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Abstract 20 

Although Candida albicans remains the major etiological agent of invasive candidiasis, 21 

Candida glabrata and other emerging species of Candida are increasingly isolated. This species 22 

is the second most prevalent cause of candidiasis in many regions of the world. However, 23 

clinical isolates of Candida nivariensis and Candida bracarensis can be misidentified and are 24 

underdiagnosed due to shared phenotypic traits with C. glabrata. Little is known about both 25 

cryptic species. Pathogenesis studies are therefore needed to understand their virulence traits 26 

and their susceptibility to antifungal drugs. The susceptibility of Caenorhabditis elegans to 27 

different Candida species makes this nematode an excellent model for assessing host–fungal 28 

interactions. We evaluated the usefulness of C. elegans as a nonconventional host model to 29 

analyze the virulence of C. glabrata, C. nivariensis and C. bracarensis. The three species 30 

caused candidiasis and the highest virulence of C. glabrata was confirmed. Furthermore, we 31 

determined the efficacy of current antifungal drugs against the infection caused by these species 32 

in the C. elegans model. Amphotericin B and azoles showed the highest activity against C. 33 

glabrata and C. bracarensis infections, while echinocandins were more active for treating those 34 

caused by C. nivariensis. C. elegans proved to be a useful model system for assessing the 35 

pathogenicity of these closely related species.  36 
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1. Introduction 37 

Invasive candidiasis is the most frequent mycosis, mainly in patients suffering from 38 

immunodeficiency. Although Candida albicans remains the predominant etiological agent, 39 

there is an increase in infections caused by other Candida species, such as Candida 40 

parapsilosis, Candida glabrata, Candida krusei and Candida auris, which has been associated 41 

with reduced antifungal susceptibility or even increased rates of resistance (1, 2, 3). Among 42 

these species, C. glabrata has been considered the second or third most isolated species of 43 

Candida from blood cultures according to geographical distribution. This species is a frequent 44 

cause of candidemia in the USA, Australia and North and Central Europe, and there is a trend 45 

toward an etiological rise in Spain and Portugal (2, 4, 5, 6). C. glabrata invasive infection 46 

treatment is often a clinical challenge due to the increasing prevalence of azole resistance. 47 

Although echinocandins are considered the treatment of choice (7), C. glabrata is also the 48 

species most likely to be resistant to echinocandins (8, 9). 49 

C. glabrata sensu stricto shares high phenotypic similarities and genetic closeness with Candida 50 

bracarensis and Candida nivariensis. As of yet, the reported incidence of C. bracarensis and C. 51 

nivariensis is low, and data about their virulence and antifungal susceptibility are unclear (5, 10, 52 

11). Among several virulence factors, production of hydrolytic enzymes such as hemolysins or 53 

secreted phospholipases and aspartyl proteinases are considered important virulence factors 54 

contributing to the pathogenesis of candidiasis (12, 13, 14). 55 

Invertebrate models are promising alternatives to mammals in the study of invasive candidiasis 56 

because they provide great advantages considering ethical issues, costs and physiological 57 

simplicity. The nematode Caenorhabditis elegans is one of these models successfully applied to 58 

advance the knowledge of Candida infection pathogenesis. This worm is approximately 1 mm 59 

in length, and transparent, and has a short reproductive cycle of 2-4 days and life span of 2-3 60 

weeks. Moreover, its genome has been sequenced, and a wide variety of mutant strains are 61 

available (15, 16, 17). However, few studies have analyzed the utility of this model host to 62 
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assess the virulence of Candida species and antifungal efficacy for candidiasis (18, 19, 20, 21). 63 

In particular, to the best of our knowledge, this nonconventional model has never been applied 64 

to study the pathogenesis of candidiasis caused by C. glabrata and other phylogenetically 65 

closely-related species.  66 

Within this framework, we were interested in assessing the utility of the C. elegans host model 67 

to study, for the first time, the pathogenesis of C. glabrata, C. nivariensis and C. bracarensis. 68 

For this purpose, we determined that this nonconventional infection model can be applied to 69 

determine the virulence behavior of these three phylogenetically related species in vivo. 70 

Furthermore, we evaluated the in vivo antifungal efficacies of amphotericin B, echinocandins 71 

and several azoles using the C. elegans model and tried to correlate them with their in vitro 72 

susceptibility profiles. 73 

 74 

2. Materials and methods 75 

2.1. Microorganisms and growth conditions 76 

Reference strains of Candida used to carry out the experiments are detailed in Table 1. They 77 

include two reference strains of each species of the C. glabrata complex: C. glabrata ATCC 78 

90030 and NCPF 3203, C. nivariensis CBS 9984 and CECT 11998, and C. bracarensis NCYC 79 

3397 and NCYC 3133. These strains were cultured in yeast extract peptone dextrose (YEPD; 80 

1% yeast extract, 2% bacteriological peptone, 2% D-glucose) liquid medium (Panreac, Spain) at 81 

30 °C for 18 h under shaking conditions. The double mutant C. elegans AU37 strain (glp-82 

4(bn2); sek-1(km4)) used in this study was obtained from the Caenorhabditis Genetics Center 83 

(University of Minnesota, USA). This double mutation increases the susceptibility to microbial 84 

infections (sek-1) and maintains a constant number of sterile worms at 25 °C (glp-4). The C. 85 

elegans strain was propagated at 15 °C on nematode growth medium (NGM) agar plates 86 

previously seeded with the nonpathogenic strain OP50 of Escherichia coli, which was used as a 87 
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food source for the nematodes. The experiments were performed with a synchronous population 88 

of worms in the L4 larval stage obtained as previously described by Ortega-Riveros et al. (20).  89 

2.2. Production of phospholipase, proteinase and hemolytic activity 90 

The production of phospholipases and proteinases and the hemolytic activity of these 91 

phylogenetically related species were analyzed. Phospholipase activity was tested following the 92 

method described by Polak (22) but using malt agar plates containing 1 M NaCl, 5 mM CaCl2 93 

and 8% sterile egg-yolk emulsion (23). To evaluate the production of aspartyl proteinase, solid 94 

medium containing bovine serum albumin (Sigma-Aldrich Inc., USA) was used as described by 95 

Cassone et al. (12). The phospholipase activity was defined as the ratio of the diameter of the 96 

colony to the total diameter of the colony plus the precipitation zone. The proteinase activity 97 

was established as the estimated diameter of the lytic area around the growth of the strain. 98 

Finally, the hemolytic activity was studied using the methodology described by Luo et al. (13) 99 

but using the plate assay described by Manns et al. (24).  100 

2.3. In vitro antifungal susceptibility 101 

The antifungal efficacy of seven antifungal drugs against the six strains of C. glabrata, C. 102 

nivariensis and C. bracarensis was tested. The drug concentration ranged from 0.03 to 16 µg/ml 103 

for amphotericin B (AmB) (Sigma-Aldrich Inc., USA), anidulafungin (AND) (Pfizer SA, 104 

Madrid, Spain), caspofungin (CAS) (Merck and Com Inc., NJ, USA), micafungin (MCF) 105 

(Astellas Pharma Inc., Japan), posaconazole (PCZ) (Merck & Com Inc., NJ, USA) and 106 

voriconazole (VCZ) (Pfizer SA, Madrid, Spain). The concentration ranged from 0.12 to 64 107 

µg/ml for fluconazole (FCZ) (Pfizer SA, Madrid, Spain). The minimum inhibitory concentration 108 

(MIC) of the antifungal drugs against each strain was determined according to the methodology 109 

described for yeasts in documents M27-A3 and M27-A3/S4 from the Clinical Laboratory 110 

Standards Institute (25, 26). Type strains obtained from the American Type Culture Collection 111 

(ATCC), C. krusei ATCC 6258 and C. parapsilosis ATCC 22019 were used as quality controls 112 

for in vitro antifungal susceptibility testing. 113 
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2.4. Caenorhabditis elegans infection 114 

The assays were performed as previously described by Breger et al. (27). C. elegans populations 115 

were placed for 2 h at 25 °C on brain heart infusion (BHI) agar plates (Panreac, Spain) seeded 116 

with lawns of the different Candida strains, allowing the worms to ingest them. Afterward, the 117 

nematodes were washed with M9 buffer (3 g of KH2PO4, 6 g of Na2HPO4, 5 g of NaCl, 1 ml of 118 

1 M MgSO4 and H2O to 1 l) supplemented with kanamycin (90 µg/ml) and placed on NGM agar 119 

plates to remove the yeast cells from their cuticles. Then, the nematodes were transferred in 120 

groups of 20 worms to each well of microtiter plates that contained M9 buffer supplemented 121 

with kanamycin and 10 μg/ml cholesterol in ethanol. Sixty nematodes were used to study the 122 

mortality caused by each strain of Candida, and groups of uninfected nematodes were included 123 

as controls in each experiment. Microtiter plates were incubated at 25 °C and visually scored as 124 

live or dead nematodes every 24 h using a stereomicroscope (Nikon SMZ-745, Japan) for the 125 

subsequent 120 h. All experiments were conducted at least in triplicate on different days. 126 

2.5. Antifungal treatments 127 

To evaluate the effect of antifungal drugs against Candida infection, previously infected L4 128 

nematodes were treated with concentrations of 8 µg/ml AND, 4 and 8 µg/ml CAS and MCF, 32, 129 

64 and 128 µg/ml FCZ, or 1 and 2 µg/ml VCZ, PCZ and AmB. 130 

The stock solutions of CAS, FCZ and MCF were prepared in water, while AmB, AND, PCZ 131 

and VCZ were prepared in 1% dimethyl sulfoxide (DMSO) following the instructions of the 132 

manufacturer. Different concentrations of antifungal drugs were prepared and added to the 133 

microtiter plates, and in each condition, 60 nematodes were included. In each experiment, 14 134 

different treatments were assessed for each strain, and groups of infected but untreated 135 

nematodes were also analyzed in the presence and absence of 1% DMSO as controls to test the 136 

effect of DMSO. At least 960 nematodes were assayed for each strain and experiment. 137 

Microtiter plates with nematodes under different conditions were incubated at 25°C, and 138 
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survival was visually monitored every 24 h for the subsequent 120 h. All experiments were 139 

conducted at least in triplicate on different days. 140 

2.6. Statistics 141 

Survival analysis curves were prepared by the Kaplan-Meier method with GraphPad Prism 5 142 

(GraphPad Software, La Jolla, CA, USA). The long-rank test with the statistical program SPSS 143 

v24.0 (IBM, Chicago, IL, USA) was applied to estimate the differences in the survival of C. 144 

elegans infected with the different Candida strains and conditions (p<0.05 was considered 145 

statistically significant).  146 

 147 

3. Results 148 

3.1. Characterization of Candida strains: enzymatic activity and in vitro antifungal 149 

susceptibility 150 

Phospholipase and proteinase production and hemolytic activity were studied to analyze the 151 

virulence traits of these species. No phospholipase or proteinase activity was detected in any of 152 

the strains tested. However, alpha (partial) hemolysis was observed in all strains, except the C. 153 

glabrata ATCC 90030 strain, which showed gamma hemolysis (no hemolysis). 154 

The in vitro antifungal activities against C. glabrata, C. nivariensis and C. bracarensis are 155 

summarized in Table 2. All six strains of these three closely related species were susceptible to 156 

all antifungal drugs tested. MICs of the quality controls were within the published ranges. 157 

3.2. Survival of Caenorhabditis elegans infected with Candida 158 

The ability of the three closely related species to develop infection in C. elegans was assessed 159 

(Figure 1). All six strains of Candida were able to kill C. elegans and showed statistically 160 

significant differences with the survival of uninfected nematodes, which remained nearly 161 

constant throughout the experiment (99.6% survival at 120 h). It took at least two days to detect 162 
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nematodes killed by any of the three Candida species. Although the C. nivariensis CECT 11998 163 

strain caused higher initial mortality, the C. glabrata ATCC 90030 strain was the most lethal at 164 

120 h. Only the C. glabrata ATCC 90030 strain achieved a mortality rate of more than 50% at 165 

120 h. Moreover, the C. glabrata ATCC 90030 strain was significantly more virulent than the 166 

NCPF 3203 strain (p=0.001). There were also differences between the two strains of C. 167 

bracarensis (p=0), which is the species that killed the lowest percentage of nematodes, but not 168 

between the two strains of C. nivariensis (Table 1). 169 

We also evaluated the ability of these six Candida strains to cause infection in the presence of 170 

DMSO in the medium. A significant 4.4% reduction in the viability of uninfected nematodes in 171 

the presence of DMSO was detected compared to that in the absence of DMSO (95.2% and 172 

99.6% survival at 120 h, respectively, p=0). The survival percentages of C. elegans infected 173 

with Candida were also lower in the presence of DMSO. However, the presence of DMSO in 174 

the medium, with respect to its absence, resulted in significantly lower survival of the 175 

nematodes at 120 h infected with either strain of C. glabrata (p<0.001) or with the C. 176 

bracarensis NCYC 3397 strain (p=0), but not with the remaining strains (Table 1). Moreover, 177 

when DMSO was in the medium, significant survival differences were detected between the 178 

uninfected nematodes and those infected with any of the Candida strains except for the C. 179 

bracarensis NCYC 3133 strain (p=0.98). 180 

Overall, our findings indicate the following virulence categorization of these three Candida 181 

species in the C. elegans model: C. glabrata > C. nivariensis > C. bracarensis. 182 

3.3. Antifungal therapy efficacy for candidiasis in Caenorhabditis elegans 183 

Nematodes infected with each of the six Candida strains were treated with three antifungal 184 

drugs prepared in water (CAS, FCZ and MCF) and with four prepared in DMSO (AmB, AND, 185 

PCZ and VCZ) at different concentrations. 186 

We detected that, with respect to that of infected and untreated C. elegans, all antifungal drugs 187 

significantly reduced the mortality of C. elegans during C. glabrata infection. However, the 188 
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reduction in nematode mortality during infections caused by C. nivariensis and C. bracarensis 189 

was drug- and strain-dependent (Figure 2). 190 

The antifungal drugs prepared in water achieved a nematode survival of up to 96.8% (value 191 

obtained with 8 µg/ml MCF) in the treatment of C. glabrata infection, and those prepared in 192 

DMSO reached a nematode survival of no more than 85.2% (with 2 µg/ml AmB) (Table 1). 193 

Nevertheless, these antifungal drugs in DMSO managed to reduce the mortality for a higher 194 

percentage of nematodes. When the nematodes following infection with the C. glabrata ATCC 195 

90030 strain were treated with 8 µg/ml MCF or 1 µg/ml AmB, a higher worm mortality 196 

reduction was obtained (51.2% for both). For nematodes infected with the NCPF 3203 strain 197 

and treated with 8 µg/ml MCF or 2 µg/ml AmB, the mortality was reduced by 31.4% and 198 

40.1%, respectively (Figure 2). 199 

Among the antifungal drugs prepared in water, 8 µg/ml MCF was the most effective for treating 200 

infections caused by either C. glabrata strain (Table 1). During ATCC 90030 strain infection, 201 

significant differences in survival were detected when the worms were treated with 8 µg/ml 202 

MCF or FCZ at all concentrations tested (p=0.006) but not when comparing to other drugs (4 203 

µg/ml MCF and both concentrations of CAS) that also resulted in effective treatments. 204 

However, against NCPF 3203 strain infection, MCF (8 µg/ml) was significantly more effective 205 

than all the other antifungal drugs except FCZ (128 µg/ml), which was similarly effective 206 

(96.8% and 94.6% survival at 120 h, respectively). AmB (1 and 2 µg/ml) resulted in the highest 207 

percentage of C. elegans survival. Nevertheless, no significant differences were observed 208 

between these and the other antifungal drugs prepared in DMSO against the infection of either 209 

C. glabrata strain, except for the treatment with VCZ (1 µg/ml) (p=0.015) or AND (8 µg/ml) 210 

(p=0) against the infection of the ATCC 90030 strain and AND (8 µg/ml) (p=0.001) against 211 

NCPF 3203 strain infection. These latter drugs allowed the least number of worms to survive 212 

(Figures 2). 213 
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MCF and CAS (8 µg/ml) were effective in protecting against C. nivariensis and C. bracarensis 214 

infections (Table 1). Although the treatment using any of the antifungal drugs prepared in water 215 

significantly protected against C. nivariensis CBS 9984 strain infection, echinocandins 216 

produced the highest C. elegans survival results. The same was observed for treating C. 217 

nivariensis CECT 11998 strain infection, except that with the lowest doses of FCZ (32 and 64 218 

µg/ml), no differences were detected in worm survival compared to that of infected and 219 

untreated C. elegans (Figure 2). AmB (2 µg/ml), among those prepared in DMSO, was the most 220 

effective against C. nivariensis CBS 9984 strain infection, and together with VCZ (1 µg/ml), 221 

these drugs significantly increased worm survival compared to the survival of infected and 222 

untreated worms. The other drugs did not reduce the mortality of C. elegans (Figure 2). No 223 

treatment prepared in DMSO significantly increased the survival rate of C. elegans infected 224 

with the C. nivariensis CECT 11998 strain compared to that of infected and untreated worms. 225 

C. bracarensis was the least virulent of the three Candida species, and the survival of 226 

nematodes infected with either strain was so high in the absence of DMSO that it was difficult 227 

to evaluate the efficacy of some treatments. Treatment with the antifungal drugs prepared in 228 

water increased the survival of nematodes infected with either strain but did not achieve a 229 

significant improvement in worm survival, likely due to the low effect of the infection. On the 230 

other hand, the antifungal drugs prepared in DMSO resulted in increased survival of C. elegans 231 

infected with the NCYC 3397 strain, with 1 µg/ml VCZ achieving the highest worm survival 232 

(96.3%) (p=0). However, no drugs achieved protection against C. elegans infection with the C. 233 

bracarensis NCYC 3133 strain. 234 

 235 

4. Discussion 236 

C. elegans has been explored as an alternative model for characterizing host–fungal interactions. 237 

Most studies of invasive candidiasis using this host model focus on the infection caused by C. 238 

albicans (15, 28), and few studies involve other Candida species (18, 19, 20, 21). The 239 
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emergence of C. parapsilosis, C. glabrata, C. krusei and C. auris, among others responsible for 240 

invasive candidiasis, makes both the study of the pathogenesis and worldwide surveillance of 241 

these species necessary (2). The actual epidemiology of emergent species that cause candidiasis, 242 

such as C. glabrata and the phylogenetically closely related species C. nivariensis and C. 243 

bracarensis is still unknown. Multiple studies have reported misidentified isolates of these 244 

cryptic species (29, 30, 31, 32, 33). Molecular approaches based on PCR, sequencing or 245 

MALDI-TOF MS are increasingly being applied because of their success in identifying rare 246 

Candida species. Therefore, enhanced knowledge of C. glabrata and closely related species 247 

improves the diagnosis and choice of the most appropriate antifungal treatment.  248 

The six strains of C. glabrata, C. nivariensis and C. bracarensis used in this study were able to 249 

infect and kill C. elegans. Despite current knowledge of the pathogenic potential of Candida 250 

using in vivo models, no studies have yet been published examining the pathogenesis of C. 251 

nivariensis and C. bracarensis. Nevertheless, there are sound data on the capacity of these 252 

cryptic species to cause infection in humans (10, 11, 29, 34, 35, 36, 37, 38, 39). Fairly little is 253 

known about virulence factors of C. glabrata. We did not detect proteinase, phospholipase or 254 

hemolytic activities in any of the six Candida strains tested. Several studies compared different 255 

protocols for analyzing the production of enzymes, such as phospholipase, highlighting the 256 

limitations in their detection (14, 40). Therefore, the absence of these virulence factors would 257 

need to be confirmed by further analysis. However, it has been demonstrated that adhesins, 258 

including proteins of the Epa family, are involved in virulence and are highly present at the cell 259 

surface of C. glabrata (41). The pathogenic potential of C. nivariensis and C. bracarensis could 260 

be explained, among others reasons, by the high numbers of EPA genes detected in these two 261 

species but not in other nonpathogenic species of the Nakaseomyces clade to which these 262 

species belong (42, 43). 263 

In our study, C. glabrata was the most virulent species, and C. bracarensis was the least 264 

virulent species in C. elegans, which is coincident with the incidence of cases of these species in 265 

the literature (30, 31, 44, 45). Virulence studies of C. glabrata developed in in vivo models 266 
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reported that approximately 30% of mice infected with 1×105 CFU per mouse survived up to 19 267 

days post infection (46). However, no more than three days were necessary to kill Galleria 268 

mellonella larvae with an infective dose of 2.5×106 cells per larva (47). This difference 269 

highlighted the effect of the infective dose, although the specific characteristics of each host 270 

model also have to be considered (48). One of the limitations in the C. elegans model is not 271 

being able to control the precise infective dose administered, so the time employed in the 272 

infection of nematodes is one of the factors to consider (20). In the present work, the survival 273 

percentages of C. elegans at 120 h were lower in the presence of 1% DMSO. This effect of 274 

DMSO was observed, to a greater or lesser extent, in the survival of nematodes infected with 275 

the six Candida strains and even in uninfected nematodes used as controls. The addition of 276 

DMSO when the eggs hatch has been shown to have a beneficial effect on the longevity of C. 277 

elegans. However, nematodes should be in this first stage of life and not in the adult stage after 278 

egg laying because DMSO could alter the membrane fluidity of worms, affecting the exchange 279 

of metabolites and external molecules (49). This phenomenon could be a potential explanation 280 

for the decrease in nematode survival observed. 281 

Notably, the antifungal drugs prepared in DMSO managed to reduce the mortality of a high 282 

percentage of nematodes infected with either strain of C. glabrata or with the C. bracarensis 283 

NCYC 3397 strain, indicating their effectiveness despite the toxicity of the drug. AmB was very 284 

effective against these strains of C. glabrata and C. bracarensis, as the highest percentages of 285 

reduction in nematodes mortality were achieved. This polyene also showed good results in other 286 

studies in vitro against C. glabrata and C. bracarensis (5, 50) and in treating C. glabrata 287 

infection in G. mellonella (47) and murine models (51). Moreover, AmB was also effective in 288 

combination with VCZ for the treatment of persistent C. glabrata candidemia (9). In our study, 289 

the activities of VCZ and PCZ against these three Candida strains were similar; both drugs 290 

achieved a similar increase in worm survival percentage in each Candida strain infection. In 291 

vivo studies conducted in murine models also exhibited the same improvement for both 292 

antifungal drugs against C. glabrata infection (52, 53). In vitro susceptibility of C. glabrata and 293 
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C. bracarensis to these second-generation triazoles has been reported, although reduced 294 

susceptibility of C. glabrata (5, 54) and C. bracarensis (30, 38) isolates has also been described. 295 

Regarding C. nivariensis, none of the drugs in DMSO increased the survival of nematodes 296 

infected with either of the two strains studied by more than 10%; despite the susceptibility 297 

detected in vitro. Several in vitro studies showed the susceptibility of this species to AmB, 298 

AND, PCZ and VCZ (30, 32, 39, 55, 56); however, C. nivariensis isolates with reduced 299 

susceptibility or resistance to FCZ, VCZ or PCZ have also been reported (36, 37, 57). 300 

Echinocandins are the treatment of choice for C. glabrata invasive infections, but there are 301 

reports of C. glabrata isolates with resistance to these drugs (3, 58, 59). Resistance has been 302 

associated with echinocandin exposure and increased use in clinical practice (2, 9, 56, 60). In 303 

time-kill studies, all echinocandins were less active against C. nivariensis (61). However, our 304 

findings showed that in the C. elegans model, CSF and MCF were the most effective treatments 305 

against C. nivariensis infections and were also very effective against C. glabrata infections. The 306 

low virulence of C. bracarensis strains in this host model made it difficult to assess the effect of 307 

these two drugs. Nevertheless, AND showed good results against infection with both C. 308 

bracarensis NCYC 3397 and C. glabrata NCPF 3203 strains. AND was reported as the least 309 

effective echinocandin against C. glabrata infection in mice (62). Conversely, in a rabbit model 310 

of candidiasis, AND was more effective than liposomal AmB for treating C. glabrata infection 311 

associated with catheter colonization (63). The effectiveness of CSF was reported as an 312 

adequate treatment for C. nivariensis catheter-related fungemia (10), and it was also the most 313 

effective echinocandin in a murine model of C. glabrata infection with a dose of 1 mg/kg or 20 314 

mg/kg (62, 64, 65, 66, 67). The treatment with CSF at this last dose in a murine model showed 315 

the appearance of C. glabrata strains harboring FKS mutations after five to nine days of 316 

treatment (8). Moreover, in a G. mellonella model of C. glabrata infection, 4 µg/g CSF 317 

increased larval survival by 60% (47). MCF presents a low interlaboratory MIC variability 318 

compared to that of CSF, and its clinical use is widespread compared to that of AND (68). 319 

However, C. glabrata isolates resistant to MCF have been reported (3, 9). Likewise, susceptible 320 
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isolates of C. glabrata, C. nivariensis and C. bracarensis were also detected in several in vitro 321 

studies (30, 38, 39, 56). 322 

Finally, FCZ is an antifungal drug frequently used in the treatment of invasive candidiasis, but 323 

increasing acquired resistance of C. glabrata has been reported (2). No protective effect against 324 

C. glabrata infection was observed in G. mellonella treated with 3, 6 or 12 µg/mg FCZ (47). 325 

However, in a murine model, treatment with high doses of FCZ (from 30 to 100 mg/kg FCZ) 326 

was required to achieve a significant decrease in the fungal burden (51, 52, 69). Although all 327 

strains were susceptible to FCZ in vitro, the highest doses of FCZ (64 or 128 µg/ml) were 328 

needed to detect a significant increase in the survival of C. elegans infected with C. glabrata or 329 

C. nivariensis. FCZ-resistant C. nivariensis isolates have been reported (36, 37), as well as 330 

susceptible isolates (39). 331 

In conclusion, C. elegans was an appropriate and simple infection model to study the virulence 332 

of C. glabrata and the closely related species C. nivariensis and C. bracarensis. C. glabrata was 333 

the most virulent species. Moreover, this model system was successfully used for in vivo 334 

screening of antifungal drugs against infections caused by these three Candida species. 335 

However, the effect of antifungal treatments against C. bracarensis strains was sometimes 336 

compromised due to the low virulence of this species, and therefore, other models are needed 337 

where the infective dose can be more accurate.  338 
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Table 1. Survival of Caenorhabditis elegans infected with each of the six Candida strains used in this study and evaluation of antifungal treatment. 614 

Strain Origin  Collection reference 

Survival of 

C. elegans at 120 h in 

absence / presence of 

DMSO 

The three most effective antifungal drugs  

(survival of C. elegans at 120 h) 

Dissolved in water Dissolved in DMSO 

Candida glabrata       

ATCC 90030  Blood 
American Type 

Culture Collection  
40.3% / 26.5% 

Micafungin, 8 µg/ml (91.5%) 

Micafungin, 4 µg/ml (90.6%)  

Caspofungin, 4 µg/ml (89.6%) 

Amphotericin B, 1 µg/ml (82.4%) 

Voriconazole, 2 µg/ml (82.1%) 

Posaconazole, 2 µg/ml (81.5%) 

NCPF 3203 Blood 
National Collection 

of Pathogenic Fungi  
65.4% / 45.1% 

Micafungin, 8 µg/ml (96.8%) 

Fluconazole, 128 µg/ml (94.6%)  

Caspofungin, 8 µg/ml (91.8%) 

Amphotericin B, 2 µg/ml (85.2%) 

Voriconazole, 2 µg/ml (83.8%) 

Voriconazole, 1 µg/ml (83.7%) 

Candida nivariensis      

CECT 11998 Blood 

Colección Española 

de Cultivos Tipo 72.9% / 65.3% 

Micafungin, 8 µg/ml (88.3%) 

Caspofungin, 8 µg/ml (86.4%) 

Caspofungin, 4 µg/ml (86.2%)  

Voriconazole, 1 µg/ml (64.8%) 

Voriconazole, 2 µg/ml (63.5%) 

Amphotericin B, 1 µg/ml (57.2%) 

CBS 9984 
Bronchoalveolar 

lavage 

Westerdijk Fungal 

Biodiversity Institute  75% / 73% 

Caspofungin, 8 µg/ml (94.9%) 

Micafungin, 8 µg/ml (94%) 

Micafungin, 4 µg/ml (92.7%)  

Amphotericin B, 2 µg/ml (83.2%) 

Voriconazole, 1 µg/ml (81.2%) 

Amphotericin B, 2 µg/ml (74.7%) 

Candida bracarensis      

NCYC 3133 Catheter 

National Collection 

of Yeast Cultures  89.4% / 89.4% 

Caspofungin, 8 µg/ml (94.5%) 

Caspofungin, 4 µg/ml (94.4%) 

Micafungin, 8 µg/ml (92.6%) 

Amphotericin B, 1 µg/ml (80.1%) 

Voriconazole, 2 µg/ml (76%) 

Amphotericin B, 2 µg/ml (75.8%) 

NCYC 3397 Blood 
National Collection 

of Yeast Cultures 
97.6% / 70.8% 

Caspofungin, 8 µg/ml (100%) 

Micafungin, 4 µg/ml (99.6%) 

Micafungin, 8 µg/ml (99.5%) 

Voriconazole, 1 µg/ml (96.3%) 

Posaconazole, 2 µg/ml (96.1%) 

Amphotericin B, 2 µg/ml (95.4%) 

DMSO: 1% dimethyl sulfoxide615 
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Table 2. In vitro antifungal activity of caspofungin (CAS), micafungin (MCF), anidulafungin 616 

(AND), amphotericin B (AmB), posaconazole (PCZ), voriconazole (VCZ) and fluconazole 617 

(FCZ) against Candida glabrata, Candida nivariensis and Candida bracarensis strains. 618 

Strain 
 MIC (µg/ml) 

 CAS MCF AND AmB PCZ VCZ FCZ 

C. glabrata ATCC 90030  0.5 0.03 0.06 1 1 0.5 8 

C. glabrata NCPF 3203  0.25 0.03 0.06 1 0.5 0.25 4 

C. nivariensis CBS 9984  0.25 0.03 0.06 2 0.5 0.06 8 

C. nivariensis CECT 11998  0.25 0.03 0.06 2 0.5 0.12 4 

C. bracarensis NCYC 3397  0.25 0.03 0.06 1 1 0.12 4 

C. bracarensis NCYC 3133  0.25 0.03 0.06 2 1 0.12 4 

MIC: minimum inhibitory concentration 619 

  620 
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Figure 1. Survival curves of Caenorhabditis elegans infected with strains of Candida glabrata 621 

(a), Candida nivariensis (b) or Candida bracarensis (c) in the absence (water) or presence of 622 

1% dimethyl sulfoxide (DMSO). 623 
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c)  634 
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Figure 2. Efficacy of the antifungal drugs at different concentrations during Caenorhabditis 638 

elegans infection with Candida glabrata ATCC 90030 (a), Candida glabrata NCPF 3203 (b), 639 

Candida nivariensis CBS 9984 (c), Candida nivariensis CECT 11998 (d) or Candida 640 

bracarensis NCYC 3397 (e). The antifungal drugs fluconazole (FCZ), caspofungin (CAS) and 641 

micafungin (MCF) were prepared in water, while amphotericin B (AmB), anidulafungin 642 

(AND), posaconazole (PCZ) and voriconazole (VCZ) were prepared in 1% dimethyl sulfoxide 643 

(DMSO). 644 
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b) Caenorhabditis elegans infection with C. glabrata strain NCPF 3203 651 
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c) Caenorhabditis elegans infection with C. nivariensis strain CBS 9984 656 
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d) Caenorhabditis elegans infection with C. nivariensis strain CECT 11998 662 
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e) Caenorhabditis elegans infection with C. bracarensis strain NCYC 3397 669 
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