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Abstract
This article falls within the scope of topology optimization for Additive Manufacturing processes and proposes an alterna-
tive strategy to prevent the phenomenon known as the Dripping Effect. The Dripping Effect is when an overhang constraint 
is imposed on topology optimization processes for Additive Manufacturing and is defined as the formation of oscillatory 
contour trends within the prescribed threshold angle. Although these drop-like formations constitute local minimizers of the 
constraint function, they do not provide a printable feature, and, therefore, they neither eliminate the need to form temporary 
support structures. So far, there has been no general agreement on how to prevent the Dripping Effect, so this work aims to 
introduce a strategy that effectively prevents it, and that at the same time may be easy to extrapolate to other types of geo-
metric overhang restrictions. This paper provides a study of the origin of the Dripping Effect and gives detailed instructions 
on how the proposed prevention strategy is applied. In addition, several benchmark examples where the Dripping Effect is 
prevented are shown.
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1 Introduction

Additive Manufacturing (AM) is the process of joining 
material to make objects from 3D model data, usually layer 
upon layer, as opposed to subtractive manufacturing method-
ologies, such as traditional machining (ASTM International 
2012). Usually, the input of these manufacturing techniques 
is constituted by a Computer-Aided Design (CAD) model, 
usually supplied under the form of a surface mesh that after a 
slicing process is converted into a series of two-dimensional 
layers. During the manufacturing process, these layers are 
individually assembled one on top of the other until they 
form a solid representation of the object.

The generation of 3D objects adding material layer by 
layer gave AM unprecedented power, so its introduction 
entailed a complete revolution of the fabrication capaci-
ties (Gibson et al. 2015). Namely, they put the complex 

geometries that were previously unattainable within the 
reach of designers and boosted design freedom. This power 
rapidly fell into the attention of designers, who started to 
combine the new fabrication capacities with the very well-
established topology optimization processes. The binomial 
turned to be quite promising, and several high-performance 
novel designs can endorse it (EOS Aerospace 2018).

However, and despite their many assets, additive pro-
cesses are not fully mature and suffer from several draw-
backs: lack of scalability, anisotropy of the properties of the 
built part, and stair stepping or limit of the part size among 
others (Tofail et al. 2018; Bikas et al. 2019; Gao et al. 2015; 
Abdulhameed et al. 2019). Closer to the scope of the pre-
sent work is the difficulty that additive processes experience 
when it comes to completing parts that have unsupported 
members, namely, large overhanging limbs with non-print-
able slopes. The minimum overhang angle is the smallest 
manufacturable overhang angle and typically amounts to 45° 
in Selective Laser Melting (Thomas 2009). This value is still 
a general convention, and it depends on the parameters of the 
process (Wang et al. 2013). If the part to be built includes 
such features, it can either collapse, distort, or break during 
the manufacturing process. These types of problems during 
the printing process can be avoided by introducing supports, 
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but this solution entails further post-processing and greater 
material expenses.

Another alternative to solve these manufacturing prob-
lems is to address the overhang limitation of AM processes 
during the design stage, which in recent years was referred 
to as Design for Additive Manufacturing (DfAM). Some 
authors worked on the idea of optimizing the support struc-
tures needed to make the part printable (Vanek et al. 2014; 
Mirzendehdel and Suresh 2016; Calignano 2014; Leary et al. 
2014), others introduced strategies to minimize the amount 
of support material by finding the optimal build direction of 
the part (Morgan et al. 2016). Alternatively, many authors 
developed strategies to effectively introduce an overhang 
constraint as a manufacturing constraint within the topology 
optimization problem formulation (Guo et al. 2017; Wang 
et al. 2021; de Ven et al. 2020).

Roughly, the different strategies that address the over-
hang issue during the topology optimization problem can 
be classified into additive manufacturing filters (Zhang et al. 
2019; Gaynor and Guest 2016; Langelaar 2017, 2016; Zou 
et al. 2021; van de Ven et al. 2018) and geometric overhang 
constraints (Qian 2017; Garaigordobil et al. 2019, 2018; 
Garaigordobil and Ansola 2019; Garaigordobil 2018; Allaire 
et al. 2017). The former group of methods analyses layer by 
layer whether the solid elements have enough support mate-
rial underneath, while the latter explores the design domain 
looking for the contours of the structure, analyzing their 
inclination, and correcting those who are below a threshold 
overhang angle.

However, many authors have reported an erratic contour 
formation, especially, when the overhang was controlled 
by geometric means (Qian 2017; Allaire et al. 2017). This 
contour pattern was later known as the Dripping Effect and 
consists of the formation of drops of solid material that gives 
the contours the appearance of oscillating within the pre-
scribed threshold angle (Fig. 1). This work evolves in this 
line of work and studies the Dripping Effect in geometric 
overhang constraints.

Concisely, this article aims to provide an effective proce-
dure to prevent the formation of oscillatory contours. The 
specific contributions of the present paper can be listed as a 
novel strategy to suppress the Dripping Effect or oscillatory 
contour trend, and the introduction of the sigmoid function 
to get linearized and differentiable forms of the developed 
equations.

The article is organized as follows. Section 2 introduces 
the edge detection algorithm used in this work along with 
the overhang constraint that was developed in previous 
works. Section 3 discusses the Dripping Effect and explains 
how the new prevention method is applied. Section 4 intro-
duces the filtering and projection schemes, and section 5 
shows the formulation of the problem and its derivatives. 
Then, section 6 proposes several benchmark examples and 
analyzes the performance of the new approach. Finally, sec-
tion 7 presents the conclusions reached.

2  Edge detection and overhang constraint

The overhang situation of any part is determined by the 
number, inclination, and length of the overhanging members 
present in it; therefore, a first step to attempt to address the 
overhang problem is to develop an algorithm that can rec-
ognize shapes and detect contours and their inclination. For 
that reason, this work resorts to the field of Digital Image 
Processing (DIP) and adopts the ideas of the Smallest Uni-
value Segment Assimilating Nucleus (SUSAN) algorithm 
(Smith and Brady 1997)

Once the contours are detected, an easy rule that con-
siders their inclination determines whether these are sup-
ported or unsupported, which in turn allows obtaining a 
representative magnitude of the global overhang situation 
of the current topology. Eventually, the topology optimiza-
tion algorithm interprets this magnitude to finally obtain a 
completely self-supported design. This section introduces 
the contour and boundary detection procedure, along with 
a quick overview of the overhang constraint developed in 
Garaigordobil et al. (2018, 2019) and Garaigordobil (2018)

2.1  Contour evaluation algorithm

The SUSAN is used in DIP as a solid tool to detect image 
contours. It works by simultaneously sweeping the domain 
with a mask while analyzing the intensity gradient of the 
pixels covered by the mask. At each position, the operator 
counts the value that characterizes the similarities between 
each pixel of the image and its neighborhood. Note that the 
positioning of the mask should allow its nucleus to match 
a pixel. The method has already been proven effective and 
reliable in the field of image processing, and it is fast when 
applied to optimization systems based on iterative evalua-
tion of functions (Fymbo and Rasmussen 2001), and it is 
applicable to 3D domains and unstructured meshes (Walter 
et al. 2009b, 2009c; Walter et al. 2009a).

The design domain of a topology optimization prob-
lem does not contain pixels with intensity levels, but it is 
formed by finite elements with different gray levels, which, 
in any case, are very similar sets. Only a few modifications Fig. 1  Design of an MBB beam with oscillatory contours
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are needed to integrate the SUSAN algorithm within the 
framework of a topology optimization method, which is 
very straightforward, as simply requires replacing pixels by 
elements, while gray levels (or density values) substitute 
intensity levels. Alternatively, a square mask that fits all the 
corners of the domain, see Fig. 2, substitutes the circular 
mask. This approach showed to be convenient and effective 
even with the initial blurry intermediate designs.

2.1.1  Edge detection

Based on the idea of SUSAN, the modified version of the 
method evaluates the gray levels of the neighborhoods of 
elements covered in the different positions of the mask 
and obtains a contour vector for each of these positions. 
The contour vector vcg originates from the center of the 
mask and passes through its center of gravity; therefore, it 
is always normal to the detected contour. In addition, the 
angle � formed between this vector and the building direc-
tion is equivalent to that formed by the contour and the build 
plate of the 3D printing machine, Fig. 3. This information 
is essential to determine whether a contour can be safely 
printed or not. The building direction can be any, but to 
formalize the formulation, from now on and in the rest of 
the paper, a building direction parallel to the vertical y axis 
is considered.

In the modified version of the algorithm, the contour vec-
tor vcg , Eq. (1), is formed by its components, qx and qy , the 

static moments of the set of elements covered by the mask, 
calculated through Eqs. (2) and (3).

 where xi and yi are the coordinates of the ith element covered 
by the mask on a local xy reference system with the origin at 
the nucleus of the mask, and �i is the density of that element. 
Finally, n is the number of elements covered by the mask.

Based on the above formulation, it is said that the mask 
detects a contour when the length of the contour vector is 
non-zero. Considering that the contours formed in the opti-
mization problem are inter-pixel contours, the static 
moments are at their maximum when the nucleus of the 
mask is placed right on the contour. Therefore, the closer the 
mask is from an interface, the longer the vector is, while for 
one-phase neighborhoods, all qx , qy , and |||vcg

||| are zero, which 
suggests the presence of no interface.

For the inclination of the contour, it can be easily com-
puted with the following rule:

2.1.2  Contour classification

According to their inclination and the defined overhang 
limit angle, the contours are classified into supported and 
unsupported. We say that a contour is supported when its 
inclination is above the limit overhang angle ψ, that is, any 
contour that complies with � ≥ � is considered as a sup-
ported contour and, therefore, can be safely printed. All 
other contours are unsupported and require sacrificial sup-
port material (scaffold structures) to prevent their collapse 
during the AM process.

Alternatively, the rule for classifying contours developed 
by the authors in previous works compares the component 
of the contour vector parallel to the building direction, qy , 
with a threshold value computed for that specific vector, 
qy

� , see Fig. 4. Then, all supported contours comply with 
qy ≤ qy

� , while unsupported contours obey qy > qy
𝜓 . The 

value obtained in this comparison is gathered as 
∼
�
m(�) , and 

Eqs. (5) and (6) control the thresholding process.

(1)vcg = (qx, qy),

(2)qx =

n∑
i=1

xi ⋅ �i,

(3)qy =

n∑
i=1

yi ⋅ �i,

(4)tan(�) =
qx

qy
.

Fig. 2  Domain sweeping process with a square mask

Fig. 3  Representation of a contour vector and the detected contour
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The above presented Eq. (5) provides an easy expression 
to classify contours, but it is conflicted by the zero values of 
qx , which is common in one-phase neighborhoods. In Garai-
gordobil et al. (2018, 2019) and Garaigordobil and Ansola 
(2019), Eq. (5) is evolved to a new expression that avoided 
the issue with the zero values of qx , but the new form was, 
however, non-linear. The present paper introduces a new for-
mulation of the contour classification equation, a linearized 
and differentiable form obtained by integrating the sigmoid 
function:

where k is a constant parameter that adjusts the equation 
and m refers to the mth position of the mask.

The overhang situation of each detected contour is finally 
determined by the value of Eq. (7). The rule for the new 
contour classification equation is similar to the original, with 
positive and negative values corresponding to unsupported 
and supported contours, respectively. Once the contours are 
classified, the algorithm proceeds to quantify the unsup-
ported and supported sets using Eqs. (8) and (9):

(5)
∼
𝜑
m
(𝜌) =

qy

q
𝜓
y

− 1 =

⎧⎪⎨⎪⎩

if
∼
𝜑
m
(𝜌) > 0 unsuported contour

if
∼
𝜑
m
(𝜌) ≤ 0 supporter contour

(6)qy
� =

|qx|
tg(ψ)

.

(7)

�m(�) = qy ⋅ sin(ψ) −

(
2

k
⋅ ln

(
1 + ek⋅qx

2

)
− qx

)
⋅ cos(ψ),

(8)�unsupported(�)= �+(�) =
∑M

m=1
�m ⋅ (

1

1 + e−�⋅�m

),

The latter equations are also the linearized and differen-
tiable/smoothed versions of the equations in the references 
(Garaigordobil et al. 2018, 2019; Garaigordobil and Ansola 
2019), where M is the number of positions that the mask 
takes to sweep the domain and � is a constant parameter 
that adjusts these equations. In this work, the parameters to 
adjust the equations are given values of � = 100 and k = 100

.

2.2  Overhang constraint

The process of eliminating the volume of sacrificial sup-
port material by constraining the overhang angle can be per-
formed elementwise; however, it would generate an unaf-
fordable amount of local constraints. Therefore, rather than 
defining local overhangs, the authors proposed a magnitude 
that is representative of the global overhang situation of the 
structure, �(�) (Garaigordobil et al. 2018). This magnitude 
is calculated as the contribution of the set of supported 
contours concerning the total contribution as described in 
Eq. (10).

This equation can give values in the range of [0–1], where 
� = 0 denotes a completely unsupported design and � = 1 is 
representative of a self-supporting structure. For the values 
in between, there will be some supported and some unsup-
ported contours.

For the task at hand, the overhang situation of the struc-
ture should ideally be � = 1 ; however, the authors found that 
this is not truly the case. Slightly lower values of � allow the 

(9)�supported(�)= �−(�) =
∑M

m=1
(−�m) ⋅ (

1

1 + e�⋅�m

).

(10)�(�) =
�−

�− + �+

Fig. 4  Physical meaning of the 
contour classification equation. 
A supported contour v

cg

(1) and 
an unsupported contour v

cg

(2)
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formation of smooth connections between downward-facing 
contours as small fillets that violate the constraint but that 
due to their short length can be safely printed. Taking that 
into account, the constraint, Eq. (11), is written so that the 
overhang situation of the optimized design can have any 
value in the range of [0–1].

In this equation, �0 is the control parameter that allows 
the different values of � and can take values in the range of 
[0–1]. This way, the constraint is active when � = �0 , and 
inactive when 𝜙 > 𝜙0.

The role of the control parameter is to allow overhang 
situations that are below the unit. This definition gives 
the chance to avoid sharp edges and allow the formation 
of unsupported, yet printable, short overhanging contours 
when the control parameter is slightly below the unit. A 
zero value of �0 supposes that the overhang constraint is 
already satisfied for any value of � and � , which is similar 
to having no overhang constraint. On the other hand, inter-
mediate values lead to what the authors call “partially sup-
ported designs”, which are topologies halfway between the 
unconstrained problem and the supported design. In other 
words, the control parameter offers the opportunity to get 
non-constrained, partially supported, or completely self-
supported topologies with or without rounded overhanging 
fillets. The reader is referred to the studies (Garaigordobil 
et al. 2019; Garaigordobil 2018) for extended information 
on the control parameter.

3  Dripping effect

3.1  The problem with the oscillatory boundaries

The Dripping Effect is the formation of oscillatory contours 
within the prescribed threshold overhang angle. These drop-
like formations are reported in many publications, see for 
example (Allaire et al. 2017; Qian 2017; Zhang et al. 2019), 
and the following section is focused on analyzing the forma-
tion of these drop-like regions.

To begin with, the following case of an MBB beam is 
considered. Because of the small overhanging angles and the 
near-horizontal solid member in the upper part, the conven-
tional optimized topology can hardly be 3D printed without 
supporting structures with the building direction depicted 
in Fig. 5. What a geometric overhang constraint does when 
these solid members start to nucleate, is to form support 
paths that connect the overhanging interfaces with other 
solid members or the build plate. Ideally, over the course of 
iterations, these support members would be integrated into 

(11)g(�) =
�0

�
− 1 ≤ 0

the main structure and evolve into a self-supported, opti-
mized topology. However, collected data suggest that if the 
geometric constraint evaluates the overhang in very small 
neighborhoods, it can lead to numerous and very thin paths 
of support material that can easily tear due to the filtering 
and projection of densities, provoking the characteristic tri-
angular shape of the drops (see Fig. 6).

The reason for what they are formed and not erased over 
the course of iterations is because oscillatory contours con-
stitute local minimizers of the constraint and only violate 
the overhang constraint in the cusps of the drops, leading 
to dramatic decreases of the constraint functional. Besides, 
in terms of compliance, the drops do not have any signifi-
cant impact on the mechanical performance of the struc-
ture. Therefore, the algorithm would rather form oscillating 
boundaries than degrade the structural performance of the 
part by rearranging the large horizontal bars, especially in 
those members that bear great load.

3.2  A strategy to prevent the Dripping Effect

Although no general agreement has been proposed yet, a few 
proposals to suppress the formation of oscillatory contours 
can be found. In Allaire et al. (2017), the authors concluded 
that geometric overhang constraints were not sufficient to 
effectively constraint the overhang because they cannot 
ensure oscillatory contour-free topologies. They suggested 
that additional constraints have to be introduced in the 
problem in the form of perimeter or mechanical constraints. 
Another strategy (Zhang et al. 2019) proposed the introduc-
tion of a horizontal minimum member size constraint that 
avoided the formation of drops. Alternatively, Qian (2017) 
proposed several guidelines to avoid the Dripping Effect and 
concluded that larger filter sizes, combined with a grayness 
constraint and Heaviside filtering, could be used to suppress 
the Dripping Effect.

The common factor of these strategies is the introduction 
of additional design constraints to control the formation of 
drops. This work presents an alternative strategy that is easy 
to implement and builds on the idea that the Dripping Effect 
is the consequence of an excessively local evaluation of the 
overhang.

Fig. 5  Conventional topology optimization results of a half MBB. 
Unsupported contours in red color
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The drops appear after the density filtering and projec-
tion step (see section 4) tears the thin support material 
paths formed while the density field is still non-binary 
(see Fig. 6). The latter means that the formation of exces-
sive support members must be discouraged to prevent the 
formation of the drops, which is achieved by increasing 
the size of the areas where the overhang is evaluated. In 
this way, the problem of oscillatory boundaries could be 
avoided by increasing the size of the mask that sweeps 
the domain.

On the other hand, evaluating the overhang in larger 
neighborhoods could be ineffective to prevent unsup-
ported members. Due to its bigger size, the mask could 
cover several contours at the same time, so the gener-
ated contour vector would not be representative of any 
of them. Hence, there is a compromise between prevent-
ing the formation of excessive material support paths and 
good prevention of unsupported boundaries.

To tackle both situations, this work proposes a continu-
ation scheme that slowly decreases the size of the mask. 
Concisely, the behavior of the proposed strategy can be 
resumed as follows. In the early stages of the optimization 
problem, while the domain is still populated by gray den-
sities, this strategy avoids the formation of excessive sup-
port material paths by evaluating the overhang in larger 
neighborhoods. This way, the fewer support members 
that nucleate are thick and soon become part of the main 
structure. Once the density field is binary enough, the 
local inclination of the overhanging members is more rig-
orously controlled with small masks so that the structure 
becomes self-supporting. Note that the proposed strategy 
will be formulated for regular-orthogonal discretization; 
however, the formulation can be extended to unstructured 
meshes and non-unit-size elements, by adapting the edge 
detection algorithm as in Walter et al. (2009b).

4  Density filtering and Heaviside projection

To eliminate checkerboard patterns, mesh dependency, and 
implicitly introduce a minimum length scale, this work 
adopts a density filtering and projection routine. This strat-
egy generates a cascade of variables � → �̂ → � , where 
�̂ is the vector of filtered independent design variables 
� (Bourdin 2001; Bruns and Tortorelli 2001), and � is 
the vector of projected �̂ (F. Wang et al. 2011). In the 
first approaches to overhang constraints, the authors stud-
ied alternative filtering strategies, and the above routine 
proved to be very effective.

The initial filtering step consists of the weighted aver-
age of the independent design variable (Bruns and Tor-
torelli 2001; F. Wang et al. 2011):

 where vi is the volume of element i , wei is the weight factor, 
and Se is the set of i elements in the domain of influence of 
element e , that is, the set where the center-to-center distance 
to the element e is smaller than the filter radius rmin:

 The smoothing operation above limits the space of pos-
sible designs and solves the mesh dependency problem 
but also introduces gray transition zones at the interface 
between solid and void phases. To avoid transition areas, a 
density projection step that projects the intermediate densi-
ties, �̂ , onto the physical field, � , is added to the problem 
formulation. The projection is performed through a continu-
ous approximation of the Heaviside function based on the 
hyperbolic tangent function, where the values of �̂e below 

(12)�̂e =

∑
i�Se

vi ⋅ wei ⋅ �i∑
i�Se

vi ⋅ wei

,

(13)wei = rmin − |dist(e, i)|

Fig. 6  The process of formation 
and iteration wise evolution of 
oscillatory boundaries in a half 
MBB
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the threshold T  are projected to zero and the values above 
are projected to one (Wang et al. 2011):

In Eq. (14), � is a scaling parameter that controls the 
steepness of the continuous approximation of the Heavi-
side function. The projected densities � are referred to as 
the physical densities and will be presented as the solution 
to the optimization problem. Similarly, the objective and 
constraint functions will be computed as functions of � , 
given that this field is a function of the design variables.

5  Problem formulation and sensitivity 
analysis

5.1  Problem formulation

In the problem formulation presented in this work, the design 
domain is discretized with finite elements that are given an ini-
tial uniform value of material density, which, in turn, forms the 
vector of independent design variables � = (�1,�2,… , �N)

T . 
Since the relaxation of the problem allows any density value in 
the range of [0,1], the material properties of the elements are 
interpolated with the modified SIMP method (Bendsøe 1989; 
Rozvany et al. 1992) according to

 where Ee is the Young modulus of the eth finite element, �e 
is the physical density of the eth element, and E0 is the Young 
modulus of the solid isotropic material, with unit value in 
this work. The minimum Ee is given a value of Emin = 10

−9 . 
Finally, p is the penalization factor.

The minimum compliance topology optimization problem 
with overhang constraints for AM is formulated as follows:

 The compliance of the structure, c
(
�
)
 , is set as the objec-

tive function to be minimized, where U is the displacement 
vector and K is the global stiffness matrix. The displacement 

(14)�e =
tanh(� ⋅ T) + tanh(� ⋅ (�̂e − T))

tanh(� ⋅ T) + tanh(� ⋅ (1 − T))
.

(15)Ee(�e) = Emin + �e
p
⋅ (E0 − Emin),

(16)

min ∶

�
c
(
�
)
= UT

⋅ K ⋅ U =
∑N

e=1
Ee

(
�e
)
⋅ ue

T
⋅ k0 ⋅ ue,

(17)Subjectedto ∶ F = K ⋅ U,

(18)
V
(
�
)

V0 ⋅ f
− 1 ≤ 0,

(19)g(�) ≤ 0,

(20)0 ≤ �e ≤ 1.

vector of the eth element is ue , and k0 is the stiffness matrix 
of an element with unit Young modulus. F is the load vec-
tor, and Eq. (18) denotes the conventional volume fraction 
constraint, where V

(
�
)
 is the volume of the current design 

point, V0 is the volume of the design domain, and f  is the 
upper bound of the volume fraction. Equation (19) denotes 
the overhang constraint introduced in the problem, and 
Eq. (20) describes the set of admissible values for the design 
variables. In the results that are going to be presented, both 
volume fraction and overhang constraints are active.

The optimization problem is solved using the MMA method 
(Svanberg 1987). At this point, it must be considered that the 
sensitivities of the problem may be increasingly ill conditioned 
for high values of the scale parameter � . A sharp approxima-
tion to the step function may generate aggressive oscillations 
in the default MMA approach, whereby the distance of the 
asymptotes from the current point is modified in terms of � 
as proposed in (Guest et al. 2011). In addition, a continuation 
scheme is introduced for � and the penalization factor p of the 
SIMP parametrization.

5.2  Sensitivity analysis

The sensitivity analysis of the functions involved in the 
problem is presented in this section. Considering that the 
independent design variable is still � , but the problem is, 
nonetheless, formulated in terms of � , the partial deriva-
tive of any function f

(
�
)
 involved in the problem concern-

ing a design variable �e is calculated with the chain rule 
(F. Wang et al. 2011):

 The second and third terms on the right side of the equality 
are common for any function f

(
�
)
 and are calculated with 

Eqs. (22) and (23), (Jansen et al. 2013).

 The derivative of the first term on the right-hand side of 
Eq. (21) varies according to the function f

(
�
)
 that is being 

considered. That derivative is well known for the objective 
function c

(
�
)
 and is given as follows (Martin P. Bendsøe 

and Sigmund 2004):

(21)
�f
(
�
)

��e
=
∑
j∈Se

�f
(
�
)

��j
⋅

��j

��̂j
⋅

��̂j

��e
.

(22)
��j

��̂j
=

� ⋅ [1 − tanh2
(
� ⋅

(
�̂j − T

))
]

tanh(� ⋅ T) + tanh(� ⋅ (1 − T))
,

(23)
��̂j

��e
=

wje∑
i∈Sj

wji

.



4072 A. Garaigordobil et al.

1 3

 In the case of the volume fraction constraint, the derivative 
for the physical density is

 where Ve is the volume of the finite element e.
The overhang constraint g(�) is the last remaining func-

tion that is derived with respect to the physical density. 
In this case, we start by setting out the derivatives of 
Eq. (11):

 We now develop the last term in parenthesis of Eq. (26) that 
results in Eq. (27). It is seen there that the process requires 
the computation of the derivatives of the supported and 
unsupported sets.

 The latter expression is developed by taking derivatives in 
Eqs. (8) and (9).

 Finally, it is necessary to compute the derivatives of the 
contour classification equation, Eq. (7), for substitution in 
the above Eqs. (28) and (29). These derivatives are obtained 
as follows:

 Equations (26, 27, 28, 29, 30) can be gathered all together 
to obtain a single expression for the derivatives on the over-
hang constraint with respect to the physical density.

(24)
�c
(
�
)

��j
= −p ⋅ �j

p−1
⋅

(
E0 − Emin

)
⋅ uj

T
⋅ k0 ⋅ uj.

(25)
�
(

V(�)
V0⋅f

− 1

)

��j
=

Vj

V0 ⋅ f
,

(26)

�(g(�))

��j
=

�
(

�0

�
− 1

)

��j
= �0 ⋅

�
(

1

�

)

��j
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�
(

�−+�+

�−

)

��j

(27)
�
(

�−+�+

�−

)

��j
=

1

(�−)2
⋅

(
�(�+)

��j
⋅ �− −

�(�−)

��j
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)

(28)

�(�+)

��j
=
∑M

m=1

1
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⋅

(
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)
) ⋅

��m

��j
,

(29)

�(�−)

��j
=
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(−1)
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⋅

(
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)
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��j
.

(30)

�(�m)

��j
= yj ⋅ sin(ψ) −

(
2 ⋅

ek⋅qx

1 + ek⋅qx
− 1

)
⋅ xj ⋅ cos(ψ).

(31)�g(�)

��j
=
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(
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)
)

)
��m

��j

)
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6  Numerical examples

This section introduces two topology optimization examples 
where the presented overhang constraint is applied according 
to the proposed methodology. As it was previously introduced, 
the optimization problems are parameterized using the SIMP 
method and solved with the MMA. In all cases, solid isotropic 
material with Young modulus E0 = 1 and avoid material with 
Young modulus Emin = 10

−9 are considered.
A continuation scheme is applied to the Heaviside parame-

ter � and the SIMP penalization parameter p . The update of the 
mask size is also integrated into this continuation scheme, so 
all three parameters are updated at the same time. The continu-
ation scheme updates the three parameters every 50 iterations 
or every time the convergence criterion is met. Parameters � 
and p start at 5, and every time they are updated they increase 
their value by 3 units up to a maximum value of at least 23 
for � and pmax = 11 . The maximum value of � depends on 
the length of the mask size continuation scheme. The authors 
note that the initial SIMP penalty magnitude is larger than 
typically used. This is because the design progression shown 
by the algorithm in the first iterations is slower when lower 
values are used. The overhang constrained problem may give 
rise to large gray density areas to provide artificial support to 
the material above. To avoid them, the authors found that an 
initial penalization factor slightly greater than the usual value 
of 3 resulted in a more effective initialization of the problem, 
and p = 5 showed to be a good starting value. Besides, the 
authors studied the possibilities of maintaining a constant 
value of the penalization or defining a continuation scheme on 
it. Both alternatives resulted in successful designs, but finally, 
the authors opted for the last strategy to keep consistency with 
the work previously done.

For the mask, this is given an initial size, and every time it 
updates, that size is reduced by 2 × 2 elements until the mask 
reaches a size of 3 × 3. The reason for using a final size of 3 × 3 
is because that is the minimum size and the one that most 
finely detects and corrects the overhang. For the Heaviside 
threshold parameter, it is set to T = 0.5 in all the examples, and 
the filter radius is set to rmin = 5 . The limit overhang angle is 
45º and �0 = 0.99 . Unless otherwise stated, the upper bound 
of the volume fraction is 0.5. Finally, the problem is assumed 
to converge when the change of the objective function in two 
successive iterations is lower than 10−3.
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6.1  MBB beam

This example includes several MBB optimization cases 
where the initial size of the mask is varied. The design 
domain presented in Fig. 7 takes advantage of symmetry 
and is discretized with 312 × 104 unit square finite elements. 
Roller supports are placed in the left side nodes, as well as in 
the lower right side node, and a vertical unit force is applied 
in the left upper node. The mask size continuation scheme 
is applied in all of the studied cases, decreasing the mask 

in 2 × 2 elements every time it is updated. The initial mask 
sizes are given in the caption of the corresponding Fig. 8.

It can be seen that excessively local overhang evaluation 
can lead to an important amount of oscillating boundaries, 
Fig. 8a–c, while bigger initial masks reduce the number of 
drops, Fig. 8d–f. On the other hand, when an adequate initial 
mask size is defined, the Dripping Effect can be completely 
avoided, as seen in Fig. 8g–j.

To discuss why larger initial mask sizes can prevent the 
formation of oscillating contours, consider Fig. 9, where 
the evolution of the overhang restriction and objective 
function for some cases of the MBB problem are super-
imposed. It can be observed that during the initial stages 
of the optimization process, the values of the constraint 
function are lower when the overhang evaluation area 
is larger. This is not because the smaller mask does not 
correct the overhanging contours but quite the opposite. 
The smaller mask is very severe during the initial stages, 
where the geometry is not yet defined and the domain is 
populated with gray densities. Because of that, thin mate-
rial paths nucleate to give support, in these cases, to the 
upper horizontal member that bears a great part of the 

Fig. 7  Design domain of a half MBB beam

Fig. 8  Continuation scheme of 
the mask size. Initial mask size: 
a 3 × 3, b 5 × 5, c 7 × 7, d 9 × 9, 
e 11 × 11, f 13 × 13, g 15 × 15, h 
17 × 17, i 19 × 19, and j 21 × 21

Fig. 9  Evolution of the over-
hang constraint, g, and objective 
function, c, for the different 
optimization cases of the MBB 
problem
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load. Alternatively, we may as well say that bigger initial 
mask sizes provide a more relaxed start to the constrained 
problem.

Consider Fig. 10 where the different geometries obtained 
during the optimization process of Fig. 8h are depicted. It 
is noticeable that the support material paths that nucleate in 
the initial iterations of the problem are not as numerous as 
they are in Fig. 6 and they soon became thick solid members 
(see Fig. 10a). By studying the results, it can be observed 
that larger overhang evaluation areas are more permissive 
with the topology and allow the formation of small unsup-
ported contours. As the problem progresses and the mask 
gradually becomes smaller, the initially small unsupported 
contours begin to correct their slope and the intersection 
points of the hanging members become sharper. Finally, the 
3 × 3 size mask corrects the inclination of all the contours 
in finer detail and the topology becomes self-supporting.

In the following, the different behavior of the overhang 
constraint with and without the proposed strategy is studied. 
Figure 11 depicts the evolution of the overhang constraint 
and the relative mask sizes (dashed line). Besides, the graph 
includes a parallel and more accurate evaluation of the con-
straint on constant 3 × 3 neighborhoods that plays no role in 
the optimization problem (solid line), and whose sole pur-
pose is to be a benchmark for comparison.

The different behavior of the constraint when evaluating 
the same topologies with both strategies is visible, and the 
separation between the two lines during the initial iterations 
shows the implicit relaxation of the constraint introduced by 
bigger initial mask sizes. Over the course of iterations, as the 
mask size is gradually reduced, both lines start to converge 
and finally meet when the mask size is reduced to 3 × 3. Note 
that the dashed line describes several peaks that coincide 
with the update of the size of the mask.

6.2  Cantilever beam

The following example proposes the optimization case of 
a cantilever beam; see Fig. 12. The domain is discretized 
with 260 × 130 unit square finite elements, the left side of 
the domain is clamped, and a vertical unit force is applied 
in the center of the right contour.

The mask size continuation scheme is applied proceeding 
in the same way as with the MBB case. The results obtained 
for different initial mask sizes are provided in Fig. 13, and 
the corresponding mask sizes are given in the caption of 
the figure.

Just as we could expect, the evaluation of the overhang 
in overly narrow neighborhoods leads to oscillatory con-
tour patterns. Equally, as the initial evaluation area becomes 

Fig. 10  Topologies obtained 
during the optimization process. 
a Iteration 50, 17 × 17. b Itera-
tion 100, 15 × 15. c Iteration 
113, 13 × 13. d Iteration 116, 
11 × 11. e Iteration 136, 9 × 9. f 
Iteration 157, 7 × 7. g Iteration 
207, 5 × 5. h Iteration 245, 3 × 3. 
i Iteration 259, 3 × 3. j Iteration 
276, 3 × 3

Fig. 11  Evolution of the 
overhang constraint. Solid line: 
Accurate overhang constraint 
evaluated with a 3 × 3 mask. 
Dashed line: Relaxed overhang 
constraint evaluation evaluated 
with decreasing mask sizes
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larger, the number of drops is reduced up to the point that 
they eventually disappear. In short, the choice of the initial 
mask size turned again critical for preventing the Dripping 
Effect.

To further extend the study in this work, the cantilever 
case is proposed as a test case for a comparative review 
between the printable results obtained in (Garaigordobil 
2018) and the present work. In the benchmark work, the 
overhang was evaluated in fixed 3 × 3 elements neighbor-
hoods, and the formation of printable results was not always 
guaranteed. In that sense, the following study may be of 
interest to evaluate what impact the prevention strategy pro-
posed in these lines may have on the material layout and the 
mechanical behavior of the emerging topologies.

The cantilever beam is discretized with 260 × 130 unit 
square finite elements, the overhang angle is constrained to 
45°, and three different volume fractions are studied. The 
reason for varying the volume fraction is that low-volume 
problems are especially critical for overhang constraints, as 
the optimization algorithm may not have enough material 
to form stiff self-supporting structures. Low-volume prob-
lems may leave oscillatory boundary formation or extreme 

distortion of the material part as the only possible solutions 
to the optimization problem.

The results from both works are gathered in Fig. 14, 
where the first row depicts the results obtained with the con-
ventional unconstrained formulation, the second row depicts 
the results obtained in (Garaigordobil 2018), and the third 
contains the results obtained in this work.

In Fig. 14d–f, it can be noted that the upper horizontal 
member is distorted and describes a characteristic slope. 
This effect can also be seen in the references (Gaynor and 
Guest 2016; Qian 2017; Guo et al. 2017; Zhang et al. 2019). 
Nevertheless, it is not the pattern seen in the conventional 
topologies which rather extend the upper horizontal mem-
ber so that it can bear a greater load, as seen in Fig. 14a–c. 
In that sense, the new results (Fig. 14g–i) suggest that the 
relaxation of the overhang constraint during the initial itera-
tions of the optimization problem generates geometries that 
are closer to the unconstrained problem, even avoiding the 
distortion of the part in low-volume problems.

Fig. 12  Design domain of a cantilever beam

Fig. 13  Continuation scheme of 
the mask size. Initial mask size: 
a 3 × 3, b 5 × 5, c 7 × 7, d 9 × 9, 
e 11 × 11, f 13 × 13, g 15 × 15, h 
17 × 17, i 19 × 19, and j 21 × 21

Fig. 14  Optimized cantilever beam. Unconstrained cases a f = 0.35, 
b f = 0.5, c f = 0.65. Results from (Garaigordobil 2018). d f = 0.35, e 
f = 0.5, f f = 0.65. Results obtained in this work. g f = 0.35, h f = 0.5, i 
f = 0.65
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On the other hand, and despite the divergence of their 
geometries, the compliance of medium- and high-volume 
designs is quite similar (Fig. 15). It can be blamed on the 
overhang constraint not being so demanding when enough 
material is available. In low-volume cases; however, a sig-
nificant difference arises when the new approach is used. 
The compliance of the part decreases by 12.8%. Of course, 
this improvement cannot be extrapolated to other cases, but 
it shows that the mechanical behavior can improve when 
the prevention strategy introduced in these lines is added to 
the overhang restriction process presented in (Garaigordobil 
2018).

7  Conclusions

The present paper introduces a novel strategy to deal with 
the Dripping Effect generated when geometric overhang 
constraints are introduced within topology optimization 
algorithms. It is in the early stages of the optimization 
process that the algorithm is more prone to generate thin 
support members, especially if the overhang is evaluated 
in very small neighborhoods. This problem is addressed by 
introducing bigger evaluation areas during the initial itera-
tions, since this way, fewer support members nucleate, and 
those that appear are thick and soon become part of the main 
structure. In addition, unsupported small boundaries are per-
mitted during that time, which, as the optimization process 
progresses and the overhang is more rigorously evaluated in 
smaller neighborhoods, are progressively corrected so that 
the topology eventually becomes self-supporting.

The effects of the strategy on the mechanical behavior of 
the resulting designs are also studied. Medium- and high-
volume problems, although they look visually more appeal-
ing when the prevention strategy is applied, seem not to be 
affected and show similar compliance values. In the pre-
sented low volume problem, on the other hand, the obtained 

geometry is much closer to the unconstrained one when the 
Dripping Effect prevention strategy is applied, and there is 
a clear improvement of the objective function.

Summarizing, the algorithm presented in these lines has 
been shown to eliminate the Dripping Effect on the prob-
lems studied. These results (and possibly more) hint that the 
method could be effective at eliminating the Dripping Effect 
in other problems and consistently.
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