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Abstract

Nowadays, it is crucial to promote and develop the autonomy of people, and
specifically of individuals with some disability, in order to improve their life
quality and achieve a better inclusion into socio-cultural life. Therefore, the
identification of stress situations can be a suitable assistive tool for improving
their socio-cultural inclusion. This work presents important enhancements
and variations for an existing fuzzy logic stress detection system based on
monitoring and processing different physiological signals (heart rate, galvanic
skin response and breath). First, it proposes a method based on wavelet
processing to improve the detection of R peaks of electrocardiograms. Af-
terwards, it proposes to decompose the galvanic response signal into two
components: the average value and the variations. In addition, it proposes
to extract information out the breath signal by analyzing its frequential com-
position. Finally, an improved response in detecting stress changes is shown
in comparison with other previous works.

Keywords: fuzzy logic, physiological signal processing, wavelets, stress
identification.

1. Introduction

Emotional Intelligence is an alive field of research, where some studies deal
with human emotion measuring. These tendencies are within the approach
of the assistive technologies, which have the target of improving people’s life
quality. Several research tendencies try to improve the autonomy of people
with disabilities by focusing on improving their inclusion in socio-cultural life.
Physiological signal measurements by non intrusive sensing systems, signal
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processing and analysis with Soft Computing techniques, identification and
classification of emotions and stress situations, are some of the approaches
that are being studied in a high number of significant research groups as
Healey et al. (2005), Vries et al. (2015), and Ren et al. (2014).

Applying these studies to emotional blockage situations induced by a
high stress levels is a field of huge interest as presented by Sharma and
Gedeon (2012). A prompt detection of blockage situations is a powerful
assistive tool for elder people and persons with disabilities. It is normal for
people with special needs to have a caregiving person to help them when
needed. For instance, a device capable of detecting blockage situations could
be useful to inform the caregiver about a blockage taking place, helping
them to give a quick assistance so the care-dependant person can overcome
that difficult situation as fast as possible. This work presents an extended
solution to the system presented in Salazar-Ramirez et al. (2014), which
proposed enhancements for the work of de Santos Sierra et al. (2011), where
such situations are detected and identified with the intention to be used in
cases as the presented above.

Multiple studies analyze the influence of human emotions in people’s ev-
eryday life, from qualitative studies based on human behavior as developed
by Lépez et al. (2014), to quantitative analysis of measured physiological
variations that emotions elicit in each person, e.g. in Sato et al. (2007). In
particular, there are very specific physiological changes related to stress, as
the phylogenetic substrates study made by Porges (2001), or the activity
study of the autonomic nervous system shown in Kreibig (2010). As pointed
in Cannon’s researches, Cannon (1935), when a person has to face a dan-
gerous situation, the person’s body prepares to confront that situation and
generates a physiological response known as "fight-fly”. This response in-
creases the activity of the sympathetic nervous system producing changes as
the increase of the heart rate frequency in order to provide more blood to
the body. This change also produces the respiratory system to activate as a
bigger blood flow requires more oxygen, Poon and Siniaia (2000). Moreover,
some other changes take place in the body such as the dilation of eye pupils
to improve the vision or the increase of sweat secretion, Navarro (2002).

Some proposals measure physiological signals using intrusive devices, as
the work of Coan and Allen (2004) using cameras or electrode grids, to
analyze and classify human emotions. Other lines are based on working
with non-intrusive devices, as those having electrodes integrated in wearable
devices or clothing accessories, Subramanya et al. (2013). This work is based
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on using physiological signals that can be measured with hidden devices, as
the electrocardiogram (ECG), the galvanic response of the skin (GSR) and
the movement produced by the subjects breathing (RESP).

Currently, processing and analyzing real physiological signals is a very
interesting challenge in Biomedical Engineering. The complexity of such
variables is remarkable, being higher than it seems a priori, as discussed in
Martinez et al. (2012). Such difficulty comes from the large amount of the
data generated by analyzing the captured time series and from the countless
noises and artifacts that appear in data entries. To solve these kinds of
problems Soft Computing techniques have been highlighted considerably, as
developments presented by Lee et al. (2006), Wozniak et al. (2014), or Calvo-
Rolle and Corchado (2014).

In the study of human emotional changes, and specifically in stress situa-
tion labeling, some Soft Computing approaches have a special applicability, as
de Santos Sierra et al. (2011), and Sakr et al. (2010). These allow researchers
to add undefined indexes that can be detected looking at physiological data
time series during blockage situations. Due to the complex equilibrium be-
tween parasympathetic and sympathetic nervous systems, Nelson (2005), at
the present time it has not been possible to define the exact link between
blockage situations and their associated physiological changes. But, as pre-
sented below, the measured ECG, GSR and RESP signals allow to see such
changes in data time series.

The objective of this work is to continue developing an enhanced iden-
tification system for blockage situations based on the measurement of non-
intrusively obtained human physiological signals. The work proposes to en-
hance the Matlab® based system presented in Salazar-Ramirez et al. (2014)
by improving the processing of the input signals and adding a new input
variable, based on the RESP signal. Three main improvements are proposed.
First it proposes to increase the robustness of ECG processing using wavelet
techniques, Hong-tu and Jing (2010), for a more accurate R peak detection,
recently appeared in works as Sasikala and Wahidabanu (2010), Talbi et al.
(2011), de Lannoy et al. (2009), and Martis et al. (2014). The second is
to decompose the GSR signal into its average and variation components to
improve the efficacy of the Fuzzy strategy. The last improvement proposes
process the RESP signal in order to get the frequential composition of the
breath and to use its standard deviation as an input of the detection system.
This combination of advanced signal processing and the addition of a third
signal gives the system a higher immunity to false detections and implies an



innovative approach to the strategy followed by the previous works where
only two input signals were used.

2. Experimental Stage

When humans are involved, the design of an experimental stage has to be
performed with special care, considering and respecting all laws and each in-
dividual’s rights. Eliciting of emotional blockage situations is a very specific
work line considered within the human emotions study. In the present work,
a particular experimental stage was designed based on the previously estab-
lished by authors as Gross and Levenson (1995) and CSEA-NIMH (1999).
These experiments consist on proposing a challenge of dexterity for solving
a 3D puzzle in a limited period of time, in order to elicit a stress situation
which will lead to an induced emotional blockage. In each experiment, each
subject was previously informed about the elicitation process, and all the
legal rules for testing on human beings were fulfilled. At the end of the ex-
periment they were asked to fill a questionnaire where they explained how
they had felt during the experiment.

During the experiment, volunteers were connected to the electrodes needed
to collect the ECG and GSR as shown in figure 1. In addition, a chest band
was used to measure the movements produced by the breathing, the RESP
signal. Regarding to these signals two main states can be distinguished in
figure 1: Relax State (RS) and Stressed State (SS). These states are directly
linked with the three main parts of the experiment. During the relaxing
phases (RS) of the beginning and ending of the experiment the three vari-
ables acquire values and tendencies that show that the subject is relaxing.
In these two phases, the heart beats at a normal pace, the sweating is low
and the breathing is harmonic. On the other hand, while solving the puzzle
(SS), the GSR increases (the subject sweats more), the ECG beat period is
reduced and the RESP tends to be faster and more irregular. These changes
prove that the subject is getting stressed.

Unfortunately, using electrodes has disadvantages that difficult the ex-
traction of information. The movements of the person can produce different
artifacts in the ECG that make it difficult to extract the information. More-
over, as the gel of the electrodes gets drier the conductivity between the
skin and the electrode reduces, and so, signal amplitude decreases and noises
appear easily. Figure 2 shows examples of these two possible problems.



3 1
0 Rrs 123 ss 720 rs
-~ -~

Time (s)

Figure 1: Electrode positioning scheme and collected data time series.

As in de Santos Sierra et al. (2011) it is proposed to use the heart rate
(HR) signal as an input to measure the stress level, this paper proposes to
make the HR calculation more robust in order to strengthen a subsequent
fuzzy stress detection. To accomplish the task this paper proposes to use
median filtering and wavelet analysis for detecting ECG peaks. The signal
that has been used to prove the effectiveness of the method is the shown in
figure 2, which has been collected in the experiments for very significant as
it has different artifacts and noises.
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Figure 2: Different noises and artifacts produced in the ECG signal.



3. Enhancement of the R Peak Detection

3.1. Median Filtering

When using electrodes, offset is one of the most common artifacts that
appear in collected ECG signals. As stated in Sasikala and Wahidabanu
(2010), one of the best methods to eliminate the offset produced by electrode
movements is to apply a median filter to the ECG. 100ms is a suitable length
for the filter as artifacts normally do not last for much longer. Figure 3 shows
how the offset is successfully removed from the original ECG by applying this
filter. Anyway, the median filter maintains the shape of the signal, enabling
the identification of R peaks.
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Figure 3: Offset artifacts removed from the original signal by applying the median filter.

3.2. Wawvelet Analysis

Once the offset is removed from the signal, the next step is to remove the
noise which will be done using a wavelet decomposition and reconstruction,
Hong-tu and Jing (2010). Figure 4 shows the diagram of how the wavelet
processing is done (on the left and right sides of the diagram respectively).

In the left side of the diagram, decomposition is shown. In each stage,
the signal is divided into two parts: A and D coefficients. The A coefficients
have low frequency information and the D coefficients the high frequency
information. These two parts are obtained by filtering and applying a dyadic
downsample to the original signal. Depending on the desired coefficients a
different decomposition filter has to be applied: the H high pass filter for D
coefficients and the L low pass filter for A coefficients. On the right side of
the diagram the reconstruction process is depicted, which is the opposite to
what is done in the decomposition. Note that the reconstruction filters H’
and L’ are not the same as the H and L filters used during the decomposition.
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Figure 4: Wavelet decomposition and reconstruction scheme.

The last decision is to choose the specific wavelet to be used in the anal-
ysis. Choosing the best is a tough task beyond this paper. Anyway, the
use of a wavelet is considered to be correct if it enables the perfect recon-
struction of the original signal. Thus, this paper proposes to use the third
wavelet of the Coiflet family (with its correspondent filters), which allows the
reconstruction of the ECG.

To remove the remaining noise on the ECG signal, this paper presents a
signal decomposition developed in six iterations, using the above mentioned
Coiflet wavelet. Afterwards, the reconstruction is made using the approxima-
tion form by using the A coefficients. If that process is applied to the ECG
filtered by the median, the sixth level wavelet approximation is obtained,
shown in figure 5. Although some information might be lost, the noise of the
ECG is removed and its shape is still considerably well kept.
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Figure 5: Noise filtering by the 6th wavelet approximation.

As the R peaks are placed in the positive part of the graphic, the used
wavelet approximation has been limited to its positive values. The next step
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to detect the R peaks is to calculate an estimation of the position where
the next peak is likely to be located and to sweep the signal around that
point to find where exactly the maximum of the signal is. The estimated
position is calculated by summing the average distance of the previous three
peaks plus the position of the last peak. After this estimation and sweeping
process, the R peaks are correctly detected in the wavelet approximation, as
shown in figure 6. So far, no initialization process has been designed for this
algorithm, so the position of the first three peaks has been selected manually.

The final step is to verify whether the detected R peaks match the real
R peaks of the original unprocessed ECG signal and that they have been
detected despite the presence of artifacts or noises (see figure 6):
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Figure 6: R peaks detected in the wavelet approximation and in the original ECG.

3.3. Heart Rate Calculation

For detecting stress, one of the proposed inputs for the detection fuzzy
system is the HR signal. Once all the R peaks have been detected, it is
easy to calculate the time difference between consecutive peaks. The signal

that shows the time intervals between peaks is RR signal and it is needed to
calculate the HR. It is obtained by (1):

RR; = (Peak_position; — Peak_position;_1)/ Fsample (1)

As the RR stands for the varying period of the R peaks, the frequency of
the heart beats is obtained by inverting the RR signal. Continuing with the
calculus, the HR value will be obtained if the frequency of the heart beats is
multiplied by 60, as the heart rate stands for the number of beats per minute,
shown in (2):

Freats = 1/RR — HR = 60 * Fyeqs (2)
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To use the fuzzy stress detection system it is necessary to have a good HR
signal clean from noises or artifacts. The HR calculated using the proposed
method analysis fits perfectly those characteristics. Figure 7 shows how the
proposed method has a better performance than the achieved by the commer-
cial equipment from Biopac® used to collect the signals of the experiments:
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Figure 7: The calculated HR and the obtained from the commercial equipment.

4. Processing of the breath signal

It can be considered that, when relaxed, the human breathing tends to
be relatively harmonic. When air is taken, the lungs inflate resulting in a
movement similar to the ascending part of a sine. When exhaling that air,
the lungs do a movement similar to the descending part of a sine.

On the other hand, when a person gets nervous or stressed, that person’s
breathing becomes less harmonic. This variation of the breathing pace is due
to the acceleration of the heart movements which force the lungs to move
faster in order to maintain the oxygen transfer to blood. This phenomenon
can provide valuable information when trying to detect a stressful situation.

4.1. Frequential analysis of the breath signal

When analyzing how harmonic a signal is, the first step is to do a frequen-
tial analysis of that signal. This paper proposes to calculate the correlation
between the breath signal and different frequency pure sine waveforms. This
method has been chosen because it permits to focus in certain frequency
components without having to pay attention to unnecessary intermediate or
out of range frequencies.



In order to know where frequential information is concentrated, a wider
spectral analysis has been done. From this spectral analysis it can be inferred
that most of the information concentrates in lower frequencies, in the [0,0.5]
Hz range (Fig. 8). After analyzing different subjects’ breath signals it has
been concluded that this range implies both stressed and relaxed situations.
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Figure 8: The frequency spectrum of a breath signal.

Knowing that most of the information is found in this range, pure si-
nusoidal waves from 0.01Hz to 0.5Hz have been chosen to calculate their
correlation with the breath signal. Different window sizes have been used as
it is also interesting to determine which signal length is the best to extract
information related to stress. Figure 9 shows the results of the correlation
calculus using different windows in the breath signal of a real subject. The
selected window sizes are 20s, 40s and 60s with a moving step size of 10s.

The results of the correlation analysis show that during the beginning
and the end of the experiment the highest levels of frequential correlation
are mainly concentrated around a certain frequency. In addition, as several
green spots appear (when the correlation value looks low), it is possible to
deduce that during the stressful part the correlation values get bigger in a
wider range of frequencies.

4.2. Statistical analysis and softening process

As mentioned before, the frequency correlation calculus shows that the
frequential distributions are different during the relaxed and the stressful
parts of the experiment. Therefore, this work proposes to use the standard
deviation of the correlation values as an input of the Fuzzy system. The
standard deviation seems to be a useful parameter when trying to detect
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Figure 9: Correlation between pure sine waves and the RESP signal by different windows.

stress. On the one hand, while stressing, the breath loses frequential concen-
tration and most of the values obtained from the correlation tend to be closer
from the average value. On the other hand, when relaxed, people’s breath
becomes more harmonic producing a frequential correlation increase around
a point and a decrease in the other frequential areas. It also alters the value
of the standard deviation of the correlations that gets bigger as all the values
get further from the average value. This standard deviation variation effect
is shown in figure 10 (the graph on top depicts the breath signal and the
bottom graph corresponds to the frequential standard deviation evolution).

Figure 10 depicts that at the beginning and ending of the test the standard
deviation is bigger than in the middle part, the stressing part. Anyway, the
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Figure 10: Standard deviation variation effect: Breath signal and frequential correlation.

standard deviation sometimes gets relatively high values which could lead the
fuzzy system to a interpretation problem. Because of that, it is interesting
to increase the difference between the values of the relaxing and the stressing
parts. A good method to do it is to multiply the standard deviation by the
RMS value of the RR signal mentioned in section 3.3. By combining them
a new signal is obtained, where the level differences between relaxing and
stressful parts have increased compared to what happened on the previous
standard deviation signal (shown in figure 11). This last signal enables to
distinguish easily between stressed and relaxed states and so, it has been
used as an input for the fuzzy detection system.
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Figure 11: Peak differences increase after softening the standard deviation.

5. Proposed Stress Detection Fuzzy System

The fuzzy logic systems are a paradigm of Computational Intelligence
area widely used in identification problems, as introduced by Andujar and
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Barragan (2014). The fuzzy system proposed in this paper has the aim to
detect continued stress situations in order to improve the social inclusion
of people with disabilities and, subsequently, their life quality. The fuzzy
system is based on the one posed in de Santos Sierra et al. (2011), adding
three enhancements: the R peak detection procedure presented in section 3,
the use of the frequential component standard deviation of the RESP as an
input, and the GSR signal decomposition shown later in the current section.

This section will present the Matlab® based fuzzy logic system. First it
will be explained how to build the membership functions and the reason to
do decompose the GSR signal. Second, the output membership functions
will be explained. Then, the rules that relate the inputs to the outputs will
be presented. Finally, results of the stress detection will be shown.

5.1. Input Membership Functions and GSR Decomposition

As the GSR represents the level of conductance of the skin, and hence its
moisture, it can be considered to have an accumulative nature. Thus, despite
the amplitude gives some information, the variations of the signal respect to
its previous values provide much better indicators of changes in stress. In
order to improve the detection, this paper proposes to decompose the GSR
signal into two components: the average value and the variations.

In the work presented in Salazar-Ramirez et al. (2014) the HR and average
GSR membership functions had a Gaussian shape. This was based on the
template method of de Santos Sierra et al. (2011), which proposed to design
the membership functions using the average and standard deviation of the
variables during the two periods of the experiment, RS and SS.

Instead, the current work proposes to define a new intermediate medium
stress (MS) membership function which will give flexibility to the system
allowing to detect better transitions between relaxed and stressed states.

Moreover, this strategy avoids the overlapping of the HR membership
functions. Sometimes people have high HR pace variations which are per-
fectly normal and do not necessarily mean a transition to stress, as it happens
in the RS part of figure 12.

As seen in figure 12, the HR remains relatively concentrated around its
average value during the SS part of the experiment. However, during the RS
period, the HR varies highly and in certain points it even reaches the same
values as in the SS part. Despite that having such HR variations is perfectly
normal, using the template method would lead to difficulties when detecting
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Figure 12: A HR signal with high pace variability.

stress as the HR membership functions would overlap producing false situa-
tions. Such problems are presented on the left side of figure 13, which shows
the template method based membership functions for the subject of figure
12.
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Figure 13: Overlapping of the HR membership functions.

Based on this criteria, three membership functions have been defined for
all input variables: RS, MS and SS. This approach proposes to use trapezoidal
functions for RS and SS and a different MS function filling the gap between
RS and SS, as shown on the right of figure 13. This paper proposes to
use a triangular shape for GSR variations and Gaussian shapes for HR and
average GSR MS functions. Unfortunately, it does not present an automatic
method to fine tune the membership functions, and for the moment, the
function tuning has to be done manually in order to adjust the system to
each subject.

The last membership functions to be defined are the corresponding to the
output. This paper follows the approach of Salazar-Ramirez et al. (2014) and
presents the same three function strategy. In de Santos Sierra et al. (2011)
it is only made the difference between non-stressed and stressed situations.
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To make the stress level detection more reliable, this system includes the
intermediate stress level MS triangular output function. The output has
been normalized in an [0, 1] interval. Table 1 presents the details of the
design of the membership functions:

Table 1: Definition of the membership functions.

Variable | Definition | States Shape Shape edges
Input: RS Trapezoidal Variable
Hear Variable MS Gaussian Variable
Rate SS Trapezoidal Variable
Input: RS | Trapezoidal Variable
Average | Variable MS Gaussian Variable
GSR SS Trapezoidal Variable
Input: RS | Trapezoidal | [-2,-2,-0.75,0]
GSR -2.2] MS | Triangular -0.5,0,0.5]
variation SS | Trapezoidal [0,0.75,2,2]
Output: RS | Trapezoidal | [0,0,0.275,0.475]
Stress [0,1] MS | Triangular | [0.25,0.5,0.75]
level SS | Trapezoidal | [0.525,0.725,1,1]

5.2. The Inference Rule System

As done in Salazar-Ramirez et al. (2014), the inference system variable
linkage has been done matching the inputs in pairs. Again, the variables have
been connected with IF AND IF THEN rules. Anyway, the main difference
proposed in this paper comes from the criteria of using three membership
functions for the inputs. In that previous phase, most of the input variables
had only two membership functions and so, it was difficult to define when
to activate the MS output function. In that phase, the MS output would be
activated when the states of the inputs were opposite to each other. Table 2

summarizes it what was done in Salazar-Ramirez et al. (2014).

Table 2: Previous variable relationships.

State of variable 1 | State of variable 2 | Conclusion
SS SS SS
SS RS MS
RS SS MS
RS RS RS
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An after analysis proved that the rule system was prone to have dras-
tic changes easily. Subsequently, the MS function was added to the input
variables in order to give plasticity to the system. With it, establishing the
relationships between variables has become much simpler: the RS output
activates when both variables are RS, the MS output activates when both
variables are MS and the same the SS output. Lastly, it is important to
note that all the relationships do not weight the same when determining the

detected stress level. This input variable linkage approach can be seen in
Table 3.

Table 3: Input variable relationships.
State of variable 1 ‘ State of variable 2 ‘ Conclusion

SS 5SS SS
MS MS MS
RS RS RS

5.3. Comparative Results of Systems

The last step is to validate the system through simulation. All systems
have been tested, the one from de Santos Sierra et al. (2011), the one from
the previous work and the proposed in this paper. To compare results, these
systems have used the same variables, with the difference that the proposed
in this paper has a fourth input as it needs to consider the softened RESP
Standard Deviation. As stress does not have strong dynamics, the simula-
tions have used inputs that refreshed every 20s, time fast enough to represent
the stress variations correctly. The used HR signal has been taken from the
HR calculated in Section 3 using the robust R peak detection method pro-
posed in this paper. Additionally, the GSR signal has been preprocessed as
mentioned ahead.

As shown in figure 14, the proposed system is more accurate identificating
stress changes as the weight of the instant GSR value is not that important
compared to its tendency respect to the previous points, and the softened
value of the RESP Standard Deviation becomes more important in order
to decrease sharp transitions. Anyway, it is difficult to assure which one
represents better the reality as stress is an abstract and subjective matter
and the only way to quantify it is to ask the volunteers to complete the

normalized survey known as the Self-Assessment Manikin presented by Lang
(1980).
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stress level outputs for the three methods.

6. Conclusions and Future Work

This paper has presented an enhanced and renewed strategy based on
a fuzzy logic and the simultaneous use of three physiological signals (ECG,
GSR and RESP) to detect personal stress situations. This line has contin-
ued the work presented in Salazar-Ramirez et al. (2014) and has remarked
the importance of the input signal processing. It has shown that important
information can be extracted from physiological signals by applying certain
mathematical strategies, as happened when detecting R peaks or when de-
composing the GSR signal. In addition, it has proposed to use the RESP
signal as it contains information about the stress level of people. All these
improvements have been showed in comparison with the results of de San-
tos Sierra et al. (2011) and the further work in Salazar-Ramirez et al. (2014).

This work has also shown how it is possible to obtain successful results
with a simple inference system. For further developments, outside the scope
of this work, the prior tuning of the system will be solved applying other soft
computing techniques, as for example, a neural network to create the input
membership functions.
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Abstract

Nowadays, it is crucial to promote, drive and develop the autonomy of ev-
eryone, and specifically in individuals with some disability, in order to im-
prove their quality of life and achieve a best inclusion into the socio-cultural
life. Therefore, the robust identification of stress situations can be a suitable
and assistive tool for obtaining improvements in such socio-cultural inclusion.
This work presents important enhancements and variations for an existing
fuzzy logic stress detection system based on monitoring and processing dif-
ferent physiological signals (heart rate, galvanic skin response and breath).
First, it proposes a method based on wavelet processing to improve the detec-
tion of R peaks of electrocardiograms. Afterwards, it proposes to decompose
the galvanic response signal into two components: the average value and the
variations. In addition, it proposes to extract information out the breath
signal by analyzing its frequential composition.

Keywords: fuzzy logic, physiological signal processing, wavelets, stress
identification.

1. Introduction

Emotional Intelligence is an alive field of research, where some studies deal
with human emotion measuring. These tendencies are within the approach
of the assistive technologies, which have the target of improving peoples
life quality. Several research tendencies try to improve the life quality of
people with disabilities by focusing in the improvement the inclusion of people
with disabilities in the socio-cultural life. Physiological signal measurements
by non intrusive sensing systems, signal processing and analysis with soft
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computing techniques, identification and classification of human emotions
and stressed situations, are some of the investigation approaches that are
being performed in a high number of significant research groups (Healey
et al. (2005); Vries et al. (2015); Ren et al. (2014)). Applying these studies
to personal emotional blockage situations induced by a high stress levels is a
field of huge interest (Sharma and Gedeon (2012)). The preliminary detection
of blockage situation is a powerful assistive tool for elder people and persons
with disabilities. This work presents an extended solution to the system
presented in (Salazar-Ramirez et al. (2014)), which proposed enhancements
for the work of De Santos in (de Santos Sierra et al. (2011)), where such
situations are detected and identified.

There exist multiple studies that analyze the influence of human emo-
tions in everyday life of people, from qualitative studies based on human
behavior (Lépez et al. (2014)), to quantitative analysis of measured physi-
ological variations that emotions elicit in each person (Sato et al. (2007)).
In particular, there are very specific physiological changes related to stress
(Porges (2001); Kreibig (2010)). As pointed in Cannons researches (Cannon
(1935)), when a person has to face a dangerous situation, the persons body
prepares to confront that situation and generates a physiological response
known as fight-fly. This response increases the activity of the sympathetic
nervous system producing changes as the increase of the heart rate frequency
in order to provide more blood to the body. This change also produces the
respiratory system to activate as a bigger blood flow requires more oxygen
(Poon and Siniaia (2000)). Moreover, some other changes take place in the
body such as the dilation of eye pupils to improve the vision or the increase
of sweat secretion (Navarro (2002)).

Some proposals measure physiological signals using intrusive devices, as
cameras or electrode grids (Coan and Allen (2004)), to analyze and classify
human emotions. Other lines are based on working with non-intrusive de-
vices, as those having electrodes integrated in wearable devices or clothing
accessories (Subramanya et al. (2013)). This work is based on using physi-
ological signal that can be measured with hidden devices, as the electrocar-
diogram (ECG), the galvanic response of the skin (GSR) and the movement
produced by the subjects breathing (RESP).

Currently, processing and analysing real physiological signals is a very
interesting challenge in Biomedical Engineering. The complexity of such
variables is remarkable, being higher than it seems a priori, as Martnez et al.
discussed in (Martinez et al. (2012)). Such difficulty comes from the large



amount of the data generated by analysing the captured time series and from
the countless noises and artifacts that appear in data entries. To solve these
kinds of problems Soft Computing techniques have been highlighted consid-
erably (Lee et al. (2006); Wozniak et al. (2014); Calvo-Rolle and Corchado
(2014)).

In the study of human emotional changes, and specifically in stress situa-
tion labelling, some Soft Computing approaches have a special applicability
(de Santos Sierra et al. (2011); Sakr et al. (2010)). These allow researchers
to add undefined indexes that can be detected looking at physiological data
time series during blockage situations. Due to the complex equilibrium be-
tween parasympathetic and sympathetic nervous systems (Nelson (2005)),
at the present time it has not been possible to define the exact link between
blockage situations and their associated physiological changes. But, as pre-
sented below, the measured ECG, GSR and RESP signals allow to see such
changes in data time series.

The objective of this work is to continue developing enhanced identifica-
tion system of blockage situations in persons, based on the measurement of
human physiological signals obtained by non-intrusive methods. This work
proposes enhancing the system presented in (Salazar-Ramirez et al. (2014))
by improving the processing of the input signals and by using a new input
variable, based on the RESP signal. Three main improvements are proposed.
The first is to increase the robustness of the ECG processing using wavelets
techniques for a more accurate R peak detection (Sasikala and Wahidabanu
(2010); Hong-tu and Jing (2010); Talbi et al. (2011); de Lannoy et al. (2009);
Martis et al. (2014)). The second is to apply more efficiently the GSR sig-
nal, decomposed in average and variations, into the Fuzzy strategy. The last
improvement proposes to analyse the frequential composition of the RESP
signal to use its standard deviation as an input of the detection system.

2. Experimental Stage

When humans are involved, the design of an experimental stage has to
be performed with special care, considering and respecting all laws and each
individuals rights. Eliciting of emotional blockage situations is a very spe-
cific work line considered within the human emotions study. In the present
work, a particular experimental stage was designed based on the previously
established by authors as Gross (Gross and Levenson (1995)) and (CSEA-
NIMH (1999)). These experiments consist on proposing to each individual



a challenge of dexterity for solving a 3D puzzle in a limited period of time,
in order to elicit a stress situation which will lead to an induced emotional
blockage. In each experiment, each subject was previously informed about
the elicitation process and all the legal rules for testing on human beings were
fulfilled. At the end of the experiment they were asked to fill a questionnaire
where they explained how they had felt during the experiment.

During the experiment, volunteers were connected to the correspondent
electrodes needed to collect the ECG and GSR as shown in figure 1. In
addition, a chest band was used to measure the movements produced by the
breathing, the RESP signal. Regarding to these signals two main states can
be distinguished in figure 1: Relax State (RS) and Stressed State (SS). These
states are directly linked with the three main parts of the experiment. During
the relaxing phases (RS) of the beginning and ending of the experiment the
three variables acquire values and tendencies that show that the subject
is relaxing. During these periods, the hearts beats at a normal pace, the
sweating is low and the breathing is harmonic. On the other hand, while
solving the puzzle (SS), the GSR increases (the subject sweats more), the
interval between ECG beats is reduced and the RESP tends to be faster and
more irregular. These changes proof that the subject is getting stressed.
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Figure 1: Electrode positioning scheme and collected data time series.

Unfortunately, using electrodes has disadvantages that difficult the ex-
traction of information. The movements of the person can produce different
artifacts in the ECG that make it difficult to extract the information. More-
over, as the gel of the electrodes gets drier the conductivity between the
skin and the electrode reduces, and so, signal amplitude decreases and noises
appear easily. Figure 2 shows examples of these two possible problems.
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As in (de Santos Sierra et al. (2011)) it is proposed to use the heart
rate (HR) signal as an input to measure the stress level this paper proposes
to make the HR calculation more robust in order to strengthen the fuzzy
stress detection. To accomplish the task this paper proposes to use median
filtering and wavelet analysis for detecting ECG peaks. The signal that has
been used to prove the effectiveness of the method is the shown in figure
2, which has been collected in the experiments for very significant as it has
different artifacts and noises.
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Figure 2: Different noises and artifacts produced in the ECG signal.

3. Enhancement of the R Peak Detection

3.1. Median Filtering

When using electrodes, offset is one of the most common artifacts that
appear in collected ECG signals. As stated in (Sasikala and Wahidabanu
(2010)), one of the best methods to eliminate the offset produced by electrode
movements is to apply a median filter to the ECG. 100ms is a suitable length
for the filter as artifacts normally do not last for much longer. Figure 3 shows
how the offset is successfully removed from the original ECG by applying this
filter. Anyway, the median filter maintains the shape of the signal, enabling
the identification of R peaks.
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Figure 3: Offset artifacts removed from the original signal by applying the median filter.

3.2. Wavelet Analysis

Once the offset is removed from the signal the next step is to remove the
noise which will be done using the wavelet decomposition and reconstruction
(Hong-tu and Jing (2010)). Figure 4 shows the diagram of how the wavelet
processing is done (on the left and right sides of the diagram respectively).
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Sign=[L A1 E—@— —-@- Al . Engnal
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DECOMPOSITION RECONSTRUCTION

Figure 4: Wavelet decomposition and reconstruction scheme.

In the left side of the diagram, decomposition is shown. In each stage,
the signal is divided into two parts: A and D coefficients. The A coefficients
have low frequency information and the D coefficients the high frequency
information. These two parts are obtained by filtering and applying a dyadic
downsample to the original signal. Depending on the desired coefficients a
different decomposition filter has to be applied: the H high pass filter for D
coefficients and the L low pass filter for A coefficients. On the right side of
the diagram the reconstruction process is depicted, which is the opposite to
what is done in the decomposition. Note that the reconstruction filters H
and L are not the same as the H and L filters used during the decomposition.
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The last decision is to choose the specific wavelet to be used in the anal-
ysis. There are several wavelet families. Each one is composed by some
different wavelets from whom one has to be chosen. Choosing the best is a
tough task beyond this paper. Anyway, despite it might not be the best one,
the use of a wavelet is considered to be correct if it enables the perfect recon-
struction of the original signal. Thus, this paper proposes to use the third
wavelet of the Coiflet family (with its correspondent filters), which allows the
reconstruction of the ECG.

To remove the remaining noise on the ECG signal, this paper presents
a signal decomposition developed in six iterations, using the third Coiflet
wavelet. Afterwards, the reconstruction is made using the approximation
form by using the A coefficients. If that process is applied to the ECG
filtered by the median, the sixth level wavelet approximation is obtained,
shown in figure 5. Although some information might be lost, the noise of the
ECG is removed and its shape is still considerably well kept.
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Figure 5: Noise filtering by the 6th wavelet approximation.

As the R peaks are placed in the positive part of the graphic, the used
wavelet approximation has been limited to its positive values. The next step
to detect the R peaks is to calculate an estimation of the position where the
next R peak likely to be located and to sweep the signal around that point
to find where exactly the maximum of the signal is. The estimated position
is calculated summing the average distance of the previous three peaks plus
the position of the last peak. After the process of the estimation of the
position and the sweeps the R peaks are correctly detected in the wavelet
approximation, as it can be seen in figure 6.

The final step is to verify whether the detected R peaks match the real



R peaks of the original unprocessed ECG signal and that they have been
detected despite the presence of artifacts or noises (see figure 6):
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Figure 6: R peaks detected in the wavelet approximation and in the original ECG.

3.3. Heart Rate Calculation

For detecting stress, one of the proposed inputs for the detection fuzzy
system is the HR signal. Once all the R peaks have been detected, it is
easy to calculate the time difference between consecutive peaks. The signal
that shows the time intervals between peaks is RR signal and it is needed to
calculate the HR. It is obtained by (1):

RR; = (Peak_position; — Peak_position;_1)/ Fsample

As the RR stands for the varying period of the R peaks, the frequency of
the heart beats is obtained by inverting the RR signal. Continuing with the
calculus, the HR value will be obtained if the frequency of the heart beats is
multiplied by 60, as the heart rate stands for the number of beats per minute,
shown in (2):

Fbeats - ]-/RR — HR = Fbeats/60

To use the fuzzy stress detection system it is necessary to have a good HR
signal clean from noises or artifacts. The HR calculated using the proposed
method analysis fits perfectly those characteristics. Figure 7 shows how the
proposed method has a better performance than the one achieved by the
commercial equipment from Biopac used during the experiments:
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Figure 7: The calculated HR and the obtained from the commercial equipment.

4. Processing of the breath signal

Regarding the movements of the chest, it can be considered that, when re-
laxed, the human breathing tends to be relatively harmonic. When a subject
takes air, the lungs inflate resulting in a movement similar to the ascending
part of a sine. When exhaling that air, the lungs tend to do a movement
similar to the descending part of a sine. On the other hand, when a person
gets nervous or stressed, that persons breathing becomes less harmonic. This
variation of the breathing pace is due to the acceleration of the heart move-
ments which force the lungs to move faster in order to maintain the oxygen
transfer to the blood. This phenomenon can provide valuable information
when trying to detect a stressful situation.

4.1. Frequential analysis of the breath signal

When analysing how harmonic a signal is, the first step is to do a frequen-
tial analysis of that signal. This paper proposes to calculate the correlation
between the breath signal and different frequency pure sine waveforms. This
method has been chosen because it permits to focus in certain frequency
components without having to pay attention to unnecessary intermediate or
out of range frequencies. Before starting to calculate correlations, in order to
know where frequential information is concentrated, a wider spectral analy-
sis has been done. From this spectral analysis it can be inferred that most
of the information concentrates in lower frequencies, in the [0,0.5] Hz range
(Fig. 8). After having analysed different subjects breath signals it has been
concluded that this range implies both stressed and relaxed situations.

Knowing the range where most of the frequential information is found,
pure sinusoidal waves going from 0.01Hz to 0.5Hz have been chosen to cal-
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Figure 8: The frequency spectrum of a breath signal.

culate their correlation with the breath signal. Different window sizes have
been used as it is also interesting to determine which length of the signal is
the best to extract information related to stress. Figure 9 shows the results
of the correlation calculus using different windows in the breath signal of a
real subject. The selected window sizes are 20s, 40s and 60s with a moving
step size of 10s.

The results of the correlation analysis show that during the beginning
and the end of the experiment the highest levels of frequential correlation
are mainly concentrated around a certain frequency. In addition, as several
green spots appear (when the correlation value looks low), it is possible to
deduce that during the stressful part the correlation values get bigger in a
wider range of frequencies.

4.2. Statistical analysis and softening process

As mentioned before, the frequency correlation calculus shows that the
frequential distributions are different during the relaxed and the stressful
parts of the experiment. Therefore, this work proposes to use the standard
deviation of the correlation values as an input of the Fuzzy system. The stan-
dard deviation seems to be a useful parameter when trying to detect stress.
On the one hand, while stressing, the breath loses frequential concentration
and most of the values obtained from the correlation tend to be closer from
the average value. On the other hand, when relaxed, peoples breath becomes
more harmonic producing a frequential correlation increase around a point
and a decrease in the other frequential areas. It also alters the value of the
standard deviation of the correlations that gets bigger as all the values get
further from the average value. This standard deviation variation effect is
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Figure 9: Correlation between pure sine waves and the RESP signal by different windows.

shown in figure 10 (the graph on top depicts the breath signal and the graph
on the bottom corresponds to the frequential standard deviation evolution).

The standard deviation evolution of figure 10 depicts that at the begin-
ning and ending of the text the standard deviation is bigger than in the
middle part, the stressing part. Anyway, the standard deviation values get
sometimes relatively high values which could lead the fuzzy system to a
problem of interpretation. Because of that, it is interesting to increase the
difference between the values of the relaxing and the stressing part. A good
method to do it is to multiply the standard deviation by the RMS value of
the RR signal mentioned in section 3.3. By combining them a new signal is
obtained, where the level differences between the relaxing and stressful parts
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have increased compared to what happened on the previous standard devia-
tion signal (shown in figure 11). This last signal enables to distinguish easily
between stressed and relaxed states and so, it has been used as an input for
the fuzzy detection system.

Original frequential
standard deviation
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Time [s] Time [s]

Figure 11: Peak differences increase after softening the standard deviation.

5. Proposed Stress Detection Fuzzy System

The fuzzy logic systems are a paradigm of Computational Intelligence
area widely used in identification problems, as introduced by Andujar and
Barragan (2014). The fuzzy system proposed in this paper has the aim to
detect continued stress situations in order to improve the social inclusion
of people with disabilities and, subsequently, their life quality. The fuzzy
system is based on the one posed in de Santos Sierra et al. (2011), adding
three enhancements: the R peak detection procedure presented in section 3,
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the use of the frequential component standard deviation of the RESP as an
input, and the GSR signal decomposition shown later in the current section.

This section will present the fuzzy logic system. First it will be explained
how the membership functions are built and the reason to accomplish a
decomposition of the GSR signal. Second, the output membership functions
will be explained. Then, the rules that relate the inputs to the outputs will
be presented. Finally, results of the stress detection will be shown.

5.1. Input Membership Functions and GSR Decomposition

As the GSR represents the level of conductance of the skin, and hence its
moisture, it can be considered to have an accumulative nature. Thus, despite
the amplitude gives some information about the stress level, the variations
of the signal respect to its previous values provide much better indicators of
changes in stress. In order to improve the detection, this paper proposes to
decompose the GSR signal into two components: the average value and the
variations.

In the work presented in Salazar-Ramirez et al. (2014) the membership
functions for the HR and the average GSR were designed to have a Gaussian
shape. This was based on the templated method of de Santos Sierra et al.
(2011), which proposed to design the membership functions using the average
and standard deviation of those two variables during the two periods of the
experiment, RS and SS.

Instead of this, the current work proposes to define a new intermediate
medium stress (MS) membership function for both variables which will give
flexibility to the system and permit to detect in a better way the transitions
between a relaxed and a stressed state. More information about this point
will be presented in the next section of this paper.

Moreover, this strategy avoids the overlapping of the HR membership
functions. Sometimes people have high HR pace variations which are per-
fectly normal and do not necessarily mean a transition to stress , as it happens
in the RS part of figure 12:

As seen in figure 12, the HR remains relatively concentrated around its
average value during the SS part of the experiment. However, during the RS
period, the HR rate varies highly and in certain points it even reaches the
same values as in the SS part. Despite that having such HR variations is
perfectly normal, using the template method would lead to difficulties when
detecting stress as the HR membership functions would overlap producing
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Figure 12: A HR signal with high pace variability.

false situations. Such problems are presented in figure 13, where the template
method based membership functions of the subject of figure 12 are shown.

Figure 13: Overlapping of the HR membership functions.

Based on this criteria, for all the input variables three membership func-
tions have been defined: RS, MS and SS. This approach proposes using
trapezoidal functions for RS and SS and a MS triangular function filling the
gap between RS and SS. Unfortunately, this work has not been able to design
an automatic method to fine tune the membership functions and for the mo-
ment the tuning of the functions has to be done manually in order to adjust
the system to the subject.

The last membership functions to be defined are the correspoding to the
outputs. This paper continues with the approach of Salazar-Ramirez et al.
(2014) and presents the same three function strategy followed with the inputs.
In de Santos Sierra et al. (2011) it is only made the difference between non-
stressed and stressed situations. To make the stress level detection more
reliable, this system includes an intermediate stress level, the MS output
function. The output has been normalized in an [0, 1] interval. Table 1
presents the details of the design of the membership functions:
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Table 1: Definition of the membership functions.

Variable | Definition | States Shape Shape edges
Input: RS | Trapezoidal Variable
Hear Variable MS Triangular Variable
Rate SS Trapezoidal Variable
Input: RS | Trapezoidal Variable
Average | Variable MS Triangular Variable
GSR SS Trapezoidal Variable
Input: RS | Trapezoidal | [-2,-2,-0.75,0]
GSR -2.2] MS | Triangular -0.5,0,0.5]
variation SS | Trapezoidal [0,0.75,2,2]
Output: RS | Trapezoidal | [0,0,0.275,0.475]
Stress [0,1] MS | Triangular | [0.25,0.5,0.75]
level SS | Trapezoidal | [0.525,0.725,1,1]

5.2. The Inference Rule System

As done in Salazar-Ramirez et al. (2014), the inference system variable
linkage has been done matching the inputs in pairs. Again, the variables have
been connected with IFF AND IF THEN rules. Anyway, the main difference
proposed in this paper comes from the criteria of using three membership
functions for the inputs. In that previous phase, most of the input variables
had only two membership functions and so, it was difficult to define when
to activate the MS output function. In that phase, the MS output would be
activated when the states of the inputs were opposite to each other. Table 2
summarizes it what was done in Salazar-Ramirez et al. (2014).

Table 2: Previous variable relationships.

State of variable 1 | State of variable 2 | Conclusion
SS SS SS
SS RS MS
RS SS MS
RS RS RS

An after analysis proved that the rule system was prone to have drastic
changes easily. Subsequently, a MS function was added to the input variables
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in order to give plasticity to the system. With it, establishing the relation-
ships between variables has become much simpler: the RS output activates
when both variables are RS, the MS output activates when both variables
are MS and the same the SS output. Lastly, it is important to note that
all the relationships do not weight the same when determining the detected
stress level. This input variable linkage approach can be seen in Table 3.

Table 3: Input variable relationships.
State of variable 1 ‘ State of variable 2 ‘ Conclusion

SS 5SS SS
MS MS MS
RS RS RS

5.83. Comparative Results of Systems

The last step is to validate the system through simulation. All systems
have been tested, the one from de Santos Sierra et al. (2011), the one from
then previous developments and the proposed in this paper. To compare
results, these systems have used the same variables, with the difference that
the proposed in this paper has a fourth input as it needs to consider the soft-
ened RESP Standard Deviation. As stress does not have strong dynamics,
the simulations have used inputs that refreshed every 20s, time fast enough
to represent the stress variations correctly. The used HR signal has been
taken from the HR calculated in Section 3 using the robust R peak detec-
tion method proposed in this paper. Additionally, the GSR signal has been
preprocessed as mentioned ahead.

As it can be seen in figure 14, the proposed detection system is more
accurate in identification of stress changes as the weight of the value of the
GSR is not that important compared to its tendency respect to the previous
points, and the softened value of the RESP Standard Deviation becomes
more important in order to decrease sharp transitions. Anyway, it is difficult
to assure which one represents better the reality as stress is an abstract and
subjective matter and the only way to quantify it is to ask the volunteers
to complete the normalized survey known as the Self-Assessment Manikin
presented by Lang (1980).

6. Conclusions and Future Work

Several articles propose different methods to detect personal stress situ-
ations. This paper has presented a strategy based on a fuzzy logic to detect
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Figure 14: HR, GSR, GSR variation and RESP Standard Deviation inputs and estimated
stress level outputs for the three methods.

those changes. This paper has proposed to continue with the line presented in
Salazar-Ramirez et al. (2014) and has remarked the importance of the input
signal processing. It has shown that important information can be extracted
from physiological signals by applying certain mathematical strategies, as
happened when detecting R peaks or when decomposing the GSR signal. In
addition, it has proposed to use the RESP signal as it contains information
about the stress level of people. This signal has not been commonly used
and it has been found to be useful for detecting stress.

This work has also shown how it is possible to obtain successful results
with a simple inference system. Anyway, this work still has the handicap
that the tuning of the system has to be done with a prior knowledge about
the physiology of the subject using it. This could be solved if other soft
computing techniques were applied, as for example, if a neural network was
used to create the input membership functions.

Finally, it is important to remark that physiological signal monitoring
strategies can be very useful for other purposes, as e.g., detecting certain
pathological symptoms in paraplegic people who lost the sensibility in the
lower limbs, or detecting emotional blockage situations in persons with intel-
lectual disability in order to get quick assistance from relatives or monitors.
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