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Abstract—In the last years high performance computing has become heterogeneous. Almost every computing resource is composed
of traditional out-of-order execution cores and accelerator device(s), such as graphical processing units, to which compute-intensive
tasks can be offloaded. The advent of this type of systems has brought about a wide ecosystem of development platforms, optimization
tools and performance analysis frameworks. This is a review of the state-of-the-art in performance tools for heterogeneous computing,
focusing on graphical processing units as the most widely available class of co-processors. We begin describing current heterogeneous
systems and the development frameworks and tools that can be used for developing them. Next, a diverse collection of performance
models proposed in the literature is reviewed. These models are valuable tools to understand the performance of a given device
when running a particular application, and are aimed to help programmers make the most of the huge computing power available in
state-of-the-art and future heterogeneous computing platforms.
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1 INTRODUCTION

A CCELERATOR devices are hardware pieces designed
for the efficient computation of specific tasks or

subroutines. These devices are commonly attached to
a Central Processing Unit (CPU) which controls the of-
floading of software fragments and manages the copying
and retrieval of the data manipulated at the accelerator.
Most accelerators show important architectural differ-
ences with respect to the CPU to which they are attached.
Commonly, the number of computing cores, instruction
sets or memory hierarchy is completely different, which
make them suitable for certain computations that would
be inefficiently processed in the CPU.

Around 2007, the High Performance Computing
(HPC) community began using Graphics Processing
Units (GPU) as accelerators for general purpose compu-
tations [79], coining the term GPGPU (General Purpose
computing on GPUs) [2]. These are hardware devices
specifically designed for the manipulation of computer
images. The increasing needs of the image processing
field resulted in an important boost in the horsepower
of the GPU, starting a manufacturer race in which each
new generation of devices offered significantly higher
(theoretical) FLOPS [68] [97]. The scientific community
soon became aware of the power hidden inside graphic
cards, devising smart (and complex) tricks to disguise
scientific computations as graphics manipulations. GPU
manufacturers became aware of this trend and provided
APIs (Application Programming Interfaces) and SDKs
(Software Development Kits) to facilitate a more direct
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programming of their devices for non-graphics tasks.
In subsequent years, GPGPU spread and many com-

mercial applications relied on the use of GPUs as accel-
erators. GPU manufacturers not only improved general-
purpose software development tools, but also made their
devices evolve, taking into account the needs of this
new market. Discrete accelerators built around GPUs but
without video connectors were produced, with excep-
tional acceptance by the HPC community. The impact of
the evolution of this fast market can be seen following
the Top500 list [4], a ranking of the 500 most powerful
supercomputers in the world which is renewed twice a
year. In the November 2012 update, three out of the top
10 computers were built around accelerators. Out of the
complete list, 62 supercomputers use accelerators, 53 of
which are GPUs. Another example of the wide adoption
of GPUs as compute co-processors can be seen in the
Amazon Web Services portal, where this company offers
virtual infrastructures for HPC with built-in GPUs [9].

Effectively using the theoretical power of an accel-
erator is a very challenging task. It requires not only
the use of new tools, but also a completely new set of
programming paradigms (compared to those for CPUs).
In most cases, adapting an application to use GPUs
requires extensive program rewriting, only to achieve
a preliminary, not really efficient implementation. Op-
timization is even more complex. This complexity is
exacerbated when simultaneously trying to use the ag-
gregated power of CPUs and accelerators, not to mention
a massively parallel system with thousands of combined
CPU+GPU nodes. While several works claim that it
is difficult to efficiently use (homogeneous) massively
parallel computing systems [34], it is even more difficult
with heterogeneous, accelerator-based supercomputers
[59] [93].

The challenge, therefore, is to carefully design and
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implement applications to make the best possible use of
the available resources. A common pitfall is to carry out
code implementation or tuning at random, by trial-and-
error, without the feedback of performance tools that
would provide guidance during the development pro-
cess, avoiding (or helping to remove) performance bot-
tlenecks [54]. Unfortunately, in the field of accelerator-
based computing, there is no outstanding tool or model
that can be considered as the reference instrument for
performance prediction and/or tuning. The main objec-
tive of this survey is to analyze, organize and summarize
the large body of literature in this field. To better un-
derstand these performance tools, we also provide the
reader with a picture of the evolution and state-of-the-
art in accelerator hardware and the development tools
used with them. To the best of our knowledge, there
is no previous research document providing a similar
assessment of performance tools for accelerator-based
application developers.

In Section 2, this document begins reviewing the
rapidly evolving landscape of heterogeneous hardware
in current HPC systems. Then, in Section 3 we describe
the novel programming paradigms and development
frameworks that accelerators in general and GPUs in
particular have brought. We continue in Section 4 with
a classification of the existing performance analysis and
optimization models and tools based on the intended
uses (execution time prediction, bottleneck highlighting,
simulation or power consumption estimation). We also
analyze the proposals found in the literature, discussing
their constraints, strengths and weaknesses. Further-
more, this information is summarized in several tables.
Finally in Section 5, we provide some conclusions and
discuss future research lines in this field.

2 HETEROGENEOUS ARCHITECTURES

Before the GPGPU era, compute nodes in HPC systems
were mainly built with one or several CPUs, which
held one or several processing cores each. In most cases
these compute nodes were powerful server-class com-
puters, capable of efficiently running almost any type of
workload. Evolution towards multi-cores was a result of
excessive power consumption. The current trend is to
package more general-purpose cores in each new CPU
generation.

Multi-core processors show some weaknesses when
dealing with highly data-parallel applications that re-
quire many threads to be spawned – thousands, millions
of them. Thread management in multi-cores is mainly
performed by the operating system (although there is
some hardware support) and implies expensive con-
text switching. This fact, together with the evolution of
GPUs, made the HPC community turn to heterogeneous,
accelerator-based computing to deal with this class of
massively parallel workloads. However, not all applica-
tions fit into this model and, therefore, CPUs are still the
main computing platform for most applications.

In this section we review the state-of-the-art hardware
devices used for heterogeneous computing. As we have
stated before, this is a rapidly evolving field. We have
summarized in Figure 1 a timeline of the main hardware
devices developed by different manufacturers. A dashed
line indicates the absence of a product family, while a
shortened line indicates the discontinuation of a product.
Brief descriptions of the devices mentioned in the figure
are given along this section. GPUs are explored in more
detail, as they are most popular accelerators of today.

2.1 Graphics Processing Units

GPUs are processors originally intended for the render-
ing of 2D and 3D images. Currently the main GPU man-
ufacturers developing HPC-class products are NVIDIA
and AMD (who bought ATI in 2006), see Figure 1 which
also shows the evolution of their product families. Both
AMD and NVIDIA provide desktop and server versions
of their cards. Desktop cards are marketed as graphic
accelerators that can also be used for GPGPU, running
punctual workloads at full performance. Server cards
are actually GPU-based accelerators, designed to run
intensive workloads in an uninterrupted way.

There are other players in the GPU field. Not included
in the figure is ARM [1], designer of a line of GPUs
called Mali. This product family targets the embedded
and mobile market, but not HPC: they are designed
to accelerate image processing in low-power portable
devices. Its design is radically different from those of
AMD and NVIDIA, using a simpler memory hierarchy
and a smaller number of processing units. In 2012, ARM
announced the second Generation of the Mali family, the
T-600 series [5], which integrates support to be used as
a co-processor for GPGPU.

In essence, a GPU is an autonomous compute system
composed of a set of cores and a memory hierarchy. In-
side this memory hierarchy, GPUs have their own global
memory space, accessible by all the processing cores,
which can be exclusive (this is the common case if the
GPU is a discrete accelerator plugged into a PCI-Express
slot) or shared with other processing elements in the
system, including the CPU (which is the common case
when using a heterogeneous, multi-core chip). Discrete
NVIDIA and AMD server-class accelerators (Tesla [62]
and FireStream systems [21] respectively) include up to
8 GB of global memory.

In terms of processing elements, GPUs are arranged
as a set of multiprocessors, each of them holding,
among other elements, several computing cores, a set
of registers and some shared memory for inter-core
communication. Common additional elements include
double-precision floating-point units, functional units for
transcendental operations, and a cache hierarchy. The
components and their interconnection vary depending
on the manufacturer and card model. For example,
a Tesla C2050 accelerator of the Fermi family from
NVIDIA has 14 multiprocessors, each one with 32 single
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Fig. 1. Accelerator/hybrid devices timeline

precision processing cores, and 64 KB of configurable
shared memory and L1 Cache [97]. In contrast, a Tesla
K20 accelerator (with a newer GK 110 Kepler GPU) has
13 multiprocessors with 192 single-precision cores and
96 KB of configurable shared memory [76].

We refer the interested reader to [103], where authors
make an in-depth comparison between the architecture
of NVIDIA and AMD GPU families.

The strong point of GPUs is the way they handle
thousands of in-flight active threads, and make context
switching among them in a lightweight way. Running
threads may stall when trying to access global memory
(a relatively expensive operation) or when there is con-
trol flow divergence (which appears when not all threads
run exactly the same instructions). GPUs hide these
latencies by rapidly context-switching stalled threads
(actually warps / wavefronts) with active ones.

2.2 Dedicated accelerators

In this section we review other, non-GPU accelerators
used for HPC. In all cases they are devices designed for
the offloading of compute intensive tasks.

In the last few years, Intel has released a line of
accelerator products to compete with the GPGPU com-
puting trend. A preliminary proposal, called Larrabee,
was an accelerator composed of 32 x86 cores plugged
to a host using PCIe. Larrabee was announced in 2008
[84], and some prototypes were shipped in 2010. In 2012,
Intel launched Xeon Phi Coprocessor [50] (codename
Knights Corner), as an improved version of Larrabee.
A Xeon Phi SE10 coprocessor houses 61 x86 cores at 1.1
Ghz top clock frequency and 8 GB of dedicated built-
in memory. The computing cores used in these devices
are less powerful than those in state-of-the-art Xeon
processors, but they are still more general purpose than
GPU cores. The greatest strength of the Xeon Phi is its
ease of programming. Intel has focused on developing
a compatibility layer to run both massively parallel and
legacy multithreaded applications.

Field Programmable Gate Arrays (FPGAs) are pro-
grammable integrated circuits designed to be configured

by the developer or user. Some of the most popular
FPGA manufacturers are Altera and Xilinx. The main fo-
cus of FPGA manufacturers and developers is not HPC;
however, they can be used to offload computationally in-
tensive tasks after the hardware has been appropriately
programmed, using tools based on languages such as
VHDL, with which the HPC community is not familiar
[25]. This flexibility has been enhanced by the availability
of tools that automate the development of VHDL code
from higher-level, conventional programming languages
(such as C). In fact, both Altera and Xilinx are offer-
ing development environments based on the existing
GPGPU frameworks, and (directly or through partners)
PCIe-pluggable cards to be used as accelerators [29].

2.3 Hybrid chips
In recent years, manufacturers have introduced into the
market hybrid chips that combine different types of cores
in the same die. A prototypical example is the family of
AMD’s APUs (Accelerated Processing Units [23]), that
include several x86 cores and a GPU composed of several
STMD cores. Similarly, Intel has its own family of proces-
sors with integrated graphics. The target market of these
hybrid processors is low cost, low power computers,
with the focus on mobility.

GPUs integrated into hybrid chips are not very differ-
ent from those used in discrete accelerators. They may be
less powerful (fewer cores), due to cost and power lim-
itations, and therefore not attractive for HPC. However,
they have an important advantage when compared to
discrete accelerators: memory spaces for GPU and CPU
are not separated; in fact, both share the same mem-
ory. This drastically reduces the overheads associated to
CPU-GPU communication and synchronization, because
data movement through PCIe (a requirement for discrete
accelerators) is not necessary. There are studies available
comparing the performance of the AMD Fusion platform
against a discrete CPU+GPU system [30][87], where the
main conclusion is that current hybrid devices are more
compute efficient than a discrete GPU for applications
involving massive data movements through the system
bus.
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The STI group, formed by Sony, Toshiba and IBM,
presented in 2005 and released in 2006 a hybrid proces-
sor called the Cell Broadband Engine [51]. It integrated
in the same die a general purpose PowerPC core and
eight co-processor elements designed to accelerate mul-
timedia and vector applications. The chip was shipped
mainly in two ways: as Cell-based IBM server blades for
general purpose systems, and in the Sony PlayStation
3 (PS3) gaming console. The production of the Cell
was discontinued in 2009, as shown in Figure 1. On
March 31st, 2013, the largest Cell-based supercomputer
(Los Alamos’ Roadrunner, manufactured by IBM) was
decommissioned [80].

ARM designs processors that mainly target embedded
systems, where the main challenge is low power con-
sumption. Current ARM Cortex processors are widely
used in smartphones and other mobile platforms, but
with its increasing computing power there are some
proposals to use this family of processors for general
purpose systems, targeting “greener” cloud infrastruc-
tures and also supercomputers [81].

In a step towards low-power but efficient computing,
ARM presented in 2011 a technology called big.LITTLE
[42] which enabled to seamlessly balance computations
among two different processors that coexist in the same
chip. With this configuration, a big processor is perfor-
mance oriented while another LITTLE processor is power
efficient but less capable. A task manager dispatches
tasks to in the most energy efficient manner.

As previously described, ARM also designs a family of
GPUs (Mali) that can be integrated with general-purpose
processors in the same chip. The low-power market is
clearly heterogeneous.

3 DEVELOPMENT TOOLS

Parallel applications for accelerators are generally de-
veloped using software development environments pro-
vided by the device manufacturer. These environments
can be manufacturer specific toolchains, or implemen-
tations of standard APIs. This section presents most
common APIs and tools targeting current heterogeneous
computing: CUDA and OpenCL. Additional develop-
ment tools built on top of these are also described briefly.

3.1 CUDA

Compute Unified Device Architecture (CUDA [72]) is
a framework released by NVIDIA for the development
of general purpose applications on NVIDIA GPUs. It
includes a hardware (compute and memory) model, and
a programming environment.

Regarding the hardware model, a CUDA capable GPU
is formed by several multiprocessors called Streaming
Multiprocessors (SMs), which hold the processing cores,
also called Streaming Processors (SPs). As described in
Section 2.1, in addition to the compute cores, each SM
also contains a register file, a shared memory space for

inter-SP communication, and (depending on the particu-
lar model) additional elements such as double-precision
floating point units, transcendental functional units, and
a cache hierarchy. NVIDIA assigns a number to each con-
figuration, which defines the device’s Compute Capability.

Outside the SMs, each GPU holds a dedicated, global
memory space of several gigabytes. The host system
(typically, the CPU) can copy data to/from this memory.

Each CUDA program is composed of a host side code
and a collection of device kernels. The former runs on
the host device and manages data copies from/to host
memory to/from device memory, and also the execution
of the kernels, which are the data-parallel portion of
the program and run on the GPU. Kernels are written
using a language called CUDA-C, an extension of the
standard ANSI-C99 with several synchronization and
management functions. The host part defines the number
and geometry of the threads which will run a kernel,
and the organization of these threads into groups called
blocks. At run time, each block will be assigned to a SM
for its execution, where the kernel will be executed in a
SIMD way by the SPs. Internally, each block is divided
into sub-groups called warps, which are the minimum
scheduling unit of the GPUs. Up to version 5 of CUDA,
warps have a fixed size of 32 threads.

CUDA has been widely adopted as a framework for
the acceleration of massively data-parallel tasks, due to
its maturity and good performance. Its popularity has
led to the creation of an ecosystem of developers and
tools around this programming environment. We will
review some of these tools in Section 3.3. It is also worth
mentioning the large body of available literature about
CUDA, both printed [55] and on-line [78].

3.2 OpenCL
Open Computing Language (OpenCL [46]) is a frame-
work for the development of data/task parallel appli-
cations defined by the Khronos Group. It aims to be
the vendor-neutral, standard API for the development
of applications in accelerator devices. Similar to CUDA
in many aspects, it also provides a hardware model and
a programming environment.

Regarding the hardware model, an OpenCL platform
is a collection of compute devices. Each device comprises
one or more compute units which, in turn, contain process-
ing elements. All the compute devices in a platform are
connected to a host device that controls the execution of
applications. The processing elements run work-items,
the equivalent of CUDA threads; each work-item keeps
its own private memory, and can access a local memory
in order to communicate and synchronize with other
work-items in the same compute unit. Finally, there is
a global memory per device accessible to all work-items
in that device.

This abstraction of the hardware enables the OpenCL
framework to launch any parallel application over any
device, provided that the minimum hardware require-
ments are fulfilled. Each manufacturer that releases an
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CUDA OpenCL Description
Thread Work Item One of a collection of parallel executions of a kernel
Warp Wavefront (AMD GPUs only) Minimum unit of thread level scheduling
Block Work-group Group of threads
Streaming Processor Processing Element Single processing core
Streaming Multiprocessor Compute Unit Multi-processor inside a device
GPU Compute Device CPU, GPU or other accelerator
Registers Private Memory Memory space for a single thread
Shared Memory Local Memory Memory space for a group of threads

TABLE 1
Comparison of CUDA and OpenCL terminology

OpenCL capable device makes a mapping of its hard-
ware to the OpenCL model and releases its own OpenCL
SDK. For example, a NVIDIA GPU can be mapped to a
compute device, each SM to a compute unit, and each SP
to a processing element. In the case of Intel CPUs, each
(multi-core) CPU is a compute device, and each core is
considered to be a compute unit with a single processing
element.

An OpenCL application consists of some host-side
and some device-side code. The host-side code man-
ages the execution of the device-side code, and also
the data movements between devices. OpenCL device
applications are called kernels (as in CUDA). Kernels are
written in an extension of ANSI-C99, called OpenCL-
C. Within a compute device, a number of developer-
defined threads runs a kernel. Threads are aggregated
into work-groups. Work-groups are assigned to compute
units for their execution. The scheduling of the threads
inside each compute unit is manufacturer-dependent. As
an example, in AMD GPUs (for which AMD provides
full OpenCL support) work-groups are divided into sub-
groups called wavefronts (equivalent to NVIDIA’s warps)
with a typical size of 64 work-items.

It should be apparent that OpenCL and CUDA models
and programming paradigms are very similar. There are
differences in terminology – see Table 1, but also in
other, more important aspects. While OpenCL has been
designed to be generic, for any accelerator device, CUDA
is tightly coupled with NVIDIAs GPUs. Also, as CUDA
was developed first, it is a more mature environment.
The overall result is that developing and tuning appli-
cations for NVIDIA GPUs is easier with CUDA, but
if portability is a must and/or the program is being
developed for another accelerator, currently OpenCL is
the best choice.

It is also worth mentioning that CUDA applications
are generally compiled off-line using the nvcc compiler.
In contrast, OpenCL kernels are commonly compiled
on-line, at run time when the application is launched.
The OpenCL SDK for a given device will include the
appropriate dynamic compiler for kernels. It is even
possible to have several SDKs for the same device, which
can result in different binaries for the same kernel. For
example, both Intel and AMD offer OpenCL SDKs for
multi-core CPUs, and they include different compilers.

The popularity of OpenCL comes from its wide sup-

port from the hardware manufacturers. Almost all the
devices presented in Section 2 (GPUs, multi-core CPUs,
hybrid chips, FPGAs) support the execution of OpenCL
applications. OpenCL developers, thus, can create codes
that are portable, being able to run in different accel-
erators. However, code portability does not translate
into performance portability (an OpenCL code that runs
efficiently in a GPU might behave poorly in a CPU).
Therefore, extensive device-dependent tuning may be
required.

For those readers interested in resources for OpenCL
programming, we refer them to [11] [39] [77].

3.3 Higher level tools

Both CUDA and OpenCL are frameworks that provide a
low level of abstraction over the hardware. The program-
mer has a high degree of control of what the application
does, so that he is finally responsible for fine-tuning the
code to effectively exploit the hardware. This is a difficult
task, which becomes harder when we take into account
the growing number of possible accelerators and families
within them.

In order to simplify programming, debugging and
tuning accelerator-based applications, an ecosystem of
tools around CUDA and OpenCL has appeared, which
try to hide hardware complexities and to offer program-
mers a higher-level view of accelerators. The character-
istics of these tools are very different, because they were
designed for diverse, sometimes very specific, purposes.
Some of the tools included in this brief review are listed
in the CUDA Tools and Ecosystem web site [73], a
section inside the CUDA Developer zone where NVIDIA
collects GPGPU-related applications, development tools
and libraries.

A simple way to take advantage from accelerator
devices is by making use of GPU-accelerated implemen-
tations of well-known function libraries. An application
calling BLAS or FFT functions (these are just some exam-
ples) can take advantage of multi-core CPUs via linking
to Intel’s Math Kernel Library [49] or AMD’s Core Math
Library (ACML) [10], to mention just some options. Al-
ternatively, GPU-ready versions are also available from
the main GPU vendors: CUBLAS [71] and CUFFT [74]
from NVIDIA, and APPML (Accelerated Parallel Pro-
cessing Math Libraries) [12] from AMD.
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Another option for the development of parallel ver-
sions of existing codes is relying on the abilities of paral-
lelizing compilers. Some popular compilers, such as Intel
Compilers, have built-in features to detect simple loops
in an existing application and are able to automatically
generate multi-threaded implementations. Similarly, the
Par4All [14] open-source project is a compiler workbench
that generates CUDA, OpenMP or OpenCL versions
of programs from their source code in C or Fortran,
detecting (and transforming) parallelizable loops.

An alternative that provides a trade-off between the
simplicity of the previous tools (which completely hide
the complexities of parallel hardware and programming)
is to use an approach that has proven successful when
programming for multi-cores: the utilization of program-
ming directives for the declaration of parallel sections in
the the code. OpenMP is a successful case [31]. Inspired
by it, several companies have joined efforts to create
OpenACC [3], a standard for the development of accel-
erator based applications using OpenMP-like compiler
directives. OpenACC is endorsed by NVIDIA, CAPS,
PGI and CRAY among others, who are interested in the
definition of a common framework to simplify program-
ming accelerator devices. Currently, PGI implements
OpenACC support for NVIDIA GPUs in its Accelerator
Compilers [98], while CAPS provides support NVIDIA
and AMD GPUs, and also for Intel’s Xeon Phi.

4 PERFORMANCE MODELS

When developing a program, it is helpful to have access
to a collection of support tools that complement the com-
pilers, such as editors, profilers, debuggers, etc., even
more so if they form part of an integrated development
environment. When dealing with parallel programming,
the need for these tools is even larger, because parallel
code is generally more complex than sequential code,
and the execution is harder to follow: multiple thread-
s/processes running simultaneously, synchronization is-
sues, memory sharing, etc. A working code is just the
starting point for an optimized code. We have hinted
before that developing optimized code for accelerator-
based systems is not easy. However, the research com-
munity has made a step forward by designing pow-
erful models, able to estimate execution times for dif-
ferent programs and platforms, to identify bottlenecks,
to suggest the most appropriate optimization flags, or
to provide detailed instruction-level information. These
models and tools, which we review in this section, can
help as a guide during the optimization process. We
pay special attention to developing for GPUs, because
this is the most popular class of accelerator devices and,
therefore, it has a larger developer community.

The common scheme of a performance models is
depicted in Figure 2. Roughly speaking, a performance
model can be seen as a system representation which
provides output values based on a given set of input pa-
rameters. Depending on the characteristics of the model

and the goal is has been designed for, the input and
output datasets can be notably different. We will discuss
these aspects in the following sections.

4.1 Input data
We consider two different types of data: (1) related to the
target hardware (the device or devices) and (2) related
to the program that will run in that hardware.

4.1.1 Device characteristics
Information about the characteristics of a particular de-
vice can be collected in two main ways. The manufac-
turer usually provides product data sheets and detailed
hardware manuals [11], [77]. Often, the development
environment include mechanisms (an API) to query the
device.

A complementary source of information is that pro-
vided by micro-benchmarks, programs designed to
stress a particular component of the hardware and re-
turn performance metrics about it. This technique has
been used extensively for CPUs and, with the advent
of GPGPU, similar toolsets have been developed for
NVIDIA [99] and AMD GPUs [89].

4.1.2 Application characteristics
There are different approaches to obtain information
from a program. One of the most intuitive ways is the
analysis of its code in order to identify memory access
patterns, arithmetic operations, branches, etc. This can
be done directly on the source code or using some
transformations. For example, in [43] authors use Clang
[57] (the front-end of the LLVM [58] compiler infrastruc-
ture) to generate an Abstract Syntax Tree. Next, they go
throughout the tree counting the features they need to
feed their model.

It is also common to parse an intermediate representa-
tion (IR) of the program, an assembly-like code represen-
tation produced by the compiler before the generation of
the binary files. Intermediate formats are simpler, easier
to parse, and usually provide additional information,
such as the number of registers per thread, size of buffers
allocated in shared and constants memory, and so on.
A drawback of this approach relies on the potential
optimizations that the compiler might have performed,
and that may not exactly represent the original source
code. In the case of CUDA applications for GPUs, the
intermediate representation is in PTX, a virtual instruc-
tion set developed by NVIDIA. It can be obtained using
the NVIDIA compiler nvcc (part of the CUDA SDK [72])
with the -ptx flag.

Regarding OpenCL, the IR will vary depending on
the device that the application targets, and on the used
SDK. As the same program can be executed on different
platforms, each compiler will generate a different IR for
each device family. Given these facts, it is not easy to de-
velop a tool that relies on obtaining the IR of an OpenCL
application, unless it is specific for a given device family
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– thus losing the portability expected from the OpenCL
environment. To tackle this issue, in 2012 the Khronos
Group released the 1.0 version of the Standard Portable
Intermediate Representation (SPIR) [45], a proposal of
a common IR for every OpenCL framework. This IR is
based on that defined for the LLVM compiler toolchain.

A lower level approach to source code parsing consists
of disassembling the final binary files. These are the files
loaded onto and executed by the devices, so they provide
maximum information about what the hardware will
do. The drawback of this approach is that it is device
or architecture specific, and that the obtained assembly
code might not be trivial to parse. Examples of this
class of binary code analyzing tools are Decuda [92] and
cuobjdump [75]; both are disassemblers for the CUDA
binary format.

The Ocelot [33] modular compilation framework is
a popular tool used to analyze CUDA kernels. Ocelot
can transform a kernel from its PTX representation
to LLVM’s intermediate representation, and from this
to other instruction sets (for example, x86 and ARM).
Ocelot is also capable of emulating the execution of PTX
codes and includes several source analysis tools. All
together, it can be used to extract a variety of metrics
from a PTX code (static information) and its execution
(dynamic information).

Finally, it is worth mentioning that profilers can pro-
vide extremely accurate information about how an ap-
plication runs on a given hardware. They can collect and
summarize a variety of performance counters, useful to
understand and model the way the application behaves
and the use it makes of the resources available.

4.2 Modelling methods
A performance model is designed with the aim of
predicting the behavior of a system. Regarding the
literature, there are three approaches which are most
widely used: analytical modelling, machine learning and
simulation. An analytical model is an abstraction of a
system in the form of a set of equations. These equations
try to represent and comprise all (or most) of the char-
acteristics of the system. Machine Learning (ML) [67] is
a branch of artificial intelligence related to the study of
relationships between empirical data in order to extract

valuable information. These techniques learn and train
a model, for example a classifier, based on known data.
Later, this model will be used with new (unseen) data
to classify it. Finally, simulators are tools designed to
imitate the operation of a system. They are able to mimic
each step providing information about system dynamics
and behavior. The level of accuracy of the simulator’s
output information depends, as in the other approaches,
on the level of detail introduced in the model, taking
into account that it is not always easy to exactly identify
the actual way a system behaves.

4.2.1 Model training

Independently of the nature of a model, most have a
set of parameters that must be tuned according to the
particular scenario to which they will be applied. Some-
times, these parameters are assigned values coming from
experts or previous experimentation but, in general,
models are trained with data obtained from scenarios
similar to the target one. For example, a model designed
to predict execution times of a particular application on
a particular hardware with a particular configuration
(number of threads, workgroup size, input data, etc.)
may take as training data set the results obtained from
running the same application in the same or similar
hardware for a variety of different configurations. If the
training dataset is large and representative enough, one
could expect promising estimations of the execution time
for the target application / hardware combination. How-
ever, this model would probably provide poor results for
other applications (unless it is very close to the one used
for training) or for other, different target hardware.

If we focus on modelling for a fixed hardware, the
challenge is to design a general model, able to estimate
the execution time of any application. The training pro-
cess needs to be performed using a wide dataset, that is,
extracting and gathering information from a representa-
tive set of applications (different computation/memory
rates, memory access patterns, number of branches, etc.).
In the literature we can find references to benchmark
application suites that can be used for this purpose. Here
are some of them:

• The Rodinia application suite [24][26], developed by
the University of Virginia is one of the most popular
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benchmark suites. It contains diverse applications,
each of them representing a compute behavior. There
is a multi-core (OpenMP) and a GPU-accelerated
(CUDA or OpenCL) implementation for each appli-
cation.

• Parboil [88] is a suite of applications developed by
the University of Illinois. It provides a diverse set
of multi-core (OpenMP) and GPU (CUDA/OpenCL)
implementations. Also, for each application, the suite
includes a simple readable implementation, and also
an optimized implementation.

• The Scalable HeterOgeneous Computing (SHOC)
suite [32] is a collection of benchmarks that aims to
be diverse in the nature of its applications. Authors
provide CUDA, OpenCL and OpenMP implemen-
tations of each benchmark. SHOC applications are
designed to be scalable if they are tested in a large
enough cluster or set of devices. Applications are
divided into three groups. Those in the first group
are aimed to test low level hardware features (e.g.
memory bandwidth or peak FLOPS). The second
group is composed of implementations of common
algorithms, such as FFT or SGEMM. The last group
is a collection of compute intensive applications that
aim to test the stability of large systems.

• NAS Parallel Benchmarks (NPB) [19] is a classic suite
used to test the performance of multi-core computers
and supercomputers. In 2011, Seoul National Uni-
versity adapted several of the NPB benchmarks to
OpenCL and made them publicly available [85].

• Finally, test and demonstration programs included in
vendor-provided SDKs (such as NVIDIA’s CUDA or
AMD’s APP) have been also widely used for testing
purposes. Some of them are FFT, N-Body, GEMM,
etc.

4.3 Output data

Performance models can be classified according to dif-
ferent criteria. In this work we focus on the type of
output information the model is able to provide, iden-
tifying four model classes (depicted in Figure 3). There
are models designed to (1) predict execution times, (2)
identify performance bottlenecks and propose perfor-
mance optimizations, (3) provide detailed instruction-
level information based on simulation, and (4) provide
estimations of power consumption. In the forthcoming
sections we make a literature review of the proposals
inside these four classes.

4.4 Execution time estimation

In Table 2, we have compiled and summarized infor-
mation about modelling tools for accelerator-based com-
puting whose main purpose is to provide estimations
of execution times. Each row corresponds to a model
proposal, and includes the method used to build it
(analytical or machine learning), the target hardware, the

information required to feed the model, and its features
and limitations.

Hong et al. present in [47] an analytical model for
NVIDIA GPUs. This model is able to estimate the
number of execution cycles needed by a given CUDA
kernel (that can be easily transformed into execution
time). As explained in Section 2.1, GPUs hide laten-
cies by handling thousands of in-flight active threads,
rapidly switching from warps stalled due to memory
transactions with ready-to-run warps. Hong et al. model
this behavior using two different metrics, called MWP
(Memory Warp Parallelism) and CWP (Computation
Warp Parallelism). This model represents a good trade-
off between simplicity and hardware representation.
Even though it does not take into account many device
features, such as details of the memory hierarchies, it
produces quite accurate results. Experiments show a
geometric mean error of 13.3% between estimated and
actual number of cycles for a collection of seven bench-
mark applications on four different GPUs. This model
has been used in Ganestam et al. [37] as part of an auto-
tuning tool for the optimized execution of a ray-tracing
algorithm.

Kerr et al. [53] present an approach based on prin-
cipal component analysis, cluster analysis and linear
regressions. To train (calibrate) the models, authors use
a dataset of performance features obtained from differ-
ent CUDA kernels by means of Ocelot, and run these
applications on the target hardware (NVIDIA GPUs or
multicore CPUs). Once the model is trained, it can be
used to estimate execution times for new applications or
devices. They present four different models: application
modelling, GPU modelling, CPU modelling, and CPU-
GPU modelling. The paper states that GPU modelling
(estimation of application execution times on an un-
known GPU) provide fairly accurate results, with a max-
imum deviation of 16% in the worst case. Unfortunately
the remaining models are not that accurate, producing
poorer estimates and high variability.

Kothapalli et al. [56] present an analytical model to
estimate the execution time of a kernel given its pseudo-
code. They aim to create a model able to estimate the
performance of a pseudo-code before it is actually coded
in CUDA. The paper does not state clearly the syntax
to be used for the pseudo-codes, but apparently it is
very similar to CUDA. The model focuses on computing
the most time-consuming task in a kernel, because it
will determine the execution time of the whole kernel.
Execution time is computed after differentiating the
number of cycles required for computation from those
for memory operations. Warp overlapping is taken into
account; authors state that, in the best case, the total
execution time will be determined by the maximum
value between compute and memory cycles (what they
call MAX model) and in the worst case both compute
and memory cycles will overlap (the SUM model). In
most of the tested cases, SUM and/or MAX are quite
close to the real results but, unfortunately, authors do
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not provide hints about how to choose the right one for
a given application. This model has been extended to
include more complex hardware features (memory copy
overheads, branch-divergence latencies, etc.) in the MSc
Thesis presented by Garcia et al. [38]. This extended
model improves previous results, choosing in most cases
the SUM model. As in the original work, no reason is
given for this decision.

Similar to the previous work, Nugteren et al. [70]
present a prototyping tool able to predict the perfor-
mance of an unimplemented application when running
on different hardware devices such as CPUs and GPUs.
In contrast to the previous model, this tool needs to iden-
tify each computation block based on a parameterizable
classification (e.g x-projection, 2D-convolution, etc.) that
they proposed in a previous work [69]. For each block,
their tool generates a performance graph, called Boat
Hull, which shows the estimated performance in each
available hardware device, together with some potential
code optimizations. This work is based on the Roofline
model presented by Williams et al. [96], which visually
represents the limitations of a device (the roofs) and the
limitations of an application (the ceilings).

In addition to the previous works, which can be con-
sidered general purpose models, that is, suitable to any
application, there are also other proposals which focus
on specific programs or program classes. For example,
in [65] authors propose a framework that automati-
cally selects the best parameters for an ISL (Iterative
Stencil Loops) application, given some parameters of
the domain and some features of the target GPU. ISL
codes distribute computations into overlapping regions
(tiles); neighboring regions interact via halo regions.
This technique is applied in many domains, including
molecular dynamics simulation and image processing.
Choi et Al. present in [27] an auto-tuned implementation
of the SpMV (Sparse Matrix-Vector) multiplication. The
difficulty in computing with sparse matrices is related
to using compression algorithms (such as BCSR or ELL-
PACK [82]) that represent matrix data as lists. Authors
designed their own implementation of the Blocked ELL-
PACK (BELLPACK) algorithm and built it with a model
that, given architectural features, finds the application
parameters that minimize the execution time.

4.5 Bottleneck highlighting and performance opti-
mization

Once a parallel application has been designed and imple-
mented, it is necessary to carefully analyze its execution
looking for potential bottlenecks and, if possible, finding
alternatives to eliminate or minimize them. Unfortu-
nately, this is not an easy task, especially when program-
ming accelerators. For example, typical optimizations
that provide excellent results in CPUs, such as loop
unrolling or tiling, when applied in GPUs may cause
a high use of scarce resources, such as on-chip registers,
and may cause more harm than benefits.

Parallel application SDKs commonly include a profiler
(e.g. NVIDIA Visual Profiler for the CUDA SDK or
CodeXL [13] for the AMD APP SDK), which should be
the first tool to use when trying to optimize a kernel. Pro-
filers for GPUs analyze the execution of the code and de-
tect bottlenecks. They can even make recommendations
to the programer about code changes that might reduce
those bottlenecks. However, profilers cannot predict the
performance benefits associated to these changes. To this
end, several models have been proposed in the literature
with the aim of helping developers in code optimization
tasks. Our review of the literature has been summarized
in Table 3. We now briefly analyze some of the main
features of these models.

A first contribution that pointed out the difficulty of
optimizing a CUDA kernel was presented by Ryoo et
al. [83]. They review the most common performance
optimizations (block size, tiling, prefetch, loop unrolling,
shared memory and cache usage, etc.) and their impact
on run times, and present a methodology to narrow the
search space of promising optimization combinations.
They first propose two metrics, called efficiency and
utilization. These metrics are calculated using kernel
features obtained from PTX instructions, information
about resource usage, and some manual annotations
(such as the average iteration counts of the major loops).
Then, a Pareto-optimal front can be created, based on
both efficiency and utilization metrics, and therefore
only those configurations belonging to the Pareto set
need to be tested (run). According to the experiments,
a reduction in the search space between 74% and 98% is
observed. In addition, the optimal configuration always
belongs to the Pareto set for the applications tested.
However, the model suffers some limitations: in order to
simplify the calculations, group synchronization instruc-
tions are considered together with long latency memory
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Model Method Target platforms Tested devices Input preprocessing Limitations Additional features

[47] • Analytical • NVIDIA GPUs • NVIDIA 8800
GT

• NVIDIA FX5600
• NVIDIA GTX280

• µBenchmarks
execution

• PTX analysis

• Cache misses and
branch instructions
not modelled

• Memory model too
simple

• Seems easily
extendable to non
NVIDIA GPUs

[53] • Machine
Learning

• GPUs
• Multi-core CPUs

• 4 NVIDIA GPUs
• 3 Multicore

CPUs

• PTX analysis using
Ocelot

• No insights about
prediction process

• Model validated
using a large
benchmark

[56] • Analytical • NVIDIA GPUs • NVIDIA GTX280 • Kernel pseudo-code
analysis

• No hints about
preferred model

• Overheads of
intra-thread
synchronization and
atomic operations
not modelled

• Seems easily
extendable to non
NVIDIA GPUs

[70] • Analytical • GPUs
• Multi-core CPUs

• NVIDIA GTX470
• NVIDIA GTS250
• Intel Q8300
• Intel i7-930

• µBenchmarks
execution

• Serial code analysis
and classification
following taxonomy
in [69]

• Loss of accuracy
due to high level
abstraction in
modelling

• Seems easily
extendable to new
architectures

• Graphical output
• Optimization

proposals

[65] • Analytical • NVIDIA GPUs • NVIDIA GTX280 • µBenchmarks
execution

• ISL input analysis

• Only for ISL
applications

• An automated
framework template
for trapezoid
optimization

[27] • Analytical • NVIDIA GPUs • NVIDIA Tesla
C870

• NVIDIA Tesla
C1060

• Input matrices
analysis

• Only for SpMV
multiply operation

• Thread block
scheduling latencies
not taken into
account

• Detailed explanation
of the BELLPACK
implementation

TABLE 2
Summary of models for the estimation of execution time

operations; cache conflicts are not taken into account,
and not all the configurations belonging to the Pareto set
are close to minimizing the execution time of the kernel.

Baghsorkhi et al. [17] present a more elaborate model,
that predicts the number of cycles spent by threads in
different stages: compute, bank conflict, divergence, etc.
The main input information is a program dependence
graph (PDG [36]) obtained parsing the source code of a
CUDA kernel. The PDG represents the workflow of the
thread. This information is combined with the runtime
parameters of the program and characteristics of the tar-
get device. Authors validate their model against several
implementations of four CUDA Kernels, a naive one and
others that include a diversity of optimizations using, for
example, tiling and shared memory. Experiments show
that the model is quite accurate highlighting the most
time consuming stage in each execution.

In the same line, Baghsorkhi et al. [18] present a mem-
ory hierarchy model for GPUs through a framework

that predicts the efficiency of the memory subsystem. In
particular, they predict the latency of the main memory
accesses of a GPU and hits and misses in the L1 and
L2 caches. The memory model is based on the hardware
memory hierarchy of the Tesla card, and validations with
this particular hardware provide good results. In partic-
ular, they compare the results of their model against the
hardware counters obtained through profiling, obtaining
average absolute errors of 3.4 % for L1 read hit ratios,
1.9 % for L2 read hit ratios and 0.8 % for L2 write hit
ratios.

Zhang et al. [102] approach performance prediction
differently, analyzing first the GPU parts that may lead to
bottlenecks (the instruction pipeline, the global memory
and the shared memory). This information is used to
highlight bottlenecks in a CUDA Kernel. A character-
ization of the hardware is obtained by means of a
collection of micro-benchmarks, and the Barra simulator
(see Section 4.6) is used to get the instruction count of
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the application. The model uses these two sets of input
data and outputs information about the GPU part that
may cause a performance bottleneck. It also estimates the
performance benefit of removing it. Experiments show a
relative error in the predictions within 5% - 15%.

Sim et al. present GPUPerf [86], a framework for the
prediction of potential benefits of different optimization
decisions over a CUDA Kernel: use of shared memory,
tiling, prefetching, etc. The target application requires
being processed by the NVIDIA Profiler, by a framework
based on Ocelot, and by a static instruction analyzer
based on cuobjdump. This tool relies on the use of an
analytical model which is an extension of MWP-CWP
(introduced in Section 4.4) that takes into account much
more architectural details of GPUs, such as the effect of
caches or the behavior of SFUs (the functional units in
charge of performing trascendental operations). Authors
claim that the potential performance benefits suggested
by the model are attainable, but no numeric values are
provided.

4.6 Simulation
A simulator is a system representation able to mimic,
step-by-step, the behavior of the target (real) system.
In the field of heterogeneous computing, these tools
are useful for different purposes: to obtain detailed
information about the behavior of a device, to analyze
the performance of a particular code, to test changes
in the structure or organization of a device, to propose
completely new device schemes, etc.

In the next two sections we summarize our literature
review of simulators for heterogeneous computing. We
first introduce those intended for the simulation of dis-
crete GPUs, followed by those designed for heteroge-
neous devices. As we did in the previous sections, our
literature review has been condensed in a table (see Table
4).

4.6.1 GPU Simulators
GPGPU-Sim [7][20] is a functional simulator of CUDA-
capable NVIDIA GPUs. It can simulate CUDA and
OpenCL applications in two ways: a fast functional way,
which only executes the application and generates its
output, and a slower way, which collects performance
statistics. The first mode is reported to be 5 to 10 times
faster than the performance counter gathering mode, and
should be used only to verify that an application runs
properly on the GPGPU-Sim environment. The simulator
accepts a wide set of configuration parameters in order
to better model the target hardware, from multiprocessor
features to the topology of the interconnection network.
Regarding validation, authors state that version 3.1.0
obtains an accuracy of 98.3% for the instructions per
cycle (IPC) metric when simulating a GT-200 card. With
a Fermi card the accuracy is similar: 97.3%. It is worth
mentioning that, as an add-on, GPGPU-Sim includes a
visual interface called AerialVision [15].

Barra [28][6] is another functional simulator for
NVIDIA GPUs, somewhat less flexible because it only
works with CUDA applications. Barra generates an out-
put file with performance counters for each instruction
in the simulated kernels, such as the addresses of the
memory accesses or the number of used SIMD channels.
Authors state that in most of their tests, the performance
information retrieved using Barra exactly matches the
performance counters provided by the CUDA Profiler.
In particular, they report relative difference values from
0% to 22.99%, except for two cases where the difference
raises to 45.59% and 81.58%. The strongest point of Barra
is that it is a fast, multi-core parallel tool, running on
average four times faster than the source level emulation
in debug mode of the CUDA SDK.

4.6.2 Simulators for hybrid CPU+GPU chips

Multi2Sim [8] is an open-source, modular and con-
figurable instruction set architecture-level simulator of
x86 CPUs and AMD GPUs. It supports the simula-
tion of sequential and parallel applications in the CPU
side [91], and OpenCL applications in the GPU side [90].
Multi2Sim combines a functional simulator that inter-
prets the compiled binaries and reproduces their be-
havior at ISA level, and an architectural simulator that
generates traces from the functional simulation. The out-
put of the architectural simulation is represented using
a visual tool, which provides a cycle-based interactive
navigation, i.e. a way to explore, in a fine grained
way, the performance details of the application; this is
the main mechanism for finding bottlenecks. Another
tool integrated in Multi2Sim allows the researcher to
launch and control large sets of simulations (for ex-
ample, to carry out a parameter sweep) over a cluster
of computers. Regarding the performance of the GPU-
side simulation, authors report average errors between
7% and 30% when estimating the execution cycles of
OpenCL kernels, and an average slowdown of 8700x and
44000x for the functional and the architectural simulation
modules respectively.

MacSim [40] is a trace-driven and cycle-level simulator
for heterogeneous architectures, able to simulate state-of-
the art hardware such as Intel’s Sandy Bridge processors
(for both modes, CPU-only and fused CPU+GPU) and
also GPU devices such as NVIDIA’s Fermi cards. In the
case of CPU devices, it handles x86 binary files, while
for GPUs it parses CUDA source applications. Although
there is no current heterogeneous chip combining x86
CPU and CUDA GPU cores, MacSim uses the discrete
GPU simulation engine (CUDA based) for their het-
erogeneous system simulation. As other simulators, it
provides a simple framework to collect device global
or per-core performance statistics during the simulation.
Authors do not provide metrics to assess the accuracy
of this tool.

FusionSim [101] is a simulation environment for both
discrete and heterogeneous systems for x86 CPU and
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Model Method Target platforms Tested devices Input preprocessing Limitations Additional features

[83] • Analytical • NVIDIA GPUs • NVIDIA 8800
GTX

• PTX and CUBIN
analysis

• Global memory
assumed not to be a
bottleneck

• Synchronization
and long latency
memory operations
considered to have
similar latencies

• N/A

[17] • Analytical • NVIDIA GPUs • NVIDIA 8800
GT

• µBenchmarks
execution

• Kernel source
analysis

• Compiler optimiza-
tions not fully taken
into account

• Detailed breakdown
of the execution
time into compute
or memory
transaction stages

[18] • Analytical • NVIDIA GPUs • NVIDIA Tesla
C2050

• µBenchmarks
execution

• Kernel instrumenta-
tion

• Focused only on the
memory hierarchy

• Detailed breakdown
of memory
operations

[102] • Analytical • NVIDIA GPUs • NVIDIA GTX280 • µBenchmarks
execution

• Kernel analysis
using Barra
simulator

• Enough warps
assumed to hide
latencies

• Overheads of branch
and synchronization
instructions and
effects of caches not
modelled

• Detailed hardware
analysis through
µBenchmarks

[86] • Analytical • NVIDIA GPUs • NVIDIA Tesla
C2050

• µBenchmarks
execution

• Kernel analysis with
NVIDIA profiler,
Ocelot & a static
analysis tool based
on cuobjdump

• Seems not easily
portable to non
NVIDIA GPUs

• Estimation of po-
tential benefits from
applying different
optimizations

TABLE 3
Summary of models for bottleneck highlighting

CUDA GPU, aimed to provide detailed timing informa-
tion. GPU-side simulation is based on the GPGPU-Sim
simulator, and CPU side simulation is based on PTLSim
[100]. Currently, FusionSim only supports single-core
CPUs. This tool can be used to explore the potential
benefits of using fused systems, instead of discrete GPUs
connected with CPUs using PCIe. The combined chip
that FusionSim simulates is a non-existent x86 CPU +
CUDA GPU. Authors of FusionSim use an analytical
model that estimates the expected performance benefits
of such a chip and use it to verify the correctness of the
simulations. Their experimental validation focuses on
demonstrating that fusion-like architectures are the best
choice for applications operating on small data inputs,
and for those that, when running in a discrete accelerator
set-up, would require massive data movements through
PCIe. In other scenarios, a discrete GPU would be a
better choice.

MV5 [66] is a reconfigurable and modular simulator
that targets modelling heterogeneous CPU+GPU chips.

It presents an abstraction from contemporary program-
ming interfaces and threading mechanisms, such as
CUDA, and offers the ability to simulate chips with
vastly different, hybrid core configurations under the
same address space with the same ISA. Its target is
to explore the design and performance of unreleased
architectures instead of providing insights about the
behavior of current hardware, as other simulators in
this section do. MV5 does not offer compatibility with
current GPGPU programming paradigms and, therefore,
target applications must be implemented using a generic
programming model specific for MV5.

4.7 Power consumption estimation
A trending topic in the field of HPC is improving the
power efficiency of computing systems. To that extent,
significant effort is being devoted to modelling the
power characteristics of systems, taking into consider-
ation the applications that run on them. Application
power modelling aims to estimate the power required
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Model Method Target platforms Tested devices Target applications Limitations Additional features

[20] • Cycle
level sim-
ulation

• NVIDIA GPUs • NVIDIA 8600
GTS

• CUDA
• GPU OpenCL

• Physical GPU
required to compile
OpenCL applications

• Power modelling
features

• Visual analysis tool

[28] • Cycle
level sim-
ulation

• NVIDIA GPUs • NVIDIA 9800
GX2

• CUDA • N/A • Multi-core imple-
mentation of the
simulator

[90] • Cycle
level sim-
ulation

• AMD GPUs
• Multi-core CPUs

• AMD Radeon
HD 5870

• CPU Sequential
• CPU Parallel
• GPU OpenCL

• Fused architectures
not simulated

• Visual analysis tool
• Module for massive

simulation

[40] • Cycle
level sim-
ulation

• NVIDIA GPUs
• Multi-core CPUs
• Hybrid Chips

• NVIDIA G80
• NVIDIA GTX280
• NVIDIA GTX465
• Intel Sandy

Bridge CPUs

• CPU Sequential
• CPU Parallel
• CUDA

• GPU cores in hybrid
systems modelled
as NVIDIA GPU
multiprocessors

• Power modelling
features for CPU
simulation

• Both discrete and
hybrid CPU+GPU
systems simulation
capabilities

[101] • Cycle
level sim-
ulation

• NVIDIA GPUs
• Multi-core CPUs
• Hybrid chips

• NVIDIA Quadro
FX 5800

• CUDA • GPU cores in hybrid
systems modelled
as NVIDIA GPU
multiprocessors

• Only single CPU
core simulation

• Both discrete and
hybrid CPU+GPU
systems simulation
capabilities

[66] • Event
driven
simula-
tion

• Hybrid chips • N/A • Simulator specific • Necessary to
reimplement
applications using
their API

• Suitable for the
design of new
architectures

• Power modelling
features

TABLE 4
Summary of simulators

to run a particular code on a particular device. It has to
consider not only code and device properties, but also
program input and some other run-time characteristics.
We discuss in this section several contributions to this
field. A common feature of all of them is the mechanisms
used to obtain the data required to feed the power
model: a set of micro-benchmarks that must be executed
while measuring the energy usage of the computing
platform with a power meter.

Hong et al. [48] proposed an analytical power and
performance model for NVIDIA GPUs, based on the
previously presented MWP-CWP model (introduced in
Section 4.4). They compute the total power consumed
by a GPU as the addition of the idle power plus the
active power (that caused by running an application).
To model the power used by the multiprocessors when
active, they add the consumption of each of the units
that form a SM, such as the ALUs, double-precision
floating-point units, or the register file. The MWP-CWP
analytical model is used to estimate the execution cycles
of the application. This information, together with the
power model, is combined, providing an estimation of

the power consumed while running the application. The
model is actually more complex, taking into considera-
tion additional factors such as the thermal effects of the
device.

Wang et al. in [94] present a simpler analytical model
to estimate power consumption. They compute the en-
ergy consumed by a kernel as the energy consumed by
all the thread blocks which, in turn, is computed as the
energy consumed by all its threads. The power used
by a thread is the sum of the costs of its instructions.
The list of instructions run by a thread is obtained
parsing the PTX intermediate code. The power signature
of each instruction is gathered via a collection of micro-
benchmarks. This power model is simple but accurate.
Authors state that, although gathering low-level infor-
mation from the binary would produce more accurate
results, the PTX-level information is good enough for
obtaining reasonable predictions. In their experiments,
they prove the effectiveness of their model reducing
the power consumption of a CUDA kernel between
7.31% and 11.76% on average, causing an increase of the
execution time of 4.92% in the worst case.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ??, ?? 2013 14

Ma et al. have published several works [63] [64] in
which they discuss how to generate statistical models
to predict the power consumption of GPU kernel, us-
ing machine learning techniques. They create training
datasets running several CUDA applications on a GPU,
retrieving two types of metrics: performance counters
(which are obtained using a profiler) and power con-
sumption measurements (gathered through an external
power acquisition system). This training dataset is used
together with different types of regressors. The main
contribution of this approach is the methodology used
for retrieving power consumption metrics. Experimental
results show good levels of accuracy in the predictions,
being the mean square errors within 1.7% and 33.7% [63].
Authors point out that some inaccuracies are due to non-
deterministic power consumptions issues not captured
during the training process. They also state that the
bus communication or the memory access patterns affect
power consumption, and that these facts must be taken
into account in future, more detailed models.

GPUWattch [60] is a power model integrated with
GPGPU-Sim version 3.2 and later. It models the main
components of an NVIDIA GPU, i.e., the streaming
multiprocessors, interconnection network, memory con-
trollers, and main memory. The model generates an
output file per kernel executed in GPGPU-Sim, which
includes among other metrics the power consumption
of each hardware component. This output can be later
used by GPGPU-Sim to perform runtime optimizations
in the simulation, such as emulating dynamic volt-
age and frequency scaling (DVFS). Authors tested the
accuracy of their power model measuring the actual
power utilization of two GPUs with different archi-
tecture (NVIDIA GTX 480 and Quadro FX5600). Tests
were carried out running a suite of micro-benchmarks
and some complete applications (which included the
Rodinia benchmark suite). Average errors for the micro-
benchmarks were 15% and 16.2% (respectively for the
GTX and the Quadro). Average errors were smaller for
the applications: 9.9% and 13.4%. Authors claim that
using DVFS, GPU energy consumption could be reduced
up to 14.4%, with less than 3% of performance loss.
GPUWattch is based on the McPat power modelling
framework [61], which targets multi-core and many-core
architectures.

5 CONCLUSIONS

With the appearance of new computing devices and the
design of new algorithms in different fields of science
and technology, the way to use high performance com-
puting is changing. Designing and developing programs
that use currently available computing resources effi-
ciently is not an easy task. As stated in [16], present-
day parallel applications differ from traditional ones,
as they have lower instruction-level parallelism, more
challenging branches for the branch-predictors and more
irregular data access patterns.

Simultaneously, we are observing a processor evo-
lution towards heterogeneous many-cores. The goal of
these architectures is twofold: providing an unified ad-
dress space that eliminates the need to interchange data
with an external accelerator using a system interconnect
[54], and improving power efficiency reducing the total
transistor count.

Tools to help programers in this parallel and heteroge-
neous environment (debuggers, profilers, etc.) are slowly
becoming available, but the programer still needs to
have an in-depth knowledge of the devices in which
applications will run if performance and efficiency have
to be taken into consideration. The performance models
that have been proposed in the last years, and that
we have tried to characterize in this review, aim to
make easier the process of choosing the right options
(device, program settings, optimizations, etc.) in order to
efficiently run accelerator-based programs. These models
are not perfect, all of them have some limitations, but
they will be the foundation on which better tools will
be constructed. In the following list we analyze some of
these limitations, and different ways to overcome them.

• There is no accurate model valid for a wide set of
architectures. Every model finds a different trade-
off between being more device-specific and therefore
more accurate (e.g. [86]), or being more general pur-
pose at the cost of losing accuracy (e.g. [70]). Related
to this topic is the fast pace at which manufactur-
ers introduce new products, with new or improved
features, into the market, making models obsolete
in a very short time. Performance models should be
flexible enough to allow characterizing the evolution
of devices.

• Most of the models discussed in this review have
been designed for NVIDIA GPUs and the CUDA
Platform. This is due to the fact that CUDA was
the first “popular” environment for GPGPU, with
a larger, more mature ecosystem of applications and
tools than OpenCL. However the vendor neutrality
of OpenCL and its availability for non-GPU accel-
erators is increasing its use by HPC programmers.
In the past, OpenCL toolsets (compilers, optimizers)
produced less efficient codes than the CUDA coun-
terparts, but this is no longer true with the most
current, better fine-tuned versions of OpenCL SDKs
[35],[52].

• Society in general and the HPC community in par-
ticular is becoming aware of the great costs, in
monetary and also in environmental terms, derived
from the high power consumption of computing
systems. The challenge nowadays is not only to
squeeze the maximum performance out of a system,
but also to do it with the minimum power. As
often these two requirements cannot be optimized
simultaneously, good trade-offs have to be found.
The models published in the literature and reviewed
in this paper are tools that can help solve this bi-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ??, ?? 2013 15

Model Method Target platforms Tested devices Input preprocessing Limitations Additional features

[48] • Analytical • NVIDIA GPUs • NVIDIA GTX280 • µBenchmarks
execution

• PTX analysis using
Ocelot

• Complex control
flow kernels not
correctly modelled

• Thermal effects
modelled

[94] • Analytical • NVIDIA GPUs • NVIDIA GTX460 • µBenchmarks
execution

• PTX analysis

• Overheads of branch
instructions not
modelled

• Simple yet accurate

[63]
[64]

• Machine
Learning

• NVIDIA GPUs • NVIDIA 8800
GT

• µBenchmarks
execution

• Kernel analysis
using profiler

• Power consumption
peaks not modelled
accurately

• N/A

[60] • Analytical • NVIDIA GPUs • NVIDIA GTX480
• NVIDIA Quadro

FX5600

• µBenchmarks
execution

• Kernel execution in
GPGPU-Sim

• Short running
kernels not
modelled accurately

• Seems easily
extendable to new
architectures

• Module to simulate
feed-back driven
runtime optimiza-
tions using GPGPU-
Sim

TABLE 5
Summary of models for power consumption estimation

objective optimization problem.
• We have repeatedly stated that computing systems

are becoming hybrid. When different resources are
available, all of them able to run a given code (for ex-
ample, an OpenCL kernel), a decision has to be made
about which device should be used. This decision
has to consider performance, power efficiency, or
both. Grewe et al. [44] propose a tool that generates
an OpenCL application from an existing OpenMP
one. Both versions are packed into a single binary
code, together with a machine learning module. This
module analyzes the underlying hardware and the
application parameters to decide, at run time, which
code version must be executed and on which device.

• Reviewed models focus on outsourcing compute-
intensive tasks to accelerator devices. However, this
usually means leaving the CPU idle while the GPU
(or any other accelerator) is busily crunching num-
bers. It is possible, however, to share the computation
effort between all resources available, significantly
increasing system efficiency. There are proposals in
the literature that deal with this workload distri-
bution. Some of them divide the data to be pro-
cessed into several chunks, obtaining performance
measurements and, based on them, adjusting the
optimal number of chunks to assign to each type of
core [22], [95]. Other authors run several benchmarks
in the different compute resources, using different
balancing configurations, and use machine learning
techniques to train a model to be able to predict
the optimal chunk distribution for new applications.

[41], [43].
When preparing a literature survey such as this, most

of our frustrations are caused by the lack of detailed
information about tools and models, which makes re-
producing the experimental work almost impossible.
Some of the papers we have reviewed neither indicate
clearly which program features are needed by the mod-
els nor the way used to obtain them (from the program
source? after running an application? using programmer-
embedded traces? using external tools?). In addition,
in order to properly validate the accuracy of a model,
a wide and representative data set must be obtained,
and cross-validation techniques must be properly used.
If this is not performed correctly, the models tend to
overfit, providing very accurate results for the data
used for training, but poor estimates for new, unseen
data. Finally, it would be beneficial for the community
to have free access to the source codes of the models
and the benchmarks, in order to cross-check results, to
validate the models against applications not used by the
developers, to test the viability of model variations, etc.
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[34] J. Diaz, C. Muñoz-Caro, and A. Niño. A survey of parallel
programming models and tools in the multi and many-core era.
IEEE Transactions on Parallel and Distributed Systems, 2011.

[35] J. Fang, A. L. Varbanescu, and H. Sips. A comprehensive perfor-
mance comparison of cuda and opencl. In Parallel Processing
(ICPP), 2011 International Conference on, pages 216–225. IEEE,
2011.

[36] J. Ferrante, K. Ottenstein, and J. Warren. The program depen-
dence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319–349,
1987.

[37] P. Ganestam and M. Doggett. Auto-tuning interactive ray tracing
using an analytical gpu architecture model. In Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics
Processing Units, pages 94–100. ACM, 2012.

[38] G. Garcı́a and C. Yenyxe. Modelo de estimación de rendimiento
para arquitecturas paralelas heterogéneas. 2013.
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