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ABSTRACT Relaxation helps to reduce physical, mental and emotional pressure. Relaxation techniques
generally enable a person to obtain calmness and well-being by reducing stress, anxiety or anger. When a
person becomes calm the body reacts physiologically, producing the so-called Relaxation Response (RResp)
which affects the organism in a positive manner, no matter if it is during a state of relaxation or in the
middle of a stressful period. The goal of this work is to design a system capable of identifying automatically
the RResps of a subject by analyzing a single physiological signal, the Galvanic Skin Response (GSR).
To do so, a team composed of psychologists, neurologists and engineers designed two experiments for
inducing RResps in the participants while their GSR signals were being collected. The team analyzed the
data and identified three different levels of RResp that can be quantified using only two easily calculated
GSR features. Moreover, the use of the surface produced by GSR and its linear approximation is totally
novel. Finally, the data were classified using Decision Tree strategies for each of the experiments and, after
seeing that the obtained trees were similar, the team synthesized them in a single classification system. The
F1 values obtained by the generalized classifier scored between 0.966 and 1.000 for the data collected in
both experiments.

INDEX TERMS Affective computing, decision trees, Electrodermal Activity (EDA), Galvanic Skin
Response (GSR), machine learning, relaxation response.

I. INTRODUCTION

ACCORDING to the World Health Organization defi-
nition of the term [1] “health is a state of complete

physical, mental and social well-being and not merely the
absence of disease or infirmity”. In recent years there has
been a shift in the paradigm with regard to psychology and
medicine focusing health towards that state of well-being.
This new perspective is evidenced by the current tendency
of tackling positive variables and preventive attitudes instead
of the negative and pathological aspects that have been tradi-
tionally addressed in the literature [2] - [5].

Backed by psychology, the new tendencies propose the
understanding and the strengthening of positive factors as a
method to enable individuals and communities to improve
their life quality, and, subsequently, as a tool to avoid the

pathologies that derive from adverse life conditions [6].
Relaxation techniques, among others, are one of the most
commonly used methods to achieve welfare [7] - [9]. In
fact, if mental or physical relaxation is achieved, particularly
effective results can be obtained when seeking to improve
some of the most common problems of clinical psychology,
such as stress, anxiety disorders or depression [10] - [12].
Moreover, it is thought that relaxation techniques present
no undesired side effects and that they produce a positive
physiological response in the human organism [13], [14].
Moreover, they can be used just for the sake of improving
life quality or for self-knowledge without necessarily aiming
to treat any specific health problem [7].

The possibility to detect whether an individual is be-
coming relaxed is evidently of interest when considering
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the approach of using relaxation techniques as a tool to
improve personal welfare. Currently there exist biofeedback
techniques that allow experts to assess if a subject is becom-
ing relaxed or not. Furthermore, if relaxation takes place,
then these techniques enable the experts to rate how strong
that relaxation is [15] - [17]. These techniques are based
on collecting, monitoring and interpreting the physiological
signals of the subject, a far from simple matter. Thus, they
must be used by an expert in this field.

When a person relaxes there are certain physiological
changes that take place in the organism producing what
Benson [18] called a Relaxation Response (RResp). RResps
are produced by an activation of the Autonomic Nervous
System (ANS). The ANS is composed of two main branches:
the Sympathetic Nervous System (SNS) and the Parasympa-
thetic Nervous System (PNS). As posed by Canon [19] the
SNS becomes active when the subject perceives a stimulus
representative of danger or alarm (known as the fight or
flight response). Therefore, the SNS becomes active during
stressful events and is inhibited either when these finish or
during relaxation. On the other hand, the PNS acts comple-
mentarily to the SNS: it is activated during relaxation and
inhibited during stress [20] - [24]. Thus, RResps not only take
place during relaxation but also when a stressful event ends.
Finally, it is important to remark that people can react dif-
ferently to the same stimulus. This phenomenon may occur
because people have different perceptions of the environment
which can highly influence the cognitive perception produced
by a certain stimulus [25].

There exist several physiological signals that can be use-
ful to evaluate the state of the ANS and human emotions:
respiration, cardiac activity, sweating, eye pupil dilation,
among others [26] - [33]. At the same time, the organs
that regulate these signals can be innervated by different
nervous branches; for instance, the heart and the lungs are
innervated by both the SNS and the PNS. However, the
sweat glands are exclusively innervated by the cholinergic
branch of the SNS and, because of this, sweating is only
affected by the activation of the SNS. This particularity
makes sweating a good signal to show whether relaxation
is taking place by detecting the absence of SNS activations.
The study presented in this work was carried out using only
the signal of the sweating. This signal called Galvanic Skin
Response (GSR) is also known as Electrodermal Activity
(EDA) or Skin Conductance (SC). In addition to its capability
to show relaxation, this signal has the advantage that it can
be collected noninvasively using skin contact electrodes [34],
[35]. Therefore, it is easy to collect which is a great advantage
both for the implementation of a technological solution and
towards the ease of use of that solution from the point of view
of the final users.

Different evidence indicates that it is possible to detect
different emotional states from the psycho-physiological per-
spective using biosignals. There are articles in the current
literature that study states of relaxation using biosignals [36],
[37]. Other research papers focus on the study of stress and

use relaxation in order to compare its parameters against
those of stress [38]- [43]. Nevertheless, this research team
has been unable to find any work that develops an automatic
method for detecting RResps.

For this reason, this work proposes a supervised learn-
ing algorithm based on Decision Trees (DT) that allows
physiological changes towards relaxation to be automatically
detected by analyzing the GSR in 20s time windows. In addi-
tion, the algorithm not only detects these changes but also
classifies them depending on their intensity. This strategy
has already been used for studying medical and emotional
patterns due to the ease of interpretation of their rules [44]
- [47]. Therefore, besides making the use of biofeedback
techniques easier for non-experts, it also helps to detect
which relaxation techniques work best for each individual
and enables the results obtained from relaxation techniques
to be optimized.

In order to create the algorithm, this work proposes that
two features of the GSR signal are extracted in 20s windows:
the slope of the GSR and the surface area comprising the
difference between the GSR signal itself and its linear regres-
sion. This second feature is one of the main contributions of
this research as its use is completely new and, apart from
having great physiological significance, it has also a low
computational load.

As the problem analyzed in this work covers different areas
of engineering, medicine and psychology, it was necessary
to build a multidisciplinary team that encompassed all these
areas. Thus, all the experiments, analysis and developments
carried out during this research have benefited from the col-
laboration and supervision of the Department of Neurology
of the Cruces University Hospital, where a relevant research
line is focused on Parkinson diseases [48] and of the Instituto
Burmuin [49], a center of psychology of the Basque Country.

II. MATERIALS AND METHODS
This section presents the different stages of the study: the
experimental process, the analysis of the data and the con-
struction of the detection and classification algorithm itself.
The sequence of these stages is depicted in Fig. 1.

First, the methodology followed in the experiments will
be detailed and the required materials will be listed. After
that, the population that took part in the experiments and the
various databases collected will be presented.

After collecting the data there will be a data analysis
phase in which two types of analysis will be done. First the
data will go through a qualitative analysis looking to find
relationships between the changes and the trends of the GSR
signal and the emotional changes of the subject. Later, the
collected data will be quantitatively analyzed and the main
features of GSR will be parametrized in order to detect and
quantify the intensity of the RResps that took place during
the experiments.

Finally, the section will end with the presentation of the
classifiers based on DT algorithms that enable the automatic
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FIGURE 1. Sequence of the stages until the development of the algorithm.

detection and classification of the RResps that took place in
the data collected from the experimental stage.

A. EXPERIMENTAL SETUP
When facing any data analysis problem, the first objective
is to build a database which is wide and varied enough so
that the study is generalized and significant. Thus, in order
to create such a database, the research team had to design
an experimental stage in which RResps could be induced
in the volunteers participating in the experiment while, at
the same time, the physiological signals of those participants
were being collected.

The current literature collects several relaxation techniques
that are able to produce an activation of the PNS and sub-
sequently produce an RResp: meditation [13], [16], [17],
controlled breathing [50], listening to relaxing music [27],
[28], visualizing images [51] and videos [52]... Once again,
it is important to bear in mind that these responses also take
place when a stressful event finishes.

Hence, this research presents two different experiments
having both the intention of eliciting parasympathetic activa-
tion in the participants, and, at the same time, taking records
of their emotional states and of their physiological variables.
Aiming to tackle the problem from two perspectives, each
of the experiments will involve different relaxation tech-
niques and situations. Following this approach, two different
databases have been collected for each of the experiments
that will be later taken to analysis: a physiological database
and a behavioral database.

1) EXPERIMENT 1

In a previous study this research group built an algorithm
for detecting situations of human stress by means of phys-
iological signal processing. To do so, the team designed an
experiment (Exp1 from now on) whose goal was to induce
stress on the participants who had previously been taken
to a state of relaxation. It is considered that the databases
collected in that experiment are not only useful for the study
of stress but also to study and to search for the RResp dealt in
this work. After all, in this experiment, in addition to the SNS
activations of stress, RResp also take place in two kinds of
scenarios: there is RResp produced by relaxation techniques
and RResp produced by the ending of a stressful event.

This experiment is composed of three phases in which the
GSR and the heart rate variability (HRV) of the participants
would be constantly collected. Although only GSR will be
used for RResp detection, the team also considered to collect
the HRV as it would be useful as an extra support in the
labeling stage. The first phase consists in taking the subject
to a basal state of relaxation by watching a relaxing video
(2 minutes) that displays natural landscapes while relaxing
music is played. The second phase starts once the video has
ended. In this second phase the participants have to complete
a wooden 3D puzzle within 10 minutes. Finally, after those
10 minutes, the subjects watch again the relaxing video in
order to finish the experiment in a relaxed manner.

As said previously, in these experiments both physiologi-
cal and behavioral databases were collected. Hence, in order
to build the second, the researchers assessed the behavior
and emotions of the participants in different ways [30]. On
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the one hand, based on direct observation, the registers were
marked with labels (M) at those moments at which a sig-
nificant event was detected (beginning of the puzzle solving
phase, a puzzle piece falling down, the subject finishing the
puzzle, taking a deep breath trying to relax. . . ). On the other
hand, once the participants had finished the experiment they
were asked to fulfil the SAM questionnaire [53]. Finally,
in order to confirm that the information collected by the
other two methods, the participants went through personal
interviews where they were asked about how they had felt
during the three phases of the experiment. In those interviews
they were also asked about how they had felt in the moments
where the researchers had marked the registers. The aim of
these last questions was to confirm that the marks had not
been taken due to a misinterpretation of the researchers and
that the notes related to those marks were consistent with
the feelings of the participants. If there was a mismatch
between what noted and what the participants had felt, then
the mismatching mark would be removed from the register
to prevent false information from corrupting the behavioral
database.

The experiments were carried out in a laboratory equipped
so that four participants could take part at the same time. In
their seating place each participant found the consent survey
they had to sign, a dismantled 3D puzzle, the instructions of
the puzzle and the data acquisition system. The signals were
collected using BIOPAC MP36 hardware (Biopac Systems
Inc., USA) working at a 1000Hz sampling rate. The data
registers were created using Biopac’s Acqknowledge 3.7.1
software. Gel electrodes were used to collect the signal and
they were placed in the ring and little finger of the non-
dominant hand so that the electrodes caused as little distur-
bance as possible when solving the puzzle.

The population undertaking the experiment consisted of
166 participants (125 male and 41 female) aged 19-45 years
old (mean=22.8, SD=3.1). All subjects were engineering stu-
dents at the University of the Basque Country (UPV/EHU).
Before doing the experiments the whole process had been
approved by the corresponding ethical committee CEISH-
UPV/EHU, BOPV 32 (M10_2016_189). Lastly, prior to be-
ginning the experiment, the researchers provided the partici-
pants with an explanation on the experiment. The participants
were also told that all their privacy rights would be preserved
and that all laws related to these experimental procedures
were being respected [54].

2) EXPERIMENT 2
Aiming to do a more thorough analysis of all possible RResp,
the team designed a second experiment (Exp2) with the help
of the Instituto Burmuin. Instituto Burmuin is a psycholog-
ical medical center that works with most modern neuro-
physiology and biofeedback techniques in order to provide
customized assistance for different types of health problems.

In this second experiment the psychologists induced the
participants into relaxation using different techniques in four
stages giving an experimental time per participant of 12

minutes. First, subjects were taken to a basal state. Then they
were asked to breathe deeply at a certain pace displayed on
a computer screen. After that, they carried out attentional
breathing and lastly, with their eyes closed, they did guided
muscular relaxation. As in Exp1, both GSR and HRV signals
were collected throughout the whole experiment. In addition,
before and after the experiment the psychologist carried out
an emotional tracking of the participants in order to build the
behavioral database.

This second experiment took place in a room within the
installations of Instituto Burmuin. The room was equipped
with a single acquisition system, a computer and the consent
sheet for the sole participant of each experimental session.
The acquisition system used for this experiment was Pro-
Comp Infiniti System w/ BioGraph Software - T7500M set
up at a 256Hz sampling rate. As the participants did not need
to use their hands, this time the electrodes were placed in the
ring and middle fingers.

A total of 18 volunteers aged between 32 and 56
(mean=40.22, SD=9.14) participated in the second experi-
ment: 4 male and 14 female. As with the first experiment,
this second experiment had already been approved by the
corresponding ethical committee and met all the criteria re-
quired by the current regulations (CEISH-UPV/EHU, BOPV
32 (M10_2016_189)).

3) DATA PREPARATION

The last step of the experimental setup is to prepare the data
for the analysis, a particularly important stage if a machine
learning classifier is to be used. Preparing the data correctly
and dividing it into different subsets plays an important role
as there has to be total independence between the training and
test datasets: the decisions of the classifier could be biased if
this condition is not preserved.

First of all, the researchers took into account the nature and
structure of the experiment so that both the training and test
datasets contained instances from all the phases of the two
experiments. In addition, as the physiological signals were
going to be analyzed with a sliding window methodology
(explained in subsection II.C), the team took care of window
overlaps and divided each participant’s data into smaller
partial data segments. Each segment was disjointed from the
others by discarding the time windows that overlapped with
the contiguous segments.

Finally, having the smaller disjointed segments 2/3 of them
were randomly selected for building the training database.
The remaining 1/3 of the segments were used for testing the
classifier. As the registers of Exp 1 and Exp 2 have different
duration, the segment length in each experiment was chosen
to be also different: Exp 1 segments had a duration of 115s
and the ones of Exp 2 lasted for 95s.

B. QUALITATIVE ANALYSIS
Once all the data had been collected the next step of the
research was to analyze the databases in a qualitative manner
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in order to identify RResps in the GSR and associate them to
the different emotional states.

The sweating signal is composed of two main components:
the Skin Conductance Level (SCL) and the Skin Conductance
Response (SCR) [55]. The SCL corresponds to the slow
variations of the level of the signal and it is representative
of the cumulative humidity of the skin. On the contrary, the
SCR corresponds to the fast variations and it is the phasic
component which is representative of the SNS activations.
These activations of the SNS stimulate the sudomotor nerves
that produce sudden bursts of the GSR signals. According
Benedek and Kaernbach [56] and Sugenoya, Iwase, Mano
and Ogawa [57], the amplitude of the SCR increases when
the SNS activations are greater. Therefore, as shown in Fig.
2, it can be considered that SCRs are good indicators of the
presence and the intensity of SNS activations.

Time (s) 

G
SR

 (u
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 SNS 
Inhibition 

SNS Activations 
(SCRs) 

FIGURE 2. SNS activations and inhibitions are reflected in the GSR evolution.

For this analysis it is also important to consider, as was
pointed out by Benson [18], that when an RResp takes place
it is not the sympathetic part that becomes active, but the
parasympathetic. This makes the glands stop ejecting sweat
and the GSR decrease. A deeper physiological analysis of the
GSR signal reveals that an RResp will take place if the GSR
level is not increasing and depending on the dynamic of the
signal two conclusions can be reached. First, if the decrease
is maintained and linear it stands for a very relaxed RResp: a
clear SCL decrease can be observed in GSR signals. On the
other hand, the situations in which SCRs appear but the SCL
presents slight decreases stand for RResps that take place in
response to the ending of an stressful event.

Furthermore, it is important to bear in mind that, unlike
other physiological signals such as the heart rate, the baseline
value of the GSR it is not significant on its own. The baseline
value of the GSR depends on several factors such as the
ambient temperature, the gain of the acquisition system, the
device used to collect the signal, etc. With this in mind,
attention must be focused on the trends of the signal within
specific time windows: if there is sympathetic activation GSR
will increase and, if not, decrease.

Having laid out the premises for the physiological analysis,
the researchers studied the registers establishing relationships
between what happened in the physiological and in the
behavioral databases. To do so, Fig. 3 depicts the evolution
of the GSR of four different subjects, two of them belonging

to Exp1 (A and B) and the other two to two of the four stages
of Exp2 (C and D). In order to have unified visualization
criteria, all the signals have been resampled at a sample rate
of 1Hz and have been processed and plotted using Matlab®

software. On the one hand, the signals of Exp1 clearly show
the different stages of the experiment: a first stage where the
relaxation video is shown, a second puzzle solving phase and
the final stage where the video is shown again. On the other
hand, it can be seen that the signals of Exp2 are shorter as the
experiment only consisted of a single relaxation stage.
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FIGURE 3. Collected GSR signal registers. Subjects A and B belong to Exp1
and subjects C and D to two of the four stages of Exp2.

A first analysis of the signals of Exp1 shows that the
responses of the 166 participants were different despite them
all having done the same test. This is due to the fact that it
is the perception of the subject (and not the stimulus itself)
that produces the emotional and the subsequent physiological
responses. For example, in Fig. 3, Subject A stated that he
was able to relax during both relaxation videos (intervals
marked with the dash-dotted line). This can be clearly seen
in the GSR as it decreases regularly without SCR reactions.
However, Subject B said that he had not been able to relax
during the first video because he was nervous and that he had
only been able to relax a bit during the second video but not
as much as he would have liked.

As well as collecting the impressions of the participants,
the researchers marked the registers with labels related to
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RResp during the puzzle-solving phase. After checking that
what marked by observation was coincident to what the
participants expressed in the personal interviews it was time
to analyze the physiological signals in relation to the col-
lected label marks. These labels indicate that an RResp is
taking place due to the ending of a stressful event. For
example, at the time corresponding to label M1b the subject
stopped trying to solve the puzzle and took a break to
breathe deeply and in M1a the researchers could see that the
subject felt like giving up the puzzle-solving. M2a and M2b
show other examples of this type of situation. Therefore, it
seems obvious that a great part of the information collected
from the experiments is related to psychological aspects and
hence the importance of collecting the behavioral databases
is confirmed.

Regarding Exp2, the records of the experiment also show
interpersonal differences. A clear and constant relaxation
can be observed by looking at the signal of subject C.
However, the signal of subject D shows eventual sympathetic
activations that produce SCR which proves the RResp is not
maintained despite the subject experiencing a general a trend
towards relaxation.

After the analysis of both databases (which took into
account the physiological signal dynamics, the linguistic
expressions used by the participants in the reviews, etc.) the
researchers and the experts agreed to catalogue three labels
for relaxation states: “Low Relaxation Response” (LRResp),
“Medium Relaxation Response” (MRResp) and “High Re-
laxation Response” (HRResp). In addition, they also decided
to include a label representing the states in which no relax-
ation is happening: “No Relaxation Response” (NRResp).

C. QUANTITATIVE ANALYSIS
This section will present the different approaches used for the
analysis of GSR and that have enabled the extraction of the
features that characterize GSR in relation to the RResps.

When analyzing a signal it is crucial to bear in mind
its nature. Like most physiological signals, GSR is a non-
stationary signal and its characteristics vary over time.
Hence, the analysis of the signal has to be independent from
the specific time interval in which the signal is going to be
analyzed.

A common approach when analyzing these types of biosig-
nals is an analysis based on sliding time windows [29], [37]
The windowing of a signal consists in segmenting it in fixed
time intervals and to extract the features of the signal for each
of those fixed intervals. Thus, choosing the proper window
length plays a key role when interpreting the meaning of the
obtained results. Depending on the nature of the signal, the
required window length may differ: it is crucial to find a
suitable compromise so that the window is long enough to
give the sufficient amount of information. But, at the same
time, the window has to be short enough so that the signal
processing does not have a substantial computational cost and
so that the desired statistical results do not get distorted. In
previous researches of the literature the size of the windows

used to analyze GSR varies between 10s and 300s [29], [37],
[58], [59]. In order to give continuity research line stated
in [30], in this study the researchers have decided to use
a 20s window sliding every 5s as it provides a sufficiently
large setting to obtain information about the nervous system
activation while not being very temporal and computationally
costly. In addition, as mentioned in a review of the state of the
art of GSR processing in [60], choosing such a window size
has its own physiological reason: “features extracted from
the tonic component express the sympathetic tone and are
often computed within time windows of 20s, since the upper
cut-off frequency of the tonic component is about 0.05 Hz”.
Therefore, the chosen window size permits to study not only
the phasic component (SCR) of the GSR but also the tonic
component (SCL) and even to combine both to create more
powerful features as the new one presented in this work.

The qualitative analysis carried out with the help of the
experts on neurology and psychology was crucial for defining
the features that represent the RResp as simply and clearly as
possible. The selected features are, on one side, the slope of
the GSR (sGSR) within the window and, on the other side,
the surface area (aGSR) produced by the linear regression of
the GSR and the GSR itself (being both signals normalized
within the analyzed window). The graphical representation
of the two features (sGSR and aGSR) is depicted in Fig. 4.
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FIGURE 4. The features extracted in each time window: GSR slope and
surface area.

Although several research have already used the sGSR
[61] and other GSR features related to emotions and stress
([60], [62], [63]) the design of the second feature (aGSR)
is one of the main contributions of this research as it is
innovative, has a low computational cost and because it is
independent from the subject, the acquisition system and
the environmental conditions. Other researchers have worked
with different features such as statistical parameters, incre-
ments, nonnegative convolution, frequential features, areas
under the curve, etc. ([37] - [40], [56]). Most of the studies
that imply the use of areas in GSR decompose the signal to
obtain the phasic and tonic components. After the decompo-
sition they analyze the areas of those components separately
[64], [65]. Some others analyze the area under the raising half
part of SCRs [66], [67]. Nevertheless, to the extent of the
authors’ knowledge, what done for proposed aGSR feature
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has not been previously used in the literature as it takes the
signal as a whole for calculating the linear regression and
does not need any component decoupling.

RResps correspond to parasympathetic activations and to
sympathetic inhibitions, and, as previously explained, there
can be relaxation responses even if SCRs take place. Taking
this into account, it is possible to conclude that the GSR
will oscillate vigorously around its linear regression if several
SCRs take place. On the contrary, the shape of the GSR will
be very close to its linear regression if no SCRs take place
(glands will not eject any sweat). Therefore, it is possible
to conclude that the closest to a straight line the GSR is,
the deeper the RResp. This statement justifies the use of the
proposed feature (aGSR) as a good indicator of the proximity
of the GSR signal to its linear regression and, subsequently,
as an indicator of the intensity of RResps: the aGSR value
will be smaller if fewer SCRs take place.

III. RESULTS
First, this section presents the comparison between different
classifying algorithms by means of which the authors decided
to use Decision Trees (DT) for the detection system presented
in this work. The authors used 2/3 of the data from Exp1 and
Exp2 to train the algorithms and saved the remaining 1/3 for
testing them and to calculate their performance indicators.

In addition, after justifying the use of DTs for being the
best option for this case, this section presents the synthesized
classification rule system that was built as a consequence of
the rules and performances of the DT classifiers built for
Exp1 and Exp2 being similar.

A. CLASSIFIER ALGORITHM SELECTION
Before building the automatic RResp detection system it
was necessary to label the signals to indicate the different
relaxation states that appear. Thus, the experts analyzed in a
random order the physiological (includes both GSR and HRV
signals) and behavioral databases and labeled the GSR sig-
nal with the aforementioned four labels: LRResp, MRResp,
HRResp and NRResp. This way, every analyzed window
of the signals was related to a relaxation state label and to
certain physiological feature levels, all of which were used
as inputs to the classification system.

First of all, the main labeling process was done by a
research team member with knowledge on both human psy-
chology and physiology. After that, experts (psychologists
from Instituto Burmuin and neurophysiologists from Cruces
University Hospital) did a thorough analysis labeling the data
and marked the points where they disagreed to what labeled
by the previous expert. The expert team had already worked
with the research team in previous work [30] and has wide
experience dealing with this kind of signals. Finally, all the
experts gathered together to discuss about the database and
to reach general consensus on the labeling.

Having labeled the data, the team used the data from
Exp1 and Exp2 to train and test different types of classi-
fiers with the intention of choosing the best for detecting

RResps. Using Weka platform [68], the team compared the
performance indicators of the following 12 classification
algorithms: 1R rule, Decision Tree (DT), k-NN (1-NN and
5-NN), Naive Bayes (NB), Radial-Basis Network (RBF),
Support Vector Machine (SVM), Logistic Regression (LR),
Ada Boost (AdaB, combining 10 decision trees), Bagging
(Bag, combining 10 decision trees), Random Forest (RF)
and Multi-Layer Perceptron (MLP). The authors chose these
algorithms for being the state of the art in machine learning
and because they belong to different paradigms: rule based,
tree based, distance based, probabilistic, function based and
ensemble of classifiers. All these algorithms were tested
using Weka’s default parameters and settings.

The performance of a classification system can be given
by three statistical indicators: the Precision (P), the Recall
(R) and the F1 score [69]. These indicators are defined by
(1), (2) and (3), which are calculated using the values of:
True Positives (TP), False Positives (FP) and False Negatives
(FN). All the three performance indicators are bounded in the
[0, 1] domain, being 0 the worst result possible and 1 the best.

R = TP/(TP + FN) (1)

P = TP/(TP + FP ) (2)

F 1 = 2 · P ·R/(P +R) (3)

The statistical results of the 12 algorithms for both Exp1
and Exp2 can be seen in Table I. Looking at the results, it
can be seen that the algorithms based on trees are the ones
that perform the best with very similar results. Therefore, the
authors chose to use DTs [70] for their simplicity and because
they have explanatory properties (unlike the other tree based
algorithms). This is a big advantage as it makes it possible
for clinicians who are not experts in classifying algorithms to
understand the boundaries of the selected features and their
meaning related to relaxation responses. Moreover, using
DTs also permitted the authors to merge the rules obtained
from the two experiments and create the new synthesized set
of rules that will be presented in the next subsection. The DTs
used in this work, which were obtained using Weka’s default
setting, correspond to the C4.5 (J48 pruned tree) algorithm.

TABLE 1. Comparison between different classifiers.

Classifier Exp 1 Exp 2

P R F1 P R F1

1R 0.649 0.682 0.665 0.773 0.797 0.785
DT 0.990 0.990 0.990 0.992 0.992 0.992
1-NN 0.978 0.978 0.978 0.969 0.969 0.969
5-NN 0.978 0.977 0.978 0.966 0.965 0.965
NB 0.822 0.797 0.809 0.859 0.823 0.840
RBF 0.955 0.955 0.955 0.953 0.953 0.953
SVM 0.913 0.912 0.913 0.814 0.739 0.740
LR 0.888 0.888 0.888 0.952 0.951 0.951
AdaB 0.989 0.989 0.989 0.992 0.992 0.922
Bag 0.990 0.989 0.989 0.992 0.992 0.992
RF 0.991 0.992 0.991 0.992 0.992 0.992
MLP 0.952 0.951 0.952 0.892 0.864 0.878
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B. SYNTHESIZED RULE SYSTEM
First, as DTs had been chosen as the best option for clas-
sifying the different states related to RResps, the authors
considered interesting to make a deeper analysis of the trees
obtained for each experiment. The rules that were obtained
from the training phase are those presented in Fig. 5, where
aGSR and sGSR respectively stand for the area and the slope
within the analyzed windows of the GSR signal.

J48 pruned tree Experiment 1 

---------------------------------------------------- 

aGSR <= 0.069998 

|   sGSR <= 0.000021 

|   |   sGSR <= -0.04861: -3 (1494.0) 

|   |   sGSR > -0.04861 

|   |   |   aGSR <= 0.039991: -3 (361.0/45.0) 

|   |   |   aGSR > 0.039991: 0 (92.0) 

|   sGSR > 0.000021: 0 (295.0) 

aGSR > 0.069998 

|   sGSR <= -0.050193 

|   |   aGSR <= 0.199712: -2 (1846.0/16.0) 

|   |   aGSR > 0.199712 

|   |   |   sGSR <= -0.300083: -1 (689.0/13.0) 

|   |   |   sGSR > -0.300083 

|   |   |   |   sGSR <= -0.289222 

|   |   |   |   |   sGSR <= -0.294407: 0 (11.0/2.0) 

|   |   |   |   |   sGSR > -0.294407 

|   |   |   |   |   |   sGSR <= -0.292119: -1 (4.0) 

|   |   |   |   |   |   sGSR > -0.292119 

|   |   |   |   |   |   |   sGSR <= -0.291568: 0 (2.0) 

|   |   |   |   |   |   |   sGSR > -0.291568: -1 (3.0/1.0) 

|   |   |   |   sGSR > -0.289222: 0 (539.0/6.0) 

|   sGSR > -0.050193: 0 (3374.0) 

J48 pruned tree Experiment 2 

------------------------------------- 

aGSR <= 0.069816 

|   sGSR <= -0.071428: -3 (247.0) 

|   sGSR > -0.071428 

|   |   sGSR <= -0.017014: -3 (4.0) 

|   |   sGSR > -0.017014: 0 (3.0) 

aGSR > 0.069816 

|   sGSR <= -0.2889 

|   |   aGSR <= 0.203202: -2 (128.0/3.0) 

|   |   aGSR > 0.203202 

|   |   |   sGSR <= -0.3014: -1 (84.0) 

|   |   |   sGSR > -0.3014 

|   |   |   |   sGSR <= -0.2939: 0 (2.0) 

|   |   |   |   sGSR > -0.2939: -1 (3.0) 

|   sGSR > -0.2889 

|   |   aGSR <= 0.196464 

|   |   |   sGSR <= -0.049283: -2 (49.0) 

|   |   |   sGSR > -0.049283: 0 (50.0) 

|   |   aGSR > 0.196464: 0 (457.0) 

FIGURE 5. The sets of rules extracted from the Decision Trees for each
experiment.

As shown in Fig. 5, certain decision rules have been
marked within differently shaped color boxes. The reason for
these distinctions is that these rules are the ones considered
to be the most important when classifying and choosing the
label best suited for the input features. Given their impor-
tance, these rules have been chosen to build the synthesized
classification system that will be useful for detecting and
classifying the RResps of both Exp1 and Exp2.

Then, the authors decided to check how the DT classifiers
performed for each RResp level. The class dependent perfor-
mances of the classifiers can be seen in Table II. The first two
columns of Table II present the labels for the different states
and the number of times the experts have labeled them in
each of the experiments. The second block, composed of six

columns, shows the values obtained after using a DT specif-
ically built for each of the experiments. In addition, in order
to measure the stability and sensibility of the algorithms, the
third block (also consisting of six columns) gives the results
obtained after crossing the DT classifiers. This means that the
DT built for Exp1 was used with the data of Exp2 and vice
versa. Finally, the rows named as Exp1 and Exp2 provide
the averaged results obtained by the two classifiers. These
averaged values have been calculated by weighting the results
according to the number of cases of each label.

After observing that the results obtained by crossing the
classifiers were very good and that the decision rules of both
DTs were similar, the researchers decided to group and unify
them in a single synthesized system. To do so, the team
studied both sets of rules with the help of the experts and
decided that the rules that had greater importance were those
highlighted in Fig. 5. Then the team studied the intersections
of the rules belonging to the same labels and finally built the
unified rule system presented in Table III.

The values that define the rules of Table III have been
obtained by calculating the average feature values of the
highlighted rules that are similar in both experiments and that
lead the classification to a same label. Then, for the sake of
simplicity, those averages have been rounded to get a number
with two decimal digits. For example, in the case of LRResp,
taking the feature values highlighted in red in Figure 5, the
rounded average values of aGSR and sGSR are calculated as
shown in (4) and (5) respectively.

aGSR = (aGSRExp1 + aGSRExp2)/2

= (0.1997 + 0.2032)/2 = 0.2014 ≈ 0.2
(4)

sGSR = (sGSRExp1 + sGSRExp2)/2

= −(0.3000 + 0.3014)/2 = −0.3007 ≈ −0.3
(5)

In addition, it is important to note that regarding
HRResp, there are situations that are only considered by the
tree designed for Exp1: when sGSR>-0.04861≈-0.05 and
aGSR≤0.03999≈0.04. In order not to leave these situations
out of the consideration of the new system they have been
added to the other rules by means of a logic OR (see Table
III). The results of the new unified system, shown in Table IV,
were better than the ones obtained by the experiment specific
DTs of Table II.

After checking the performance measures of the unified
system, the researchers decided to evaluate the system’s
behavior over time. This performance can be seen in Fig.
6, where the signals of subjects A and B correspond to two
participants of Exp1, and C and D to Exp2. For each subject
two signals are being shown. The first signal, in green, is the
GSR of the subject and the second, in blue, corresponds to
the output of the unified classification system. This output
of the system is updated every 5s (the sliding window step
size) and it gives a discrete output that goes from 0 to -3 in
unitary steps. Each of the four output levels corresponds to
one of the RResp labels that were presented in Subsection
2.2: NRResp=0; LRResp=-1, MRResp=-2 y HRResp=-3.
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TABLE 2. Statistical indicators of the results of the DTs for each experiment and crossing the classifiers.

State Manual label DT Crossed DT

TP FN FP P R F1 TP FN FP P R F1

Exp1 4354 0.990 0.990 0.990 0.965 0.965 0.965
NRResp 2177 2153 24 6 0.997 0.989 0.993 2140 36 95 0.957 0.983 0.970
LRResp 349 342 7 15 0.958 0.980 0.969 335 14 11 0.968 0.960 0.964
MRResp 923 909 14 4 0.996 0.985 0.990 901 22 14 0.985 0.976 0.980
HRResp 905 905 0 20 0.978 1.000 0.989 824 81 34 0.960 0.910 0.935

Exp2 513 0.992 0.992 0.992 0.992 0.992 0.992
NRResp 257 256 1 1 0.996 0.996 0.996 256 1 1 0.996 0.996 0.996
LRResp 44 43 1 1 0.977 0.977 0.977 43 1 2 0.956 0.977 0.966
MRResp 87 85 2 1 0.988 0.977 0.983 85 2 1 0.988 0.977 0.983
HRResp 125 125 0 1 0.992 1.000 0.996 125 0 0 1.000 1.000 1.000

TABLE 3. The set of decision rules of the unified classification system.
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TABLE I.  Comparison between different classifiers. 

Classifier Experiment 1 Experiment 2 

P R F1 P R F1 

1R 0.649 0.682 0.665 0.773 0.797 0.785 

DT 0.990 0.990 0.990 0.992 0.992 0.992 

1-NN 0.978 0.978 0.978 0.969 0.969 0.969 

5-NN 0.978 0.977 0.978 0.966 0.965 0.965 

NB 0.822 0.797 0.809 0.859 0.823 0.840 

RBF 0.955 0.955 0.955 0.953 0.953 0.953 

SVM 0.913 0.912 0.913 0.814 0.739 0.740 

LR 0.888 0.888 0.888 0.952 0.951 0.951 

AdaB 0.989 0.989 0.989 0.992 0.992 0.922 

Bag 0.990 0.989 0.989 0.992 0.992 0.992 

RF 0.991 0.992 0.991 0.992 0.992 0.992 

MLP 0.952 0.951 0.952 0.892 0.864 0.878 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE II.  Statistical indicators of the results of the DTs for each experiment and crossing the classifiers. 

State Manual 

label 

DT Crossed DTs 

TP FN FP P R F1 TP FN FP P R F1 

Exp1 4354    0.990 0.990 0.990    0.965 0.965 0.965 

NRResp 2177 2153 24 6 0.997 0.989 0.993 2140 36 95 0.957 0.983 0.970 

LRResp 349 342 7 15 0.958 0.980 0.969 335 14 11 0.968 0.960 0.964 

MRResp 923 909 14 4 0.996 0.985 0.990 901 22 14 0.985 0.976 0.980 

HRResp 905 905 0 20 0.978 1.000 0.989 824 81 34 0.960 0.910 0.935 

Exp2 513    0.992 0.992 0.992    0.992 0.992 0.992 

NRResp 257 256 1 1 0.996 0.996 0.996 256 1 1 0.996 0.996 0.996 

LRResp 44 43 1 1 0.977 0.977 0.977 43 1 2 0.956 0.977 0.966 

MRResp 87 85 2 1 0.988 0.977 0.983 85 2 1 0.988 0.977 0.983 

HRResp 125 125 0 1 0.992 1.000 0.996 125 0 0 1.000 1.000 1.000 

 
TABLE III.  The set of decision rules of the unified classification system. 

State Synthesized/unified rules 

LRResp (sGSR<-0.3) AND (aGSR>0.2) 

MRResp (sGSR<-0.05) AND (0.07<aGSR<0.2) 

HRResp ((-0.05<sGSR<0) AND (aGSR<0.04)) OR ((sGSR<-0.06) AND (aGSR<0.07)) 

NRResp Any other situation 

 

 

TABLE IV.  Performance indicators of the unified classification system. 

State Manual label Unified rules 

TP FN FP P R F1 

Exp1 4354    0.994 0.994 0.994 

NRResp 2177 2176 1 9 0.996 1.000 0.998 

LRResp 349 339 10 12 0.969 0.969 0.969 

MRResp 923 909 14 4 0.996 0.985 0.990 

HRResp 905 905 0 0 1.000 1.000 1.000 

Exp2 513    0.992 0.992 0.992 

NRResp 257 257 0 2 0.992 1.000 0.996 

LRResp 44 42 2 1 0.977 0.955 0.966 

MRResp 87 85 2 1 0.988 0.977 0.983 

HRResp 125 125 0 0 1.000 1.000 1.000 

 

TABLE 4. Performance indicators of the unified classification system.

State Manual
label

Unified rules

TP FN FP P R F1

Exp1 4354 0.994 0.994 0.994
NRResp 2177 2176 1 9 0.996 1.000 0.998
LRResp 349 339 10 12 0.969 0.969 0.969
MRResp 923 909 14 4 0.996 0.985 0.990
HRResp 905 905 0 0 1.000 1.000 1.000

Exp2 513 0.992 0.992 0.992
NRResp 257 257 0 2 0.992 1.000 0.996
LRResp 44 42 2 1 0.977 0.955 0.966
MRResp 87 85 2 1 0.988 0.977 0.983
HRResp 125 125 0 0 1.000 1.000 1.000

The graphs of Fig. 6 show that during relaxation events
the output of the classifier corresponded to medium (-2) or
high relaxation (-3) RResp values. The classifier gave -2 and
-3 outputs for participant A during the relaxation videos and
during the relaxation events marked by the researchers. In the
case of subject B the classifier gave the same outputs during
the second relaxation video and in the marked relaxation
event labels. Regarding Exp2, subject C relaxed throughout
the whole experiment. Nevertheless, subject D found it hard
to relax at the beginning of the experiment (as he pointed in
his personal interview) and he was not able to achieve a state
of relaxation until approximately 60s had passed.

IV. DISCUSSION
Relaxation is a state of the body that produces both physical
and psychological benefits. Historically, relaxation has been
mainly studied from the perspective of psychology. To date,
a few studies have worked on the automatic detection of
emotions and have also studied relaxation. Nevertheless,
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FIGURE 6. GSR biosignals (top) and outputs of the unified classification
system (bottom). Subjects A and B correspond to Exp1 and subjects C and D
to two of the four stages of Exp2.

most of these have focused on comparing relaxation against
stress and then statistically comparing them. Thus, the stud-
ies specifically focused on automatically detecting when a
subjects starts to relax are practically non-existent.

However, the benefits of positive psychology and relax-
ation are well known among professionals of medicine and
psychology. Therefore, the number of researches and publi-
cations on this subject has vastly increased in recent years.
Following this trend and offering a solution to a problem
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which, to the extent of the authors’ knowledge, has not
yet been dealt with by the literature, this work proposes an
innovative method for automatically detecting RResps and
for technologically supporting the new types of preventive
measures of medicine and psychology that also have thera-
peutic properties.

This work has followed a methodology in which GSR
signals have been collected during two types of experiments
specifically designed to elicit RResp in the participants, not
only in deep relaxation situations but also as a response
to the ending of a stressful event. The methodology has
been supported by professionals from the fields of medicine,
psychology and engineering throughout the experimental,
data analysis and algorithm building processes.

The study of the nature of the GSR signal and the psycho-
physiological responses of the participants taking part in
the experiments resulted in the classification of relaxation
with four different labels: NRResp, LRResp, MRResp and
HRResp. The detection of these four different relaxation
states has been achieved by analyzing exclusively the GSR
of the hand using 20s windows with 5s sliding steps. The
approach of using the surface produced by the GSR and
its linear regression is one of the main contributions of this
research. The benefits of using this feature are that it is not
computationally costly and that it has high physiological
significance. In addition, its robustness has been proven by
the strong results obtained in two experiments whose goals
were completely different: the first was aiming to produce
stress while the second targeted relaxation.

Finally, DT techniques have been used to classify the
relaxation patterns that take place in the human organism.
Initially the researchers built a DT specifically for each of
the experiments but after analyzing the results decided to
unify them in a single synthesized system. The comparison
between the results of Table II and Table IV shows that
the new unified classifier obtained better results than the
specific DT algorithm for Exp1 (F1GENERALISED=0.994 vs
F1DT=0.990) and the same results for Exp2. This improve-
ment is due to a modification in the rule that stated that any
GSR slope beneath 0.000021 corresponded to the HRResp
state. The rule was modified by adjusting this value to 0 and
this enabled the number of false positives to be reduced from
20 to 0 in Exp1 and from 1 to 0 Exp2. In addition, the new
unified system also improved the classification of LRResp
states in Exp1 reducing false positives from 15 to 12 cases.

V. CONCLUSION
This study presents a Decision Tree (DT) technique based
classification method for detecting the entrance in personal
relaxation states, also called Relaxation Responses (RResp).
This classifier uses only two inputs to the system being both
features extracted from 20s windows of the Galvanic Skin
Response (GSR) signal: the slope of the GSR and the surface
area produced by the GSR itself and its first order regression.
The study presents the experimental methodology followed
and the data analysis stages so it is possible to reproduce

the same scenario faced by the researchers. The proposed
set of features and classification algorithm has the following
properties:

• The features have low computational cost and have great
significance from a physiological perspective. There-
fore, they are suitable for different types of situations
as were the two experiments presented in this work.

• The proposed system is robust to changes in the acqui-
sition system, such as the signal collection sensors or
signal conditioning gain.

• The algorithm is capable of classifying three different
levels for the detected RResps depending on their inten-
sity and a null level for the absence of RResps.

• As it is based on DT techniques, it is easy to interpret
how the classifier takes decisions regarding classifica-
tion. In addition, it is also easy to modify the decision
rules in order to fine-tune the algorithm or to adapt it for
other situations.

A future approach for this work would be to modify
the classification algorithm to differentiate between different
types of RResps, i.e., if the detected RResp corresponds to
the ending of a stressful event or if it is produced by the
application of relaxation techniques. In addition, the authors
see expanding the study to populations of different ages as
an interesting future approach. Most of the registers of this
work corresponded to young people. Therefore, it would be
interesting to test the performance of the proposed features
and classifiers with data collected from people of other ages
as their physiological reactions could be different. Another
future line is to implement the proposed algorithm in a
portable hardware solution so that it could be easily used by
a hypothetical final user.
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