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Abstract. This paper provides a new growth model by considering strategic
behaviour in the supply of labour. Workers form a labour union with the aim

of manipulating wages in their own benefit. We analyse the implications on

labour market dynamics at business cycle frequencies of getting away from the

price-taking assumption. A calibrated monetary version of the union model

does quite a reasonable job in replicating the dynamic features of labour market

variables observed in post-war U.S. data.
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1 Introduction

Starting with Kydland and Prescott (1982) and Long and Plosser (1983), liter-

ature has analysed the role of productivity shocks in explaining aggregate eco-

nomic fluctuations. Various models have been proposed to generate business

cycles on real aggregate variables that are fairly consistent with those observed

in actual data. Here, we add to this literature an object already explored in a

static framework by Fernández-de-Córdoba and Moreno-García (2006). Specif-

ically, we build a variant of the standard neoclassical growth model where the

suppliers of labour engage in strategic behaviour through an institution that we

call a “union”.

The purpose of introducing unions is twofold. First, the paper studies the abil-

ity of the union model to match the dynamic features of labour market variables

observed in U.S. data at business cycle frequencies. Second, the paper analyses

how the union model is capable of accounting for the high persistence of the

employment level observed in actual data. Standard real business cycle (RBC)

models have trouble in accounting for these labour market features. We depart

from the lotteries model proposed by Hansen (1985) and the home-produced

consumption good model introduced by Benhabib, Rogerson and Wright (1991)

and incorporate unions into the aggregate economy. The behaviour of unions is

first described in a simple setup of the model in order to gain intuition. We then

proceed to analyse a more complicated setup that is more suitable for analysing

the implications of unions on labour market dynamics. The two alternative se-

tups share a common characteristic: unions manipulate the supply of labour in

order to maximise the wage share of the economy.

The model contains two types of agent: capitalists and workers. The first

type owns capital whereas the second owns labour. We assume that there is a

large number of identical (non-unionised) capitalists and that all workers belong

to a union capable of manipulating wages by controlling labour supply.1 We first

consider a simple model where the union is myopic and does not value leisure.

These two features allow us to characterise the implications of unions on labour

market dynamics based on analytical results. In particular, we show in this sim-

ple framework that a union with monopoly power chooses labour supply such

1We do not enter into the labour union formation problem or issues regarding union stability.

In particular, we assume that cyclical fluctuations do not affect union stability.
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that labour-capital ratio is constant. Then, labour (a flow variable) behaves as

a stock variable (capital) by responding sluggishly to technology shocks. This

feature is qualitatively preserved when moving from this simple setup to a gener-

alized union model that (i) relaxes the assumption that the union is myopic; (ii)

considers leisure in the unions’ objective function; and (iii) introduces the use

of money through a cash-in-advance constraint. Since workers are not allowed

to hold capital, they have no access to capital markets and thus they respond

sharply to monetary shocks.

In order to assess relative performance the business cycle properties of the

generalised union model are compared with those exhibited by U.S. data and

those obtained from a standard RBC model. Quantitative evaluation based on

second moment statistics shows that the union model features depend crucially

on the relative size and persistence of technology versus monetary shocks. On

the one hand, the union monopoly power reduces the effects of technology shocks

on aggregate volatility due to the small, slow reaction to these shocks. On the

other hand, the fact that workers have no access to capital markets implies

that monetary shocks, by affecting inflationary expectations, have large effects

on consumption-leisure substitution decisions, which results in large movements

in labour supply. In particular, we show that when monetary shocks are larger

than technology shocks the union model proposed in this paper provides a better

characterisation of labour market dynamics than a standard RBC model.

The rest of the paper is organised as follows. Section 2 introduces the basic

union model. Section 3 sets up a monetary business cycle model with unions and

discusses the implications on labour market dynamics. Section 4 concludes.

2 The Basic Model

Before analysing the optimization problem faced by the union’s planner, it is

useful to highlight several features that distinguish this model from the stan-

dard neoclassical model. The model assumes two types of agent: workers and

capitalists. They are assumed to be different in three important dimensions.

First, workers only own labour input whereas capitalists only own capital fac-

tor. Second, workers unionise to manipulate labour supply whereas capitalists
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are assumed to behave competitively.2 Finally, since workers are not allowed

to accumulate capital (i.e. they do not have access to capital markets) they

face a strong financial constraint which makes it more difficult to smooth their

consumption intertemporally.

The basic model of a unionised economy is one where the labour force is

controlled by a single union. The union maximises workers’ income in each

period without considering the effects of today’s manipulation of labour supply

on future capital accumulation. Before analysing the union’s problem, let us first

study the problem faced by the stand-in owner of capital.

2.1 The stand-in owner of capital problem

The stand-in owner of capital faces the following optimisation program

max
{kt+1,ckt}∞t=0

E0

∞X
t=0

βt
c1−ηkt

1− η

s.t. ckt + kt+1 − kt = (rt − δ)kt,

k0 = k,

where β is the discount factor, η is the (constant) risk aversion parameter, δ

is the rate of depreciation, E0 denotes the conditional expectation operator, ckt
denotes capitalist consumption, kt is capital stock and rt is the real return on

capital. The Lagrangian associated with the stand-in owner of capital is given

by

L(ckt, kt+1, λt) = E0

∞X
t=0

βt
∙
c1−ηkt

1− η
+ λt ((rt − δ)kt − ckt − kt+1 + kt)

¸
.

The first-order conditions (F.O.C.) of the stand-in owner of capital are:

∂L(ckt, kt, λt)

∂ckt
= c−ηkt − λt = 0, (1)

2In this paper, we explore the implications of labour unions on equilibrium dynamics. We

leave for future research the implications derived from the existence of capitalist clubs. More-

over, we refrain from tackling the issues associated with the endogenous formation of the two

groups of agents.
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∂L(ckt, kt, λt)

∂kt+1
= Et

£
βt+1λt+1 (rt+1 − δ + 1)− βtλt

¤
= 0, (2)

∂L(ckt, kt, λt)

∂λt
= (rt − δ)kt − ckt − kt+1 + kt = 0. (3)

Capital owners produce the consumption commodity using the following con-

stant returns to scale technology:

yt = At (εk
ρ
t + (1− ε)nρt )

1
ρ , ρ ∈ (−∞, 0), (4)

where At and nt denote the productivity shock and the supply of labour, re-

spectively. Capital owners are price takers and their factor demands must thus

satisfy the condition that marginal productivity of each factor should equal its

rental rate:

wt = At (1− ε)nρ−1t (εkρt + (1− ε)nρt )
1
ρ
−1 , (5)

rt = Atεk
ρ−1
t (εkρt + (1− ε)nρt )

1
ρ
−1 , (6)

where wt is the marginal productivity of labour (real wage).

2.2 The union problem

Assume the existence of a benevolent union planner maximising the (expected)

intertemporal consumption stream of its workers:

max
{cut}∞t=0

E0

∞X
t=0

βt
c1−ηut

1− η
,

s.t. cut = wt(kt)nt,

nt ≤ L,

where cut denotes the union’s total consumption and L is the endowment of time.

The union’s planner takes into account andmanipulates the demand for labour

generated by the constant returns to scale technology. Using wage equation (5),

total income for workers is given by

wtnt = At (1− ε)nρt (εk
ρ
t + (1− ε)nρt )

1
ρ
−1 . (7)
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By substituting the budget constraint into the objective function the utility max-

imisation program faced by the union’s planner can be rewritten as an optimi-

sation problem where a discounted stream of labour returns is maximised:

max
{nt}∞t=0

E0

∞X
t=0

βt
(wtnt)

1−η

1− η
.

More explicitly, the optimisation problem can be written as follows

max
{nt}

E0

"
...+ βt

[wt(kt(nt−1))nt]
1−η

1− η
+ βt+1

[wt+1(kt+1(nt))nt+1]
1−η

1− η
+ ...

#
.

Since a forward-looking union does not take prices (wages and rental rate of

capital) as given, it takes into account that the choice of nt has an impact on

the amount of next period capital and thus on the next period real wage. That

is, the ratio ∂kt+1
∂nt

is different from zero unless the union is myopic. Formally, the

F.O.C. of the union’s intertemporal optimisation problem is given by

Et

½
(wtnt)

−η
∙
∂wt

∂nt
nt + wt

¸
+ β (wt+1nt+1)

−η
∙
∂wt+1

∂kt+1

∂kt+1
∂rt

∂rt
∂nt

nt+1

¸¾
= 0. (8)

Notice that the intertemporal plan characterised by (8) is not time consistent

since in each period, when deciding today’s employment and real wage, the union

has an incentive to deviate from this optimal plan by ignoring the effect that the

manipulation of labour supply, nt, has on the stock of capital one period ahead,

kt+1. Later we assume in Section 3 the existence of a commitment technology

that allows F.O.C. (8) to be implemented, but let us consider first the case where

the union maximises its current labour income in each period. In this case, the

optimality condition is given by

∂wt

∂nt
nt + wt = 0. (9)

Notice that the optimality condition (9) can also be obtained directly from (8)

by assuming that the union is myopic (i.e. the discount factor of the union is

zero). Taking into account the real wage expression (5), the optimality condition

(9) can be written as

0 =

∙
∂wt

∂nt
nt + wt

¸
= At (1− ε)nρ−1t (εkρt + (1− ε)nρt )

1
ρ
−1h

ρ+ (1− ρ) (1− ε)nρt (εk
ρ
t + (1− ε)nρt )

−1
i
. (10)
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Thus, the term in brackets must be zero, which implies that

nt =

µ
−ρε
1− ε

¶1/ρ
kt, if nt < L. (11)

Equation (11) establishes that the capital-labour ratio is constant whenever it is

optimal to supply a lower amount of labour than the total endowment of time,

L. Notice that equation (10) (or (11)) can be written in terms of (the inverse

of) the elasticity of labour demand as follows∙
∂wt

∂nt
nt + wt

¸
=
£
ζwt,nt + 1

¤
wt = 0,

or alternatively ζwt,nt = −1. The intuition is that a union with monopoly power
would choose a supply of labour nt such that the demand for labour is at the

point of unitary elasticity. At this point any further restriction on the labour

supply is offset by an increase in wages that is smaller than the restriction on

labour, making workers’ income wtnt lower.

It is worth noting an important aspect of the discretionary (no-commitment)

equilibrium that we are describing. The steady state of this economy coincides

with the steady state of the neoclassical model with no unions, because equation

(11) establishes that if the capital stock kt is low, then the union will produce a

shortage of labour below L. But if the economy is on the balanced growth path,

the stock of capital will eventually reach a level k∗ such that n∗ =
¡−ρε
1−ε
¢1/ρ

k∗ = L.

Figure 1 illustrates this result. It shows two economies with the same initial stock

of capital. Unions restrict the supply of labour below the endowment level, L,

in order to maximise wage income. Then, output and the real return on capital

are lower than in the standard neoclassical economy. As the capital stock grows,

the union increases labour supply up to a point marked as t∗ in the figure. At

that point, the restriction imposed by equation (11) is no longer binding and the

supply of labour coincides with the total endowment of time L. At that point,

the economy with a union behaves as a standard neoclassical economy with an

endowment of capital at t = 0, k0 = k∗, and an endowment of labour L. The

consequence is that the steady state is the same for both economies. After t∗,

the restrictions imposed by the union are no longer binding. This implies that

positive shocks on At above its steady-state level do not produce reactions by

the union, however, negative shocks make equation (11) binding.

As emphasised above, a crucial feature of the union economy is that the

capital-labour ratio is constant along the transition path. This result implies
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Figure 1: Transition to the steady-state

that labour (a flow variable) behaves as capital (a stock variable), which implies

that the responses of both capital and labour to technology shocks display a

great deal of persistence that is consistent with the highly persistent employ-

ment time series observed in actual data. We show in the next section that this

important qualitative feature of labour is preserved when considering a sounder

model for the analysis of business cycle dynamics than the simple one studied in

this section.

The simple union model described above serves to fix the intuition of the main

force that drives the unionised economy. However, it has two major caveats for

the analysis of business cycles. First, the distribution of labour is truncated and

only deviations below the total endowment of time can be observed. Second,

workers have no means of saving.

The first caveat is illustrated in Figure 2 by considering two alternative scenar-

ios. Figure 2 depicts a labour supply with two segments. The inelastic segment
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describes the scenario where capital is larger than k∗ and the union supplies the

whole endowment of labour L. This scenario is also characterised by the labour

demand schedule D1. In this scenario (moderate) productivity shocks result in

highly volatile wages whereas the equilibrium level of labour remains constant.

The second scenario is illustrated by the labour demand schedule D0 intersect-

ing with the elastic segment of labour supply where the union monopoly power

mechanism works (i.e. equation (11) is binding), which results in lower volatility

of wages and higher volatility of labour. The truncation of the distribution of

labour can be overcome by introducing leisure into the utility function of work-

ers. Notice that by misrepresenting labour supply the union will offer a lower

amount of labour than under the competitive equilibrium for each level of the

real wage.

The second caveat in the simple union model implies that workers face strong

difficulties in smoothing their consumption, which results in a highly volatile

aggregate consumption which is at odds with the evidence obtained from ac-

tual data. This limitation is overcome by allowing workers to hold bonds and

introducing money through a cash-in-advance constraint.

The next section introduces a generalised union model where a commitment

technology is assumed for the union: it values workers’ leisure and workers are

able to hold bonds in order to smooth their consumption and hold money to

purchase consumption goods.
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3 A Monetary Union Model

As in the previous section, workers are assumed to be represented by a union that

behaves strategically in the supply of labour. In this section, however, we assume

the existence of a commitment technology that allows the union to maximise the

expected intertemporal utility stream of the representative worker forming the

union.3 Moreover, we build upon the simple model studied above by assuming

that the union’s planner values both workers consumption and leisure and money

is essential for purchasing goods and services. This latter feature is introduced

through a cash-in-advance constraint. Formally, the union faces the following

problem:

max
{cut,nt,mt}∞t=0

E0

∞X
t=0

βt
£
cλut(1− nt)

1−λ¤1−η
1− η

,

s.t. Ptcut ≤Mt−1 + Tt,

Ptcut +Mt +Bt ≤ Ptwt(kt)nt +Mt−1 + (1 + it−1)Bt−1 + Tt.

The union’s planner enters each period with nominal money balances Mt−1 and

bond holdings Bt−1 and receives a nominal lump-sum transfer of Tt.4 The first

restriction represents the cash-in-advance (CIA) constraint. In real terms

cut ≤
mt−1

Πt
+ τ t,

where Πt = (Pt/Pt−1) = 1 + πt is one plus the rate of inflation between periods

t− 1 and t, τ t = Tt/Pt and mt = Mt/Pt. Following Cooley and Hansen (1989),

we assume that the CIA constraint is binding. The second constraint is the flow

budget constraint. In real terms,

cut +mt + bt ≤ wt(kt)nt +
mt−1 + (1 + it−1)bt−1

Πt
+ τ t.

The union’s planner takes into account andmanipulates the demand for labour

generated by the constant returns to scale technology described above. The

3Below, we also analyse the case where the commitmment technology is removed (that is, the

union maximises labour income in each period) in order to compare the effects of commitment

on model dynamics.
4In the aggregate, this transfer is related to the growth rate of the nominal supply of money.

Letting the stochastic variable θt denote the rate of money growth (Mt = (1 + θt)Mt−1), the

transfer will be θtMt−1. θt is known at the start of period t.
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Lagrangian associated with the union’s optimisation problem is given by

L(cut, nt, ,mt, κt, μt) = E0

∞X
t=0

βt{
£
cλut(1− nt)

1−λ¤1−η
1− η

+ κt

µ
mt−1

Πt
+ τ t − cut

¶
+

μt

∙
wt(kt(nt−1))nt +

mt−1 + (1 + it−1)bt−1
Πt

+ τ t − cut −mt − bt

¸
}.

The F.O.C. of the union’s intertemporal optimisation problem are given by£
cλut(1− nt)

1−λ¤−η λcλ−1ut (1− nt)
1−λ − κt − μt = 0, (12)

0 = −
£
cλut(1− nt)

1−λ¤−η (1− λ)cλut(1− nt)
−λ + μtwt + μt

∂wt

∂nt
nt +

βEtμt+1
∂wt+1

∂kt+1

∂kt+1
∂rt

∂rt
∂nt

nt+1, (13)

βEt

µ
κt+1
Πt+1

+
μt+1
Πt+1

¶
− μt = 0, (14)

βEt

µ
μt+1

(1 + it)

Πt+1

¶
− μt = 0, (15)

wtnt +
mt−1 + (1 + it−1)bt−1

Πt
+ τ t − cut −mt − bt = 0, (16)

mt−1

Πt
+ τ t − cut = 0. (17)

The union’s optimal plan described by equations (12)-(17) is not time consis-

tent. As a benchmark case, we assume the existence of a commitment technology

that forces the union to follow the optimal plan characterised by (12)-(17). The

stand-in owner of capital’s optimisation problem is the same as the one described

in the previous section.

The competitive equilibrium of this economy is then described by (i) capital-

ist decisions on capitalist consumption, labour demand and capital investment,

which are characterised by equations (1)-(6); (ii) unions’ choices about workers’

consumption, labour supply and money and bond demands, which are charac-

terised by (12)-(17); (iii) money transfers to workers from the government; and

(iv) the goods market equilibrium condition. The model is completed by assum-

ing stochastic processes for the two shocks considered

lnAt = (1− φA) lnAss + φA lnAt−1 + vAt, (18)
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θt − θss = γ(θt−1 − θss) + vt. (19)

Equation (18) assumes that (the steady-state log-deviations of) technology

shocks follow a first-order autoregressive process where 0 < φA < 1 is a parameter

measuring shock persistence and vAt is a white noise innovation. Equation (19)

establishes that the deviations of money growth from the steady state, θss, follow

a first-order autoregressive process with 0 < γ < 1.

Deriving a log-linear approximation of the equilibrium around the steady state

is quite straightforward and the solution of the resulting linear rational expec-

tations system is obtained applying the methods of Sims (2002) and Lubik and

Schorfheide (2003).5 Next, we discuss the standard calibration of the parameter

values carried out in order to solve the model numerically. We use U.S. data to

calibrate the model. We believe that the type of unions formed at plant level

(professional unions) makes manipulation of the type of complementarity be-

tween labour and capital studied in this paper more likely than the politically

oriented (non-professional) unions that are more widespread in Europe than in

the U.S.

3.1 Calibration

We follow standard procedures for calibrating this specific model economy using

U.S. data (see, for instance, Cooley and Prescott, 1995). First, the law of motion

for the capital stock in the steady state implies that the rate of depreciation, δ, is

equal to the steady-state investment-capital ratio. The steady-state investment-

capital ratio for the U.S. economy is 0.076, which implies that the quarterly

depreciation rate is 0.019.

Second, from the steady-state characterisation we have, on the one hand, that

labour − share

capital − share
=

wssnss
rsskss

=
1

ε

hrss
ε

i ρ
1−ρ

,

where rss = 1
β
− 1 + δ. Since the steady-state labour-capital share ratio for the

U.S. economy is about 1.5, we have that ε and ρ must satisfy

1− ε

ε

∙
nss
kss

¸ρ
= 1.5. (20)

5Appendix 1 describes the log-linear approximation and how the solution of the resulting

linear rational expectations system is obtained.
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On the other hand, we have that the steady-state annual capital-output ratio for

the U.S. economy is 3.32, which implies that

hss
kρss

=
1

3.32

ε

rass
, (21)

where rass is the steady-state annualised real interest rate.

Using the steady-state definition for hss and taking into account (20) and

(21) we have, after simplifying, that rass = 0.12. Using the definition of rss and

δ = 0.019, we then obtain that the quarterly calibrated values for β and rss are

0.989 and 0.03, respectively.

Finally, using (20) and taking into account the definitions of nss and kss, we

have the following expression for calibrating ρ and ε

ε =
rρss
2.51−ρ

. (22)

Obviously, there are multiple values of ρ and ε satisfying (22). A large negative

value of ρ, on the one hand, increases the degree of complementarity between

labour and capital, enhancing the effects of union power. But on the other hand

it implies a larger value of ε, which reduces the importance of labour in the

production function, which in turn mitigates the effects of union power. As a

benchmark value we chose ρ = −0.3, which implies ε = 0.87. Later we carry out
a sensitivity analysis by choosing alternative values for these two parameters.

In regard to utility parameters, we assume a risk aversion parameter of σ = 2

whereas the value for λ (= 0.343) is determined by the time devoted to market

activities on average, nss = 0.2.

Traditionally, technology shocks have been identified with standard Solow

residuals.6 As pointed out by King and Rebelo (2000), there are three major con-

cerns about using standard Solow residuals as a measure of productivity shocks.

First, there is evidence suggesting that the Solow residual can be forecast using

6Standard Solow residuals are obtained using data on aggregate output, capital and labour,

and assuming a Cobb-Douglas production function. By using postwar U.S. data and fitting

an AR (1) process to the standard Solow residual an estimate of the persistence parameter of

around 0.95 is obtained, whereas the estimate of the standard deviation of innovation is around

0.007.
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variables such as military spending (Hall, 1988) or lagged values of several mon-

etary aggregates (Evans, 1992), which are hardly related to productivity shocks.

Second, the large variance of Solow residuals leads to probabilities of technolog-

ical regress that are implausibly large, as suggested by Burnside, Eichenbaum

and Rebelo (1996). Finally, cyclical changes in labour effort and capital util-

isation can result in overestimation of the variance of technology shocks when

using the Solow residual as a measure of them. In particular, the union model

considered in this paper displays two features that may bias the Solow residual

as an estimate for productivity shocks. First, money is not neutral in this model.

Therefore, changes in output are determined by both technology and monetary

shocks. Second, the union model introduces variations in labour effort since

the union manipulates labour in order to maximise the worker income stream.

Therefore, the standard Solow residual gets contaminated by the presence of

strategic labour behaviour.7

All these considerations lead us to take a lower value for the standard deviation

of the productivity shock, σvA, than the one estimated from the standard Solow

residual. Specifically, we consider σvA = 0.002. This value is in line with those

assumed by King and Rebelo (2000), which imply small, plausible probabilities

of technological regress. The value of the persistence parameter, φA, is assumed

to be 0.95, in line with the values traditionally assumed in RBC literature.

Finally, we calibrate the money supply process. We choose a narrow measure

of money supply which is consistent with the transaction motive of money as-

sumed by the model through a CIA constraint. In particular, we consider the

currency component ofM1 as defined by the Federal Reserve. The money supply

process parameters are calibrated by estimating an autoregression for the rate of

growth of currency over the sample period 1954:1-2006:2. The estimation results

are given by the following estimated equation:

θt = 0.0048 + 0.6962θt−1, bσν = 0.0061.
(0.0009) (0.0489)

7Moreover, the use of Solow residuals as a measure of productivity shocks is more compli-

cated in the present model because, as shown above, the CES production function assumed

results in multiple combinations of parameters ε and ρ which are consistent with the long-run

properties of actual data, and each of these combinations leads to a different estimate of the

Solow residual.
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The implied average growth rate of money is 1.57% per quarter. Table 1 sum-

marises the benchmark parameterisation and Table 2 describes the associated

steady state of the model.

Table 1. Benchmark parameterisation

ρ = −0.30 ε = 0.87 β = 0.989 η = 2.0

δ = 0.019 λ = 0.343 φA = 0.95 σvA = 0.002

γ = 0.6962 σv = 0.0061

Table 2. Steady-state values

nss = 0.2 yss = 32.67 kss = 434.26 css = 24.42

cuss = 19.59 ckss = 4.83 rss = 0.03 πss = 0.0157

3.2 Quantitative evaluation of the union model

We start this section by reporting some well known (see, for instance, King, and

Rebelo, 2000) stylised facts of U.S. business cycles. We mainly focus on real busi-

ness cycle features and, in particular, on aggregate labour market fluctuations.

A summary of second-moment statistics for selected variables, taken from King

and Rebelo (2000), is displayed in the second column of Table 3.8 This column

provides quantity measures of six well known stylised facts: (i) consumption is

much less volatile than output; (ii) investment is much more volatile than out-

put; (iii) total volatility of labour hours is similar to output volatility; (iv) wages

are less volatile than output; (v) consumption, investment and labour hours are

highly procyclical; (vi) wages are mildly procyclical; and (vii) the correlation

between labour hours and wages is zero or slightly negative depending on the

time series considered.
8Real business cycle statistics may change depending upon the sample period considered

and the data sources used to compute them. For this reason, we also show in parentheses the

minimum and maximum values reported in a number of prominent articles such as Kydland and

Prescott (1982), Hansen (1985), Benhabib, Rogerson and Wright (1991), Hansen and Wright

(1992), Gomme (1993), Cooley and Prescott (1995) and King and Rebelo (2000). Each interval

should be understood as a rough measure of dispersion associated with each of the business

cycle statistics considered.
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In order to compare how the alternative features introduced by the gener-

alised union model in the RBC model contribute to explaining the RBC stylised

facts, we proceed in several steps. First, we analyse the properties exhibited

by a standard RBC model that assumes a Cobb-Douglas production function

(i.e. assuming that ρ → 0). Column 3 in Table 3 shows the second moment

statistics associated with this standard RBC model. This model is able to qual-

itatively reproduce some stylised facts, but it has trouble in reproducing (iii),

(vi) and (vii). Moreover, it also has difficulties in reproducing stylised fact (i)

from a quantitative perspective. That is, the standard RBC model implies that

consumption and labour hour volatilities are too low; that the contemporaneous

correlations between labour hours and output and between wages and output are

too high; and that the correlation between labour hours and wages is high and

positive. Unsurprisingly, the low value assumed for the volatility of productivity

shocks (i.e. σvA = 0.002) implies that the share of output volatility explained

by technology shocks is 0.38, much lower than the figure of 1.76 obtained using

the standard Solow residual (i.e. σvA = 0.007). This small contribution of pro-

ductivity shocks to output volatility is in line with the estimated forecast error

variance decomposition obtained by Smets and Wouters (2007), among others,

by estimating a DSGE model that allows for multiple exogenous shocks.

Second, we consider the standard RBC model and assume the existence of

some degree of complementarity between the two production factors by using

a CES production function with parameter values ρ = −0.30 and ε = 0.87.

The fourth column in Table 3 displays the second moment statistics associated

with this mild variation of the standard RBC model. Comparing columns 3

and 4 we observe that the presence of complementarity does not change much

the RBC features displayed by the simple model in qualitative terms. From a

quantitative perspective, there is, however, a 12.5% reduction in the volatility

of labour hours. The intuition for this fall in labour hour volatility is simple, as

explained above: since capital volatility is low (i.e. capital is a stock variable) the

presence of complementarity between capital and labour leads to low volatility

of hours worked.

Third, we consider the generalised union model without money. Apart from

production factors being complements, the union model departs from standard

RBC models in several important dimensions. There are two types of agent.

Capitalists own capital and behave competitively whereas workers own labour
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and unionise to manipulate both labour supply and equilibriumwages. Moreover,

since workers have no access to capital markets they find it hard to smooth

their consumption intertemporally. The fifth column in Table 3 shows the RBC

features associated with this model. Clearly, the union model leads to much

higher volatility in consumption because workers cannot smooth consumption.

Moreover, investment volatility is substantially reduced because capitalists try

to smooth their consumption as well, since capitalist income depends entirely on

the returns on investment. Furthermore, labour volatility tends to zero whereas

wage volatility increases substantially. The intuition for these results works as

follows. Workers’ current consumption depends entirely on the current wage bill

(i.e. wage times labour hours) and the only way for workers to smooth their

consumption (since they have no access to capital markets) is to smooth labour

hours because the wage is determined by the labour demand schedule that the

union faces, which is shifted period by period by productivity shocks.

Table 3. Real business cycle features9

US data RBC RBC model with Union Union model

Statistic economy model complementariness model with money

σc/σy 0.74 (0.48, 0.76) 0.32 0.35 0.82 0.76

σI/σy 2.93 (2.82, 4.89) 2.97 2.91 1.55 1.75

σk/σy 0.36 (0.36, 0.38) 0.20 0.19 0.10 0.01

σn/σy 1.02 (0.82, 1.22) 0.56 0.49 0.03 1.03

σw/σy 0.38 (0.38, 0.70) 0.45 0.47 0.97 0.94

σn/σw 2.61 (1.37, 2.61) 1.24 1.04 0.03 1.09

ρc,y 0.88 (0.75, 0.90) 0.96 0.96 1.00 0.99

ρI,y 0.80 (0.80, 0.96) 1.00 1.00 1.00 0.99

ρn,y 0.88 (0.74, 0.88) 0.99 0.99 0.93 0.63

ρw,y 0.12 (0.12, 0.66) 0.99 0.98 1.00 0.29

ρn,w (−0.35, 0.10) 0.96 0.95 0.93 −0.56

Finally, we consider the generalised union model with money. The presence

of money improves the performance of the union model in many dimensions.
9The second moments associated with the alternative models are sample means of statistics

computed from 500 simulations. Each simulation consists of 150 observations, which is of the

same order of magnitude as the U.S. sample period considered in most RBC studies. The

Hodrick-Prescott filter is used to isolate the business cycle component of the time series.
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The volatility of consumption is closer to matching that observed in actual data.

The same can be said with respect to volatility of hours worked, the correlation

between labour hours and output and the correlation between wages and output.

As explained below in the analysis of the impulse responses to a shock in the

rate of growth of money, monetary shocks lead to changes in inflationary expec-

tations that induce substitution effects between consumption and leisure which

result in higher volatility of employment and output. Moreover, the presence

of monetary shocks substantially reduces the high contemporaneous correlations

between labour hours and output and between wages and output in contrast to

the high correlations exhibited by RBC models induced by the presence of a

single (technology) shock.

Figure 3 shows the impulse responses to a technology shock in the generalised

union model. As expected, a positive technology shock induces positive responses

in the rental rate of capital, wages, capital investment and output but induces

negative responses in inflation and nominal interest rate. The impulse responses

display a great deal of persistence, which is especially pronounced in employment

(hours worked). By comparing the impulse responses of employment and capital

we observe that the generalised union model preserves the feature emphasised

in the analysis of the simple model studied above. Namely, employment (a flow

variable) behaves in a persistent manner as the capital stock.

Figure 4 shows the impulse responses to a positive monetary shock in the

nominal growth rate of money supply. As expected, an increase in the rate of

money growth induces higher inflationary expectations due to the persistence of

the money growth process. This results on the one hand in a higher inflationary

tax that reduces the marginal utility of consumption and leads workers to sub-

stitute consumption for leisure, reducing employment and output. The fall in

employment results in higher wages and lower real interest rate that decreases in-

vestment and consumption by capitalists. On the other hand, higher inflationary

expectations result in higher inflation and nominal interest rates.
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Figure 3: Impulse responses to a technology shock
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Figure 4: Impulse responses to a monetary shock
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3.3 Sensitivity analysis

In this subsection, we carry out a sensitivity analysis on two fronts. First, we

analyse the dynamic properties of the model when the union maximises the

current income of workers in each period (i.e. the union follows a discretionary

optimal plan). The second column in Table 4 shows the second moment statistics

in this case. It is clear that the real business cycle features displayed by the

model do not change substantially when the assumption of the existence of a

commitment technology is removed.

Second, we consider two alternative parameterisations of ρ and ε in order to

perform a sensitivity analysis. As mentioned above there are multiple combina-

tions of values for ε and ρ which are consistent with the long-run properties of

U.S. data. The selected moments associated with these two alternative parame-

terisations are also displayed in Table 4. The first alternative parameterisation

assumes ρ = −0.2, which according to (22) implies ε = 0.6127. The second

alternative parameterisation considers ρ = −0.1, which implies ε = 0.4315. The
sensitivity analysis described in Table 4 shows that the generalised union model

delivers quite robust features under the alternative parameterisations of the pro-

duction function considered.

Table 4. Sensitivity analysis

Variable No commitment ρ = −0.2 ρ = −0.1
σy 0.33 0.34 0.35

σc/σy 0.75 0.79 0.83

σI/σy 1.78 1.70 1.64

σk/σy 0.10 0.10 0.09

σn/σy 1.09 1.06 1.06

σw/σy 0.85 0.88 0.82

σn/σw 1.16 1.20 1.29

ρc,y 0.99 1.00 1.00

ρI,y 0.99 0.99 1.00

ρn,y 0.66 0.67 0.70

ρw,y 0.21 0.28 0.29

ρn,w −0.60 −0.52 −0.48
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4 Conclusions

This paper introduces a model that departs from standard neoclassical business

cycle models by assuming that the suppliers of labour engage in strategic be-

haviour through an institution referred to as a union. The paper shows that a

monetary union model does a reasonable job in reproducing the labour market

dynamics displayed by U.S. data at business cycle frequencies when monetary

shocks are larger than technology shocks. The dynamic features exhibited by the

monetary union model are the equilibrium outcomes of two features of the model

that work in opposite directions. On the one hand, union monopoly power miti-

gates the effects of productivity shocks on aggregate volatility due to the small,

slow reaction of employment to these shocks. On the other hand, the fact that

workers have no access to capital markets implies that by affecting inflationary

expectations monetary shocks have large effects on the marginal utility of con-

sumption and then on consumption-leisure substitution choices, which results in

large movements in labour supply.
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Appendix 1 (not intended for publication)

This appendix describes the log-linear approximation of the equilibrium around

the steady state and how the solution of the resulting linear rational expectations

system is obtained. In this appendix we consider that the production function

is given by

yt = (εB
ρ
t k

ρ
t + (1− ε)Aρ

tn
ρ
t )

1
ρ ,

in order to account for the possibility of technology bias. Notice that for At = Bt

this production function becomes (4).

We start by obtaining the expressions for the partial derivatives included in

equation (13):

∂wt

∂nt
= Aρ

t (1− ε) (ρ− 1)nρ−2t (εBρ
t k

ρ
t + (1− ε)Aρ

tn
ρ
t )

1
ρ
−1 (23)

+A2ρt (1− ε)2 (1− ρ)n
2(ρ−1)
t (εBρ

t k
ρ
t + (1− ε)Aρ

tn
ρ
t )

1
ρ
−2 ,

∙
∂wt

∂nt
nt + wt

¸
= Aρ

t (1− ε)nρ−1t (εBρ
t k

ρ
t + (1− ε)Aρ

tn
ρ
t )

1
ρ
−1 (24)h

ρ+Aρ
t (1− ρ) (1− ε)nρt (εB

ρ
t k

ρ
t + (1− ε)Aρ

tn
ρ
t )
−1
i
,

∂wt+1

∂kt+1
= Aρ

t+1ε (1− ε) (1− ρ)nρ−1t+1k
ρ−1
t+1

¡
εkρt+1 + (1− ε)Aρ

t+1n
ρ
t+1

¢ 1
ρ
−2

. (25)

From the capitalist resource constraint, we have that

∂kt+1
∂rt

= kt, (26)

∂rt
∂nt

= ε (1− ρ) (1− ε)Aρ
tB

ρ
t k

ρ−1
t nρ−1t (εBρ

t k
ρ
t + (1− ε)Aρ

tn
ρ
t )

1
ρ
−2 . (27)

In equilibrium, we have that τ t = (Mt−Mt−1)/Pt. Substituting this expression

in the cash-in-advance constraint, we obtain that cut = mt. Using this expression

together with equations (24), (25), (26), (27), and letting ht ≡ εBρ
t k

ρ
t+(1−ε)Aρ

tn
ρ
t

(the introduction of some auxiliary variables simplifies the log-linear approxi-

mation of the equilibrium conditions carried out below) the union F.O.C. (13)

becomes£
mλ

t (1− nt)
1−λ¤−η (1− λ)mλ

t (1− nt)
−λ = μt(1− ε)Aρ

tn
ρ−1
t h

1
ρ
−1

t +

μt(1− ε)(ρ− 1)Aρ
tn

ρ−1
t h

1
ρ
−1

t + μt(1− ε)2(1− ρ)A2ρt n
ρ
tn

ρ−1
t h

1
ρ
−2

t +
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βEt

∙
μt+1A

ρ
t+1ε

2(1− ε)2(1− ρ)2nρ−1t+1k
ρ−1
t+1 h

1
ρ
−2

t+1 ktA
ρ
tB

ρ
t k

ρ−1
t nρ−1t h

1
ρ
−2

t nt+1

¸
. (28)

Since all workers are identical, nobody issues bonds in equilibrium and bt = 0

for all t, which implies from F.O.C.’s (16) and (17) that wtnt = mt or mt =

(1 − ε)Aρ
tn

ρ
th

1
ρ
−1

t . Using this result, after performing a little algebra, we can

write the union F.O.C. (28) in a more compact form£
mλ

t (1− nt)
1−λ¤−η (1− λ)mλ

t (1− nt)
−λ =

μt(1− ε)Aρ
tn

ρ−1
t h

1
ρ
−1

t

£
ρ+Aρ

t (1− ε)(1− ρ)nρth
−1
t

¤
+

βEt

∙
μt+1A

ρ
t+1ε

2(1− ε)2(1− ρ)2nρt+1k
ρ−1
t+1 h

1
ρ
−2

t+1 A
ρ
tB

ρ
t k

ρ
t n

ρ−1
t h

1
ρ
−2

t

¸
.

Using (12), F.O.C. (14) can be written

μt = βλEt

£
mλ

t+1(1− nt+1)
1−λ¤−ηmλ−1

t+1 (1− nt+1)
1−λΠ−1t+1. (29)

The conditions characterising the competitive equilibrium (where we include

three additional auxiliary variables, xt, st and zt) are

ht ≡ εBρ
t k

ρ
t + (1− ε)Aρ

tn
ρ
t , (30)

yt = h
1
ρ

t , (31)

xt ≡ ρht + (1− ρ)(1− ε)Aρ
tn

ρ
t , (32)

st ≡ μtmtn
−1
t xt, (33)

zt ≡ (1− λ)htm
λ(1−η)
t (1− nt)

−λ−η(1−λ) (34)

zt = st + βEt

£
μt+1ε

2(1− ρ)2mt+1k
ρ−1
t+1 h

−1
t+1B

ρ
tmtn

−1
t kρt

¤
, (35)

μt = βλEt

h
mλ−1−λη

t+1 (1− nt+1)
(1−λ)(1−η)Π−1t+1

i
, (36)

μt = βEt

µ
μt+1

(1 + it)

Πt+1

¶
, (37)

Et

£
βc−ηkt+1 (rt+1 − δ + 1)− c−ηkt

¤
= 0, (38)

ckt + kt+1 = rtkt + (1− δ)kt, (39)

mt = yt − rtkt, (40)

rt = εBρ
t k

ρ−1
t h

1−ρ
ρ

t , (41)
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From this set of equations it is easy to characterise the steady-state equilib-

rium:

hss = εkρss + (1− ε)nρss, (42)

yss = h
1
ρ
ss, (43)

xss = ρhss + (1− ρ)(1− ε)nρss, (44)

(1−λ)hssmλ(1−η)
ss (1−nss)−λ−η(1−λ) = μssmssn

−1
ss xss+βε

2(1−ρ)2μssm2
ssk

2ρ−1
ss h−1ss n

−1
ss ,

(45)

μss = βλmλ−1−λη
ss (1− nss)

(1−λ)(1−η)Π−1ss , (46)

β(1 + iss) = Πss = 1 + πss, (47)

β (rss − δ + 1) = 1, (48)

ckss = (rss − δ)kss, (49)

mss = yss − rsskss, (50)

rss = εkρ−1ss h
1−ρ
ρ

ss , (51)

where Ass = Bss = 1 is assumed.

From (48), we have that

rss =
1

β
− 1 + δ.

Substituting this expression into (51),

1

β
− 1 + δ = εkρ−1ss h

1−ρ
ρ

ss ,

solving for hss, we obtain that

hss = a1k
ρ
ss,

where

a1 =

∙
1

ε

µ
1

β
− 1 + δ

¶¸ ρ
1−ρ

.

Taking into account (42), we have

kss =

µ
1− ε

a2

¶ 1
ρ

nss,

where a2 = a1 − ε.
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Given a value for nss we can then solve for kss. Using (42) and (51), we solve

for hss and rss. Using (43) and (44), we solve for yss and xss. Using (49) and

(50), we solve for ckss and mss. Assuming a value for the money growth rate in

the steady state, θss, (which is equal to the rate of inflation at the steady state,

πss) and using (47), we solve for iss.

From (45) and (46), we obtain the expression of the utility function parameter

λ that is consistent with nss:

λ =
hss(1 + πss)nss

β(1− nss)
£
xss + βε2(1− ρ)2mssk

2ρ−1
ss h−1ss

¤
+ hss(1 + πss)nss

.

In order to derive the log-linear approximation of the set of equations charac-

terising the equilibrium, variables are expressed as log-linear deviations around

the steady state, except those already expressed in percentage terms. Log-linear

deviations of a variable u around its steady-state value, uss, are denoted by bu,
where but = lnut − lnuss. That is,

ut = usse
ut ≈ uss(1 + but).

Two basic rules are followed in deriving approximations (Uhlig, 1999). First

for two variables ut and zt,

utzt ≈ uss(1 + but)zss(1 + bzt) ≈ usszss(1 + but + bzt),
that is, we assume that product terms such as butbzt are approximately zero.
Second,

uat ≈ uass(1 + but)a ≈ uass(1 + abut).

• Equation (30)
ht ≡ εBρ

t k
ρ
t + (1− ε)Aρ

tn
ρ
t ,

hss(1 + bht) = εkρss(1 + ρ bBt + ρbkt) + (1− ε)nρss(1 + ρ bAt + ρbnt),
using the expression for hss we have that

hssbht = εkρssρ( bBt + bkt) + (1− ε)nρssρ( bAt + bnt). (52)
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• Equation (31)
yt = h

1
ρ

t ,

ln yt =
1

ρ
lnht,

ln yss + byt = 1

ρ

³
lnhss + bht´ ,

using the expression for yss we have that

byt = 1

ρ
bht. (53)

• Equation (32)
xt ≡ ρht + (1− ρ)(1− ε)Aρ

tn
ρ
t ,

xss(1 + bxt) = ρhss(1 + bht) + (1− ρ)(1− ε)nρss(1 + ρ bAt + ρbnt),
using the expression for xss we have that

xssbxt = ρhssbht + (1− ρ)(1− ε)nρssρ( bAt + bnt). (54)

• Equation (33)
st = μtmtn

−1
t xt,

ln st = lnμt + lnmt − lnnt + lnxt,bst = bμt + bmt − bnt + bxt. (55)

• Equation (34)

zt ≡ (1− λ)htm
λ(1−η)
t (1− nt)

−λ−η(1−λ),

ln zt = ln(1− λ) + lnht + λ(1− η) lnmt − [λ+ η(1− λ)] ln lt,

where lt = 1− nt and blt = −(nss/(1− nss))bnt. Therefore,
bzt = bht + λ(1− η)bmt + [λ+ η(1− λ)]

nss
1− nss

nt. (56)

• Equation (35)

zt = st + βEt
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ρ
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or

zt = st + βEt [qt+1] ,

where
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t+1 h

−1
t+1B

ρ
tmtn
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t kρt ,

29



zss(1 + bzt) = sss(1 + bst) + βqss(1 +Etbqt+1),
zssbzt = sssbst + βqssEtbqt+1, (57)

bqt+1 = bμt+1 + bmt+1 + (ρ− 1)bkt+1 − bht+1 + ρ bBt + bmt − bnt + ρbkt.
• Equation (36)

μt = βλEt

h
mλ−1−λη

t+1 (1− nt+1)
(1−λ)(1−η)Π−1t+1

i
,

bμt = Et

∙
(λ− 1− λη)bmt+1 − (1− λ)(1− η)

nss
1− nss

nt+1 − bπt+1¸ . (58)

• Equation (37)
μt = βEt

µ
μt+1

1 + it
1 + πt+1

¶
,

μss(1 + bμt) = βμss
1 + iss
1 + πss

Et

³
1 + bμt+1 +bit − bπt+1´ ,

since 1+iss
1+πss

= β−1, we have that

bμt =bit +Et

¡bμt+1 − bπt+1¢ . (59)

• Equation (38)
Et

£
βc−ηkt+1 (rt+1 − δ + 1)

¤
= c−ηkt ,

Et [lnβ − η ln ckt+1 + lnRt+1] = −η ln ckt,

where Rt+1 = rt+1 − δ + 1. Using the steady-state conditions

Et

h
−η(bckt+1 − bckt) + bRt+1

i
= 0, (60)

where bRt+1 =
rss
Rss
brt+1.

• Equation (39)
ckt + kt+1 = rtkt + (1− δ)kt,

ckss(1 + bckt) + kss(1 + bkt+1) = rss(1 + brt)kss(1 + bkt) + (1− δ)kss(1 + bkt),
since rt is already measured as a percentage rate, we then consider ert =
rt − rss(= brtrss) instead of brt = rt−rss

rss
, (that is, the percentage deviation

around the steady state). Using the steady-state condition and assuming

that product term brtbkt is approximately zero, we obtain
ckssbckt + kssbkt+1 = kssert + rsskssbkt + (1− δ)kssbkt. (61)
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• Equation (40)
mt = yt − rtkt,

mss(1 + bmt) = yss(1 + byt)− rss(1 + brt)kss(1 + bkt),
using the steady-state condition and assuming that product term brtbkt is
approximately zero, we obtain

mssbcut = yssbyt − kssert − rsskssbkt. (62)

• Equation (41)
rt = εBρ

t k
ρ−1
t h

1−ρ
ρ

t ,

taking natural logs

ln rt = ln ε+ ρ lnBt + (ρ− 1) ln kt +
1− ρ

ρ
lnht,

using the steady-state condition

ert = ρrss bBt + (ρ− 1)rssbkt + 1− ρ

ρ
rssbht. (63)

• Equation (18)

lnAt = (1− φA) lnAss + φA lnAt−1 + vAt,

and then bAt = φ bAt−1 + vAt. (64)

• Equation (??)

lnBt = (1− φB) lnBss + φB lnBt−1 + vBt,

bBt = φB bBt−1 + vBt. (65)

• Equation (19)
Mt = (1 + θt)Mt−1,

writing this expression in real terms

(1 + πt)mt = (1 + θt)mt−1,

mss(1 + bmt)(1 + πss + bπt) = (1 + θss + bθt)mss(1 + bmt−1),

31



where bπt and bθt denote the deviations of money growth rate and inflation
from their respective steady state values (that is, bπt ≡ πt − πss and bθt ≡
θt − θss). Since θss = πss the latter expression can be written as

bmt = bmt−1 + bθt − bπt. (66)

Moreover, we assume that bθt is determined by
bθt = γbθt−1 + φ(lnAt−1 − lnAss) + vt. (67)

The system of equations characterising the log-linear approximation of the

model (52)-(67) (together with seven extra identities involving forecast errors)

can be written in matrix form as follows

Γ0Xt = Γ1Xt−1 +Ψvt +Πηt, (68)

where

Xt = (bkt+1, bnt,bht, bxt, bst, bzt, byt,bckt, bmt, bμt, ert,bit, bπt, Et bmt+1,

Etbckt+1, Etbnt+1, Et
bht+1, Etert+1, Etbμt+1, Etbπt+1, bAt, bBt,bθt)0,

vt = (vAt, vBt, vt)
0,

ηt = (bmt −Et−1 bmt,bckt −Et−1bckt, bnt −Et−1bnt,bht −Et−1bht,ert −Et−1ert, bμt −Et−1bμt, bπt −Et−1bπt)0
the seven extra identities are

bmt = Et−1 bmt + (bmt −Et−1 bmt),

bckt = Et−1bckt + (bckt −Et−1bckt),
bnt = Et−1bnt + (bnt − Et−1bnt),bht = Et−1bht + (bht −Et−1bht),
ert = Et−1ert + (ert −Et−1ert),
bμt = Et−1bμt + (bμt −Et−1bμt),bπt = Et−1bπt + (bπt −Et−1bπt),

and
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Γ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −h2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −h2 −h1 0

0 0 −1/ρ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −x2 −x1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −x2 0 0

0 1 0 −1 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −n1 −1 0 0 1 0 0 −n2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Γ6,1 q 0 0 −sss zss 0 0 −q 0 0 0 0 −q 0 0 q 0 −q 0 0 −ρq 0

0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 η 0 0 0 0 0 0 −η 0 0 β 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 Γ9,14 0 Γ9,16 0 0 0 1 0 0 0

kss 0 0 0 0 0 0 ckss 0 0 −kss 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −yss 0 mss 0 kss 0 0 0 0 0 0 0 0 0 0 0 0

0 0 Γ12,3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −rssρ 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,



Γ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qρ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kssβ
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−rsskss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(ρ− 1)rss 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 φA 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 φB 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 φ φ γ

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where

q = βqss,

Γ6,1 = −q(ρ− 1),

Γ9,14 = 1− λ(1− η),

Γ9,16 = (1− λ)(1− η)
lss

1− lss
,

Γ12,3 = −rss
(1− ρ)

ρ
,

h1 =
ερkρss
hss

,

h2 =
(1− ε)ρnρss

hss
,

x1 =
ρhss
xss

,

x2 =
ρ(1− ρ)(1− ε)nρss

xss
,

n1 = [η(1− λ) + λ)]
nss

1− nss
,

n2 = λ(1− η),
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Ψ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Equation (68) is a linear rational expectations (LRE) system. Lubik and

Schorfheide (2003) characterise the complete set of solutions of LRE models and

provide a method for computing them that builds on Sims’ (2001) approach.10

10The GAUSS code for computing the equilibria of LRE models was downloaded from

Schorfheide’s web-site.
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