line 13, Algorithm 1
replaces I1 ∈ L by J . In Line 19, Algorithm 1 calls Function ‘BuildClauses’
(Algorithm 3) with J ,P and I2,P as inputs. Now, P, L and H are as follows.

P = {I1 ∩ I2} L = {J , I2} H = {2345 → 1, 2 → 145 ∨ 3, 235 → 1 ∨ 4}

Now assume that the counterexample to our fourth equivalence query with H as
input is the negative example I4, with true(I4) = {1, 2, 3}. Function ‘RefineCoun-
terexample’ (Algorithm 2) returns I4. Since there is no I ∈ L such that (I, I4) is a
goodCandidate, Algorithm 1 appends I4 to L. In Line 19 of Algorithm 1 P, L and
H are as follows.

P = {I1 ∩ I2} L = {J , I2, I4}
H = {2345 → 1, 2 → 145 ∨ 3, 235 → 1 ∨ 4, 123 → 4 ∨ 5}

We now have that H ≡ T and the learner succeeded.

10

4 Reductions among Learning Problems

A substitution-based technique for problem reductions among boolean formulas was
presented by [19]. [27] define a general type of problem reduction that preserves
polynomial time prediction. This notion was extended by [6] to allow membership
queries. In this section, we present a notion of reduction that is suitable for the exact
learning model with membership and equivalence queries. It extends a notion of
reduction given by [21]. We then use this notion to show the reductions in Figure 1.

Suppose that P is the problem of exactly learning the framework F = (X,L, µ)
and P � is the problem of exactly learning the framework F� = (X �,L, µ�). Since
L is the same for F and F�, every correct conjecture used to solve P � is also an
answer for P and vice-versa. One can then reduce P to P � by: (a) transforming
queries posed to oracles MEMl,F� and EQl,F� into queries for the oracles MEMl,F

and EQl,F; and (b) transforming answers given by the oracles MEMl,F and EQl,F

into answers that the oracles MEMl,F� and EQl,F� would provide, where l ∈ L is
the learning target. For our purposes, we want reductions where (i) the frameworks
use the same target concept representation (as described above) and (ii) preserve
polynomial time exact learnability. We say that a learning framework F = (E,L, µ)
polynomial time reduces to F� = (E�,L, µ�) if, for some polynomials p1(·), p2(·, ·)
and p3(·, ·) there exist a function fMEM : L × E� → { ‘yes’, ‘no’}, translating a F�

membership query to F, and a partial function fEQ : L × L × E → E�, defined
for every (l, h, e) such that |h| ≤ p1(|l|), translating an answer to an F equivalence
query to F�, for which the following conditions hold:

• for all e� ∈ E� we have e� ∈ µ�(l) iff fMEM(l, e
�) = ‘yes’;

• for all e ∈ E we have e ∈ µ(l)⊕ µ(h) iff fEQ(l, h, e) ∈ µ�(l)⊕ µ�(h);

• fMEM(l, e
�) and fEQ(l, h, e) are computable in time p2(|l|, |e�|) and p3(|l|, |e|),

respectively, and l can only be accessed by calls to the membership oracle
MEMl,F.

Note that even though fEQ takes h as input, the polynomial time bound on
computing fEQ(l, h, e) does not depend on the size of h as fEQ is only defined for h
polynomial in the size of l.

Theorem 9 Let F = (E,L, µ) and F� = (E�,L, µ�) be learning frameworks. If
there exists a polynomial time reduction from F to F� and F� is polynomial time
exactly learnable then F is polynomial time exactly learnable.

In the following we use Theorem 9 to prove that MVD can be learned in
polynomial time from data relations. The remaining reductions presented in Figure 1
are given in the appendix.

11

4.1 Learning MVD from Data Relations

Notation A relation scheme V = {A1, . . . , An} is a finite set of symbols, called
attributes, where each attribute Ai ∈ V is associated with a domain dom(Ai)
of values. A tuple t over V is an element of dom(A1) × . . . × dom(An). A
relation r (over V) is a set of tuples over V . Given S ⊆ V , let t[S] denote
the restriction of a tuple t over V on S. For example, if the relation scheme
is PERSON = {NAME, BOOK, PET} and t = (Alice, Hamlet, Dog) is a tuple over
PERSON then t[{NAME, PET}] = (Alice, Dog). Let X , Y and Z be pairwise disjoint
subsets of V with X ∪ Y ∪ Z = V . We write xyz for a tuple t over V with
t[X] = x, t[Y] = y and t[Z] = z. A multivalued dependency (for short mvd)
X → Y ∨ Z holds in r if, and only if, for each two tuples xyz, xy�z� ∈ r we have
that xy�z ∈ r (and, by symmetry, xyz� ∈ r) 3. That is, if t, t� are distinct tuples in r
with t[X] = t�[X] then we can exchange the Y values of t, t� to obtain two tuples
that must also be in r. If T is a set of mvds over V and, for all m ∈ T , m holds in r
(over V) then we say that T holds in r. We formally define the learning framework
F(MVDR) as (ER,LM, µR), where ER is the set of all relations r over a relation
scheme V , LM is the set of all sets of mvds that can be expressed with symbols in
V and, for every T ∈ LM, µR(T) = {r ∈ ER | T holds in r}.

We now show that F(MVDR) polynomial time reduces to F(MVDFI). To
reduce the problem, we use the learning algorithm for F(MVDFI) as a ‘black box’
and: (1) transform the membership queries, which come as interpretations into
relations; and (2) transform counterexamples given by equivalence queries, which
come as relations into interpretations.

Lemma 10 Let F(MVDR) = (ER,LM, µR) and F(MVDFI) = (EI ,LM, µI) be,
respectively, the frameworks for learning MVD from relations and learning MVDF
from interpretations. Let T ∈ LM be the target. For any interpretation I ∈ µI(T),
one can construct in polynomial time in |T | a relation r such that r ∈ µR(T) if,
and only if, I ∈ µI(T).

Proof. Given an interpretation I in V , we define a pair p of tuples {t, t�} over
V such that, for each γ ∈ V , t[γ] = t�[γ] if, and only if, γ ∈ true(I). By definition
of p, we have that, for any m ∈ T , m does not hold in p if, and only if, I violates
m. Then, p ∈ µR(T) if, and only if, I ∈ µI(T). ❏

The close connection between database relations and propositional logic in-
terpretations was first pointed out by [10] and its use in a learning theory context
appears in [22]. To show Lemma 12 we use the following technical lemma, given
by [28].

3The standard notation used for mvds is X →→ Y | Z (or X →→ Y) [11]. However, for the
purpose of showing a reduction from MVDR to MVDFI , it is useful to adopt a uniform representation
between the two classes.

12

Lemma 11 ([28]) Assume that r is a relation over V , T is a set of mvds and m is
an mvd (both expressed in V). Suppose that T holds in r but m does not hold in r.
Then r has a pair p of tuples for which T holds in p and m does not hold in p.

Lemma 12 Let F(MVDR) = (ER,LM, µR) and F(MVDFI) = (EI ,LM, µI) be,
respectively, the frameworks for learning MVD from relations and learning MVDF
from interpretations. Let T ∈ LM be the target and H ∈ LM be the hypothesis. If
r ∈ µR(T)⊕ µR(H) then one can construct in polynomial time in |T | and |r| an
interpretation I such that I ∈ µI(T)⊕ µI(H).

Proof. Assume that r ∈ µR(T) ⊕ µR(H) is a positive counterexample (the
case when r is a negative counterexample is analogous). If r �∈ µR(H) then there
is m ∈ H such that m does not hold in r. By Lemma 11, r has a pair p of tuples
for which T holds in p and m does not hold in p. Then, p ∈ µR(T) \ µR(H). One
can find p ⊆ r, by simply checking, for all possible pairs p of tuples in r, whether
H does not hold in p and (with membership queries) whether T holds in p. Once
p = {t, t�} is computed, we define I such that true(I) = {γ ∈ V | t[γ] = t�[γ]}.
By definition of I , we have that, for any m� ∈ T ∪H, m� does not hold in p if, and
only if, I violates m�. Then, I ∈ µI(T)⊕ µI(H). ❏

Lemma 10 shows how one can compute fMEM (described in Definition 23) with
p2(|T |, |I|) = k · |I| steps, for some constant k. Lemma 12 shows how one can
compute fEQ in p3(|T |, |r|) = k · |r|2, for some constant k. Also, we have seen in
Section 3 that the size of the hypothesis H computed by Algorithm 1 is bounded
by |V | · |T |. Then, p1(|T |) = |V | · |T |. Using Theorems 8 and 9 we can state the
following.

Theorem 13 The problem of learning MVD from relations, more precisely, the
learning framework F(MVDR), is polynomial time exactly learnable.

5 Discussion

We solved the open question raised by [22], showing a polynomial time algorithm
that exactly learns the class MVDF from interpretations. From a database design
perspective, a transformation of our algorithm can be used to extract multivalued
dependencies from examples of relations. This process is a sort of knowledge
discovery, which can help in restructuring databases and finding data dependencies
that database designers did not foresee. From a theoretical point of view, we
take a step towards identifying important concept classes that can be learned in
polynomial time, a natural research topic in computational learning theory. However,
it remains open the question of whether the class MVDF can be exactly learned in
polynomial time from entailments (where the entailments are mvd clauses). We
know that, for propositional Horn, learning from entailments reduces to learning

13

from interpretations. However, for MVDF a similar reduction is not so easy. The
main obstacle is the transformation of membership queries, where one needs to
decide whether an interpretation is a model of the target using polynomially many
entailment queries.

References

A Proofs for Section 3

We provide the proofs for the lemmas stated in Section 3. We note that our algorithm
maintains a sequence of positive examples, as in [7]. Also, the construction of mvd
clauses in the hypothesis is inspired by [23].
Remark: In our proof we only consider interpretations I such that |false(I)| ≥ 2.
This is justified by the fact that in Line 2 of Algorithm 1 we check whether T |=
V → F and whether T |= V \ {v} → v, for all v ∈ V , and if so we add them
to H0 (note that this can be easily checked with queries to MEMT ,F(MVDFI)). Any
negative counterexample I received by Algorithm 1 is such that |false(I)| ≥ 2 and
it can only violate mvd clauses X → Y ∨ Z ∈ T with Y and Z non-empty. Also,
any positive counterexample can only violate mvd clauses X → Y ∨ Z ∈ H with
Y and Z non-empty. We consistently use P and L for the sequences of positive
and negative examples of Algorithm 1, respectively. Before we show Lemma 2 we
need the following technical lemma.

Lemma 14 Let I be a negative example for T that covers X → Y ∨ Z ∈ T . Let
BUILDCLAUSES(I, P) be the set {true(I) → Y1 ∨ Z1, . . . , true(I) → Yk ∨ Zk}.
Then, for all i, 1 ≤ i ≤ k, either Yi ⊆ Y or Yi ⊆ Z.

Proof. The proof is by induction on the number of elements in P. The lemma is true
when P is empty because Function ‘BuildClauses’ (Algorithm 3) returns the set
constructed in Line 1, which contains an mvd clause true(I) → v ∨ V \ (true(I)∪
{v}) for each v ∈ false(I). Now suppose that the lemma holds for P with m ∈ N
elements. We show that it holds for P with m+1 elements. Let P be a fresh positive
example (for T). If P |= BUILDCLAUSES(I,P) then BUILDCLAUSES(I,P) =
BUILDCLAUSES(I,P · P). So, by induction hypothesis the lemma holds.

Otherwise, P �|= BUILDCLAUSES(I,P). Let true(I) → Y1∨Z1, . . . , true(I) →
Yk ∨ Zk be the mvd clauses in BUILDCLAUSES(I,P) violated by P . These mvd
clauses are replaced, in BUILDCLAUSES(I,P · P), by true(I) → �k

j=1 Yj ∨
(
�k

j=1 Zj\
�k

j=1 Yj). So we need to show that either
�k

j=1 Yj ⊆ Y or
�k

j=1 Yj ⊆ Z.
As P violates these mvd clauses, we have that true(I) ⊆ true(P) and P must have
some zero in Yj for all 1 ≤ j ≤ k. Also, since P is a positive example and
X ⊆ true(I) either false(P) ⊆ Y or false(P) ⊆ Z. Therefore, either (a) each Yj
has at least one variable in Y or (b) each Yj has at least one variable in Z. In case
(a), by induction hypothesis, either Yj ⊆ Y or Yj ⊆ Z. As Y ∩ Z = ∅, Yj ⊆ Y for

14

all 1 ≤ j ≤ k. Therefore
�k

j=1 Yj ⊆ Y . One can prove in the same way that in
case (b) we have

�k
j=1 Yj ⊆ Z. ❏

Lemma 2 (restated). Let I be a negative example. Let BUILDCLAUSES(I,P)
= {true(I) → Y1 ∨ Z1, . . . , true(I) → Yk ∨ Zk}. Then, for all i, j, such that
1 ≤ i < j ≤ k, we have that (∗): Yi ∩ Yj = ∅ and

�k
j=1 Yj = false(I). Moreover,

for any true(I) → Yi ∨ Zi, 1 ≤ i ≤ k, we have that Yi, Zi are non-empty.

Proof. The proof is by induction on the size of P. The lemma is true when P is
empty because Function ‘BuildClauses’ (Algorithm 3) returns the set constructed
in Line 1, which contains an mvd clause X → v ∨ V \ (X ∪ {v}) for each
v ∈ false(I), where X = true(I) (note that, as in Remark A, |false(I)| ≥ 2 and
therefore V \(X∪{v}) is non-empty). Now suppose that the lemma holds for P with
m ∈ N elements. We show that it holds for P with m+1 elements. Let P be a fresh
positive example. If P |= BUILDCLAUSES(I,P) then BUILDCLAUSES(I,P) =
BUILDCLAUSES(I,P·P). So, by induction hypothesis the lemma holds. Otherwise,
P �|= BUILDCLAUSES(I,P). Let X → Y1 ∨ Z1, . . . , X → Yk ∨ Zk be the mvd
clauses in BUILDCLAUSES(I,P) violated by P . These mvd clauses are replaced, in
BUILDCLAUSES(I,P · P), by X → �k

j=1 Yj ∨ (
�k

j=1 Zj \
�k

j=1 Yj). Clearly, (∗)
holds in BUILDCLAUSES(I,P · P). It remains to show that (

�k
j=1 Zj \

�k
j=1 Yj) is

not empty. Since I is a negative example, it violates some clause X � → Y � ∨ Z � ∈
T with Y �, Z � non-empty (see Remark A). Now suppose to the contrary that
(
�k

j=1 Zj \
�k

j=1 Yj) is empty. Then,
�k

j=1 Yj = false(I) and, by Lemma 14,�k
j=1 Yj is included either in Y � or in Z �. If false(I) is included either in Y � or in

Z � then I does not violate X � → Y � ∨ Z �. This contradicts our assumption that I
violates X � → Y � ∨ Z � ∈ T . ❏

We now want to show Lemma 4. Before we prove Lemma 4, we need Lem-
mas 15-20 below.

Lemma 15 Assume that an interpretation I violates X → Y ∨ Z ∈ T . For all
Ii ∈ L such that Ii covers X → Y ∨ Z, true(Ii) ⊆ true(I) if, and only if, I �|=
BUILDCLAUSES(Ii,P).

Proof. The (⇐) direction is trivial. Now, suppose that true(Ii) ⊆ true(I)
to prove (⇒). As I �|= X → Y ∨ Z, we have that X ⊆ true(I) and there are
v ∈ Y and w ∈ Z such that v, w ∈ false(I). As true(Ii) ⊆ true(I), we have that
v, w ∈ false(Ii). By Lemma 2, there are true(Ii) → Y1∨Z1, true(Ii) → Y2∨Z2 ∈
BUILDCLAUSES(Ii,P) such that v ∈ Y1 and w ∈ Y2. By Lemma 14, Y1 ⊆ Y
and Y2 ⊆ Z. As Y ∩ Z = ∅, we have that Y1 ∩ Y2 = ∅. So, v ∈ Z2 and w ∈ Z1,
which means that I violates both true(Ii) → Y1 ∨ Z1 and true(Ii) → Y2 ∨ Z2 in
BUILDCLAUSES(Ii,P). ❏

15

We can see the hypothesis H as a sequence of sets of multivalued clauses, where
each Hi corresponds to the output of Function ‘BuildClauses’ (Algorithm 3) with
Ii ∈ L and P as input.

Lemma 16 At the end of each iteration, Ii |= H \Hi, for all Ii ∈ L.

Proof. Let J be the interpretation computed in Line 9 of Algorithm 1. If
Algorithm 1 executes Line 16 then it holds that J |= H. If there is Ij ∈ L such
that Ij �|=BUILDCLAUSES(J ,P) then true(J) ⊂ true(Ij) and the pair (Ij ,J) is
a goodCandidate. This contradicts the fact that Algorithm 1 did not replace some
interpretation in L. Otherwise, Algorithm 1 executes Lines 12 and 13, replacing
an interpretation Ii ∈ L by J , where the pair (Ii,J) is a goodCandidate. In this
case, by Definition 1 part (ii), Ii ∩ J |= H. It remains to check that for any other
Ij ∈ L it holds that Ij |=BUILDCLAUSES(J ,P), but this is always true because of
Line 14. ❏

We also require the following technical lemma from [16].

Lemma 17 ([16]) Let T be a set of mvd clauses. If I and J are interpretations
such that I |= T and J |= T , but I ∩ J �|= T , then true(I) ∪ true(J) = V .

Lemma 18 If Algorithm 1 replaces some Ii ∈ L with J then false(Ii) ⊆ false(J)
(Ii before the replacement).

Proof. Suppose to the contrary that false(Ii) �⊆ false(J). That is, (∗) true(J ∩
Ii) ⊂ true(J). If Algorithm 1 replaced Ii ∈ L by J then (Ii,J) is a goodCandidate.
Then, Ii ∩ J �|= T and Ii ∩ J |= H. If (i) true(J ∩ Ii) ⊂ true(J) (by (∗)), (ii)
J ∩ Ii |= H and (iii) J ∩ Ii �|= T ; then (J , Ii) is a goodCandidate. This contra-
dicts the condition in Line 2 of Algorithm 2, which would not return J but make a
recursive call with J ∩ Ii and, thus, false(Ii) ⊆ false(J). ❏

Lemma 19 Let Ii, Ij ∈ L and assume i < j. At the end of each iteration, if
c ∈ T is violated by Ii, Ij ∈ L then the pair (Ii, Ij) is a goodCandidate or
false(Ii) ∩ false(Ij) = ∅.

Proof. We prove that if false(Ii) ∩ false(Ij) �= ∅, then (Ii, Ij) is a goodCandidate.
By Lemma 15, true(Ii) ⊆ true(Ij) if, and only if, Ii �|= BUILDCLAUSES(Ij ,P).
If Ii covers c ∈ T and Ij violates c ∈ T then it follows from Lemma 16 that
true(Ii) �⊆ true(Ij). So (i) true(Ii ∩ Ij) ⊂ true(Ii). Also by Lemma 16, it
holds that Ii |= H \ (Hi ∪ Hj) and Ij |= H \ (Hi ∪ Hj). Now, by Lemma 17,
false(Ij)∩false(J) �= ∅ implies that Ii∩Ij |= H\(Hi∪Hj). Since true(Ii∩Ij) ⊂
true(Ii), we actually have that (ii) Ii ∩ Ij |= H. To finish, we know that (iii)
Ii ∩ Ij �|= T because c ∈ T is violated by both Ii and Ij . Hence, we obtain
the conditions (i), (ii), and (iii) of Definition 1, and therefore the pair (Ii, Ij) is a
goodCandidate. ❏

16

Lemma 20 Let Ii, Ij ∈ L and assume i < j. At the end of each iteration, the pair
(Ii, Ij) is not a goodCandidate or false(Ii) ∩ false(Ij) = ∅.

Proof. Let J be a countermodel computed in Line 9 of Algorithm 1. Consider
the possibilities.

• If Algorithm 1 appends J to L, then for all Ik ∈ L the pair (Ik,J) cannot
be a goodCandidate, because otherwise the condition in Line 10 would be
satisfied and, instead of appending J , Algorithm 1 would replace some
interpretation Ik ∈ L.

• Now assume that Algorithm 1 replaces (a) Ii by J or (b) Ij by J . Suppose
the lemma fails to hold in case (a). The pair (J , Ij) is a goodCandidate.
This contradicts the condition in Line 2 of Algorithm 2, which would not
return J but make a recursive call with J ∩Ij . Now, suppose the lemma fails
to hold in case (b). The pair (Ii,J) is a goodCandidate. This contradicts the
fact that in Line 11 of Algorithm 1, the first goodCandidate is replaced and
since i < j, Ii should be replaced instead of Ij .

• It remains to check the case where Algorithm 1 replaces I ∈ L\{Ii, Ij} by J .
We prove that if at the end of the iteration, the pair (Ii, Ij) is a goodCandidate
then false(Ii) ∩ false(Ij) = ∅. So assume that (i) true(Ii ∩ Ij) ⊂ true(Ii);
(ii) Ii ∩ Ij |= H; and (iii) Ii ∩ Ij �|= T . Point (ii) implies that Ii ∩ Ij |= Hi

and Ii ∩ Ij |= Hj . Denote by H� the hypothesis at the beginning of the
iteration. By induction hypothesis, before the replacement, (Ii, Ij) was not
a goodCandidate (or false(Ii) ∩ false(Ij) = ∅ and we are done). Therefore,
Ii ∩ Ij �|= H�, and there is H�

k such that Ii ∩ Ij �|= H�
k. We know that

k �∈ {i, j} because Hi = H�
i and Hj = H�

j . As Ij |= H�\H�
j (by Lemma 16),

we have that Ij |= H�
k . By the same argument Ii |= H�

k. Hence, by
Lemma 17, false(Ii) ∩ false(Ij) = ∅.

❏

We are now ready for Lemma 4.
Lemma 4 (restated). Let Ii, Ij ∈ L and assume i < j. At the end of each
iteration, if Ii, Ij ∈ L violate c ∈ T then false(Ii) ∩ false(Ij) = ∅.

Proof. On one hand, by Lemma 19 the pair (Ii, Ij) is a goodCandidate or
false(Ii) ∩ false(Ij) = ∅. On the other, by Lemma 20 the pair (Ii, Ij) is not
a goodCandidate or false(Ii) ∩ false(Ij) = ∅. We conclude that false(Ii) ∩
false(Ij) = ∅. ❏

Lemma 6 shows that (1) if an interpretation Ii is replaced and an element Ij is
removed from L then they are mutually disjoint; and (2) if any two elements are
removed then they are mutually disjoint. Lemmas 21 and 22 below prepare for the
proof of Lemma 6.

Lemma 21 Let P and I be a positive and a negative example, respectively. If
P ∈ P then P |= BUILDCLAUSES(I,P).

17

Proof. The proof is by induction on the number of elements in P. In the base
case P is empty, so the lemma holds trivially. Now suppose that the lemma holds
for P with m ∈ N elements. We show that it holds for P with m + 1 elements.
Let P be a fresh positive example. We first want to show that P |= BUILD-
CLAUSES(I,P · P). If P |= BUILDCLAUSES(I,P) then BUILDCLAUSES(I,P)
= BUILDCLAUSES(I,P · P). So, by induction hypothesis, the lemma holds.

Otherwise, P �|= BUILDCLAUSES(I,P). Let X → Y1∨Z1, . . . , X → Yk∨Zk

be the mvd clauses in BUILDCLAUSES(I,P) violated by P , where true(I) = X .
These mvd clauses are replaced, in BUILDCLAUSES(I,P · P), by X → �k

j=1 Yj ∨
(
�k

j=1 Zj \
�k

j=1 Yj). For short denote the latter mvd clause by X → Y � ∨ Z �.
Suppose to the contrary that P �|= BUILDCLAUSES(I,P · P). By construction
of BUILDCLAUSES(I,P · P), the only mvd clause that can be violated by P is
X → Y � ∨ Z �. Then, there is v, w ∈ false(P) such that v ∈ Y � and w ∈ Z �.
By definition of X → Y � ∨ Z �, there is X → Yi ∨ Zi ∈ BUILDCLAUSES(I,P)
such that w ∈ Zi. If w ∈ Zi then, by Lemma 2, there is X → Yj ∨ Zj ∈
BUILDCLAUSES(I,P) such that w ∈ Yj . If P �|= X → Yj ∨ Zj then this
contradicts the fact that w ∈ Z �. Otherwise, P |= X → Yj ∨Zj . So, false(P) ⊆ Yj
and X → Yj ∨ Zj ∈ BUILDCLAUSES(I,P). As v ∈ Yj ∩ Y �, we have that
Yj ∩ Y � �= ∅. This contradicts Lemma 2.

It remains to show that for any other P � ∈ P, we have that P � |= BUILD-
CLAUSES(I,P� · P). If P � �|= BUILDCLAUSES(I,P� · P) then the only clause
that can be violated by P � is X → Y � ∨ Z �. Then, there is v�, w� ∈ false(P �) such
that v� ∈ Y � and w� ∈ Z �. Therefore, v� ∈ Yi, for some X → Yi ∨ Zi ∈ BUILD-
CLAUSES(I,P) violated by P . If w� ∈ Z � then, as Z � = (

�k
j=1 Zj \

�k
j=1 Yj) =�k

j=1 Zj , we have that w� ∈ Zi. Then, P � �|= X → Yi ∨ Zi. This, contradicts the
fact that, by induction hypothesis, P � |= BUILDCLAUSES(I,P). ❏

Lemma 22 Let I,J and K be negative examples such that true(I) ⊆ true(J) ⊆
true(K). If K �|= BUILDCLAUSES(I,P) then K �|= BUILDCLAUSES(J ,P).

Proof. If K �|= BUILDCLAUSES(I,P) then there is true(I) → Y ∨Z ∈ BUILD-
CLAUSES(I,P) with v ∈ Y , w ∈ Z such that v, w ∈ false(K). If v, w ∈ false(K)
then v, w ∈ false(J). If there is true(J) → Y � ∨ Z � ∈ BUILDCLAUSES(J ,P)
with v ∈ Y �, w ∈ Z � then K �|= BUILDCLAUSES(J ,P). Otherwise, there is no
such mvd clause in BUILDCLAUSES(J ,P). This means that there is P ∈ P such
that true(J) ⊆ true(P) and v, w ∈ false(P). As true(J) ⊆ true(P), we have
that true(I) ⊆ true(P). Then, P �|= BUILDCLAUSES(I,P). Since P ∈ P, this
contradicts Lemma 21. ❏

We can now prove Lemma 6.

Lemma 6 (restated). In Line 14 of Algorithm 1, the following holds:

1. if Ij is removed after the replacement of some Ii ∈ L by J (Line 13) then
false(Ii) ∩ false(Ij) = ∅ (Ii before the replacement);

18

2. if Ij , Ik with j < k are removed after the replacement of some Ii ∈ L by J
(Line 13) then false(Ij) ∩ false(Ik) = ∅.

Proof. We first argue that if Ij is removed then i < j. Suppose to the con-
trary that j < i and Ij is removed after the replacement of Ii by J . Then,
Ij �|=BuildClauses(J), which means that true(J) ⊂ true(Ij). We have that (i)
true(Ij∩J) ⊂ true(Ij); (ii) Ij∩J |= H and (iii) (Ij∩J) �|= T (as Ij∩J = J).
Then, by Definition 1, the pair (Ij ,J) is a goodCandidate. This contradicts the
fact that in Line 11 of Algorithm 1, the first goodCandidate is replaced.

So we can assume that i < j < k. We now argue that under the conditions stated
by this lemma if false(Ii) ∩ false(Ij) = ∅ (respectively, false(Ij) ∩ false(Ik) = ∅)
does not hold then the pair (Ii, Ij) (respectively, (Ij , Ik)) is a goodCandidate
(Definition 1), which contradicts Lemma 20. In our proof by contradiction, we show
that conditions (i), (ii) and (iii) of Definition 1 hold for both (Ii, Ij) and (Ij , Ik).

• For condition (i): assume to the contrary that true(Ii) ⊆ true(Ij). By
Lemma 18, we know that true(J) ⊆ true(Ii). As true(J) ⊆ true(Ii) ⊆
true(Ij) and Ij �|= BUILDCLAUSES(J ,P), by Lemma 22, we have Ij �|=
BUILDCLAUSES(Ii,P), which is a contradiction with Lemma 16. Now, we
assume to the contrary that true(Ij) ⊆ true(Ik).
As true(J) ⊆ true(Ij) ⊆ true(Ik) and Ik �|= BUILDCLAUSES(J ,P), by
Lemma 22, we have Ik �|=BUILDCLAUSES(Ij ,P), which is a contradiction
with Lemma 16.

• For condition (ii): as Ij |= H\Hj (Lemma 16) we have Ij |= H\ (Hi∪Hj).
By the same argument Ii |= H\ (Hi∪Hj). If false(Ii)∩ false(Ij) �= ∅ then,
by Lemma 17, Ii ∩ Ij |= H \ (Hi ∪ Hj). In fact, by the argument above
for condition (i), true(Ii) �⊆ true(Ij). So, we actually have Ii ∩ Ij |= H.
Similarly, as Ij |= H \Hj (Lemma 16) we have Ij |= H \ (Hj ∪Hk). By
the same argument Ik |= H \ (Hj ∪Hk). If false(Ij) ∩ false(Ik) �= ∅ then,
by Lemma 17 and the fact that true(Ij) �⊆ true(Ik), we have Ij ∩ Ik |= H.

• For condition (iii): suppose to the contrary that Ii ∩ Ij |= T .

As Ij �|=BUILDCLAUSES(J ,P) and (by Lemma 18) true(J) ⊆ true(Ii),
we have that Ij ∩ Ii �|=BUILDCLAUSES(J ,P). Then, the condition in Line
2 of Algorithm 4 is satisfied. So Algorithm 4 appends Ii ∩ Ij to P and
recursively calls Function ‘UpdatePositiveExamples’ with J , P and L as
input. Then, by Lemma 21, Ii ∩ Ij |=BUILDCLAUSES(J ,P). Then, in
Line 14 of Algorithm 1, Ij |=BUILDCLAUSES(J ,P), which is a contradic-
tion. Similarly, suppose to the contrary that Ij ∩ Ik |= T . As both Ik, Ij
do not satisfy BUILDCLAUSES(J ,P), the condition in Line 2 of Algorithm
4 is satisfied. So Algorithm 4 appends Ij ∩ Ik to P and recursively calls
Function ‘UpdatePositiveExamples’ with J , P and L as input. Then, by
Lemma 21, Ij ∩ Ik |=BUILDCLAUSES(J ,P). Hence, when Line 14 of

19

Algorithm 1 is executed both Ij , Ik satisfy BUILDCLAUSES(J ,P), which is
a contradiction.

So conditions (i), (ii) and (iii) of Definition 1 hold for (Ii, Ij) and (Ij , Ik), which
contradicts Lemma 20. Then, false(Ii)∩ false(Ij) = ∅ and false(Ij)∩ false(Ik) =
∅. ❏

B Proof of Theorem 9

For convenience, we restate our definition of reduction presented in Section 4.

Definition 23 A learning framework F = (E,L, µ) polynomial time reduces to
F� = (E�,L, µ�) if, for some polynomials p1(·), p2(·, ·) and p3(·, ·) there exist a
function fMEM : L×E� → { ‘yes’, ‘no’} and a partial function fEQ : L×L×E →
E�, defined for every (l, h, e) such that |h| ≤ p1(|l|), for which the following
conditions hold:

• for all e� ∈ E� we have e� ∈ µ�(l) iff fMEM(l, e
�) = ‘yes’;

• for all e ∈ E we have e ∈ µ(l)⊕ µ(h) iff fEQ(l, h, e) ∈ µ�(l)⊕ µ�(h);

• fMEM(l, e
�) and fEQ(l, h, e) are computable in time p2(|l|, |e�|) and p3(|l|, |e|),

respectively, and l can only be accessed by calls to the membership oracle
MEMl,F.

Theorem 9 (restated). Let F = (E,L, µ) and F� = (E�,L, µ�) be learning frame-
works. If there exists a polynomial time reduction from F to F� and F� is polynomial
time exactly learnable then F is polynomial time exactly learnable.

Proof. Let A� be a polynomial time learning algorithm for (E�,L, µ�). We
construct a learning algorithm A for (E,L, µ), using internally the learning algo-
rithm A�, as follows. As learning (E,L, µ) polynomial time reduces to learning
(E�,L, µ�), we have that:

• there are functions fMEM : L×E� → { ‘yes’, ‘no’} and fEQ : L×L×E → E�

such that fMEM maps l ∈ L and ‘e� ∈ E�’ into ‘yes’ or ‘no’ (depending on
whether e� ∈ µ�(l)); and fEQ transforms a counterexample ‘e ∈ E’ into a
counterexample ‘e� ∈ E�’.

So, whenever a membership query with e� ∈ E� as input is called by A� we
compute fMEM(l, e

�) by making calls to the MEMl,F oracle. We return ‘yes’ to A� if
fMEM(l, e

�) = ‘yes’ and ‘no’ otherwise. Whenever an equivalence query with h ∈ L
as input is called by A� we pass it on to the EQl,F oracle. If it returns ‘yes’ then the
learner succeeded. Otherwise the oracle returns ‘no’ and provides a counterexample
e ∈ E. Then, we compute e� = g(l, h, e) and return it to A�. Notice that computing
fEQ(l, h, e) may also require posing additional membership queries (recall that l can
only be accessed via queries to the oracle MEMl,F).

20

By definition of fMEM and fEQ, all the answers provided to A� are consistent with
answers the oracles MEMl,F� and EQl,F� would provide to A�. Clearly, if algorithm
A terminates then it learns l.

It remains to prove the polynomial time bound for A. Let p1(·), p2(·) and p3(·, ·)
be the polynomials of Definition 23, that is,

• p1(|l|) is the polynomial bound on |h|;

• p2(|l|, |e�|) is the polynomial time bound for computing fMEM(l, e
�);

• p3(|l|, |e|) is the polynomial time bound for computing fEQ(l, h, e).

Let p(·, ·) be a polynomial such that in every run of A�, the time used by A� up
to each step of computation is bounded by p(|l|, |y�|), where |l| is the size of the
target l ∈ L and |y�| is the size of the largest counterexample y� ∈ E� seen by A� up
to that point of computation. As y� is the result of transforming with function fEQ

some counterexample y ∈ E given by the EQl,F oracle to algorithm A, its size |y�|
is bounded by p3(|l|, |y|). Notice that y is also the largest counterexample seen so
far by A. Thus, at every step of computation the time used by A� up to that step is
bounded by a polynomial p�(|l|, |y|) = p(|l|, p3(|l|, |y|)).

For every membership query with e� ∈ E� asked by A�, the size of e� does not
exceed the polynomial time bound of A� up to that point, that is, |e�| ≤ p�(|l|, |y|).
Then, the time needed to transform membership queries and answers to equivalence
queries is bounded by p�2(|l|, |y|) = p2(|l|, p�(|l|, |y|)) and p3(|l|, |y|), respectively.
All in all, at every step of computation the time used by A up to that step is bounded
by p�(|l|, |y|) · (p�2(|l|, |y|) + p3(|l|, |y|)), which is polynomial in |l| and |y|, as
required. ❏

C Reductions among Learning Problems

We now explain the reducibility of the learning problems presented in Figure 1.
For convenience, in Figure 2, we enumerate the reductions 4. Points (1) and (6)
follow from the fact that one can express any Horn formula with a polynomial size
MVDF (see Remark 2 below). Point (2) is given in Subsection C.2. We then have
Point (3), where have the MVDR → MVDFI direction proved in Subsection 4.1
(note that this also gives Point (8)). The other direction, MVDFI → MVDR, can
be proved with similar arguments. Point (4) follows from the fact that CRFMVF
is a restriction of MVDF. We show Point (5) in Subsection C.1. Finally, we show
Point (7) in Subsection C.3.

We write ant(c) (the antecedent) for the set of variables that occur negated in a
clause c (this set contains T if no variable occurs negated).

4Note that our reduction in Point (1) of Figure 2 is non-proper. Though, in this case one can avoid
this by translating the hypothesis to Horn whenever the algorithm poses an equivalence query (see
Remark 2).

21

MVDFI

HORNI CRFMVFIMVDRMVDFQ

HORNE CRFMVDR

MVDFE

(1) (4)
(2) (3)

(5)
(6) (7)

(8)

Figure 2: Reductions among learning problems

C.1 Propositional Horn: from Entailments to Interpretations

The learning framework F(HORNI), studied by [5], is defined as (EI ,LH, µI),
where LH is the set of all Horn sentences which can be formulated in a set of
variables V , EI is the set of interpretations over variables in V and, for a Horn
sentence T ∈ LH, µI(T) is defined as {I ∈ EI | I |= T }. We also define the
learning framework F(HORNE), studied by [13], as (EE ,LH, µE), where LH is the
set of all Horn sentences which can be formulated in a set of variables V , EE is the
set of all Horn clauses over variables in V and, for a Horn sentence T ∈ LH, µE(T)
is defined as {c ∈ EE | T |= c}.

An algorithm to learn Horn sentences from entailments is presented by [13],
where the authors mention that their solution is in fact an application of the learning
from interpretations algorithm presented by [5] with some twists. Here we give an
alternative proof, based on Theorem 9, which shows that learning Horn sentences
from entailments can be reduced in polynomial time to learning Horn sentences
from interpretations. To give our proof by reduction we use Angluin’s [5] algorithm
as a ‘black box’ and: (1) transform counterexamples given by equivalence queries,
which come as entailments into interpretations; and (2) transform the membership
queries, which come as interpretations into entailments. Let T be the target Horn
sentence and H the learner’s hypothesis. The following lemma shows how one can
simulate an equivalence query by transforming a counterexample in the learning
from entailments scenario into a counterexample in the learning from interpretations
scenario.

Lemma 24 Let F(HORNE) = (EE ,LH, µE) be the learning Horn from entailments
framework and F(HORNI) = (EI ,LH, µI) be the learning Horn from interpreta-
tions framework. Assume that the target T and the hypothesis H are in variables
V and |H| is polynomial in |T |. If c ∈ µE(T)⊕ µE(H) then one can construct in
time polynomial in |T | an interpretation I such that I ∈ µI(T)⊕ µI(H).

Proof. We show how one can transform a Horn clause c that is a positive
counterexample (in F(HORNE)) into a negative counterexample (in F(HORNI))
and vice-versa. If T �|= c and H |= c then we construct an interpretation I as
the result of initially setting true(I) = ant(c) and then exhaustively applying the
following rule:

22

• if T |= �
v∈true(I) → w (checked with membership query to MEMT ,F(HORNE)),

where w ∈ V \ true(I), then add w to true(I).

The resulting I is model of T . As T �|= c we know that the consequent of c is not in
true(I). Then, since ant(c) ⊆ true(I), we have that I does not satisfy H. That is,
I ∈ µI(T)⊕ µI(H). Notice that in this case we made |V | membership queries to
the oracle MEMT ,F(HORNE). When T |= c and H �|= c the argument is similar but
we need to check whether H |= �

v∈true(I) → w, where w ∈ V \ true(I). Since in
this case we evaluate the hypothesis, no membership query is necessary to produce
a negative counterexample. ❏

To simulate membership queries we transform an interpretation I into poly-
nomially many entailment queries which together decide whether I satisfies T or
not.

Lemma 25 Let F(HORNE) = (EE ,LH, µE) be the learning Horn from entailments
framework and F(HORNI) = (EI ,LH, µI) be the learning Horn from interpre-
tations framework. For any interpretation I of a target concept representation
T ∈ LH, one can decide in polynomial time in |T | whether I ∈ µI(T).

Proof. A very straightforward algorithm to decide whether I satisfies T is
described as follows. Let C = {�v∈true(I) → z | z ∈ false(I)}. For every c ∈ C
the algorithm calls MEMT ,F(HORNE) asking whether T |= c. If the answer to any
of these queries is ‘yes’ then return ‘no’. That is, I does not satisfy T . Otherwise,
return ‘yes’, I satisfies T . ❏

Lemmas 24 and 25 show how one can compute, respectively, fEQ and fMEM

described in Definition 23. Then, using Theorem 9, we obtain an alternative proof
for the result presented by [13].

Theorem 26 ([13]) The problem of learning propositional Horn from entailments,
more precisely, the learning framework F(HORNE), is polynomial time exactly
learnable.

C.2 Multivalued Dependency Formulas: from 2-quasi-Horn to Inter-
pretations

The learning framework F(MVDFQ), studied by the authors of [16], is formally de-
fined as (EQ,LM, µQ), where LM is the set of all MVDFs which can be formulated
in a set of variables V , EQ is the set of 2-quasi-Horn clauses over variables in V
and, for a MVDF T ∈ LM, µQ(T) is defined as {e ∈ EQ | T |= e}.

We show that learning MVDF from 2-quasi-Horn clauses is reducible to learning
MVDF from interpretations. More precisely, F(MVDFQ) polynomial time reduces
to F(MVDFI). To give our proof by reduction we use the algorithm presented in
Section 3 as a ‘black box’ and: (1) transform the membership queries, which come as
interpretations into 2-quasi-Horn clauses; and (2) transform counterexamples given

23

by equivalence queries, which come as 2-quasi-Horn clauses into interpretations.
Let T be the target MVDF and H the learner’s hypothesis. To simulate membership
queries we transform an interpretation I into polynomially many 2-quasi-Horn
queries which together decide whether I satisfies T or not.

Lemma 27 Let F(MVDFQ) = (EQ,LM, µQ) be the learning MVDF from 2-quasi-
Horn framework and F(MVDFI) = (EI ,LM, µI) be the learning MVDF from
interpretations framework. For any interpretation I of a target concept representa-
tion T ∈ LM, one can decide in polynomial time in |T | whether I ∈ µI(T).

Proof. A very straightforward algorithm to decide whether I satisfies T is
described as follows. Let C = {�v∈true(I) → w ∨ z | w, z ∈ false(I)} ∪ {V →
F | true(I) = V }. For every c ∈ C the algorithm calls MEMT ,F(MVDFQ) asking
whether T |= c. If the answer to any of these queries is ‘yes’ then return ‘no’. That
is, I does not satisfy T . Otherwise, return ‘yes’, I satisfies T . ❏

We note that in the learning framework F(MVDFQ) one can use the membership
oracle to ensure that at all times T |= H. Then, we can assume w.l.o.g. that all coun-
terexamples given by the oracle are positive. To transform positive counterexamples,
we employ the following result from [16].

Lemma 28 (Direct Adaptation from [16]) Let F(MVDFQ) = (EQ,LM, µQ) be the
learning MVDF from 2-quasi-Horn framework and F(MVDFI) = (EI ,LM, µI)
be the learning MVDF from interpretations framework. Assume that the target
T and the hypothesis H are in variables V and |H| is polynomial in |T |. If
c ∈ µQ(T)⊕ µQ(H) is a positive counterexample then one can construct in time
polynomial in |T | an interpretation I such that I ∈ µI(T)⊕ µI(H) is a negative
counterexample.

The proof of Lemma 28 in [16] involves the construction of a polynomial
size semantic tree for the hypothesis H. The transformation of negative 2-quasi-
Horn counterexamples is also possible. In this case, we would require additional
(polynomially many) membership queries to construct a semantic tree. Lemmas
27 and 28 show how one can compute, respectively, fMEM and fEQ described in
Definition 23. Then, using Theorem 9, we obtain an alternative proof for the result
presented by [16].

Theorem 29 ([16]) The problem of learning MVDF from 2-quasi-Horn clauses,
more precisely, the learning framework F(MVDFQ), is polynomial time exactly
learnable.

The difficulty in showing a reduction in the other direction, from F(MVDFI)
to F(MVDFQ), is to decide whether the target entails a 2-quasi-Horn clause using
polynomially many membership queries with interpretations as input.

24

C.3 Multivalued Dependency Formulas: from 2-quasi-Horn to Entail-
ments (mvd clauses)

The learning framework F(MVDFE) is defined as (EE ,LM, µE), where LM is the
set of all MVDFs which can be formulated in a set of variables V , EE is the set of
mvd clauses over variables in V and, for a MVDF T ∈ LM, µE(T) is defined as
{e ∈ EE | T |= e}.

We show that learning MVDF from 2-quasi-Horn clauses is reducible to learn-
ing MVDF from entailments. More precisely, F(MVDFQ) polynomial time reduces
to F(MVDFE). To reduce the problem we: (1) transform the membership queries,
which come as mvd clauses into 2-quasi-Horn clauses; and (2) transform counterex-
amples given by equivalence queries, which come as 2-quasi-Horn clauses into
mvd clauses. Let T be the target MVDF and H the learner’s hypothesis. The next
lemma is immediate, it follows from the fact that any mvd clause is equivalent to
polynomially many 2-quasi-Horn clauses (see Remark 2).

Lemma 30 Let F(MVDFQ) = (EQ,LM, µQ) be the learning MVDF from 2-quasi-
Horn framework and F(MVDFE) = (EE ,LM, µE) be the learning MVDF from
entailments framework. For any mvd clause c of a target concept representation
T ∈ LM, one can decide in polynomial time in |T | whether c ∈ µE(T).

Lemma 32 shows how one can transform the counterexamples. To show
Lemma 32, we use the following technical lemma, proved by [16].

Lemma 31 ([16]) Let T be a set of mvd clauses formulated in V . If T |= V1 →
V2 ∨ V3 then either T |= V1 → (V2 ∪ {v}) ∨ V3 or T |= V1 → V2 ∨ (V3 ∪ {v}),
where V1, V2, V3, {v} ⊆ V and V2, V3 are non-empty.

Lemma 32 Let F(MVDFQ) = (EQ,LM, µQ) be the learning MVDF from 2-quasi-
Horn framework and F(MVDFE) = (EE ,LM, µE) be the learning MVDF from
entailments framework. Assume that the target T and the hypothesis H are in
variables V and |H| is polynomial in |T |. If c ∈ µQ(T) ⊕ µQ(H) then one can
construct in time polynomial in |T | an mvd clause c� such that c� ∈ µE(T)⊕µE(H).

Proof. We show how one can transform a 2-quasi-Horn clause X → v ∨ w
that is a positive counterexample (in F(MVDFQ)) into a positive counterexample
(in F(MVDFE)). If T |= X → v ∨ w and H �|= X → v ∨ w then we construct an
mvd clause as the result of initially setting W = V \ (X ∪ {v, w}), Y = {v} and
Z = {w} and then applying the following rule until X ∪ Y ∪ Z = V :

• if T |= X → (Y ∪ {w�}) ∨ Z, where w� ∈ W , (checked by posing member-
ship queries to MEMT ,F(MVDFQ), as in Remark 2) then add w� to Y . Other-
wise, add w� to Z.

By Lemma 31 either T |= X → (Y ∪ {w�}) ∨ Z or T |= X → Y ∨ (Z ∪ {w�})
must hold. Then, T |= X → Y ∨ Z. As {X → Y ∨ Z} |= X → v ∨ w, we

25

have that H �|= X → Y ∨ Z. That is, X → Y ∨ Z ∈ µE(T) ⊕ µE(H). When
T �|= X → v ∨ w and H |= X → v ∨ w the argument is similar but we need to
check whether H |= X → (Y ∪ {w�}) ∨ Z, where w� ∈ W . Since in this case we
evaluate the hypothesis, no membership query is necessary to produce a negative
counterexample. ❏

Lemmas 30 and 32 show how one can compute, respectively, fMEM and fEQ de-
scribed in Definition 23, and, so, F(MVDFQ) polynomial time reduces to F(MVDFE).
The difficulty in showing a reduction in the other direction, from F(MVDFE) to
F(MVDFQ), is to decide whether the target entails a 2-quasi-Horn clause using
polynomially many membership queries with mvd clauses as input.

26

