

Abstract—This paper presents an experiment in which visual

programming environments have been used in programming
courses aiming at helping students to acquire the competencies
of a course on Object Oriented Programming. The study
presented is centred on the analysis of the acceptance by the
students of this type of environment, as well as its effect in the
motivation of the students. The results obtained show
differences in their answers according to the two possible
characteristics of the students analysed: their gender and the
fact of being a newcomer or retaking the subject.

Index Terms—Computer science education, Object Oriented
Programming

I. INTRODUCTION

N Computer Science degrees, the technical skills
associated with programming are covered by several
modules. In the Bachelor Degree In Computer

Engineering in Management and Information Systems at the
University of the Basque Country (UPV/EHU), two
modules –Introduction to Programming and Modular and
Object Oriented Programming– address the main specific
competencies of programming in the first course. Acquiring
these competencies is essential to obtain good results in
many of the subjects of this degree.

Although students are aware of their relevance in the
degree, these modules have high dropout and failure rates,
thus posing a challenge for both teachers and students.

One of the main issues of these modules is an increase in
students of the programming modules who present a high
degree of heterogeneity regarding previous knowledge of
the competencies taught in these modules [1], [2]. This issue
makes it difficult for teachers to design appropriate learning
methods for all students [5].

Programming modules are usually taught using general
purpose programming languages that may be very complex
for students [1], [3]. Some programming languages require
students to learn many concepts before they can begin any
programming task, while others require typing large

F. I. Anfurrutia, University of the Basque Country UPV/EHU,
felipe.anfurrutia@ehu.eus

A. Álvarez, University of the Basque Country UPV/EHU,
ainhoa.alvarez@ehu.eus

M. Larrañaga, University of the Basque Country UPV/EHU,
mikel.larranaga@ehu.eus

J-M. López-Gil, University of the Basque Country UPV/EHU,
juanmiguel.lopez@ehu.eus

DOI (Digital Object Identifier) Pendiente

amounts of code, which are difficult to understand by
novice students. This means that students have to deal with
both the construction of the algorithms and the syntactic
rules of the programming languages used.

Some authors propose the use of visual programming
environments as they reduce the cognitive overload implied
in the initial programming tasks of any programming
module. Although they do not solve syntax related
problems, they allow the postponement of the syntactical
peculiarities and also to focus the students initially on
concept understanding or designing tasks without worrying
about the syntax [2], [4]. Once they have understood the
basics, they can move on to a non-visual environment and
address the problem of code syntax.

Our hypothesis is that the use of visual programming
environments in programming subjects can improve the
learning experience of students. However, the mere fact of
including new support tools does not solve the problems the
majority of students face. In order to provide adequate
pedagogical support, the use of support tools must be
meticulously designed.

This article first presents a proposal for teaching
improvement by incorporating visual programming
environments. Subsequently, the implementation of the
proposal in an object-oriented programming subject is
described. Next, the study carried out is presented, followed
by the analysis and discussion of the results obtained.
Finally, some conclusions and future lines are mentioned.

II. PROPOSAL FOR TEACHING IMPROVEMENT

The quality of learning and teaching programming
improves by using constructivist approaches, in which
students construct knowledge actively instead of being mere
passive recipients of such knowledge [5]-[9]. Therefore,
discovery and experience can promote learning in these
subjects. That is why, so far, the teachers of the
programming modules have tried to redesign their lessons in
order to make them as practical as possible. To this end, an
attempt has been made to expand the number of examples
and practical exercises. However, the efforts made have not
been successful enough to improve the academic results.
One of the reasons is that the practical exercises have been
done using a professional programming environment,
Eclipse, which forces students to simultaneously deal with
the complexity of abstract concepts, the syntax of the
programming language and the complexity of the
environment itself.

Visual Programming Environments for Object
Oriented Programming: Acceptance and Effects

on Student Motivation

Felipe I. Anfurrutia, Member, IEEE, Ainhoa Álvarez, Mikel Larrañaga, Member, IEEE,
Juan-Miguel López-Gil

I

F. I. Anfurrutia, A. Álvarez, M. Larrañaga and J. -M. López-Gil, "Visual Programming Environments for Object-Oriented Programming: Acceptance and
Effects on Student Motivation," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 12, no. 3, pp. 124-131, Aug. 2017, doi: 10.1109/
RITA.2017.2735478 © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Any educational innovation should be based on learning
theories. In the case of programming, practical situations are
the most appropriate [8]. Among the different theories
proposed for experimental learning, Kolb’s learning cycle
stands out [10]. This learning cycle has often been used in
programming learning processes [11], [12]. It entails four
stages in which students must get involved in order to
acquire knowledge (see Fig. 1). First, they must carry out a
specific activity. Afterwards, they should reflect on the
experience, to later conceptualize the theoretical aspects that
allow the explanation of the observed behaviour. Finally,
they must apply the theory in new situations.

The appropriate application of this learning cycle implies
combining it with the use of tools that promote or facilitate
identified cognitive processes (observation/reflection,
conceptualization, application and experimentation). These
tools include, for example, visual programming
environments or educational robots. As the use of
educational robots presents the problems inherent to the use
of physical devices, the authors decided to use the visual
programming environments in this case. The use of these
environments will allow the “Concrete experience” to be
graphically addressed in the computer laboratories and,
then, the abstract conceptualization phase to be performed
more appropriately under the guidance of the teaching staff.

The next section depicts how this learning cycle has been
applied in the module in charge of introducing the Object
Oriented Programming (OOP) paradigm.

III. IMPLEMENTATION OF THE PROPOSAL

A. Subject Contents

Modular and Object Oriented Programming (MOOP) is a
compulsory module of the first year of the degree in
Computer Engineering in Management and Information
Systems at the UPV/EHU. This module is the second one
related to the subject of programming among the students’
study, since the Introduction to Programming module has
been taken by all students in the first term. Therefore, the
students who take this module already have knowledge
about the code syntax and basic concepts of programming in
Java, but they lack OOP knowledge.

In the MOOP module, four main topics are addressed (see
Fig. 2): Fundamental OOP concepts (classes, objects and
methods), interactions (i.e., message passing between
objects), inheritance and unit testing. In addition, students
should also be able to understand the UML class diagrams
at the end of this course.

The educational innovation carried out entails the
application of Kolb’s learning cycle to each topic of the
module. The next subsection describes the tools chosen to
support this methodology.

Fig. 1. Kolb’s learning cycle

B. Tool Selection

When considering the introduction of new programming
environments, it must be taken into account that: 1) there is
no programming environment that is suitable for all
situations [3], and 2) the activity performed by using a tool
must be attractive and relevant for students [11].

There are several tools that support OOP learning.
Among them, BlueJ and Greenfoot are two of the most
complete and advantageous ones [13], and are better suited
to Kolb’s learning cycle [11]. Both tools have different
levels of complexity and support different parts of the
module. Therefore, the authors decided to use both, as
shown in Figure 2, in this module. BlueJ was mainly used to
introduce the fundamental concepts during the first 7 weeks,
whereas Greenfoot was used to work on interaction and
inheritance aspects in the remaining 8 weeks. Both tools
were used two hours per week in computer laboratories.

The main features of each tool are described next.
1) BlueJ

BlueJ is an integrated development environment (IDE)
for learning OOP with Java language designed for
educational purposes [14]-[16]. The distinguishing feature
of BlueJ is its graphical user interface (see Fig. 3), which in
the upper part shows the class diagram in UML-like format,
and at the bottom the object bank containing the instances
created. Through this visualization, students can inspect
both classes and objects. Moreover, they can interactively
create objects and invoke methods without writing any code
or having deep knowledge of Java. This way, students can
experiment and reflect with the concepts of class and object
before reaching the state of conceptualization.

In addition, it also allows students to introduce some
necessary syntax elements, since students can view and edit
the code for a specific class when they double-click on it.

2) Greenfoot
Greenfoot is another integrated development environment

(IDE) created to help students learning OOP related aspects
[11], [17]. This development environment allows interactive
applications in two-dimensional worlds to be created. Its
rich visual scenarios allow learning and teaching based on
simulations or games [12].

In relation to MOOP themes, it helps to introduce the
concept of inheritance interactively in two ways: by
defining subclasses and inspecting both inherited attributes
and methods (see Fig. 4). As Greenfoot is based on BlueJ,
inspections are carried out in a familiar way for students,
because they have previously used BlueJ.

Fig. 2. Subject Contents

Fig. 3. BlueJ integrated development environment: a) class diagram, b)
instantiation process, c) instantiated objects and d) method call

Fig. 4. Greenfoot integrated development environment: a) definition of a
new subclass and, b) inspection of inherited methods

C. Kolb’s Learning Cycle Application Example

All the topics of the module were tackled by means of the
Kolb’s learning cycle with the aim of promoting active
learning and using the visual tool selected for each topic.

Figure 5 shows how Kolb's learning cycle was applied
using BlueJ to address the "Fundamental Concepts of OOP"
topic:

1. Concrete experience: Students were provided with a
project that included a set of classes representing
geometric shapes (e.g., Circle, Square) which could
be drawn on a canvas. The specific tasks students
had to perform included creating instances of those
classes, drawing them on the canvas, moving them
around, and changing their size or color by message
passing. To this end, they interacted with classes and
objects using their methods (see Fig. 3b and d).

2. Reflective Observation: Students had to observe the
effect of their actions by inspecting the state of the
objects both before and after the message passing to
an object (method execution). For example, one of
the tasks involved drawing two squares and a circle
of different sizes (50, 40 and 30 respectively), one on
top of the other. In each of the tasks, students should
reflect on a table each of the performed operations.
Tasks also included questions to guide students

through the reflective process, helping them to
understand the effect of the performed operations.

3. Abstract Conceptualization: Teachers guided this
phase during the lectures. They explained the notions
of class, object and method conceptually. The
explanations were based on the projects used in the
computer laboratories.

4. Active Experimentation: Students were presented
with a new scenario in which they had to apply the
learned concepts. In particular, students had to define
new classes and objects, and interact with them to
draw what was requested by means of geometric
figures (see Fig. 5).

Once these phases were completed, the students worked
on the syntax aspect. First, they inspected the code of a
specific class and then they implemented a program using
the code presented in the table of the reflective observation
phase (see Fig. 5-2).

Greenfoot has been used in a similar way using various
scenarios proposed in [18], such as Leaves and Wombats,
Little Crab, and others specifically created by the teachers.

IV. STUDY

A. Objetives

The general objective of the proposal described in section
III is to improve the performance of students in
programming modules by incorporating visual learning
environments. In order to improve this, they need to
perceive the pedagogical benefits of the proposal and
improve their initial motivation. Based on the results
obtained in previous studies in the Introduction to
Programming module, the following specific objectives are
proposed for this study:

 Objective 1: Study of how the use of visual
programming environments affects the initial
motivation and expectations of students.

 Objective 2: Analysis of the help provided by
visual environments in the acquisition of the
concepts addressed in a subject in which OOP
concepts (in this case MOOP) are taught.

 Objective 3: Study whether the programming
environments used are suited to the contents of
the module.

 Objective 4: Study of how the use of visual
environments within the framework of Kolb’s
learning cycle affects the performance of
students.

Taking the results of previous studies into account, for

each objective of this work, the differences between the
students will be analyzed based on: (a) being retakers –those
who are repeating the module– and non-retakers and (b)
gender.

Fig. 5 Example of Kolb’s learning cycle application using BlueJ for the "Fundamental concepts of OO" topic

B. Data Collection

Different sources of information were used in this study.
For the first three objectives, data was collected through a
survey that was conducted before the final test and the
publication of the final marks of the course. This data was
collected during the three academic courses after the
implementation of the methodology. For the fourth
objective, the final marks of the students in the module were
considered. In the latter case, the teachers of the module
considered that using two different methodologies with two
groups of students when one produces better results than the
other was not appropriate [15]. Therefore, a between-subject
analysis was conducted, in which the students are not
divided into two different groups, but rather their results in
different courses are compared. For this aim, the results of
the three academic courses prior to the implementation of
the methodology and the three subsequent ones, in which it
was already implemented, were used.

The survey, in addition to questions for contextualization
data, contained a set of five-level Likert-type questions (see
Table I): strongly disagree, disagree, indifferent, agree, and
strongly agree. The questions were grouped by each
objective. Moreover, for each block, an open-ended
question was included to collect other comments that the
students wanted to convey about the experience. Table I
shows an excerpt from the survey completed by the students
of the module.

A total of 56 students who completed the course did this
survey. Its results are detailed below.

V. RESULTS AND DISCUSSION

The results obtained for each of the objectives analyzed
in this study are described below. Regarding the
contextualization of the results, of the total of 56 students,
21% were female and 79% were male. On the other hand,
70% of students were non-repeaters.

TABLE I: EXCERPT FROM THE SURVEY

Objective Code Question

Objective1 BlueJ.Motivation My motivation in the subject has
increased with the use of BlueJ

 Greenfoot.Motivation My motivation in the subject has
increased with the use of
Greenfoot

Objective2 BlueJ.Helpful Using BlueJ has helped me with
the module

 Greenfoot.Helpful Using Greenfoot has helped me
with the module

Objective3 BlueJ.No I would have preferred not to use
BlueJ

 Greenfoot.No I would have preferred not to use
Greenfoot

 Eclipse I would have preferred to use
Eclipse

A. Objective 1: Motivation

Concerning student motivation in using these
environments, only 23% of all students think that using
BlueJ did not increase their motivation; In the case of
Greenfoot, this value is reduced to 16% (see Fig. 6). There
was a large undecided percentage when answering this
question, which in the case of BlueJ reached 52%. This high
level of indecision fell to 32% with Greenfoot, implying that
52% of students are very clear about the increase in their
motivation using this tool.

Comparing the results between retakers and non-retakers,
differences are observed in the case of Greenfoot. While
23% of non-retakers indicate that using Greenfoot did not
increase their motivation, none of the retakers responded in
this sense. The percentage of students who acknowledge
that the use of Greenfoot has positively influenced their
motivation is similar in both groups (53% in the case of
retakers versus 51% in non-retakers) (see Fig. 7).

Fig. 6. Motivation increase using BlueJ or Greenfoot

Fig. 7. Motivation increase using BlueJ or Greenfoot, grouped by retakers

and non-retakers

Analyzing the data collected for Greenfoot, which more

clearly affects the motivation of students in a positive way,
the gender difference is remarkable (see Fig. 8).

57% of non-retaking female students think that the tools
used did not increase their motivation in the subject, while
in the case of male retakers, this percentage is reduced to
16%. The 80% of indecision among female retakers is also
remarkable, which falls to 33% in the case of male students.

As expected, Greenfoot game-based scenarios generally
improve the initial motivation of students. However, this
effect does not appear to be the same between male and
female students. This circumstance, in agreement with those
of [19], [20], seems to indicate that the scenarios are not
equally attractive to females or males and it is an aspect that
should be analyzed in depth. The positive results of the
experiences presented in [21] suggest as a possible way to
follow the design of diverse visually attractive scenarios
with a specific set of problems that better suit the tastes of
the students.

B. Objective 2: Help to Understand

Students were asked, for each of the used tools, whether
they had helped them to assimilate the concepts of the
module or not, and how much it had helped them in each of
the topics covered.

In this respect, only 14% of the students consider that the
use of these environments has not helped them (see Fig. 9).

It is remarkable that the percentage of students who think
that the visual tools have helped them is higher among the
retakers (65%), as opposed to 46% of the non-retakers, as
can be observed in Fig. 10.

Fig. 8. Motivation increase using Greenfoot, grouped by gender and

retakers/non-retakers

Fig. 9. Those who think that using BlueJ or Greenfoot helps to understand

Fig. 10. Those who think that using BlueJ or Greenfoot helps to understand,

grouped by retakers/non-retakers

Analyzing the differences by gender (see Fig. 11), the

results are worse among female students. While 20% of the
female retakers have responded negatively to this question,
not one of the male retakers has issued negative responses to
it. In addition, indecision is also greater among females than
among males. The correlation observed between the results
associated with this objective and objective 1 may suggest
that, in the case of females, these negative results are related
to the type of scenarios that had been used.

C. Objective 3: Tool Suitability

Considering the tool selection, students were first asked if
they would have preferred not to use BlueJ or Greenfoot
(see Fig. 12). 16% of students would have preferred not to
use BlueJ and 11% not to use Greenfoot. However, the
percentage of those who would like to keep the tools is
clearly higher than those who do not (54% Greenfoot and
39% BlueJ).

Comparing the results obtained and separating them into
retakers and non-retakers, among the retakers, the results are
better with Greenfoot. Only 12% of them would have
preferred not to use it, while 65% clearly indicated its
convenience (see Fig. 13).

Fig. 11. Those who think that using BlueJ or Greenfoot helps to understand,

grouped by gender and retakers/non-retakers

Fig. 12. Those who would have preferred not use BlueJ or Greenfoot, or

just using Eclipse

Fig. 13. Those who would have preferred not to use Greenfoot grouped by

retakers/non-retakers

In the survey, students were also asked if they would
have liked to work with Eclipse and not use visual learning
environments. 53% of the retakers indicated that they would
have liked to use Eclipse exclusively, despite the utility they
see in used visual environments (see Fig. 14). However,
among non-retakers, the percentage is lower (33%) and the
level of indecision is higher among non-retakers (36% vs.
24%).

Analyzing the open question related to this objective, it
can be detected that interest in Eclipse is because it offers
more functionality and is perceived to be more useful for the
professional future of the students. However, the fact that
retakers are less reluctant to use educational tools suggests
that, despite the limitations in this aspect presented by the
tools, they do appreciate that they contribute significantly to
learning.

When analyzing the results from a gender perspective, on
the one hand, the considerable indecision of females in the
case of BlueJ is noteworthy. This is particularly noticeable
in the case of retakers, where the rate of indecisiveness rises
to 80%, as opposed to 17% among male repeaters (see Fig.
15, upper part). In the case of Greenfoot, the value rises to
71% in the case of female non-retakers compared to 34% in
the case of male non-retakers (see Fig. 15, lower part). On
the other hand, it is remarkable that the majority of students
in favor of maintaining visual environments are male: 67%
of retakers in the case of BlueJ and 41% of non-retakers; in
the case of Greenfoot, the value increases to 75% of retakers
and 56% of non-retakers (see Fig. 15, lower part).

Fig. 14. Those who would have preferred to use Eclipse, grouped by

retakers/non-retakers

Fig. 15. Those who have preferred not to use BlueJ or Greenfoot, grouped

by gender and retakers/non-retakers

Similarly, most of the female students (both retakers and
newcomers) indicated clearly that they would have preferred
to start working exclusively with Eclipse (see Fig. 16).

D. Objetivo 4: Improvements in the Grades

In order to determine whether the educational innovation
carried out has helped to improve the students’ grades, the
academic results of the last three courses before
implementing the new methodology (C1, C2, C3) and the
three subsequent courses (C4, C5, C6) have been analyzed.
Due to their special characteristics, the third and fourth
years (C3 and C4 respectively) are considered as transition
years. The third one because it correspondes to a change of
curriculum and, therefore, students were more motivated to
pass and not be forced to change the academic plan, while
the fourth was the first year in which the new methodology
was implemented.

Concerning the percentage of students presented, the rate
went from less than 40% in the courses prior to the change
of methodology to an average of 55% of those presented.
This data by itself is very interesting, although the
improvement of the grades of the students who were
submitted to the final exam is also noteworthy.

As can be seen in Fig. 17, the percentage of students who
passed the exam increased from around 45% to around 70%.

Students who take the exams are usually those who are
confident that they will pass them. The increase in this
number suggests that the motivation and confidence of the
students has improved with the new methodology
(Objective 1). In addition, improved results support the idea
that the use of new tools within Kolb’s framework actually
helps students in their learning process (Objective 2).

Fig. 16. Those who would have preferred to use Eclipse instead of the other

environments, grouped by gender and retakers/non-retakers

Fig. 17. Percentage of students who passed the exam

VI. CONCLUSIONS AND FUTURE LINES

This paper has presented an implementation of Kolb’s
learning cycle through the use of visual learning
environments in the setting of the teaching of the OOP
paradigm. This learning cycle has been implemented for
each of the topics during three academic courses. Its
implementation has been supported by two different visual
environments: BlueJ and Greenfoot.

The study of the results has been performed analyzing,
from the perspective of the students, how the new proposal
affected their motivation, whether it helped them in their
learning or not and whether the tools fit the syllabus of the
module or not.

As for motivation, overall, the results are not as good as
had been expected; in fact they are worse than those
previously obtained with physical robots in the Introduction
to Programming module [3], [22], [23].

In relation to the help they provide, the results have
generally been positive. In addition, students have indicated
in the surveys that they would not stop using the tools
chosen. However, it is worth mentioning the great influence
of the gender of the students in the result of the surveys.
Female’s answers are noticeably more negative than male's
in this regard.

On the other hand, a large percentage of students suggest
that they would like to work directly with Eclipse. One of
the main reasons for this is the functionality provided (e.g.,
code templates, refactoring, etc.). Visual educational
environments include less functionality and are not as
efficient for the development of more complex applications.
To continue using these kinds of tools in a more adequate
way, it seems appropriate to remind students that the aim of
the subject is to learn concepts, rather than a specific
programming language or IDE.

Based on these results, a set of future lines are opened in
order to continue with the implementation of improvements
in the programming modules.

On the one hand, considering that previous experiences
with robots in other modules reflect a higher degree of
motivation and that grades improve more with visual
environments, adequately combining both tools could be an
interesting way to improve motivation without affecting the
performance.

On the other hand, it would also be appropriate to better
integrate the visual programming environments in the
evaluation process of the module or to relate them to other

modules in order to provide the students with a global
perspective. Hence, it is also suggested that it would be
interesting to first apply the learning cycle in Introduction to
Programming and later in Modular and Object Oriented
Programming. This could make the students see them
integrated in a better way.

Using the theory of self-determination [24] as a
framework to measure student motivation could also be
considered.

Finally, the great differences in the results according to
gender raise an urgent need to expand the study before
continuing with new implementations. For example,
whether the problem lies in the selected tools or the subject
matters of the performed exercises, particularly selected
scenarios should be analysed. According to [19], [20], the
perception of computing, and games in particular, greatly
varies according to gender. Expanding this part of the study
would allow us to adapt the improvements that have been
proposed in this work.

ACKNOWLEDGEMENTS

This work is supported by the Basque Government
(IT980-16), the University of the Basque Country
UPV/EHU (EHUA16/22, GIU16/15, and PIE 6819).

REFERENCES
[1] A. Gomes and A. J. Mendes, “Learning to program-difficulties and

solutions,” in International Conference on Engineering Education–
ICEE, Coimbra, Portugal, 2007, vol. 2007.

[2] D. J. Malan and H. H. Leitner, “Scratch for budding computer
scientists,” ACM SIGCSE Bulletin, vol. 39, no. 1, pp. 223–227,
2007.

[3] A. J. Hirst, J. Johnson, M. Petre, B. A. Price, and M. Richards,
“What is the best programming environment/language for teaching
robotics using Lego Mindstorms?,” Artif Life Robotics, vol. 7, no. 3,
pp. 124–131, Sep. 2003.

[4] A. Wilson and D. C. Moffat, “Evaluating Scratch to introduce
younger schoolchildren to programming,” Proceedings of the 22nd
Annual Psychology of Programming Interest Group (Universidad
Carlos III de Madrid, Leganés, Spain, 2010.

[5] D. C. Leonard, Learning theories, A to Z. Westport, Conn.: Oryx
Press, 2002.

[6] S. Papert, The children’s machine: rethinking school in the age of
the computer. New York: BasicBooks, 1993.

[7] C. Wang, L. Dong, C. Li, W. Zhang, and J. He, “The Reform of
Programming Teaching Based on Constructivism,” in Advances in
Electric and Electronics, W. Hu, Ed. Springer Berlin Heidelberg,
2012, pp. 425–431.

[8] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the
difficulties of novice programmers,” ACM SIGCSE Bulletin, vol.
37, no. 3, pp. 14–18, 2005.

[9] F. Jurado, A. I. Molina, M. A. Redondo, and M. Ortega, “Cole-
Programming: Shaping Collaborative Learning Support in Eclipse,”
Tecnologias del Aprendizaje, IEEE Revista Iberoamericana de, vol.
8, no. 4, pp. 153–162, Nov. 2013.

[10] D. A. Kolb, Experiential learning: experience as the source of
learning and development. Prentice-Hall, 1984.

[11] P. Henriksen and M. Kölling, “Greenfoot: combining object
visualisation with interaction,” in Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, 2004, pp. 73–82.

[12] L. Yan, “Teaching Object-Oriented Programming with Games,” in
Sixth International Conference on Information Technology: New
Generations, 2009. ITNG ’09, 2009, pp. 969–974.

[13] S. Georgantaki and S. Retalis, “Using educational tools for teaching
object oriented design and programming,” Journal of Information
Technology Impact, vol. 7, no. 2, pp. 111–130, 2007.

[14] D. J. Barnes and M. Kölling, Objects first with Java: a practical
introduction using BlueJ. Boston: Pearson, 2012.

[15] M. Kölling, “Using BlueJ to introduce programming,” in

Reflections on the Teaching of Programming, Springer, 2008, pp.
98–115.

[16] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The BlueJ
System and its Pedagogy,” Computer Science Education, vol. 13,
no. 4, pp. 249–268, 2003.

[17] M. Kölling, “The Greenfoot Programming Environment,” ACM
Transactions on Computing Education, vol. 10, no. 4, pp. 1–21,
Nov. 2010.

[18] M. Kölling, Introduction to Programming with Greenfoot: Object-
Oriented Programming in Java with Games and Simulations, 2nd
ed. Pearson, 2016.

[19] J. Robertson, “The influence of a game-making project on male and
female learners’ attitudes to computing,” Computer Science
Education, vol. 23, no. 1, pp. 58–83, Mar. 2013.

[20] M. . Phan, J. R. Jardina, and W. S. Hoyle, “Video Games: Males
Prefer Violence while Females Prefer Social,” 2012. [Online].

Available: http://usabilitynews.org/video-games-males-prefer-
violence-while-females-prefer-social/. [Acceded: 19-Jun-2016].

[21] R. B. Hijon-Neira, Á. Velázquez-Iturbide, C. Pizarro-Romero, and
L. Carriço, “Game programming for improving learning
experience,” in Conference on Innovation & technology in
computer science education ITiCSE ’14, 2014, pp. 225–230.

[22] C.-C. Wu, I.-C. Tseng, and S.-L. Huang, “Visualization of Program
Behaviors: Physical Robots Versus Robot Simulators,” in
Informatics Education - Supporting Computational Thinking, R. T.
Mittermeir and M. M. Sysło, Eds. Springer Berlin Heidelberg,
2008, pp. 53–62.

[23] A. Álvarez and M. Larrañaga, “Experiences Incorporating Lego
Mindstorms Robots in the Basic Programming Syllabus: Lessons
Learned,” Journal of Intelligent & Robotic Systems, vol. 81, no. 1,
pp. 117–129, Jan. 2016.

[24] R. M. Ryan and E. L. Deci, “Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-
being,” The American Psychologist, vol. 55, no. 1, pp. 68–7. 2000.

Dr. Felipe I. Anfurrutia is a lecturer at the UPV/EHU and
a member of the research group ONEKIN Web Engineering
(http://www.onekin.org). His research lines are related to
the development of Web applications through Domain
Specific Languages, Software Product Lines, and different
programming paradigms (OOP, Features, Aspects and
XML). He has also participated in educational projects to
improve teaching in programming.

Dr. Ainhoa Álvarez is a lecturer at the UPV/EHU in the
Department of Computer Languages and Systems. She
works in the field of educational computing in the GaLan
research group (http://galan.ehu.eus). Her main lines of
research focus on the analysis of learning and teaching
assisted by technology in engineering.

Dr. Mikel Larrañaga is a lecturer at the UPV/EHU in the
Department of Languages and Computer Systems. He works
in the field of educational computing in the GaLan research
group. His interests include knowledge acquisition,
knowledge maps, intelligent tutors, learning analysis and
technology-assisted teaching in engineering.

Dr. Juan Miguel López Gil is a lecturer at the UPV/EHU
and member of the GaLan research group. He has worked
on usability and accessibility of user interfaces, adaptive
user interfaces and emotional computing.

